Merge branches 'cbnum.2013.06.10a', 'doc.2013.06.10a', 'fixes.2013.06.10a', 'srcu.2013.06.10a' and 'tiny.2013.06.10a' into HEAD

cbnum.2013.06.10a: Apply simplifications stemming from the new callback
	numbering.

doc.2013.06.10a: Documentation updates.

fixes.2013.06.10a: Miscellaneous fixes.

srcu.2013.06.10a: Updates to SRCU.

tiny.2013.06.10a: Eliminate TINY_PREEMPT_RCU.
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt
index 79e789b8..7703ec7 100644
--- a/Documentation/RCU/checklist.txt
+++ b/Documentation/RCU/checklist.txt
@@ -354,12 +354,6 @@
 	using RCU rather than SRCU, because RCU is almost always faster
 	and easier to use than is SRCU.
 
-	If you need to enter your read-side critical section in a
-	hardirq or exception handler, and then exit that same read-side
-	critical section in the task that was interrupted, then you need
-	to srcu_read_lock_raw() and srcu_read_unlock_raw(), which avoid
-	the lockdep checking that would otherwise this practice illegal.
-
 	Also unlike other forms of RCU, explicit initialization
 	and cleanup is required via init_srcu_struct() and
 	cleanup_srcu_struct().	These are passed a "struct srcu_struct"
diff --git a/Documentation/RCU/torture.txt b/Documentation/RCU/torture.txt
index 7dce8a1..d8a5023 100644
--- a/Documentation/RCU/torture.txt
+++ b/Documentation/RCU/torture.txt
@@ -182,12 +182,6 @@
 		"srcu_expedited": srcu_read_lock(), srcu_read_unlock() and
 			synchronize_srcu_expedited().
 
-		"srcu_raw": srcu_read_lock_raw(), srcu_read_unlock_raw(),
-			and call_srcu().
-
-		"srcu_raw_sync": srcu_read_lock_raw(), srcu_read_unlock_raw(),
-			and synchronize_srcu().
-
 		"sched": preempt_disable(), preempt_enable(), and
 			call_rcu_sched().
 
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index 10df0b8..0f0fb7c 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -842,9 +842,7 @@
 
 	srcu_read_lock		synchronize_srcu	srcu_barrier
 	srcu_read_unlock	call_srcu
-	srcu_read_lock_raw	synchronize_srcu_expedited
-	srcu_read_unlock_raw
-	srcu_dereference
+	srcu_dereference	synchronize_srcu_expedited
 
 SRCU:	Initialization/cleanup
 	init_srcu_struct
@@ -865,38 +863,32 @@
 
 a.	Will readers need to block?  If so, you need SRCU.
 
-b.	Is it necessary to start a read-side critical section in a
-	hardirq handler or exception handler, and then to complete
-	this read-side critical section in the task that was
-	interrupted?  If so, you need SRCU's srcu_read_lock_raw() and
-	srcu_read_unlock_raw() primitives.
-
-c.	What about the -rt patchset?  If readers would need to block
+b.	What about the -rt patchset?  If readers would need to block
 	in an non-rt kernel, you need SRCU.  If readers would block
 	in a -rt kernel, but not in a non-rt kernel, SRCU is not
 	necessary.
 
-d.	Do you need to treat NMI handlers, hardirq handlers,
+c.	Do you need to treat NMI handlers, hardirq handlers,
 	and code segments with preemption disabled (whether
 	via preempt_disable(), local_irq_save(), local_bh_disable(),
 	or some other mechanism) as if they were explicit RCU readers?
 	If so, RCU-sched is the only choice that will work for you.
 
-e.	Do you need RCU grace periods to complete even in the face
+d.	Do you need RCU grace periods to complete even in the face
 	of softirq monopolization of one or more of the CPUs?  For
 	example, is your code subject to network-based denial-of-service
 	attacks?  If so, you need RCU-bh.
 
-f.	Is your workload too update-intensive for normal use of
+e.	Is your workload too update-intensive for normal use of
 	RCU, but inappropriate for other synchronization mechanisms?
 	If so, consider SLAB_DESTROY_BY_RCU.  But please be careful!
 
