Merge tag 'kvm-arm-for-v4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm

KVM/ARM Changes for v4.16

The changes for this version include icache invalidation optimizations
(improving VM startup time), support for forwarded level-triggered
interrupts (improved performance for timers and passthrough platform
devices), a small fix for power-management notifiers, and some cosmetic
changes.
diff --git a/Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt b/Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt
deleted file mode 100644
index 38bca28..0000000
--- a/Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt
+++ /dev/null
@@ -1,187 +0,0 @@
-KVM/ARM VGIC Forwarded Physical Interrupts
-==========================================
-
-The KVM/ARM code implements software support for the ARM Generic
-Interrupt Controller's (GIC's) hardware support for virtualization by
-allowing software to inject virtual interrupts to a VM, which the guest
-OS sees as regular interrupts.  The code is famously known as the VGIC.
-
-Some of these virtual interrupts, however, correspond to physical
-interrupts from real physical devices.  One example could be the
-architected timer, which itself supports virtualization, and therefore
-lets a guest OS program the hardware device directly to raise an
-interrupt at some point in time.  When such an interrupt is raised, the
-host OS initially handles the interrupt and must somehow signal this
-event as a virtual interrupt to the guest.  Another example could be a
-passthrough device, where the physical interrupts are initially handled
-by the host, but the device driver for the device lives in the guest OS
-and KVM must therefore somehow inject a virtual interrupt on behalf of
-the physical one to the guest OS.
-
-These virtual interrupts corresponding to a physical interrupt on the
-host are called forwarded physical interrupts, but are also sometimes
-referred to as 'virtualized physical interrupts' and 'mapped interrupts'.
-
-Forwarded physical interrupts are handled slightly differently compared
-to virtual interrupts generated purely by a software emulated device.
-
-
-The HW bit
-----------
-Virtual interrupts are signalled to the guest by programming the List
-Registers (LRs) on the GIC before running a VCPU.  The LR is programmed
-with the virtual IRQ number and the state of the interrupt (Pending,
-Active, or Pending+Active).  When the guest ACKs and EOIs a virtual
-interrupt, the LR state moves from Pending to Active, and finally to
-inactive.
-
-The LRs include an extra bit, called the HW bit.  When this bit is set,
-KVM must also program an additional field in the LR, the physical IRQ
-number, to link the virtual with the physical IRQ.
-
-When the HW bit is set, KVM must EITHER set the Pending OR the Active
-bit, never both at the same time.
-
-Setting the HW bit causes the hardware to deactivate the physical
-interrupt on the physical distributor when the guest deactivates the
-corresponding virtual interrupt.
-
-
-Forwarded Physical Interrupts Life Cycle
-----------------------------------------
-
-The state of forwarded physical interrupts is managed in the following way:
-
-  - The physical interrupt is acked by the host, and becomes active on
-    the physical distributor (*).
-  - KVM sets the LR.Pending bit, because this is the only way the GICV
-    interface is going to present it to the guest.
-  - LR.Pending will stay set as long as the guest has not acked the interrupt.
-  - LR.Pending transitions to LR.Active on the guest read of the IAR, as
-    expected.
-  - On guest EOI, the *physical distributor* active bit gets cleared,
-    but the LR.Active is left untouched (set).
-  - KVM clears the LR on VM exits when the physical distributor
-    active state has been cleared.
-
-(*): The host handling is slightly more complicated.  For some forwarded
-interrupts (shared), KVM directly sets the active state on the physical
-distributor before entering the guest, because the interrupt is never actually
-handled on the host (see details on the timer as an example below).  For other
-forwarded interrupts (non-shared) the host does not deactivate the interrupt
-when the host ISR completes, but leaves the interrupt active until the guest
-deactivates it.  Leaving the interrupt active is allowed, because Linux
-configures the physical GIC with EOIMode=1, which causes EOI operations to
-perform a priority drop allowing the GIC to receive other interrupts of the
-default priority.
-
-
-Forwarded Edge and Level Triggered PPIs and SPIs
-------------------------------------------------
-Forwarded physical interrupts injected should always be active on the
-physical distributor when injected to a guest.
-
-Level-triggered interrupts will keep the interrupt line to the GIC
-asserted, typically until the guest programs the device to deassert the
-line.  This means that the interrupt will remain pending on the physical
-distributor until the guest has reprogrammed the device.  Since we
-always run the VM with interrupts enabled on the CPU, a pending
-interrupt will exit the guest as soon as we switch into the guest,
-preventing the guest from ever making progress as the process repeats
-over and over.  Therefore, the active state on the physical distributor
-must be set when entering the guest, preventing the GIC from forwarding
-the pending interrupt to the CPU.  As soon as the guest deactivates the
-interrupt, the physical line is sampled by the hardware again and the host
-takes a new interrupt if and only if the physical line is still asserted.
-
-Edge-triggered interrupts do not exhibit the same problem with
-preventing guest execution that level-triggered interrupts do.  One
-option is to not use HW bit at all, and inject edge-triggered interrupts
-from a physical device as pure virtual interrupts.  But that would
-potentially slow down handling of the interrupt in the guest, because a
-physical interrupt occurring in the middle of the guest ISR would
-preempt the guest for the host to handle the interrupt.  Additionally,
-if you configure the system to handle interrupts on a separate physical
-core from that running your VCPU, you still have to interrupt the VCPU
-to queue the pending state onto the LR, even though the guest won't use
-this information until the guest ISR completes.  Therefore, the HW
-bit should always be set for forwarded edge-triggered interrupts.  With
-the HW bit set, the virtual interrupt is injected and additional
-physical interrupts occurring before the guest deactivates the interrupt
-simply mark the state on the physical distributor as Pending+Active.  As
-soon as the guest deactivates the interrupt, the host takes another
-interrupt if and only if there was a physical interrupt between injecting
-the forwarded interrupt to the guest and the guest deactivating the
-interrupt.
-
-Consequently, whenever we schedule a VCPU with one or more LRs with the
-HW bit set, the interrupt must also be active on the physical
-distributor.
-
-
-Forwarded LPIs
---------------
-LPIs, introduced in GICv3, are always edge-triggered and do not have an
-active state.  They become pending when a device signal them, and as
-soon as they are acked by the CPU, they are inactive again.
-
-It therefore doesn't make sense, and is not supported, to set the HW bit
-for physical LPIs that are forwarded to a VM as virtual interrupts,
-typically virtual SPIs.
-
-For LPIs, there is no other choice than to preempt the VCPU thread if
-necessary, and queue the pending state onto the LR.
-
-
-Putting It Together: The Architected Timer
-------------------------------------------
-The architected timer is a device that signals interrupts with level
-triggered semantics.  The timer hardware is directly accessed by VCPUs
-which program the timer to fire at some point in time.  Each VCPU on a
-system programs the timer to fire at different times, and therefore the
-hardware is multiplexed between multiple VCPUs.  This is implemented by
-context-switching the timer state along with each VCPU thread.
-
-However, this means that a scenario like the following is entirely
-possible, and in fact, typical:
-
-1.  KVM runs the VCPU
-2.  The guest programs the time to fire in T+100
-3.  The guest is idle and calls WFI (wait-for-interrupts)
-4.  The hardware traps to the host
-5.  KVM stores the timer state to memory and disables the hardware timer
-6.  KVM schedules a soft timer to fire in T+(100 - time since step 2)
-7.  KVM puts the VCPU thread to sleep (on a waitqueue)
-8.  The soft timer fires, waking up the VCPU thread
-9.  KVM reprograms the timer hardware with the VCPU's values
-10. KVM marks the timer interrupt as active on the physical distributor
-11. KVM injects a forwarded physical interrupt to the guest
-12. KVM runs the VCPU
-
-Notice that KVM injects a forwarded physical interrupt in step 11 without
-the corresponding interrupt having actually fired on the host.  That is
-exactly why we mark the timer interrupt as active in step 10, because
-the active state on the physical distributor is part of the state
-belonging to the timer hardware, which is context-switched along with
-the VCPU thread.
-
-If the guest does not idle because it is busy, the flow looks like this
-instead:
-
-1.  KVM runs the VCPU
-2.  The guest programs the time to fire in T+100
-4.  At T+100 the timer fires and a physical IRQ causes the VM to exit
-    (note that this initially only traps to EL2 and does not run the host ISR
-    until KVM has returned to the host).
-5.  With interrupts still disabled on the CPU coming back from the guest, KVM
-    stores the virtual timer state to memory and disables the virtual hw timer.
-6.  KVM looks at the timer state (in memory) and injects a forwarded physical
-    interrupt because it concludes the timer has expired.
-7.  KVM marks the timer interrupt as active on the physical distributor
-7.  KVM enables the timer, enables interrupts, and runs the VCPU
-
-Notice that again the forwarded physical interrupt is injected to the
-guest without having actually been handled on the host.  In this case it
-is because the physical interrupt is never actually seen by the host because the
-timer is disabled upon guest return, and the virtual forwarded interrupt is
-injected on the KVM guest entry path.
diff --git a/arch/arm/include/asm/kvm_emulate.h b/arch/arm/include/asm/kvm_emulate.h
index 3d22eb87..9003bd1 100644
--- a/arch/arm/include/asm/kvm_emulate.h
+++ b/arch/arm/include/asm/kvm_emulate.h
@@ -131,7 +131,7 @@ static inline bool mode_has_spsr(struct kvm_vcpu *vcpu)
 static inline bool vcpu_mode_priv(struct kvm_vcpu *vcpu)
 {
 	unsigned long cpsr_mode = vcpu->arch.ctxt.gp_regs.usr_regs.ARM_cpsr & MODE_MASK;
-	return cpsr_mode > USR_MODE;;
+	return cpsr_mode > USR_MODE;
 }
 
