| /* |
| * IOMMU mmap management and range allocation functions. |
| * Based almost entirely upon the powerpc iommu allocator. |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/bitmap.h> |
| #include <linux/bug.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/iommu-common.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/hash.h> |
| |
| unsigned long iommu_large_alloc = 15; |
| |
| static DEFINE_PER_CPU(unsigned int, iommu_pool_hash); |
| |
| static inline bool need_flush(struct iommu_map_table *iommu) |
| { |
| return (iommu->lazy_flush != NULL && |
| (iommu->flags & IOMMU_NEED_FLUSH) != 0); |
| } |
| |
| static inline void set_flush(struct iommu_map_table *iommu) |
| { |
| iommu->flags |= IOMMU_NEED_FLUSH; |
| } |
| |
| static inline void clear_flush(struct iommu_map_table *iommu) |
| { |
| iommu->flags &= ~IOMMU_NEED_FLUSH; |
| } |
| |
| static void setup_iommu_pool_hash(void) |
| { |
| unsigned int i; |
| static bool do_once; |
| |
| if (do_once) |
| return; |
| do_once = true; |
| for_each_possible_cpu(i) |
| per_cpu(iommu_pool_hash, i) = hash_32(i, IOMMU_POOL_HASHBITS); |
| } |
| |
| /* |
| * Initialize iommu_pool entries for the iommu_map_table. `num_entries' |
| * is the number of table entries. If `large_pool' is set to true, |
| * the top 1/4 of the table will be set aside for pool allocations |
| * of more than iommu_large_alloc pages. |
| */ |
| extern void iommu_tbl_pool_init(struct iommu_map_table *iommu, |
| unsigned long num_entries, |
| u32 table_shift, |
| void (*lazy_flush)(struct iommu_map_table *), |
| bool large_pool, u32 npools, |
| bool skip_span_boundary_check) |
| { |
| unsigned int start, i; |
| struct iommu_pool *p = &(iommu->large_pool); |
| |
| setup_iommu_pool_hash(); |
| if (npools == 0) |
| iommu->nr_pools = IOMMU_NR_POOLS; |
| else |
| iommu->nr_pools = npools; |
| BUG_ON(npools > IOMMU_NR_POOLS); |
| |
| iommu->table_shift = table_shift; |
| iommu->lazy_flush = lazy_flush; |
| start = 0; |
| if (skip_span_boundary_check) |
| iommu->flags |= IOMMU_NO_SPAN_BOUND; |
| if (large_pool) |
| iommu->flags |= IOMMU_HAS_LARGE_POOL; |
| |
| if (!large_pool) |
| iommu->poolsize = num_entries/iommu->nr_pools; |
| else |
| iommu->poolsize = (num_entries * 3 / 4)/iommu->nr_pools; |
| for (i = 0; i < iommu->nr_pools; i++) { |
| spin_lock_init(&(iommu->pools[i].lock)); |
| iommu->pools[i].start = start; |
| iommu->pools[i].hint = start; |
| start += iommu->poolsize; /* start for next pool */ |
| iommu->pools[i].end = start - 1; |
| } |
| if (!large_pool) |
| return; |
| /* initialize large_pool */ |
| spin_lock_init(&(p->lock)); |
| p->start = start; |
| p->hint = p->start; |
| p->end = num_entries; |
| } |
| EXPORT_SYMBOL(iommu_tbl_pool_init); |
| |
| unsigned long iommu_tbl_range_alloc(struct device *dev, |
| struct iommu_map_table *iommu, |
| unsigned long npages, |
| unsigned long *handle, |
| unsigned long mask, |
| unsigned int align_order) |
| { |
| unsigned int pool_hash = __this_cpu_read(iommu_pool_hash); |
| unsigned long n, end, start, limit, boundary_size; |
| struct iommu_pool *pool; |
| int pass = 0; |
| unsigned int pool_nr; |
| unsigned int npools = iommu->nr_pools; |
| unsigned long flags; |
| bool large_pool = ((iommu->flags & IOMMU_HAS_LARGE_POOL) != 0); |
| bool largealloc = (large_pool && npages > iommu_large_alloc); |
| unsigned long shift; |
| unsigned long align_mask = 0; |
| |
| if (align_order > 0) |
| align_mask = 0xffffffffffffffffl >> (64 - align_order); |
| |
| /* Sanity check */ |
| if (unlikely(npages == 0)) { |
| WARN_ON_ONCE(1); |
| return DMA_ERROR_CODE; |
| } |
| |
| if (largealloc) { |
| pool = &(iommu->large_pool); |
| pool_nr = 0; /* to keep compiler happy */ |
| } else { |
| /* pick out pool_nr */ |
| pool_nr = pool_hash & (npools - 1); |
| pool = &(iommu->pools[pool_nr]); |
| } |
| spin_lock_irqsave(&pool->lock, flags); |
| |
| again: |
| if (pass == 0 && handle && *handle && |