-g.	Do you need read-side critical sections that are respected
+f.	Do you need read-side critical sections that are respected
 	even though they are in the middle of the idle loop, during
 	user-mode execution, or on an offlined CPU?  If so, SRCU is the
 	only choice that will work for you.
 
-h.	Otherwise, use RCU.
+g.	Otherwise, use RCU.
 
 Of course, this all assumes that you have determined that RCU is in fact
 the right tool for your job.
diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt
index cbf7ae41..5f39ef5 100644
--- a/Documentation/kernel-per-CPU-kthreads.txt
+++ b/Documentation/kernel-per-CPU-kthreads.txt
@@ -157,6 +157,53 @@
 		calls and by forcing both kernel threads and interrupts
 		to execute elsewhere.
 
+Name: kworker/%u:%d%s (cpu, id, priority)
+Purpose: Execute workqueue requests
+To reduce its OS jitter, do any of the following:
+1.	Run your workload at a real-time priority, which will allow
+	preempting the kworker daemons.
+2.	Do any of the following needed to avoid jitter that your
+	application cannot tolerate:
+	a.	Build your kernel with CONFIG_SLUB=y rather than
+		CONFIG_SLAB=y, thus avoiding the slab allocator's periodic
+		use of each CPU's workqueues to run its cache_reap()
+		function.
+	b.	Avoid using oprofile, thus avoiding OS jitter from
+		wq_sync_buffer().
+	c.	Limit your CPU frequency so that a CPU-frequency
+		governor is not required, possibly enlisting the aid of
+		special heatsinks or other cooling technologies.  If done
+		correctly, and if you CPU architecture permits, you should
+		be able to build your kernel with CONFIG_CPU_FREQ=n to
+		avoid the CPU-frequency governor periodically running
+		on each CPU, including cs_dbs_timer() and od_dbs_timer().
+		WARNING:  Please check your CPU specifications to
+		make sure that this is safe on your particular system.
+	d.	It is not possible to entirely get rid of OS jitter
+		from vmstat_update() on CONFIG_SMP=y systems, but you
+		can decrease its frequency by writing a large value to
+		/proc/sys/vm/stat_interval.  The default value is HZ,
+		for an interval of one second.  Of course, larger values
+		will make your virtual-memory statistics update more
+		slowly.  Of course, you can also run your workload at
+		a real-time priority, thus preempting vmstat_update().
+	e.	If running on high-end powerpc servers, build with
+		CONFIG_PPC_RTAS_DAEMON=n.  This prevents the RTAS
+		daemon from running on each CPU every second or so.
+		(This will require editing Kconfig files and will defeat
+		this platform's RAS functionality.)  This avoids jitter
+		due to the rtas_event_scan() function.
+		WARNING:  Please check your CPU specifications to
+		make sure that this is safe on your particular system.
+	f.	If running on Cell Processor, build your kernel with
+		CBE_CPUFREQ_SPU_GOVERNOR=n to avoid OS jitter from
+		spu_gov_work().
+		WARNING:  Please check your CPU specifications to
+		make sure that this is safe on your particular system.
+	g.	If running on PowerMAC, build your kernel with
+		CONFIG_PMAC_RACKMETER=n to disable the CPU-meter,
+		avoiding OS jitter from rackmeter_do_timer().
+
 Name: rcuc/%u
 Purpose: Execute RCU callbacks in CONFIG_RCU_BOOST=y kernels.
 To reduce its OS jitter, do at least one of the following:
diff --git a/Documentation/timers/NO_HZ.txt b/Documentation/timers/NO_HZ.txt
index 5b53220..8869758 100644
--- a/Documentation/timers/NO_HZ.txt
+++ b/Documentation/timers/NO_HZ.txt
@@ -7,21 +7,59 @@
 some types of computationally intensive high-performance computing (HPC)
 applications and for real-time applications.
 