 static inline u32 kvm_vcpu_get_hsr(const struct kvm_vcpu *vcpu)
diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h
index a9f7d3f..6394fb9 100644
--- a/arch/arm/include/asm/kvm_host.h
+++ b/arch/arm/include/asm/kvm_host.h
@@ -48,6 +48,8 @@
 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
 
+DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
+
 u32 *kvm_vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num, u32 mode);
 int __attribute_const__ kvm_target_cpu(void);
 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
diff --git a/arch/arm/include/asm/kvm_hyp.h b/arch/arm/include/asm/kvm_hyp.h
index ab20ffa..1ab8329 100644
--- a/arch/arm/include/asm/kvm_hyp.h
+++ b/arch/arm/include/asm/kvm_hyp.h
@@ -21,7 +21,6 @@
 #include <linux/compiler.h>
 #include <linux/kvm_host.h>
 #include <asm/cp15.h>
-#include <asm/kvm_mmu.h>
 #include <asm/vfp.h>
 
 #define __hyp_text __section(.hyp.text) notrace
@@ -69,6 +68,8 @@
 #define HIFAR		__ACCESS_CP15(c6, 4, c0, 2)
 #define HPFAR		__ACCESS_CP15(c6, 4, c0, 4)
 #define ICIALLUIS	__ACCESS_CP15(c7, 0, c1, 0)
+#define BPIALLIS	__ACCESS_CP15(c7, 0, c1, 6)
+#define ICIMVAU		__ACCESS_CP15(c7, 0, c5, 1)
 #define ATS1CPR		__ACCESS_CP15(c7, 0, c8, 0)
 #define TLBIALLIS	__ACCESS_CP15(c8, 0, c3, 0)
 #define TLBIALL		__ACCESS_CP15(c8, 0, c7, 0)
diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h
index fa6f217..bc70a1f 100644
--- a/arch/arm/include/asm/kvm_mmu.h
+++ b/arch/arm/include/asm/kvm_mmu.h
@@ -37,6 +37,8 @@
 
 #include <linux/highmem.h>
 #include <asm/cacheflush.h>
+#include <asm/cputype.h>
+#include <asm/kvm_hyp.h>
 #include <asm/pgalloc.h>
 #include <asm/stage2_pgtable.h>
 
@@ -83,6 +85,18 @@ static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
 	return pmd;
 }
 
+static inline pte_t kvm_s2pte_mkexec(pte_t pte)
+{
+	pte_val(pte) &= ~L_PTE_XN;
+	return pte;
+}
+
+static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
+{
+	pmd_val(pmd) &= ~PMD_SECT_XN;
+	return pmd;
+}
+
 static inline void kvm_set_s2pte_readonly(pte_t *pte)
 {
 	pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
@@ -93,6 +107,11 @@ static inline bool kvm_s2pte_readonly(pte_t *pte)
 	return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
 }
 
+static inline bool kvm_s2pte_exec(pte_t *pte)
+{
+	return !(pte_val(*pte) & L_PTE_XN);
+}
+
 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
 {
 	pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
@@ -103,6 +122,11 @@ static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
 	return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
 }
 
+static inline bool kvm_s2pmd_exec(pmd_t *pmd)
+{
+	return !(pmd_val(*pmd) & PMD_SECT_XN);
+}
+
 static inline bool kvm_page_empty(void *ptr)
 {
 	struct page *ptr_page = virt_to_page(ptr);
@@ -126,21 +150,10 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
 	return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101;
 }
 
-static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
-					       kvm_pfn_t pfn,
-					       unsigned long size)
+static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
 {
 	/*
-	 * If we are going to insert an instruction page and the icache is
-	 * either VIPT or PIPT, there is a potential problem where the host
-	 * (or another VM) may have used the same page as this guest, and we
-	 * read incorrect data from the icache.  If we're using a PIPT cache,
-	 * we can invalidate just that page, but if we are using a VIPT cache
-	 * we need to invalidate the entire icache - damn shame - as written
-	 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
-	 *
-	 * VIVT caches are tagged using both the ASID and the VMID and doesn't
-	 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
+	 * Clean the dcache to the Point of Coherency.
 	 *
 	 * We need to do this through a kernel mapping (using the
 	 * user-space mapping has proved to be the wrong
@@ -155,9 +168,63 @@ static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
 
 		kvm_flush_dcache_to_poc(va, PAGE_SIZE);
 
-		if (icache_is_pipt())
-			__cpuc_coherent_user_range((unsigned long)va,
-						   (unsigned long)va + PAGE_SIZE);
+		size -= PAGE_SIZE;
+		pfn++;
+
+		kunmap_atomic(va);
+	}
+}
+
+static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
+						  unsigned long size)
+{
+	u32 iclsz;
+
+	/*
+	 * If we are going to insert an instruction page and the icache is
+	 * either VIPT or PIPT, there is a potential problem where the host
+	 * (or another VM) may have used the same page as this guest, and we
+	 * read incorrect data from the icache.  If we're using a PIPT cache,
+	 * we can invalidate just that page, but if we are using a VIPT cache
+	 * we need to invalidate the entire icache - damn shame - as written
+	 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
+	 *
+	 * VIVT caches are tagged using both the ASID and the VMID and doesn't
+	 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
+	 */
+
+	VM_BUG_ON(size & ~PAGE_MASK);
+
+	if (icache_is_vivt_asid_tagged())
+		return;
+
+	if (!icache_is_pipt()) {
+		/* any kind of VIPT cache */
+		__flush_icache_all();
+		return;
+	}
+
+	/*
+	 * CTR IminLine contains Log2 of the number of words in the
+	 * cache line, so we can get the number of words as
+	 * 2 << (IminLine - 1).  To get the number of bytes, we
+	 * multiply by 4 (the number of bytes in a 32-bit word), and
+	 * get 4 << (IminLine).
+	 */
+	iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf);
+
+	while (size) {
+		void *va = kmap_atomic_pfn(pfn);
+		void *end = va + PAGE_SIZE;
+		void *addr = va;
+
+		do {
+			write_sysreg(addr, ICIMVAU);
+			addr += iclsz;
+		} while (addr < end);
+
+		dsb(ishst);
+		isb();
 
 		size -= PAGE_SIZE;
 		pfn++;
@@ -165,9 +232,11 @@ static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
 		kunmap_atomic(va);
 	}
 
