blob: 03a94a33e6bd308bd217517d9c9b91f13e97d877 [file] [log] [blame]
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt2400pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt2400pci.h"
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57static u32 rt2400pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58{
59 u32 reg;
60 unsigned int i;
61
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
67 }
68
69 return reg;
70}
71
72static void rt2400pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
74{
75 u32 reg;
76
77 /*
78 * Wait until the BBP becomes ready.
79 */
80 reg = rt2400pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
84 }
85
86 /*
87 * Write the data into the BBP.
88 */
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96}
97
98static void rt2400pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
100{
101 u32 reg;
102
103 /*
104 * Wait until the BBP becomes ready.
105 */
106 reg = rt2400pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
110 }
111
112 /*
113 * Write the request into the BBP.
114 */
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122 /*
123 * Wait until the BBP becomes ready.
124 */
125 reg = rt2400pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
130 }
131
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133}
134
135static void rt2400pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
137{
138 u32 reg;
139 unsigned int i;
140
141 if (!word)
142 return;
143
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
149 }
150
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
153
154rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
163}
164
165static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166{
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178}
179
180static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181{
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
184
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
191
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193}
194
195#ifdef CONFIG_RT2X00_LIB_DEBUGFS
196#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198static void rt2400pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
200{
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202}
203
204static void rt2400pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
206{
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208}
209
210static const struct rt2x00debug rt2400pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2400pci_read_csr,
214 .write = rt2400pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt2400pci_bbp_read,
226 .write = rt2400pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2400pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236};
237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239#ifdef CONFIG_RT2400PCI_RFKILL
240static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241{
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246}
247#endif /* CONFIG_RT2400PCI_RFKILL */
248
249/*
250 * Configuration handlers.
251 */
252static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
253{
254 __le32 reg[2];
255
256 memset(&reg, 0, sizeof(reg));
257 memcpy(&reg, addr, ETH_ALEN);
258
259 /*
260 * The MAC address is passed to us as an array of bytes,
261 * that array is little endian, so no need for byte ordering.
262 */
263 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, &reg, sizeof(reg));
264}
265
266static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
267{
268 __le32 reg[2];
269
270 memset(&reg, 0, sizeof(reg));
271 memcpy(&reg, bssid, ETH_ALEN);
272
273 /*
274 * The BSSID is passed to us as an array of bytes,
275 * that array is little endian, so no need for byte ordering.
276 */
277 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, &reg, sizeof(reg));
278}
279
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700280static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, int type)
281{
Johannes Berg4150c572007-09-17 01:29:23 -0400282 struct interface *intf = &rt2x00dev->interface;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700283 u32 reg;
284
285 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
286
287 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700288 * Enable beacon config
289 */
290 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
291 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
292 PREAMBLE + get_duration(IEEE80211_HEADER, 2));
293 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
294
295 /*
296 * Enable synchronisation.
297 */
298 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
Johannes Berg4150c572007-09-17 01:29:23 -0400299 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
300 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700301 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
Johannes Berg4150c572007-09-17 01:29:23 -0400302 if (is_interface_type(intf, IEEE80211_IF_TYPE_IBSS) ||
303 is_interface_type(intf, IEEE80211_IF_TYPE_AP))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700304 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
Johannes Berg4150c572007-09-17 01:29:23 -0400305 else if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700306 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
Johannes Berg4150c572007-09-17 01:29:23 -0400307 else
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700308 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700309 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
310}
311
312static void rt2400pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
313{
314 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
315 u32 reg;
316 u32 preamble;
317 u16 value;
318
319 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
320 preamble = SHORT_PREAMBLE;
321 else
322 preamble = PREAMBLE;
323
324 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
325 rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
326
327 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
328 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
329 SHORT_DIFS : DIFS) +
330 PLCP + preamble + get_duration(ACK_SIZE, 10);
331 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
332 value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
333 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
334 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
335
336 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
337
338 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
339 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
340 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
341 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
342 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
343
344 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
345 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
346 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
347 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
348 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
349
350 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
351 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
352 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
353 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
354 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
355
356 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
357 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
358 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
359 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
360 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
361}
362
363static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
364 const int phymode)
365{
366 struct ieee80211_hw_mode *mode;
367 struct ieee80211_rate *rate;
368
369 rt2x00dev->curr_hwmode = HWMODE_B;
370
371 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
372 rate = &mode->rates[mode->num_rates - 1];
373
374 rt2400pci_config_rate(rt2x00dev, rate->val2);
375}
376
377static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
378 const int index, const int channel)
379{
380 struct rf_channel reg;
381
382 /*
383 * Fill rf_reg structure.