-There are two main contexts in which the number of scheduling-clock
-interrupts can be reduced compared to the old-school approach of sending
-a scheduling-clock interrupt to all CPUs every jiffy whether they need
-it or not (CONFIG_HZ_PERIODIC=y or CONFIG_NO_HZ=n for older kernels):
+There are three main ways of managing scheduling-clock interrupts
+(also known as "scheduling-clock ticks" or simply "ticks"):
 
-1.	Idle CPUs (CONFIG_NO_HZ_IDLE=y or CONFIG_NO_HZ=y for older kernels).
+1.	Never omit scheduling-clock ticks (CONFIG_HZ_PERIODIC=y or
+	CONFIG_NO_HZ=n for older kernels).  You normally will -not-
+	want to choose this option.
 
-2.	CPUs having only one runnable task (CONFIG_NO_HZ_FULL=y).
+2.	Omit scheduling-clock ticks on idle CPUs (CONFIG_NO_HZ_IDLE=y or
+	CONFIG_NO_HZ=y for older kernels).  This is the most common
+	approach, and should be the default.
 
-These two cases are described in the following two sections, followed
+3.	Omit scheduling-clock ticks on CPUs that are either idle or that
+	have only one runnable task (CONFIG_NO_HZ_FULL=y).  Unless you
+	are running realtime applications or certain types of HPC
+	workloads, you will normally -not- want this option.
+
+These three cases are described in the following three sections, followed
 by a third section on RCU-specific considerations and a fourth and final
 section listing known issues.
 
 
-IDLE CPUs
+NEVER OMIT SCHEDULING-CLOCK TICKS
+
+Very old versions of Linux from the 1990s and the very early 2000s
+are incapable of omitting scheduling-clock ticks.  It turns out that
+there are some situations where this old-school approach is still the
+right approach, for example, in heavy workloads with lots of tasks
+that use short bursts of CPU, where there are very frequent idle
+periods, but where these idle periods are also quite short (tens or
+hundreds of microseconds).  For these types of workloads, scheduling
+clock interrupts will normally be delivered any way because there
+will frequently be multiple runnable tasks per CPU.  In these cases,
+attempting to turn off the scheduling clock interrupt will have no effect
+other than increasing the overhead of switching to and from idle and
+transitioning between user and kernel execution.
+
+This mode of operation can be selected using CONFIG_HZ_PERIODIC=y (or
+CONFIG_NO_HZ=n for older kernels).
+
+However, if you are instead running a light workload with long idle
+periods, failing to omit scheduling-clock interrupts will result in
+excessive power consumption.  This is especially bad on battery-powered
+devices, where it results in extremely short battery lifetimes.  If you
+are running light workloads, you should therefore read the following
+section.
+
+In addition, if you are running either a real-time workload or an HPC
+workload with short iterations, the scheduling-clock interrupts can
+degrade your applications performance.  If this describes your workload,
+you should read the following two sections.
+
+
+OMIT SCHEDULING-CLOCK TICKS FOR IDLE CPUs
 
 If a CPU is idle, there is little point in sending it a scheduling-clock
 interrupt.  After all, the primary purpose of a scheduling-clock interrupt
@@ -59,10 +97,12 @@
 dyntick-idle mode.
 
 
-CPUs WITH ONLY ONE RUNNABLE TASK
+OMIT SCHEDULING-CLOCK TICKS FOR CPUs WITH ONLY ONE RUNNABLE TASK
 
 If a CPU has only one runnable task, there is little point in sending it
 a scheduling-clock interrupt because there is no other task to switch to.
+Note that omitting scheduling-clock ticks for CPUs with only one runnable
+task implies also omitting them for idle CPUs.
 
 The CONFIG_NO_HZ_FULL=y Kconfig option causes the kernel to avoid
 sending scheduling-clock interrupts to CPUs with a single runnable task,
@@ -238,6 +278,11 @@
 	single runnable SCHED_FIFO task and multiple runnable SCHED_OTHER
 	tasks, even though these interrupts are unnecessary.
 
+	And even when there are multiple runnable tasks on a given CPU,
+	there is little point in interrupting that CPU until the current
+	running task's timeslice expires, which is almost always way
+	longer than the time of the next scheduling-clock interrupt.
+
 	Better handling of these sorts of situations is future work.
 
 o	A reboot is required to reconfigure both adaptive idle and RCU
@@ -268,6 +313,16 @@
 	scheduling-clock interrupt going in order to support accurate
 	timekeeping.
 