-	if (!icache_is_pipt() && !icache_is_vivt_asid_tagged()) {
-		/* any kind of VIPT cache */
-		__flush_icache_all();
+	/* Check if we need to invalidate the BTB */
+	if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) {
+		write_sysreg(0, BPIALLIS);
+		dsb(ishst);
+		isb();
 	}
 }
 
diff --git a/arch/arm/include/asm/pgtable.h b/arch/arm/include/asm/pgtable.h
index 150ece6..a757401 100644
--- a/arch/arm/include/asm/pgtable.h
+++ b/arch/arm/include/asm/pgtable.h
@@ -102,8 +102,8 @@ extern pgprot_t		pgprot_s2_device;
 #define PAGE_HYP_EXEC		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
 #define PAGE_HYP_RO		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
 #define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
-#define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
-#define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY)
+#define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY | L_PTE_XN)
+#define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY | L_PTE_XN)
 
 #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
 #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
diff --git a/arch/arm/kvm/hyp/switch.c b/arch/arm/kvm/hyp/switch.c
index 330c9ce..ae45ae9 100644
--- a/arch/arm/kvm/hyp/switch.c
+++ b/arch/arm/kvm/hyp/switch.c
@@ -18,6 +18,7 @@
 
 #include <asm/kvm_asm.h>
 #include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
 
 __asm__(".arch_extension     virt");
 
diff --git a/arch/arm/kvm/hyp/tlb.c b/arch/arm/kvm/hyp/tlb.c
index 6d810af..c0edd45 100644
--- a/arch/arm/kvm/hyp/tlb.c
+++ b/arch/arm/kvm/hyp/tlb.c
@@ -19,6 +19,7 @@
  */
 
 #include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
 
 /**
  * Flush per-VMID TLBs
diff --git a/arch/arm64/include/asm/asm-uaccess.h b/arch/arm64/include/asm/asm-uaccess.h
index b3da6c8..0306426 100644
--- a/arch/arm64/include/asm/asm-uaccess.h
+++ b/arch/arm64/include/asm/asm-uaccess.h
@@ -25,13 +25,13 @@
 	isb
 	.endm
 
-	.macro	uaccess_ttbr0_disable, tmp1
+	.macro	uaccess_ttbr0_disable, tmp1, tmp2
 alternative_if_not ARM64_HAS_PAN
 	__uaccess_ttbr0_disable \tmp1
 alternative_else_nop_endif
 	.endm
 
-	.macro	uaccess_ttbr0_enable, tmp1, tmp2
+	.macro	uaccess_ttbr0_enable, tmp1, tmp2, tmp3
 alternative_if_not ARM64_HAS_PAN
 	save_and_disable_irq \tmp2		// avoid preemption
 	__uaccess_ttbr0_enable \tmp1
@@ -39,18 +39,18 @@ alternative_if_not ARM64_HAS_PAN
 alternative_else_nop_endif
 	.endm
 #else
-	.macro	uaccess_ttbr0_disable, tmp1
+	.macro	uaccess_ttbr0_disable, tmp1, tmp2
 	.endm
 
-	.macro	uaccess_ttbr0_enable, tmp1, tmp2
+	.macro	uaccess_ttbr0_enable, tmp1, tmp2, tmp3
 	.endm
 #endif
 
 /*
  * These macros are no-ops when UAO is present.
  */
-	.macro	uaccess_disable_not_uao, tmp1
-	uaccess_ttbr0_disable \tmp1
+	.macro	uaccess_disable_not_uao, tmp1, tmp2
+	uaccess_ttbr0_disable \tmp1, \tmp2
 alternative_if ARM64_ALT_PAN_NOT_UAO
 	SET_PSTATE_PAN(1)
 alternative_else_nop_endif
diff --git a/arch/arm64/include/asm/assembler.h b/arch/arm64/include/asm/assembler.h
index aef72d8..0884e1f 100644
--- a/arch/arm64/include/asm/assembler.h
+++ b/arch/arm64/include/asm/assembler.h
@@ -388,6 +388,27 @@ alternative_endif
 	.endm
 
 /*
+ * Macro to perform an instruction cache maintenance for the interval
+ * [start, end)
+ *
+ * 	start, end:	virtual addresses describing the region
+ *	label:		A label to branch to on user fault.
+ * 	Corrupts:	tmp1, tmp2
+ */
+	.macro invalidate_icache_by_line start, end, tmp1, tmp2, label
+	icache_line_size \tmp1, \tmp2
+	sub	\tmp2, \tmp1, #1
+	bic	\tmp2, \start, \tmp2
+9997:
+USER(\label, ic	ivau, \tmp2)			// invalidate I line PoU
+	add	\tmp2, \tmp2, \tmp1
+	cmp	\tmp2, \end
+	b.lo	9997b
+	dsb	ish
+	isb
+	.endm
+
+/*
  * reset_pmuserenr_el0 - reset PMUSERENR_EL0 if PMUv3 present
  */
 	.macro	reset_pmuserenr_el0, tmpreg
diff --git a/arch/arm64/include/asm/cacheflush.h b/arch/arm64/include/asm/cacheflush.h
index 9551307..bef9f41 100644
--- a/arch/arm64/include/asm/cacheflush.h
+++ b/arch/arm64/include/asm/cacheflush.h
@@ -52,6 +52,12 @@
  *		- start  - virtual start address
  *		- end    - virtual end address
  *
+ *	invalidate_icache_range(start, end)
+ *
+ *		Invalidate the I-cache in the region described by start, end.
+ *		- start  - virtual start address
+ *		- end    - virtual end address
+ *
  *	__flush_cache_user_range(start, end)
  *
  *		Ensure coherency between the I-cache and the D-cache in the
@@ -66,6 +72,7 @@
  *		- size   - region size
  */
 extern void flush_icache_range(unsigned long start, unsigned long end);
+extern int  invalidate_icache_range(unsigned long start, unsigned long end);
 extern void __flush_dcache_area(void *addr, size_t len);
 extern void __inval_dcache_area(void *addr, size_t len);
 extern void __clean_dcache_area_poc(void *addr, size_t len);
diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h
index ea6cb5b..e7218cf 100644
--- a/arch/arm64/include/asm/kvm_host.h
+++ b/arch/arm64/include/asm/kvm_host.h
@@ -47,6 +47,8 @@
 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
 
+DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
+
 int __attribute_const__ kvm_target_cpu(void);
 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
 int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext);
diff --git a/arch/arm64/include/asm/kvm_hyp.h b/arch/arm64/include/asm/kvm_hyp.h
index 08d3bb6..f26f9cd 100644
--- a/arch/arm64/include/asm/kvm_hyp.h
+++ b/arch/arm64/include/asm/kvm_hyp.h
@@ -20,7 +20,6 @@
 
 #include <linux/compiler.h>
 #include <linux/kvm_host.h>
-#include <asm/kvm_mmu.h>
 #include <asm/sysreg.h>
 
 #define __hyp_text __section(.hyp.text) notrace
diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h
index 672c868..06f1f97 100644
--- a/arch/arm64/include/asm/kvm_mmu.h
+++ b/arch/arm64/include/asm/kvm_mmu.h
@@ -173,6 +173,18 @@ static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
 	return pmd;
 }
 
+static inline pte_t kvm_s2pte_mkexec(pte_t pte)
+{
+	pte_val(pte) &= ~PTE_S2_XN;
+	return pte;
+}
+
+static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
+{
+	pmd_val(pmd) &= ~PMD_S2_XN;
+	return pmd;
+}
+
 static inline void kvm_set_s2pte_readonly(pte_t *pte)
 {
 	pteval_t old_pteval, pteval;
@@ -191,6 +203,11 @@ static inline bool kvm_s2pte_readonly(pte_t *pte)
 	return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
 }
 
+static inline bool kvm_s2pte_exec(pte_t *pte)
+{
+	return !(pte_val(*pte) & PTE_S2_XN);
+}
+
 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
 {
 	kvm_set_s2pte_readonly((pte_t *)pmd);
@@ -201,6 +218,11 @@ static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
 	return kvm_s2pte_readonly((pte_t *)pmd);
 }
 
+static inline bool kvm_s2pmd_exec(pmd_t *pmd)
+{
+	return !(pmd_val(*pmd) & PMD_S2_XN);
+}
+
 static inline bool kvm_page_empty(void *ptr)
 {
 	struct page *ptr_page = virt_to_page(ptr);
@@ -230,21 +252,25 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
 	return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
 }
 