384 */
385 memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
386
387 /*
388 * Switch on tuning bits.
389 */
390 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
391 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
392
393 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
394 rt2400pci_rf_write(rt2x00dev, 2, reg.rf2);
395 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
396
397 /*
398 * RF2420 chipset don't need any additional actions.
399 */
400 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
401 return;
402
403 /*
404 * For the RT2421 chipsets we need to write an invalid
405 * reference clock rate to activate auto_tune.
406 * After that we set the value back to the correct channel.
407 */
408 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
409 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
410 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
411
412 msleep(1);
413
414 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
415 rt2400pci_rf_write(rt2x00dev, 2, reg.rf2);
416 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
417
418 msleep(1);
419
420 /*
421 * Switch off tuning bits.
422 */
423 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
424 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
425
426 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
427 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
428
429 /*
430 * Clear false CRC during channel switch.
431 */
432 rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
433}
434
435static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
436{
437 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
438}
439
440static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
441 int antenna_tx, int antenna_rx)
442{
443 u8 r1;
444 u8 r4;
445
446 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
447 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
448
449 /*
450 * Configure the TX antenna.
451 */
452 switch (antenna_tx) {
453 case ANTENNA_SW_DIVERSITY:
454 case ANTENNA_HW_DIVERSITY:
455 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
456 break;
457 case ANTENNA_A:
458 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
459 break;
460 case ANTENNA_B:
461 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
462 break;
463 }
464
465 /*
466 * Configure the RX antenna.
467 */
468 switch (antenna_rx) {
469 case ANTENNA_SW_DIVERSITY:
470 case ANTENNA_HW_DIVERSITY:
471 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
472 break;
473 case ANTENNA_A:
474 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
475 break;
476 case ANTENNA_B:
477 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
478 break;
479 }
480
481 rt2400pci_bbp_write(rt2x00dev, 4, r4);
482 rt2400pci_bbp_write(rt2x00dev, 1, r1);
483}
484
485static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
486 int short_slot_time, int beacon_int)
487{
488 u32 reg;
489
490 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
491 rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
492 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
493 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
494
495 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
496 rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
497 rt2x00_set_field32(&reg, CSR18_PIFS,
498 short_slot_time ? SHORT_PIFS : PIFS);
499 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
500
501 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
502 rt2x00_set_field32(&reg, CSR19_DIFS,
503 short_slot_time ? SHORT_DIFS : DIFS);
504 rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
505 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
506
507 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
508 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
509 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
510 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
511
512 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
513 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
514 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
515 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
516}
517
518static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
519 const unsigned int flags,
520 struct ieee80211_conf *conf)
521{
522 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
523
524 if (flags & CONFIG_UPDATE_PHYMODE)
525 rt2400pci_config_phymode(rt2x00dev, conf->phymode);
526 if (flags & CONFIG_UPDATE_CHANNEL)
527 rt2400pci_config_channel(rt2x00dev, conf->channel_val,
528 conf->channel);
529 if (flags & CONFIG_UPDATE_TXPOWER)
530 rt2400pci_config_txpower(rt2x00dev, conf->power_level);
531 if (flags & CONFIG_UPDATE_ANTENNA)
532 rt2400pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
533 conf->antenna_sel_rx);
534 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
535 rt2400pci_config_duration(rt2x00dev, short_slot_time,
536 conf->beacon_int);
537}
538
539static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
540 struct ieee80211_tx_queue_params *params)
541{
542 u32 reg;
543
544 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
545 rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
546 rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
547 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
548}
549
550/*
551 * LED functions.