-o	If there are adaptive-ticks CPUs, there will be at least one
-	CPU keeping the scheduling-clock interrupt going, even if all
-	CPUs are otherwise idle.
+o	If there might potentially be some adaptive-ticks CPUs, there
+	will be at least one CPU keeping the scheduling-clock interrupt
+	going, even if all CPUs are otherwise idle.
+
+	Better handling of this situation is ongoing work.
+
+o	Some process-handling operations still require the occasional
+	scheduling-clock tick.	These operations include calculating CPU
+	load, maintaining sched average, computing CFS entity vruntime,
+	computing avenrun, and carrying out load balancing.  They are
+	currently accommodated by scheduling-clock tick every second
+	or so.	On-going work will eliminate the need even for these
+	infrequent scheduling-clock ticks.
diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c
index 550f592..2efa9dd 100644
--- a/arch/powerpc/kvm/book3s_hv.c
+++ b/arch/powerpc/kvm/book3s_hv.c
@@ -1864,7 +1864,7 @@
 
  up_out:
 	up_read(&current->mm->mmap_sem);
-	goto out;
+	goto out_srcu;
 }
 
 int kvmppc_core_init_vm(struct kvm *kvm)
diff --git a/include/linux/srcu.h b/include/linux/srcu.h
index 04f4121..c114614 100644
--- a/include/linux/srcu.h
+++ b/include/linux/srcu.h
@@ -237,47 +237,4 @@
 	__srcu_read_unlock(sp, idx);
 }
 
-/**
- * srcu_read_lock_raw - register a new reader for an SRCU-protected structure.
- * @sp: srcu_struct in which to register the new reader.
- *
- * Enter an SRCU read-side critical section.  Similar to srcu_read_lock(),
- * but avoids the RCU-lockdep checking.  This means that it is legal to
- * use srcu_read_lock_raw() in one context, for example, in an exception
- * handler, and then have the matching srcu_read_unlock_raw() in another
- * context, for example in the task that took the exception.
- *
- * However, the entire SRCU read-side critical section must reside within a
- * single task.  For example, beware of using srcu_read_lock_raw() in
- * a device interrupt handler and srcu_read_unlock() in the interrupted
- * task:  This will not work if interrupts are threaded.
- */
-static inline int srcu_read_lock_raw(struct srcu_struct *sp)
-{
-	unsigned long flags;
-	int ret;
-
-	local_irq_save(flags);
-	ret =  __srcu_read_lock(sp);
-	local_irq_restore(flags);
-	return ret;
-}
-
-/**
- * srcu_read_unlock_raw - unregister reader from an SRCU-protected structure.
- * @sp: srcu_struct in which to unregister the old reader.
- * @idx: return value from corresponding srcu_read_lock_raw().
- *
- * Exit an SRCU read-side critical section without lockdep-RCU checking.
- * See srcu_read_lock_raw() for more details.
- */
-static inline void srcu_read_unlock_raw(struct srcu_struct *sp, int idx)
-{
-	unsigned long flags;
-
-	local_irq_save(flags);
-	__srcu_read_unlock(sp, idx);
-	local_irq_restore(flags);
-}
-
 #endif
diff --git a/init/Kconfig b/init/Kconfig
index e7fb255..be52daf 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -648,7 +648,7 @@
 	  Accept the default if unsure.
 
 config RCU_NOCB_CPU
-	bool "Offload RCU callback processing from boot-selected CPUs (EXPERIMENTAL"
+	bool "Offload RCU callback processing from boot-selected CPUs"
 	depends on TREE_RCU || TREE_PREEMPT_RCU
 	default n
 	help
@@ -674,9 +674,10 @@
 	prompt "Build-forced no-CBs CPUs"
 	default RCU_NOCB_CPU_NONE
 	help
-	  This option allows no-CBs CPUs to be specified at build time.
-	  Additional no-CBs CPUs may be specified by the rcu_nocbs=
-	  boot parameter.
+	  This option allows no-CBs CPUs (whose RCU callbacks are invoked
+	  from kthreads rather than from softirq context) to be specified
+	  at build time.  Additional no-CBs CPUs may be specified by
+	  the rcu_nocbs= boot parameter.
 