-static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
-					       kvm_pfn_t pfn,
-					       unsigned long size)
+static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
 {
 	void *va = page_address(pfn_to_page(pfn));
 
 	kvm_flush_dcache_to_poc(va, size);
+}
 
+static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
+						  unsigned long size)
+{
 	if (icache_is_aliasing()) {
 		/* any kind of VIPT cache */
 		__flush_icache_all();
 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
-		flush_icache_range((unsigned long)va,
-				   (unsigned long)va + size);
+		void *va = page_address(pfn_to_page(pfn));
+
+		invalidate_icache_range((unsigned long)va,
+					(unsigned long)va + size);
 	}
 }
 
diff --git a/arch/arm64/include/asm/pgtable-hwdef.h b/arch/arm64/include/asm/pgtable-hwdef.h
index eb0c2bd..af03533 100644
--- a/arch/arm64/include/asm/pgtable-hwdef.h
+++ b/arch/arm64/include/asm/pgtable-hwdef.h
@@ -177,9 +177,11 @@
  */
 #define PTE_S2_RDONLY		(_AT(pteval_t, 1) << 6)   /* HAP[2:1] */
 #define PTE_S2_RDWR		(_AT(pteval_t, 3) << 6)   /* HAP[2:1] */
+#define PTE_S2_XN		(_AT(pteval_t, 2) << 53)  /* XN[1:0] */
 
 #define PMD_S2_RDONLY		(_AT(pmdval_t, 1) << 6)   /* HAP[2:1] */
 #define PMD_S2_RDWR		(_AT(pmdval_t, 3) << 6)   /* HAP[2:1] */
+#define PMD_S2_XN		(_AT(pmdval_t, 2) << 53)  /* XN[1:0] */
 
 /*
  * Memory Attribute override for Stage-2 (MemAttr[3:0])
diff --git a/arch/arm64/include/asm/pgtable-prot.h b/arch/arm64/include/asm/pgtable-prot.h
index 0a5635f..4e12dab 100644
--- a/arch/arm64/include/asm/pgtable-prot.h
+++ b/arch/arm64/include/asm/pgtable-prot.h
@@ -60,8 +60,8 @@
 #define PAGE_HYP_RO		__pgprot(_PAGE_DEFAULT | PTE_HYP | PTE_RDONLY | PTE_HYP_XN)
 #define PAGE_HYP_DEVICE		__pgprot(PROT_DEVICE_nGnRE | PTE_HYP)
 
-#define PAGE_S2			__pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_NORMAL) | PTE_S2_RDONLY)
-#define PAGE_S2_DEVICE		__pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_DEVICE_nGnRE) | PTE_S2_RDONLY | PTE_UXN)
+#define PAGE_S2			__pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_NORMAL) | PTE_S2_RDONLY | PTE_S2_XN)
+#define PAGE_S2_DEVICE		__pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_DEVICE_nGnRE) | PTE_S2_RDONLY | PTE_S2_XN)
 
 #define PAGE_NONE		__pgprot(((_PAGE_DEFAULT) & ~PTE_VALID) | PTE_PROT_NONE | PTE_RDONLY | PTE_PXN | PTE_UXN)
 #define PAGE_SHARED		__pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN | PTE_WRITE)
diff --git a/arch/arm64/kvm/hyp/debug-sr.c b/arch/arm64/kvm/hyp/debug-sr.c
index 321c9c0..360455f 100644
--- a/arch/arm64/kvm/hyp/debug-sr.c
+++ b/arch/arm64/kvm/hyp/debug-sr.c
@@ -21,6 +21,7 @@
 #include <asm/debug-monitors.h>
 #include <asm/kvm_asm.h>
 #include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
 
 #define read_debug(r,n)		read_sysreg(r##n##_el1)
 #define write_debug(v,r,n)	write_sysreg(v, r##n##_el1)
diff --git a/arch/arm64/kvm/hyp/switch.c b/arch/arm64/kvm/hyp/switch.c
index f7c651f..f3d8bed 100644
--- a/arch/arm64/kvm/hyp/switch.c
+++ b/arch/arm64/kvm/hyp/switch.c
@@ -21,6 +21,7 @@
 #include <asm/kvm_asm.h>
 #include <asm/kvm_emulate.h>
 #include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
 #include <asm/fpsimd.h>
 #include <asm/debug-monitors.h>
 
diff --git a/arch/arm64/kvm/hyp/tlb.c b/arch/arm64/kvm/hyp/tlb.c
index 73464a9..131c777 100644
--- a/arch/arm64/kvm/hyp/tlb.c
+++ b/arch/arm64/kvm/hyp/tlb.c
@@ -16,6 +16,7 @@
  */
 
 #include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
 #include <asm/tlbflush.h>
 
 static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm)
diff --git a/arch/arm64/lib/clear_user.S b/arch/arm64/lib/clear_user.S
index e88fb99..8932e5f 100644
--- a/arch/arm64/lib/clear_user.S
+++ b/arch/arm64/lib/clear_user.S
@@ -50,7 +50,7 @@
 	b.mi	5f
 uao_user_alternative 9f, strb, sttrb, wzr, x0, 0
 5:	mov	x0, #0
-	uaccess_disable_not_uao x2
+	uaccess_disable_not_uao x2, x3
 	ret
 ENDPROC(__clear_user)
 
diff --git a/arch/arm64/lib/copy_from_user.S b/arch/arm64/lib/copy_from_user.S
index 4b5d826..bc10863 100644
--- a/arch/arm64/lib/copy_from_user.S
+++ b/arch/arm64/lib/copy_from_user.S
@@ -67,7 +67,7 @@
 	uaccess_enable_not_uao x3, x4
 	add	end, x0, x2
 #include "copy_template.S"
-	uaccess_disable_not_uao x3
+	uaccess_disable_not_uao x3, x4
 	mov	x0, #0				// Nothing to copy
 	ret
 ENDPROC(__arch_copy_from_user)
diff --git a/arch/arm64/lib/copy_in_user.S b/arch/arm64/lib/copy_in_user.S
index b24a830..e6dd59d 100644
--- a/arch/arm64/lib/copy_in_user.S
+++ b/arch/arm64/lib/copy_in_user.S
@@ -68,7 +68,7 @@
 	uaccess_enable_not_uao x3, x4
 	add	end, x0, x2
 #include "copy_template.S"
-	uaccess_disable_not_uao x3
+	uaccess_disable_not_uao x3, x4
 	mov	x0, #0
 	ret
 ENDPROC(raw_copy_in_user)
diff --git a/arch/arm64/lib/copy_to_user.S b/arch/arm64/lib/copy_to_user.S
index 351f076..bd20f9f 100644
--- a/arch/arm64/lib/copy_to_user.S
+++ b/arch/arm64/lib/copy_to_user.S
@@ -66,7 +66,7 @@
 	uaccess_enable_not_uao x3, x4
 	add	end, x0, x2
 #include "copy_template.S"
-	uaccess_disable_not_uao x3
+	uaccess_disable_not_uao x3, x4
 	mov	x0, #0
 	ret
 ENDPROC(__arch_copy_to_user)
diff --git a/arch/arm64/mm/cache.S b/arch/arm64/mm/cache.S
index 7f1dbe9..758bde7 100644
--- a/arch/arm64/mm/cache.S
+++ b/arch/arm64/mm/cache.S
@@ -49,7 +49,7 @@
  *	- end     - virtual end address of region
  */
 ENTRY(__flush_cache_user_range)
-	uaccess_ttbr0_enable x2, x3
+	uaccess_ttbr0_enable x2, x3, x4
 	dcache_line_size x2, x3
 	sub	x3, x2, #1
 	bic	x4, x0, x3
@@ -60,19 +60,10 @@
 	b.lo	1b
 	dsb	ish
 
-	icache_line_size x2, x3
-	sub	x3, x2, #1
-	bic	x4, x0, x3
-1:
-USER(9f, ic	ivau, x4	)		// invalidate I line PoU
-	add	x4, x4, x2
-	cmp	x4, x1
-	b.lo	1b
-	dsb	ish
-	isb
+	invalidate_icache_by_line x0, x1, x2, x3, 9f
 	mov	x0, #0
 1:
-	uaccess_ttbr0_disable x1
+	uaccess_ttbr0_disable x1, x2
 	ret
 9:
 	mov	x0, #-EFAULT
@@ -81,6 +72,27 @@
 ENDPROC(__flush_cache_user_range)
 