552 */
553static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
554{
555 u32 reg;
556
557 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
558
559 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
560 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
561
562 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
563 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
564 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
565 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
566 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
567 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
568 } else {
569 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
570 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
571 }
572
573 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
574}
575
576static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
577{
578 u32 reg;
579
580 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
581 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
582 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
583 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
584}
585
586/*
587 * Link tuning
588 */
589static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev)
590{
591 u32 reg;
592 u8 bbp;
593
594 /*
595 * Update FCS error count from register.
596 */
597 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
598 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
599
600 /*
601 * Update False CCA count from register.
602 */
603 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
604 rt2x00dev->link.false_cca = bbp;
605}
606
607static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
608{
609 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
610 rt2x00dev->link.vgc_level = 0x08;
611}
612
613static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
614{
615 u8 reg;
616
617 /*
618 * The link tuner should not run longer then 60 seconds,
619 * and should run once every 2 seconds.
620 */
621 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
622 return;
623
624 /*
625 * Base r13 link tuning on the false cca count.
626 */
627 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
628
629 if (rt2x00dev->link.false_cca > 512 && reg < 0x20) {
630 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
631 rt2x00dev->link.vgc_level = reg;
632 } else if (rt2x00dev->link.false_cca < 100 && reg > 0x08) {
633 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
634 rt2x00dev->link.vgc_level = reg;
635 }
636}
637
638/*
639 * Initialization functions.
640 */
641static void rt2400pci_init_rxring(struct rt2x00_dev *rt2x00dev)
642{
643 struct data_ring *ring = rt2x00dev->rx;
644 struct data_desc *rxd;
645 unsigned int i;
646 u32 word;
647
648 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
649
650 for (i = 0; i < ring->stats.limit; i++) {
651 rxd = ring->entry[i].priv;
652
653 rt2x00_desc_read(rxd, 2, &word);
654 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
655 ring->data_size);
656 rt2x00_desc_write(rxd, 2, word);
657
658 rt2x00_desc_read(rxd, 1, &word);
659 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
660 ring->entry[i].data_dma);
661 rt2x00_desc_write(rxd, 1, word);
662
663 rt2x00_desc_read(rxd, 0, &word);
664 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
665 rt2x00_desc_write(rxd, 0, word);
666 }
667
668 rt2x00_ring_index_clear(rt2x00dev->rx);
669}
670
671static void rt2400pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
672{
673 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
674 struct data_desc *txd;
675 unsigned int i;
676 u32 word;
677
678 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
679
680 for (i = 0; i < ring->stats.limit; i++) {
681 txd = ring->entry[i].priv;
682
683 rt2x00_desc_read(txd, 1, &word);
684 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
685 ring->entry[i].data_dma);
686 rt2x00_desc_write(txd, 1, word);
687
688 rt2x00_desc_read(txd, 2, &word);
689 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
690 ring->data_size);
691 rt2x00_desc_write(txd, 2, word);
692
693 rt2x00_desc_read(txd, 0, &word);
694 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
695 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
696 rt2x00_desc_write(txd, 0, word);
697 }
698
699 rt2x00_ring_index_clear(ring);
700}
701
702static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
703{
704 u32 reg;
705
706 /*
707 * Initialize rings.
708 */
709 rt2400pci_init_rxring(rt2x00dev);
710 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
711 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
712 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
713 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
714
715 /*
716 * Initialize registers.