 config RCU_NOCB_CPU_NONE
 	bool "No build_forced no-CBs CPUs"
@@ -684,25 +685,40 @@
 	help
 	  This option does not force any of the CPUs to be no-CBs CPUs.
 	  Only CPUs designated by the rcu_nocbs= boot parameter will be
-	  no-CBs CPUs.
+	  no-CBs CPUs, whose RCU callbacks will be invoked by per-CPU
+	  kthreads whose names begin with "rcuo".  All other CPUs will
+	  invoke their own RCU callbacks in softirq context.
+
+	  Select this option if you want to choose no-CBs CPUs at
+	  boot time, for example, to allow testing of different no-CBs
+	  configurations without having to rebuild the kernel each time.
 
 config RCU_NOCB_CPU_ZERO
 	bool "CPU 0 is a build_forced no-CBs CPU"
 	depends on RCU_NOCB_CPU && !NO_HZ_FULL
 	help
-	  This option forces CPU 0 to be a no-CBs CPU.  Additional CPUs
-	  may be designated as no-CBs CPUs using the rcu_nocbs= boot
-	  parameter will be no-CBs CPUs.
+	  This option forces CPU 0 to be a no-CBs CPU, so that its RCU
+	  callbacks are invoked by a per-CPU kthread whose name begins
+	  with "rcuo".	Additional CPUs may be designated as no-CBs
+	  CPUs using the rcu_nocbs= boot parameter will be no-CBs CPUs.
+	  All other CPUs will invoke their own RCU callbacks in softirq
+	  context.
 
 	  Select this if CPU 0 needs to be a no-CBs CPU for real-time
-	  or energy-efficiency reasons.
+	  or energy-efficiency reasons, but the real reason it exists
+	  is to ensure that randconfig testing covers mixed systems.
 
 config RCU_NOCB_CPU_ALL
 	bool "All CPUs are build_forced no-CBs CPUs"
 	depends on RCU_NOCB_CPU
 	help
 	  This option forces all CPUs to be no-CBs CPUs.  The rcu_nocbs=
-	  boot parameter will be ignored.
+	  boot parameter will be ignored.  All CPUs' RCU callbacks will
+	  be executed in the context of per-CPU rcuo kthreads created for
+	  this purpose.  Assuming that the kthreads whose names start with
+	  "rcuo" are bound to "housekeeping" CPUs, this reduces OS jitter
+	  on the remaining CPUs, but might decrease memory locality during
+	  RCU-callback invocation, thus potentially degrading throughput.
 
 	  Select this if all CPUs need to be no-CBs CPUs for real-time
 	  or energy-efficiency reasons.
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index 0be1fa2..cce6ba8 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -121,9 +121,6 @@
 struct lockdep_map rcu_sched_lock_map =
 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
-#endif
-
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
 
 int debug_lockdep_rcu_enabled(void)
 {
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c
index e1f3a8c..b1fa551 100644
--- a/kernel/rcutorture.c
+++ b/kernel/rcutorture.c
@@ -695,44 +695,6 @@
 	.name		= "srcu_sync"
 };
 
-static int srcu_torture_read_lock_raw(void) __acquires(&srcu_ctl)
-{
-	return srcu_read_lock_raw(&srcu_ctl);
-}
-
-static void srcu_torture_read_unlock_raw(int idx) __releases(&srcu_ctl)
-{
-	srcu_read_unlock_raw(&srcu_ctl, idx);
-}
-
-static struct rcu_torture_ops srcu_raw_ops = {
-	.init		= rcu_sync_torture_init,
-	.readlock	= srcu_torture_read_lock_raw,
-	.read_delay	= srcu_read_delay,
-	.readunlock	= srcu_torture_read_unlock_raw,
-	.completed	= srcu_torture_completed,
-	.deferred_free	= srcu_torture_deferred_free,
-	.sync		= srcu_torture_synchronize,
-	.call		= NULL,
-	.cb_barrier	= NULL,
-	.stats		= srcu_torture_stats,
-	.name		= "srcu_raw"
-};
-
-static struct rcu_torture_ops srcu_raw_sync_ops = {
-	.init		= rcu_sync_torture_init,
-	.readlock	= srcu_torture_read_lock_raw,
-	.read_delay	= srcu_read_delay,
-	.readunlock	= srcu_torture_read_unlock_raw,
-	.completed	= srcu_torture_completed,
-	.deferred_free	= rcu_sync_torture_deferred_free,
-	.sync		= srcu_torture_synchronize,
-	.call		= NULL,
-	.cb_barrier	= NULL,
-	.stats		= srcu_torture_stats,
-	.name		= "srcu_raw_sync"
-};
-
 static void srcu_torture_synchronize_expedited(void)
 {
 	synchronize_srcu_expedited(&srcu_ctl);
@@ -1983,7 +1945,6 @@
 		{ &rcu_ops, &rcu_sync_ops, &rcu_expedited_ops,
 		  &rcu_bh_ops, &rcu_bh_sync_ops, &rcu_bh_expedited_ops,
 		  &srcu_ops, &srcu_sync_ops, &srcu_expedited_ops,
-		  &srcu_raw_ops, &srcu_raw_sync_ops,
 		  &sched_ops, &sched_sync_ops, &sched_expedited_ops, };
 