 /*
+ *	invalidate_icache_range(start,end)
+ *
+ *	Ensure that the I cache is invalid within specified region.
+ *
+ *	- start   - virtual start address of region
+ *	- end     - virtual end address of region
+ */
+ENTRY(invalidate_icache_range)
+	uaccess_ttbr0_enable x2, x3, x4
+
+	invalidate_icache_by_line x0, x1, x2, x3, 2f
+	mov	x0, xzr
+1:
+	uaccess_ttbr0_disable x1, x2
+	ret
+2:
+	mov	x0, #-EFAULT
+	b	1b
+ENDPROC(invalidate_icache_range)
+
+/*
  *	__flush_dcache_area(kaddr, size)
  *
  *	Ensure that any D-cache lines for the interval [kaddr, kaddr+size)
diff --git a/arch/arm64/xen/hypercall.S b/arch/arm64/xen/hypercall.S
index 401ceb7..c5f05c4 100644
--- a/arch/arm64/xen/hypercall.S
+++ b/arch/arm64/xen/hypercall.S
@@ -101,12 +101,12 @@
 	 * need the explicit uaccess_enable/disable if the TTBR0 PAN emulation
 	 * is enabled (it implies that hardware UAO and PAN disabled).
 	 */
-	uaccess_ttbr0_enable x6, x7
+	uaccess_ttbr0_enable x6, x7, x8
 	hvc XEN_IMM
 
 	/*
 	 * Disable userspace access from kernel once the hyp call completed.
 	 */
-	uaccess_ttbr0_disable x6
+	uaccess_ttbr0_disable x6, x7
 	ret
 ENDPROC(privcmd_call);
diff --git a/include/kvm/arm_arch_timer.h b/include/kvm/arm_arch_timer.h
index 6e45608..b1dcfde 100644
--- a/include/kvm/arm_arch_timer.h
+++ b/include/kvm/arm_arch_timer.h
@@ -90,6 +90,8 @@ void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu);
 
 void kvm_timer_init_vhe(void);
 
+bool kvm_arch_timer_get_input_level(int vintid);
+
 #define vcpu_vtimer(v)	(&(v)->arch.timer_cpu.vtimer)
 #define vcpu_ptimer(v)	(&(v)->arch.timer_cpu.ptimer)
 
diff --git a/include/kvm/arm_vgic.h b/include/kvm/arm_vgic.h
index 8c89654..cdbd142 100644
--- a/include/kvm/arm_vgic.h
+++ b/include/kvm/arm_vgic.h
@@ -130,6 +130,17 @@ struct vgic_irq {
 	u8 priority;
 	enum vgic_irq_config config;	/* Level or edge */
 
+	/*
+	 * Callback function pointer to in-kernel devices that can tell us the
+	 * state of the input level of mapped level-triggered IRQ faster than
+	 * peaking into the physical GIC.
+	 *
+	 * Always called in non-preemptible section and the functions can use
+	 * kvm_arm_get_running_vcpu() to get the vcpu pointer for private
+	 * IRQs.
+	 */
+	bool (*get_input_level)(int vintid);
+
 	void *owner;			/* Opaque pointer to reserve an interrupt
 					   for in-kernel devices. */
 };
@@ -331,7 +342,7 @@ void kvm_vgic_init_cpu_hardware(void);
 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
 			bool level, void *owner);
 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
-			  u32 vintid);
+			  u32 vintid, bool (*get_input_level)(int vindid));
 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid);
 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid);
 
diff --git a/virt/kvm/arm/arch_timer.c b/virt/kvm/arm/arch_timer.c
index f9555b1..fb6bd9b 100644
--- a/virt/kvm/arm/arch_timer.c
+++ b/virt/kvm/arm/arch_timer.c
@@ -97,15 +97,13 @@ static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
 		pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
 		return IRQ_NONE;
 	}
+
 	vtimer = vcpu_vtimer(vcpu);
+	if (kvm_timer_should_fire(vtimer))
+		kvm_timer_update_irq(vcpu, true, vtimer);
 
-	if (!vtimer->irq.level) {
-		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
-		if (kvm_timer_irq_can_fire(vtimer))
-			kvm_timer_update_irq(vcpu, true, vtimer);
-	}
-
-	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
+	if (static_branch_unlikely(&userspace_irqchip_in_use) &&
+	    unlikely(!irqchip_in_kernel(vcpu->kvm)))
 		kvm_vtimer_update_mask_user(vcpu);
 
 	return IRQ_HANDLED;
@@ -231,6 +229,16 @@ static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
 {
 	u64 cval, now;
 
+	if (timer_ctx->loaded) {
+		u32 cnt_ctl;
+
+		/* Only the virtual timer can be loaded so far */
+		cnt_ctl = read_sysreg_el0(cntv_ctl);
+		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
+		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
+		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
+	}
+
 	if (!kvm_timer_irq_can_fire(timer_ctx))
 		return false;
 
@@ -245,15 +253,7 @@ bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
 
-	if (vtimer->irq.level || ptimer->irq.level)
-		return true;
-
-	/*
-	 * When this is called from withing the wait loop of kvm_vcpu_block(),
-	 * the software view of the timer state is up to date (timer->loaded
-	 * is false), and so we can simply check if the timer should fire now.
-	 */
-	if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
+	if (kvm_timer_should_fire(vtimer))
 		return true;
 
 	return kvm_timer_should_fire(ptimer);
@@ -271,9 +271,9 @@ void kvm_timer_update_run(struct kvm_vcpu *vcpu)
 	/* Populate the device bitmap with the timer states */
 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
 				    KVM_ARM_DEV_EL1_PTIMER);
-	if (vtimer->irq.level)
+	if (kvm_timer_should_fire(vtimer))
 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
-	if (ptimer->irq.level)
+	if (kvm_timer_should_fire(ptimer))
 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
 }
 
@@ -286,7 +286,8 @@ static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
 				   timer_ctx->irq.level);
 
-	if (likely(irqchip_in_kernel(vcpu->kvm))) {
+	if (!static_branch_unlikely(&userspace_irqchip_in_use) ||
+	    likely(irqchip_in_kernel(vcpu->kvm))) {
 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
 					  timer_ctx->irq.irq,
 					  timer_ctx->irq.level,
@@ -324,12 +325,20 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+	bool level;
 
 	if (unlikely(!timer->enabled))
 		return;
 
-	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
-		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
+	/*
+	 * The vtimer virtual interrupt is a 'mapped' interrupt, meaning part
+	 * of its lifecycle is offloaded to the hardware, and we therefore may
+	 * not have lowered the irq.level value before having to signal a new
+	 * interrupt, but have to signal an interrupt every time the level is
+	 * asserted.
+	 */
+	level = kvm_timer_should_fire(vtimer);
+	kvm_timer_update_irq(vcpu, level, vtimer);
 
 	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
 		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
@@ -337,6 +346,12 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
 	phys_timer_emulate(vcpu);
 }
 
+static void __timer_snapshot_state(struct arch_timer_context *timer)
+{
+	timer->cnt_ctl = read_sysreg_el0(cntv_ctl);
+	timer->cnt_cval = read_sysreg_el0(cntv_cval);
+}
+
 static void vtimer_save_state(struct kvm_vcpu *vcpu)
 {
 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
@@ -348,10 +363,8 @@ static void vtimer_save_state(struct kvm_vcpu *vcpu)
 	if (!vtimer->loaded)
 		goto out;
 
-	if (timer->enabled) {
-		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
-		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
-	}
+	if (timer->enabled)
+		__timer_snapshot_state(vtimer);
 
 	/* Disable the virtual timer */
 	write_sysreg_el0(0, cntv_ctl);
@@ -448,8 +461,7 @@ static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
 	bool phys_active;
 	int ret;
 
-	phys_active = vtimer->irq.level ||
-		      kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
+	phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
 
 	ret = irq_set_irqchip_state(host_vtimer_irq,
 				    IRQCHIP_STATE_ACTIVE,
@@ -496,8 +508,8 @@ bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
 
-	return vtimer->irq.level != vlevel ||
-	       ptimer->irq.level != plevel;
+	return kvm_timer_should_fire(vtimer) != vlevel ||
+	       kvm_timer_should_fire(ptimer) != plevel;
 }
 