| (*handle >= pool->start) && (*handle < pool->end)) |
| start = *handle; |
| else |
| start = pool->hint; |
| |
| limit = pool->end; |
| |
| /* The case below can happen if we have a small segment appended |
| * to a large, or when the previous alloc was at the very end of |
| * the available space. If so, go back to the beginning. If a |
| * flush is needed, it will get done based on the return value |
| * from iommu_area_alloc() below. |
| */ |
| if (start >= limit) |
| start = pool->start; |
| shift = iommu->table_map_base >> iommu->table_shift; |
| if (limit + shift > mask) { |
| limit = mask - shift + 1; |
| /* If we're constrained on address range, first try |
| * at the masked hint to avoid O(n) search complexity, |
| * but on second pass, start at 0 in pool 0. |
| */ |
| if ((start & mask) >= limit || pass > 0) { |
| spin_unlock(&(pool->lock)); |
| pool = &(iommu->pools[0]); |
| spin_lock(&(pool->lock)); |
| start = pool->start; |
| } else { |
| start &= mask; |
| } |
| } |
| |
| if (dev) |
| boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, |
| 1 << iommu->table_shift); |
| else |
| boundary_size = ALIGN(1UL << 32, 1 << iommu->table_shift); |
| |
| boundary_size = boundary_size >> iommu->table_shift; |
| /* |
| * if the skip_span_boundary_check had been set during init, we set |
| * things up so that iommu_is_span_boundary() merely checks if the |
| * (index + npages) < num_tsb_entries |
| */ |
| if ((iommu->flags & IOMMU_NO_SPAN_BOUND) != 0) { |
| shift = 0; |
| boundary_size = iommu->poolsize * iommu->nr_pools; |
| } |
| n = iommu_area_alloc(iommu->map, limit, start, npages, shift, |
| boundary_size, align_mask); |
| if (n == -1) { |
| if (likely(pass == 0)) { |
| /* First failure, rescan from the beginning. */ |
| pool->hint = pool->start; |
| set_flush(iommu); |
| pass++; |
| goto again; |
| } else if (!largealloc && pass <= iommu->nr_pools) { |
| spin_unlock(&(pool->lock)); |
| pool_nr = (pool_nr + 1) & (iommu->nr_pools - 1); |
| pool = &(iommu->pools[pool_nr]); |
| spin_lock(&(pool->lock)); |
| pool->hint = pool->start; |
| set_flush(iommu); |
| pass++; |
| goto again; |
| } else { |
| /* give up */ |
| n = DMA_ERROR_CODE; |
| goto bail; |
| } |
| } |
| if (n < pool->hint || need_flush(iommu)) { |
| clear_flush(iommu); |
| iommu->lazy_flush(iommu); |
| } |
| |
| end = n + npages; |
| pool->hint = end; |
| |
| /* Update handle for SG allocations */ |
| if (handle) |
| *handle = end; |
| bail: |
| spin_unlock_irqrestore(&(pool->lock), flags); |
| |
| return n; |
| } |
| EXPORT_SYMBOL(iommu_tbl_range_alloc); |
| |
| static struct iommu_pool *get_pool(struct iommu_map_table *tbl, |
| unsigned long entry) |
| { |
| struct iommu_pool *p; |
| unsigned long largepool_start = tbl->large_pool.start; |
| bool large_pool = ((tbl->flags & IOMMU_HAS_LARGE_POOL) != 0); |
| |
| /* The large pool is the last pool at the top of the table */ |
| if (large_pool && entry >= largepool_start) { |
| p = &tbl->large_pool; |
| } else { |
| unsigned int pool_nr = entry / tbl->poolsize; |
| |
| BUG_ON(pool_nr >= tbl->nr_pools); |
| p = &tbl->pools[pool_nr]; |
| } |
| return p; |
| } |
| |
| /* Caller supplies the index of the entry into the iommu map table |
| * itself when the mapping from dma_addr to the entry is not the |
| * default addr->entry mapping below. |
| */ |
| void iommu_tbl_range_free(struct iommu_map_table *iommu, u64 dma_addr, |
| unsigned long npages, unsigned long entry) |
| { |
| struct iommu_pool *pool; |
| unsigned long flags; |
| unsigned long shift = iommu->table_shift; |
| |
| if (entry == DMA_ERROR_CODE) /* use default addr->entry mapping */ |
| entry = (dma_addr - iommu->table_map_base) >> shift; |
| pool = get_pool(iommu, entry); |
| |
| spin_lock_irqsave(&(pool->lock), flags); |
| bitmap_clear(iommu->map, entry, npages); |
| spin_unlock_irqrestore(&(pool->lock), flags); |
| } |
| EXPORT_SYMBOL(iommu_tbl_range_free); |