 	mutex_lock(&fullstop_mutex);
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 1009c0c..cf3adc6 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -218,8 +218,8 @@
 module_param(qhimark, long, 0444);
 module_param(qlowmark, long, 0444);
 
-static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
-static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
+static ulong jiffies_till_first_fqs = ULONG_MAX;
+static ulong jiffies_till_next_fqs = ULONG_MAX;
 
 module_param(jiffies_till_first_fqs, ulong, 0644);
 module_param(jiffies_till_next_fqs, ulong, 0644);
@@ -985,65 +985,6 @@
 }
 
 /*
- * Update CPU-local rcu_data state to record the newly noticed grace period.
- * This is used both when we started the grace period and when we notice
- * that someone else started the grace period.  The caller must hold the
- * ->lock of the leaf rcu_node structure corresponding to the current CPU,
- *  and must have irqs disabled.
- */
-static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
-{
-	if (rdp->gpnum != rnp->gpnum) {
-		/*
-		 * If the current grace period is waiting for this CPU,
-		 * set up to detect a quiescent state, otherwise don't
-		 * go looking for one.
-		 */
-		rdp->gpnum = rnp->gpnum;
-		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
-		rdp->passed_quiesce = 0;
-		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
-		zero_cpu_stall_ticks(rdp);
-	}
-}
-
-static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
-{
-	unsigned long flags;
-	struct rcu_node *rnp;
-
-	local_irq_save(flags);
-	rnp = rdp->mynode;
-	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
-	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
-		local_irq_restore(flags);
-		return;
-	}
-	__note_new_gpnum(rsp, rnp, rdp);
-	raw_spin_unlock_irqrestore(&rnp->lock, flags);
-}
-
-/*
- * Did someone else start a new RCU grace period start since we last
- * checked?  Update local state appropriately if so.  Must be called
- * on the CPU corresponding to rdp.
- */
-static int
-check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
-{
-	unsigned long flags;
-	int ret = 0;
-
-	local_irq_save(flags);
-	if (rdp->gpnum != rsp->gpnum) {
-		note_new_gpnum(rsp, rdp);
-		ret = 1;
-	}
-	local_irq_restore(flags);
-	return ret;
-}
-
-/*
  * Initialize the specified rcu_data structure's callback list to empty.
  */
 static void init_callback_list(struct rcu_data *rdp)
@@ -1313,18 +1254,16 @@
 }
 
 /*
- * Advance this CPU's callbacks, but only if the current grace period
- * has ended.  This may be called only from the CPU to whom the rdp
- * belongs.  In addition, the corresponding leaf rcu_node structure's
- * ->lock must be held by the caller, with irqs disabled.
+ * Update CPU-local rcu_data state to record the beginnings and ends of
+ * grace periods.  The caller must hold the ->lock of the leaf rcu_node
+ * structure corresponding to the current CPU, and must have irqs disabled.
  */
-static void
-__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
+static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 {
-	/* Did another grace period end? */
+	/* Handle the ends of any preceding grace periods first. */
 	if (rdp->completed == rnp->completed) {
 