 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
@@ -529,54 +541,27 @@ void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
 	set_cntvoff(0);
 }
 
-static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
+/*
+ * With a userspace irqchip we have to check if the guest de-asserted the
+ * timer and if so, unmask the timer irq signal on the host interrupt
+ * controller to ensure that we see future timer signals.
+ */
+static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
 {
 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
 
 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
-		kvm_vtimer_update_mask_user(vcpu);
-		return;
-	}
-
-	/*
-	 * If the guest disabled the timer without acking the interrupt, then
-	 * we must make sure the physical and virtual active states are in
-	 * sync by deactivating the physical interrupt, because otherwise we
-	 * wouldn't see the next timer interrupt in the host.
-	 */
-	if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
-		int ret;
-		ret = irq_set_irqchip_state(host_vtimer_irq,
-					    IRQCHIP_STATE_ACTIVE,
-					    false);
-		WARN_ON(ret);
+		__timer_snapshot_state(vtimer);
+		if (!kvm_timer_should_fire(vtimer)) {
+			kvm_timer_update_irq(vcpu, false, vtimer);
+			kvm_vtimer_update_mask_user(vcpu);
+		}
 	}
 }
 
-/**
- * kvm_timer_sync_hwstate - sync timer state from cpu
- * @vcpu: The vcpu pointer
- *
- * Check if any of the timers have expired while we were running in the guest,
- * and inject an interrupt if that was the case.
- */
 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
 {
-	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
-
-	/*
-	 * If we entered the guest with the vtimer output asserted we have to
-	 * check if the guest has modified the timer so that we should lower
-	 * the line at this point.
-	 */
-	if (vtimer->irq.level) {
-		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
-		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
-		if (!kvm_timer_should_fire(vtimer)) {
-			kvm_timer_update_irq(vcpu, false, vtimer);
-			unmask_vtimer_irq(vcpu);
-		}
-	}
+	unmask_vtimer_irq_user(vcpu);
 }
 
 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
@@ -807,6 +792,19 @@ static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
 	return true;
 }
 
+bool kvm_arch_timer_get_input_level(int vintid)
+{
+	struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
+	struct arch_timer_context *timer;
+
+	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
+		timer = vcpu_vtimer(vcpu);
+	else
+		BUG(); /* We only map the vtimer so far */
+
+	return kvm_timer_should_fire(timer);
+}
+
 int kvm_timer_enable(struct kvm_vcpu *vcpu)
 {
 	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
@@ -828,7 +826,8 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu)
 		return -EINVAL;
 	}
 
-	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq);
+	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq,
+				    kvm_arch_timer_get_input_level);
 	if (ret)
 		return ret;
 
diff --git a/virt/kvm/arm/arm.c b/virt/kvm/arm/arm.c
index cd7d90c..92b95ae 100644
--- a/virt/kvm/arm/arm.c
+++ b/virt/kvm/arm/arm.c
@@ -71,17 +71,17 @@ static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
 
 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
 {
-	BUG_ON(preemptible());
 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
 }
 
+DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
+
 /**
  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  * Must be called from non-preemptible context
  */
 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
 {
-	BUG_ON(preemptible());
 	return __this_cpu_read(kvm_arm_running_vcpu);
 }
 
@@ -295,6 +295,9 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 
 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 {
+	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
+		static_branch_dec(&userspace_irqchip_in_use);
+
 	kvm_mmu_free_memory_caches(vcpu);
 	kvm_timer_vcpu_terminate(vcpu);
 	kvm_pmu_vcpu_destroy(vcpu);
@@ -532,14 +535,22 @@ static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 
 	vcpu->arch.has_run_once = true;
 
-	/*
-	 * Map the VGIC hardware resources before running a vcpu the first
-	 * time on this VM.
-	 */
-	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
-		ret = kvm_vgic_map_resources(kvm);
-		if (ret)
-			return ret;
+	if (likely(irqchip_in_kernel(kvm))) {
+		/*
+		 * Map the VGIC hardware resources before running a vcpu the
+		 * first time on this VM.
+		 */
+		if (unlikely(!vgic_ready(kvm))) {
+			ret = kvm_vgic_map_resources(kvm);
+			if (ret)
+				return ret;
+		}
+	} else {
+		/*
+		 * Tell the rest of the code that there are userspace irqchip
+		 * VMs in the wild.
+		 */
+		static_branch_inc(&userspace_irqchip_in_use);
 	}
 
 	ret = kvm_timer_enable(vcpu);
@@ -680,19 +691,30 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 		kvm_vgic_flush_hwstate(vcpu);
 
 		/*
-		 * If we have a singal pending, or need to notify a userspace
-		 * irqchip about timer or PMU level changes, then we exit (and
-		 * update the timer level state in kvm_timer_update_run
-		 * below).
+		 * Exit if we have a signal pending so that we can deliver the
+		 * signal to user space.
 		 */
-		if (signal_pending(current) ||
-		    kvm_timer_should_notify_user(vcpu) ||
-		    kvm_pmu_should_notify_user(vcpu)) {
+		if (signal_pending(current)) {
 			ret = -EINTR;
 			run->exit_reason = KVM_EXIT_INTR;
 		}
 
 		/*
+		 * If we're using a userspace irqchip, then check if we need
+		 * to tell a userspace irqchip about timer or PMU level
+		 * changes and if so, exit to userspace (the actual level
+		 * state gets updated in kvm_timer_update_run and
+		 * kvm_pmu_update_run below).
+		 */
+		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
+			if (kvm_timer_should_notify_user(vcpu) ||
+			    kvm_pmu_should_notify_user(vcpu)) {
+				ret = -EINTR;
+				run->exit_reason = KVM_EXIT_INTR;
+			}
+		}
+
+		/*
 		 * Ensure we set mode to IN_GUEST_MODE after we disable
 		 * interrupts and before the final VCPU requests check.
 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
@@ -704,7 +726,8 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 		    kvm_request_pending(vcpu)) {
 			vcpu->mode = OUTSIDE_GUEST_MODE;
 			kvm_pmu_sync_hwstate(vcpu);
-			kvm_timer_sync_hwstate(vcpu);
+			if (static_branch_unlikely(&userspace_irqchip_in_use))
+				kvm_timer_sync_hwstate(vcpu);
 			kvm_vgic_sync_hwstate(vcpu);
 			local_irq_enable();
 			preempt_enable();
@@ -748,7 +771,8 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 		 * we don't want vtimer interrupts to race with syncing the
 		 * timer virtual interrupt state.
 		 */
-		kvm_timer_sync_hwstate(vcpu);
+		if (static_branch_unlikely(&userspace_irqchip_in_use))
+			kvm_timer_sync_hwstate(vcpu);
 
 		/*
 		 * We may have taken a host interrupt in HYP mode (ie
@@ -1277,6 +1301,7 @@ static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
 			cpu_hyp_reset();
 
 		return NOTIFY_OK;
+	case CPU_PM_ENTER_FAILED:
 	case CPU_PM_EXIT:
 		if (__this_cpu_read(kvm_arm_hardware_enabled))
 			/* The hardware was enabled before suspend. */
diff --git a/virt/kvm/arm/hyp/vgic-v2-sr.c b/virt/kvm/arm/hyp/vgic-v2-sr.c
index d7fd46f..4fe6e79 100644
--- a/virt/kvm/arm/hyp/vgic-v2-sr.c
+++ b/virt/kvm/arm/hyp/vgic-v2-sr.c
@@ -21,6 +21,7 @@
 
 #include <asm/kvm_emulate.h>
 #include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
 
 static void __hyp_text save_elrsr(struct kvm_vcpu *vcpu, void __iomem *base)
 {
diff --git a/virt/kvm/arm/mmu.c b/virt/kvm/arm/mmu.c
index b36945d..a1ea43f 100644
--- a/virt/kvm/arm/mmu.c
+++ b/virt/kvm/arm/mmu.c
@@ -926,6 +926,25 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
 	return 0;
 }
 