717 */
718 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
719 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
720 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
721 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
722 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
723 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
724 rt2x00dev->bcn[1].stats.limit);
725 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
726 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
727 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
728
729 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
730 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
731 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
732 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
733
734 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
735 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
736 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
737 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
738
739 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
740 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
741 rt2x00dev->bcn[1].data_dma);
742 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
743
744 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
745 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
746 rt2x00dev->bcn[0].data_dma);
747 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
748
749 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
750 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
751 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
752 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
753
754 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
755 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
756 rt2x00dev->rx->data_dma);
757 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
758
759 return 0;
760}
761
762static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
763{
764 u32 reg;
765
766 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
767 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
768 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
769 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
770
771 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
772 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
773 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
774 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
775 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
776
777 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
778 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
779 (rt2x00dev->rx->data_size / 128));
780 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
781
782 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
783
784 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
785 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
786 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
787 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
788 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
789 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
790
791 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
792 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
793 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
794 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
795 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
796 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
797 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
798 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
799
800 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
801
802 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
803 return -EBUSY;
804
805 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
806 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
807
808 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
809 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
810 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
811
812 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
813 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
814 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
815 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
816 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
817 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
818
819 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
820 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
821 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
822 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
823 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
824
825 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
826 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
827 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
828 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
829
830 /*
831 * We must clear the FCS and FIFO error count.
832 * These registers are cleared on read,
833 * so we may pass a useless variable to store the value.
834 */
835 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
836 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
837
838 return 0;
839}
840
841static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
842{
843 unsigned int i;
844 u16 eeprom;
845 u8 reg_id;
846 u8 value;
847
848 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
849 rt2400pci_bbp_read(rt2x00dev, 0, &value);
850 if ((value != 0xff) && (value != 0x00))
851 goto continue_csr_init;
852 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
853 udelay(REGISTER_BUSY_DELAY);
854 }
855
856 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
857 return -EACCES;
858
859continue_csr_init:
860 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
861 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
862 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
863 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
864 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
865 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
866 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
867 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
868 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
869 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
870 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
871 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
872 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
873 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
874
875 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
876 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
877 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
878
879 if (eeprom != 0xffff && eeprom != 0x0000) {
880 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
881 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
882 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
883 reg_id, value);
884 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
885 }
886 }
887 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
888
889 return 0;
890}
891
892/*
893 * Device state switch handlers.
894 */
895static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
896 enum dev_state state)
897{
898 u32 reg;
899
900 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
901 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
902 state == STATE_RADIO_RX_OFF);
903 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
904}
905
906static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
907 enum dev_state state)
908{
909 int mask = (state == STATE_RADIO_IRQ_OFF);
910 u32 reg;
911
912 /*
913 * When interrupts are being enabled, the interrupt registers
914 * should clear the register to assure a clean state.
915 */
916 if (state == STATE_RADIO_IRQ_ON) {
917 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
918 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
919 }
920
921 /*
922 * Only toggle the interrupts bits we are going to use.
923 * Non-checked interrupt bits are disabled by default.
924 */
925 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
926 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
927 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
928 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
929 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
930 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
931 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
932}
933
934static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
935{
936 /*
937 * Initialize all registers.
938 */
939 if (rt2400pci_init_rings(rt2x00dev) ||
940 rt2400pci_init_registers(rt2x00dev) ||
941 rt2400pci_init_bbp(rt2x00dev)) {
942 ERROR(rt2x00dev, "Register initialization failed.\n");
943 return -EIO;
944 }
945
946 /*
947 * Enable interrupts.
948 */
949 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
950
951 /*
952 * Enable LED
953 */
954 rt2400pci_enable_led(rt2x00dev);
955
956 return 0;
957}
958
959static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
960{
961 u32 reg;
962
963 /*
964 * Disable LED
965 */
966 rt2400pci_disable_led(rt2x00dev);
967
968 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
969
970 /*
971 * Disable synchronisation.
972 */
973 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
974
975 /*
976 * Cancel RX and TX.
977 */
978 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
979 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
980 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
981
982 /*
983 * Disable interrupts.
984 */
985 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
986}
987
988static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
989 enum dev_state state)
990{
991 u32 reg;
992 unsigned int i;
993 char put_to_sleep;
994 char bbp_state;
995 char rf_state;
996
997 put_to_sleep = (state != STATE_AWAKE);
998
999 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1000 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1001 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1002 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1003 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1004 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1005
1006 /*
1007 * Device is not guaranteed to be in the requested state yet.