-		/* No, so just accelerate recent callbacks. */
+		/* No grace period end, so just accelerate recent callbacks. */
 		rcu_accelerate_cbs(rsp, rnp, rdp);
 
 	} else {
@@ -1335,68 +1274,40 @@
 		/* Remember that we saw this grace-period completion. */
 		rdp->completed = rnp->completed;
 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
+	}
 
+	if (rdp->gpnum != rnp->gpnum) {
 		/*
-		 * If we were in an extended quiescent state, we may have
-		 * missed some grace periods that others CPUs handled on
-		 * our behalf. Catch up with this state to avoid noting
-		 * spurious new grace periods.  If another grace period
-		 * has started, then rnp->gpnum will have advanced, so
-		 * we will detect this later on.  Of course, any quiescent
-		 * states we found for the old GP are now invalid.
+		 * If the current grace period is waiting for this CPU,
+		 * set up to detect a quiescent state, otherwise don't
+		 * go looking for one.
 		 */
-		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
-			rdp->gpnum = rdp->completed;
-			rdp->passed_quiesce = 0;
-		}
-
-		/*
-		 * If RCU does not need a quiescent state from this CPU,
-		 * then make sure that this CPU doesn't go looking for one.
-		 */
-		if ((rnp->qsmask & rdp->grpmask) == 0)
-			rdp->qs_pending = 0;
+		rdp->gpnum = rnp->gpnum;
+		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
+		rdp->passed_quiesce = 0;
+		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
+		zero_cpu_stall_ticks(rdp);
 	}
 }
 
-/*
- * Advance this CPU's callbacks, but only if the current grace period
- * has ended.  This may be called only from the CPU to whom the rdp
- * belongs.
- */
-static void
-rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
+static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
 {
 	unsigned long flags;
 	struct rcu_node *rnp;
 
 	local_irq_save(flags);
 	rnp = rdp->mynode;
-	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
+	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
+	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 		local_irq_restore(flags);
 		return;
 	}
-	__rcu_process_gp_end(rsp, rnp, rdp);
+	__note_gp_changes(rsp, rnp, rdp);
 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 }
 
 /*
- * Do per-CPU grace-period initialization for running CPU.  The caller
- * must hold the lock of the leaf rcu_node structure corresponding to
- * this CPU.
- */
-static void
-rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
-{
-	/* Prior grace period ended, so advance callbacks for current CPU. */
-	__rcu_process_gp_end(rsp, rnp, rdp);
-
-	/* Set state so that this CPU will detect the next quiescent state. */
-	__note_new_gpnum(rsp, rnp, rdp);
-}
-
-/*
  * Initialize a new grace period.
  */
 static int rcu_gp_init(struct rcu_state *rsp)
@@ -1444,7 +1355,7 @@
 		WARN_ON_ONCE(rnp->completed != rsp->completed);
 		ACCESS_ONCE(rnp->completed) = rsp->completed;
 		if (rnp == rdp->mynode)
-			rcu_start_gp_per_cpu(rsp, rnp, rdp);
+			__note_gp_changes(rsp, rnp, rdp);
 		rcu_preempt_boost_start_gp(rnp);
 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
 					    rnp->level, rnp->grplo,
@@ -1527,7 +1438,7 @@
 		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
 		rdp = this_cpu_ptr(rsp->rda);
 		if (rnp == rdp->mynode)
-			__rcu_process_gp_end(rsp, rnp, rdp);
+			__note_gp_changes(rsp, rnp, rdp);
 		nocb += rcu_future_gp_cleanup(rsp, rnp);
 		raw_spin_unlock_irq(&rnp->lock);
 		cond_resched();
@@ -1805,9 +1716,8 @@
 static void
 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
 {
-	/* If there is now a new grace period, record and return. */
-	if (check_for_new_grace_period(rsp, rdp))
-		return;
+	/* Check for grace-period ends and beginnings. */
+	note_gp_changes(rsp, rdp);
 
 	/*
 	 * Does this CPU still need to do its part for current grace period?
@@ -2271,9 +2181,6 @@
 
 	WARN_ON_ONCE(rdp->beenonline == 0);
 