+static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
+{
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	pmdp = stage2_get_pmd(kvm, NULL, addr);
+	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
+		return false;
+
+	if (pmd_thp_or_huge(*pmdp))
+		return kvm_s2pmd_exec(pmdp);
+
+	ptep = pte_offset_kernel(pmdp, addr);
+	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
+		return false;
+
+	return kvm_s2pte_exec(ptep);
+}
+
 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 			  phys_addr_t addr, const pte_t *new_pte,
 			  unsigned long flags)
@@ -1257,10 +1276,14 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
 }
 
-static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
-				      unsigned long size)
+static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
 {
-	__coherent_cache_guest_page(vcpu, pfn, size);
+	__clean_dcache_guest_page(pfn, size);
+}
+
+static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
+{
+	__invalidate_icache_guest_page(pfn, size);
 }
 
 static void kvm_send_hwpoison_signal(unsigned long address,
@@ -1286,7 +1309,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
 			  unsigned long fault_status)
 {
 	int ret;
-	bool write_fault, writable, hugetlb = false, force_pte = false;
+	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
 	unsigned long mmu_seq;
 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
 	struct kvm *kvm = vcpu->kvm;
@@ -1298,7 +1321,10 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
 	unsigned long flags = 0;
 
 	write_fault = kvm_is_write_fault(vcpu);
-	if (fault_status == FSC_PERM && !write_fault) {
+	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
+	VM_BUG_ON(write_fault && exec_fault);
+
+	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
 		kvm_err("Unexpected L2 read permission error\n");
 		return -EFAULT;
 	}
@@ -1391,7 +1417,19 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
 			kvm_set_pfn_dirty(pfn);
 		}
-		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
+
+		if (fault_status != FSC_PERM)
+			clean_dcache_guest_page(pfn, PMD_SIZE);
+
+		if (exec_fault) {
+			new_pmd = kvm_s2pmd_mkexec(new_pmd);
+			invalidate_icache_guest_page(pfn, PMD_SIZE);
+		} else if (fault_status == FSC_PERM) {
+			/* Preserve execute if XN was already cleared */
+			if (stage2_is_exec(kvm, fault_ipa))
+				new_pmd = kvm_s2pmd_mkexec(new_pmd);
+		}
+
 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
 	} else {
 		pte_t new_pte = pfn_pte(pfn, mem_type);
@@ -1401,7 +1439,19 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
 			kvm_set_pfn_dirty(pfn);
 			mark_page_dirty(kvm, gfn);
 		}
-		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
+
+		if (fault_status != FSC_PERM)
+			clean_dcache_guest_page(pfn, PAGE_SIZE);
+
+		if (exec_fault) {
+			new_pte = kvm_s2pte_mkexec(new_pte);
+			invalidate_icache_guest_page(pfn, PAGE_SIZE);
+		} else if (fault_status == FSC_PERM) {
+			/* Preserve execute if XN was already cleared */
+			if (stage2_is_exec(kvm, fault_ipa))
+				new_pte = kvm_s2pte_mkexec(new_pte);
+		}
+
 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
 	}
 
diff --git a/virt/kvm/arm/vgic/vgic-its.c b/virt/kvm/arm/vgic/vgic-its.c
index 8e633bd..4650953 100644
--- a/virt/kvm/arm/vgic/vgic-its.c
+++ b/virt/kvm/arm/vgic/vgic-its.c
@@ -1034,10 +1034,8 @@ static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
 
 	device = vgic_its_alloc_device(its, device_id, itt_addr,
 				       num_eventid_bits);
-	if (IS_ERR(device))
-		return PTR_ERR(device);
 
-	return 0;
+	return PTR_ERR_OR_ZERO(device);
 }
 
 /*
diff --git a/virt/kvm/arm/vgic/vgic-mmio.c b/virt/kvm/arm/vgic/vgic-mmio.c
index deb51ee..83d82bd 100644
--- a/virt/kvm/arm/vgic/vgic-mmio.c
+++ b/virt/kvm/arm/vgic/vgic-mmio.c
@@ -16,6 +16,7 @@
 #include <linux/kvm.h>
 #include <linux/kvm_host.h>
 #include <kvm/iodev.h>
+#include <kvm/arm_arch_timer.h>
 #include <kvm/arm_vgic.h>
 
 #include "vgic.h"
@@ -122,10 +123,43 @@ unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
 	return value;
 }
 
+/*
+ * This function will return the VCPU that performed the MMIO access and
+ * trapped from within the VM, and will return NULL if this is a userspace
+ * access.
+ *
+ * We can disable preemption locally around accessing the per-CPU variable,
+ * and use the resolved vcpu pointer after enabling preemption again, because
+ * even if the current thread is migrated to another CPU, reading the per-CPU
+ * value later will give us the same value as we update the per-CPU variable
+ * in the preempt notifier handlers.
+ */
+static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
+{
+	struct kvm_vcpu *vcpu;
+
+	preempt_disable();
+	vcpu = kvm_arm_get_running_vcpu();
+	preempt_enable();
+	return vcpu;
+}
+
+/* Must be called with irq->irq_lock held */
+static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+				 bool is_uaccess)
+{
+	if (is_uaccess)
+		return;
+
+	irq->pending_latch = true;
+	vgic_irq_set_phys_active(irq, true);
+}
+
 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
 			      gpa_t addr, unsigned int len,
 			      unsigned long val)
 {
+	bool is_uaccess = !vgic_get_mmio_requester_vcpu();
 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 	int i;
 	unsigned long flags;
@@ -134,17 +168,45 @@ void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 
 		spin_lock_irqsave(&irq->irq_lock, flags);
-		irq->pending_latch = true;
-
+		if (irq->hw)
+			vgic_hw_irq_spending(vcpu, irq, is_uaccess);
+		else
+			irq->pending_latch = true;
 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 		vgic_put_irq(vcpu->kvm, irq);
 	}
 }
 
+/* Must be called with irq->irq_lock held */
+static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+				 bool is_uaccess)
+{
+	if (is_uaccess)
+		return;
+
+	irq->pending_latch = false;
+
+	/*
+	 * We don't want the guest to effectively mask the physical
+	 * interrupt by doing a write to SPENDR followed by a write to
+	 * CPENDR for HW interrupts, so we clear the active state on
+	 * the physical side if the virtual interrupt is not active.
+	 * This may lead to taking an additional interrupt on the
+	 * host, but that should not be a problem as the worst that
+	 * can happen is an additional vgic injection.  We also clear
+	 * the pending state to maintain proper semantics for edge HW
+	 * interrupts.
+	 */
+	vgic_irq_set_phys_pending(irq, false);
+	if (!irq->active)
+		vgic_irq_set_phys_active(irq, false);
+}
+
 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
 			      gpa_t addr, unsigned int len,
 			      unsigned long val)
 {
+	bool is_uaccess = !vgic_get_mmio_requester_vcpu();
 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 	int i;
 	unsigned long flags;
@@ -154,7 +216,10 @@ void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
 
 		spin_lock_irqsave(&irq->irq_lock, flags);
 
-		irq->pending_latch = false;
+		if (irq->hw)
+			vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
+		else
+			irq->pending_latch = false;
 
 		spin_unlock_irqrestore(&irq->irq_lock, flags);
 		vgic_put_irq(vcpu->kvm, irq);
@@ -181,27 +246,24 @@ unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
 	return value;
 }
 
-static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
-				    bool new_active_state)
+/* Must be called with irq->irq_lock held */
+static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+				      bool active, bool is_uaccess)
 {
-	struct kvm_vcpu *requester_vcpu;
-	unsigned long flags;
-	spin_lock_irqsave(&irq->irq_lock, flags);
+	if (is_uaccess)
+		return;
 
-	/*
-	 * The vcpu parameter here can mean multiple things depending on how
-	 * this function is called; when handling a trap from the kernel it
-	 * depends on the GIC version, and these functions are also called as
-	 * part of save/restore from userspace.
-	 *
-	 * Therefore, we have to figure out the requester in a reliable way.
-	 *
-	 * When accessing VGIC state from user space, the requester_vcpu is
-	 * NULL, which is fine, because we guarantee that no VCPUs are running
-	 * when accessing VGIC state from user space so irq->vcpu->cpu is
-	 * always -1.
-	 */
-	requester_vcpu = kvm_arm_get_running_vcpu();
+	irq->active = active;
+	vgic_irq_set_phys_active(irq, active);
+}
+
+static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+				    bool active)
+{
+	unsigned long flags;
+	struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
+
+	spin_lock_irqsave(&irq->irq_lock, flags);
 