1008 * We must wait until the register indicates that the
1009 * device has entered the correct state.
1010 */
1011 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1012 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1013 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1014 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1015 if (bbp_state == state && rf_state == state)
1016 return 0;
1017 msleep(10);
1018 }
1019
1020 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1021 "current device state: bbp %d and rf %d.\n",
1022 state, bbp_state, rf_state);
1023
1024 return -EBUSY;
1025}
1026
1027static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1028 enum dev_state state)
1029{
1030 int retval = 0;
1031
1032 switch (state) {
1033 case STATE_RADIO_ON:
1034 retval = rt2400pci_enable_radio(rt2x00dev);
1035 break;
1036 case STATE_RADIO_OFF:
1037 rt2400pci_disable_radio(rt2x00dev);
1038 break;
1039 case STATE_RADIO_RX_ON:
1040 case STATE_RADIO_RX_OFF:
1041 rt2400pci_toggle_rx(rt2x00dev, state);
1042 break;
1043 case STATE_DEEP_SLEEP:
1044 case STATE_SLEEP:
1045 case STATE_STANDBY:
1046 case STATE_AWAKE:
1047 retval = rt2400pci_set_state(rt2x00dev, state);
1048 break;
1049 default:
1050 retval = -ENOTSUPP;
1051 break;
1052 }
1053
1054 return retval;
1055}
1056
1057/*
1058 * TX descriptor initialization
1059 */
1060static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1061 struct data_desc *txd,
Johannes Berg4150c572007-09-17 01:29:23 -04001062 struct txdata_entry_desc *desc,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001063 struct ieee80211_hdr *ieee80211hdr,
1064 unsigned int length,
1065 struct ieee80211_tx_control *control)
1066{
1067 u32 word;
1068 u32 signal = 0;
1069 u32 service = 0;
1070 u32 length_high = 0;
1071 u32 length_low = 0;
1072
1073 /*
1074 * The PLCP values should be treated as if they
1075 * were BBP values.
1076 */
1077 rt2x00_set_field32(&signal, BBPCSR_VALUE, desc->signal);
1078 rt2x00_set_field32(&signal, BBPCSR_REGNUM, 5);
1079 rt2x00_set_field32(&signal, BBPCSR_BUSY, 1);
1080
1081 rt2x00_set_field32(&service, BBPCSR_VALUE, desc->service);
1082 rt2x00_set_field32(&service, BBPCSR_REGNUM, 6);
1083 rt2x00_set_field32(&service, BBPCSR_BUSY, 1);
1084
1085 rt2x00_set_field32(&length_high, BBPCSR_VALUE, desc->length_high);
1086 rt2x00_set_field32(&length_high, BBPCSR_REGNUM, 7);
1087 rt2x00_set_field32(&length_high, BBPCSR_BUSY, 1);
1088
1089 rt2x00_set_field32(&length_low, BBPCSR_VALUE, desc->length_low);
1090 rt2x00_set_field32(&length_low, BBPCSR_REGNUM, 8);
1091 rt2x00_set_field32(&length_low, BBPCSR_BUSY, 1);
1092
1093 /*
1094 * Start writing the descriptor words.