-	/* Handle the end of a grace period that some other CPU ended.  */
-	rcu_process_gp_end(rsp, rdp);
-
 	/* Update RCU state based on any recent quiescent states. */
 	rcu_check_quiescent_state(rsp, rdp);
 
@@ -2358,8 +2265,7 @@
 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
 
 		/* Are we ignoring a completed grace period? */
-		rcu_process_gp_end(rsp, rdp);
-		check_for_new_grace_period(rsp, rdp);
+		note_gp_changes(rsp, rdp);
 
 		/* Start a new grace period if one not already started. */
 		if (!rcu_gp_in_progress(rsp)) {
@@ -3265,11 +3171,25 @@
  */
 static void __init rcu_init_geometry(void)
 {
+	ulong d;
 	int i;
 	int j;
 	int n = nr_cpu_ids;
 	int rcu_capacity[MAX_RCU_LVLS + 1];
 
+	/*
+	 * Initialize any unspecified boot parameters.
+	 * The default values of jiffies_till_first_fqs and
+	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
+	 * value, which is a function of HZ, then adding one for each
+	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
+	 */
+	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
+	if (jiffies_till_first_fqs == ULONG_MAX)
+		jiffies_till_first_fqs = d;
+	if (jiffies_till_next_fqs == ULONG_MAX)
+		jiffies_till_next_fqs = d;
+
 	/* If the compile-time values are accurate, just leave. */
 	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
 	    nr_cpu_ids == NR_CPUS)
diff --git a/kernel/rcutree.h b/kernel/rcutree.h
index 4df5034..4a39d36 100644
--- a/kernel/rcutree.h
+++ b/kernel/rcutree.h
@@ -343,12 +343,17 @@
 #define RCU_FORCE_QS		3	/* Need to force quiescent state. */
 #define RCU_SIGNAL_INIT		RCU_SAVE_DYNTICK
 
-#define RCU_JIFFIES_TILL_FORCE_QS	 3	/* for rsp->jiffies_force_qs */
+#define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
+					/* For jiffies_till_first_fqs and */
+					/*  and jiffies_till_next_fqs. */
 
-#define RCU_STALL_RAT_DELAY		2	/* Allow other CPUs time */
-						/*  to take at least one */
-						/*  scheduling clock irq */
-						/*  before ratting on them. */
+#define RCU_JIFFIES_FQS_DIV	256	/* Very large systems need more */
+					/*  delay between bouts of */
+					/*  quiescent-state forcing. */
+
+#define RCU_STALL_RAT_DELAY	2	/* Allow other CPUs time to take */
+					/*  at least one scheduling clock */
+					/*  irq before ratting on them. */
 
 #define rcu_wait(cond)							\
 do {									\
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
index de701bb..63098a5 100644
--- a/kernel/rcutree_plugin.h
+++ b/kernel/rcutree_plugin.h
@@ -81,7 +81,7 @@
 	pr_info("\tFour-level hierarchy is enabled.\n");
 #endif
 	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
-		pr_info("\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
+		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
 	if (nr_cpu_ids != NR_CPUS)
 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
 #ifdef CONFIG_RCU_NOCB_CPU
@@ -91,19 +91,19 @@
 		have_rcu_nocb_mask = true;
 	}
 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
-	pr_info("\tExperimental no-CBs CPU 0\n");
+	pr_info("\tOffload RCU callbacks from CPU 0\n");
 	cpumask_set_cpu(0, rcu_nocb_mask);
 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
 #ifdef CONFIG_RCU_NOCB_CPU_ALL
-	pr_info("\tExperimental no-CBs for all CPUs\n");
+	pr_info("\tOffload RCU callbacks from all CPUs\n");
 	cpumask_setall(rcu_nocb_mask);
 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
 	if (have_rcu_nocb_mask) {
 		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
-		pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf);
+		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
 		if (rcu_nocb_poll)
-			pr_info("\tExperimental polled no-CBs CPUs.\n");
+			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
 	}
 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
 }
@@ -1654,7 +1654,7 @@
 		 */
 		if (rdp->completed != rnp->completed &&
 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
-			rcu_process_gp_end(rsp, rdp);
+			note_gp_changes(rsp, rdp);
 
 		if (cpu_has_callbacks_ready_to_invoke(rdp))
 			cbs_ready = true;