 	/*
 	 * If this virtual IRQ was written into a list register, we
@@ -213,14 +275,23 @@ static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
 	 * vgic_change_active_prepare)  and still has to sync back this IRQ,
 	 * so we release and re-acquire the spin_lock to let the other thread
 	 * sync back the IRQ.
+	 *
+	 * When accessing VGIC state from user space, requester_vcpu is
+	 * NULL, which is fine, because we guarantee that no VCPUs are running
+	 * when accessing VGIC state from user space so irq->vcpu->cpu is
+	 * always -1.
 	 */
 	while (irq->vcpu && /* IRQ may have state in an LR somewhere */
 	       irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
 	       irq->vcpu->cpu != -1) /* VCPU thread is running */
 		cond_resched_lock(&irq->irq_lock);
 
-	irq->active = new_active_state;
-	if (new_active_state)
+	if (irq->hw)
+		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
+	else
+		irq->active = active;
+
+	if (irq->active)
 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 	else
 		spin_unlock_irqrestore(&irq->irq_lock, flags);
diff --git a/virt/kvm/arm/vgic/vgic-v2.c b/virt/kvm/arm/vgic/vgic-v2.c
index 8089710..c32d7b9 100644
--- a/virt/kvm/arm/vgic/vgic-v2.c
+++ b/virt/kvm/arm/vgic/vgic-v2.c
@@ -105,6 +105,26 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
 				irq->pending_latch = false;
 		}
 
+		/*
+		 * Level-triggered mapped IRQs are special because we only
+		 * observe rising edges as input to the VGIC.
+		 *
+		 * If the guest never acked the interrupt we have to sample
+		 * the physical line and set the line level, because the
+		 * device state could have changed or we simply need to
+		 * process the still pending interrupt later.
+		 *
+		 * If this causes us to lower the level, we have to also clear
+		 * the physical active state, since we will otherwise never be
+		 * told when the interrupt becomes asserted again.
+		 */
+		if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) {
+			irq->line_level = vgic_get_phys_line_level(irq);
+
+			if (!irq->line_level)
+				vgic_irq_set_phys_active(irq, false);
+		}
+
 		spin_unlock_irqrestore(&irq->irq_lock, flags);
 		vgic_put_irq(vcpu->kvm, irq);
 	}
@@ -162,6 +182,15 @@ void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
 			val |= GICH_LR_EOI;
 	}
 
+	/*
+	 * Level-triggered mapped IRQs are special because we only observe
+	 * rising edges as input to the VGIC.  We therefore lower the line
+	 * level here, so that we can take new virtual IRQs.  See
+	 * vgic_v2_fold_lr_state for more info.
+	 */
+	if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
+		irq->line_level = false;
+
 	/* The GICv2 LR only holds five bits of priority. */
 	val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
 
diff --git a/virt/kvm/arm/vgic/vgic-v3.c b/virt/kvm/arm/vgic/vgic-v3.c
index f47e848..6b32941 100644
--- a/virt/kvm/arm/vgic/vgic-v3.c
+++ b/virt/kvm/arm/vgic/vgic-v3.c
@@ -96,6 +96,26 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
 				irq->pending_latch = false;
 		}
 
+		/*
+		 * Level-triggered mapped IRQs are special because we only
+		 * observe rising edges as input to the VGIC.
+		 *
+		 * If the guest never acked the interrupt we have to sample
+		 * the physical line and set the line level, because the
+		 * device state could have changed or we simply need to
+		 * process the still pending interrupt later.
+		 *
+		 * If this causes us to lower the level, we have to also clear
+		 * the physical active state, since we will otherwise never be
+		 * told when the interrupt becomes asserted again.
+		 */
+		if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
+			irq->line_level = vgic_get_phys_line_level(irq);
+
+			if (!irq->line_level)
+				vgic_irq_set_phys_active(irq, false);
+		}
+
 		spin_unlock_irqrestore(&irq->irq_lock, flags);
 		vgic_put_irq(vcpu->kvm, irq);
 	}
@@ -146,6 +166,15 @@ void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
 	}
 
 	/*
+	 * Level-triggered mapped IRQs are special because we only observe
+	 * rising edges as input to the VGIC.  We therefore lower the line
+	 * level here, so that we can take new virtual IRQs.  See
+	 * vgic_v3_fold_lr_state for more info.
+	 */
+	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
+		irq->line_level = false;
+
+	/*
 	 * We currently only support Group1 interrupts, which is a
 	 * known defect. This needs to be addressed at some point.
 	 */
diff --git a/virt/kvm/arm/vgic/vgic.c b/virt/kvm/arm/vgic/vgic.c
index ecb8e25..c7c5ef1 100644
--- a/virt/kvm/arm/vgic/vgic.c
+++ b/virt/kvm/arm/vgic/vgic.c
@@ -144,6 +144,38 @@ void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
 	kfree(irq);
 }
 
+void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
+{
+	WARN_ON(irq_set_irqchip_state(irq->host_irq,
+				      IRQCHIP_STATE_PENDING,
+				      pending));
+}
+
+bool vgic_get_phys_line_level(struct vgic_irq *irq)
+{
+	bool line_level;
+
+	BUG_ON(!irq->hw);
+
+	if (irq->get_input_level)
+		return irq->get_input_level(irq->intid);
+
+	WARN_ON(irq_get_irqchip_state(irq->host_irq,
+				      IRQCHIP_STATE_PENDING,
+				      &line_level));
+	return line_level;
+}
+
+/* Set/Clear the physical active state */
+void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
+{
+
+	BUG_ON(!irq->hw);
+	WARN_ON(irq_set_irqchip_state(irq->host_irq,
+				      IRQCHIP_STATE_ACTIVE,
+				      active));
+}
+
 /**
  * kvm_vgic_target_oracle - compute the target vcpu for an irq
  *
@@ -413,7 +445,8 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
 
 /* @irq->irq_lock must be held */
 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
-			    unsigned int host_irq)
+			    unsigned int host_irq,
+			    bool (*get_input_level)(int vindid))
 {
 	struct irq_desc *desc;
 	struct irq_data *data;
@@ -433,6 +466,7 @@ static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
 	irq->hw = true;
 	irq->host_irq = host_irq;
 	irq->hwintid = data->hwirq;
+	irq->get_input_level = get_input_level;
 	return 0;
 }
 
@@ -441,10 +475,11 @@ static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
 {
 	irq->hw = false;
 	irq->hwintid = 0;
+	irq->get_input_level = NULL;
 }
 
 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
-			  u32 vintid)
+			  u32 vintid, bool (*get_input_level)(int vindid))
 {
 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
 	unsigned long flags;
@@ -453,7 +488,7 @@ int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
 	BUG_ON(!irq);
 
 	spin_lock_irqsave(&irq->irq_lock, flags);
-	ret = kvm_vgic_map_irq(vcpu, irq, host_irq);
+	ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
 	spin_unlock_irqrestore(&irq->irq_lock, flags);
 	vgic_put_irq(vcpu->kvm, irq);
 
diff --git a/virt/kvm/arm/vgic/vgic.h b/virt/kvm/arm/vgic/vgic.h
index efbcf8f..12c37b8 100644
--- a/virt/kvm/arm/vgic/vgic.h
+++ b/virt/kvm/arm/vgic/vgic.h
@@ -104,6 +104,11 @@ static inline bool irq_is_pending(struct vgic_irq *irq)
 		return irq->pending_latch || irq->line_level;
 }
 
+static inline bool vgic_irq_is_mapped_level(struct vgic_irq *irq)
+{
+	return irq->config == VGIC_CONFIG_LEVEL && irq->hw;
+}
+
 /*
  * This struct provides an intermediate representation of the fields contained
  * in the GICH_VMCR and ICH_VMCR registers, such that code exporting the GIC
@@ -140,6 +145,9 @@ vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
 			      u32 intid);
 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq);
+bool vgic_get_phys_line_level(struct vgic_irq *irq);
+void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending);
+void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active);
 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
 			   unsigned long flags);
 void vgic_kick_vcpus(struct kvm *kvm);