1095 */
1096 rt2x00_desc_read(txd, 2, &word);
1097 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, length);
1098 rt2x00_desc_write(txd, 2, word);
1099
1100 rt2x00_desc_read(txd, 3, &word);
1101 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, signal);
1102 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, service);
1103 rt2x00_desc_write(txd, 3, word);
1104
1105 rt2x00_desc_read(txd, 4, &word);
1106 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, length_low);
1107 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, length_high);
1108 rt2x00_desc_write(txd, 4, word);
1109
1110 rt2x00_desc_read(txd, 0, &word);
1111 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1112 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1113 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1114 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1115 rt2x00_set_field32(&word, TXD_W0_ACK,
1116 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1117 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1118 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1119 rt2x00_set_field32(&word, TXD_W0_RTS,
1120 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1121 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1122 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1123 !!(control->flags &
1124 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1125 rt2x00_desc_write(txd, 0, word);
1126}
1127
1128/*
1129 * TX data initialization
1130 */
1131static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1132 unsigned int queue)
1133{
1134 u32 reg;
1135
1136 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1137 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1138 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1139 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1140 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1141 }
1142 return;
1143 }
1144
1145 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1146 if (queue == IEEE80211_TX_QUEUE_DATA0)
1147 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1148 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1149 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1150 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1151 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1152 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1153}
1154
1155/*
1156 * RX control handlers
1157 */
Johannes Berg4150c572007-09-17 01:29:23 -04001158static void rt2400pci_fill_rxdone(struct data_entry *entry,
1159 struct rxdata_entry_desc *desc)
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001160{
1161 struct data_desc *rxd = entry->priv;
1162 u32 word0;
1163 u32 word2;
1164
1165 rt2x00_desc_read(rxd, 0, &word0);
1166 rt2x00_desc_read(rxd, 2, &word2);
1167
Johannes Berg4150c572007-09-17 01:29:23 -04001168 desc->flags = 0;
1169 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1170 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1171 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1172 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001173
1174 /*
1175 * Obtain the status about this packet.
1176 */
Johannes Berg4150c572007-09-17 01:29:23 -04001177 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1178 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001179 entry->ring->rt2x00dev->rssi_offset;
Johannes Berg4150c572007-09-17 01:29:23 -04001180 desc->ofdm = 0;
1181 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001182}
1183
1184/*
1185 * Interrupt functions.
1186 */
1187static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1188{
1189 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1190 struct data_entry *entry;
1191 struct data_desc *txd;
1192 u32 word;
1193 int tx_status;
1194 int retry;
1195
1196 while (!rt2x00_ring_empty(ring)) {
1197 entry = rt2x00_get_data_entry_done(ring);
1198 txd = entry->priv;
1199 rt2x00_desc_read(txd, 0, &word);
1200
1201 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1202 !rt2x00_get_field32(word, TXD_W0_VALID))
1203 break;
1204
1205 /*
1206 * Obtain the status about this packet.
1207 */
1208 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1209 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1210
1211 rt2x00lib_txdone(entry, tx_status, retry);
1212
1213 /*
1214 * Make this entry available for reuse.
1215 */
1216 entry->flags = 0;
1217 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1218 rt2x00_desc_write(txd, 0, word);
1219 rt2x00_ring_index_done_inc(ring);
1220 }
1221
1222 /*
1223 * If the data ring was full before the txdone handler
1224 * we must make sure the packet queue in the mac80211 stack
1225 * is reenabled when the txdone handler has finished.
1226 */
1227 entry = ring->entry;
1228 if (!rt2x00_ring_full(ring))
1229 ieee80211_wake_queue(rt2x00dev->hw,
1230 entry->tx_status.control.queue);
1231}
1232
1233static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1234{
1235 struct rt2x00_dev *rt2x00dev = dev_instance;
1236 u32 reg;
1237
1238 /*
1239 * Get the interrupt sources & saved to local variable.
1240 * Write register value back to clear pending interrupts.
1241 */
1242 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1243 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1244
1245 if (!reg)
1246 return IRQ_NONE;
1247
1248 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1249 return IRQ_HANDLED;
1250
1251 /*
1252 * Handle interrupts, walk through all bits
1253 * and run the tasks, the bits are checked in order of
1254 * priority.
1255 */
1256
1257 /*
1258 * 1 - Beacon timer expired interrupt.
1259 */
1260 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1261 rt2x00lib_beacondone(rt2x00dev);
1262
1263 /*
1264 * 2 - Rx ring done interrupt.
1265 */
1266 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1267 rt2x00pci_rxdone(rt2x00dev);
1268
1269 /*
1270 * 3 - Atim ring transmit done interrupt.
1271 */
1272 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1273 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1274
1275 /*
1276 * 4 - Priority ring transmit done interrupt.
1277 */
1278 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1279 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1280
1281 /*
1282 * 5 - Tx ring transmit done interrupt.
1283 */
1284 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1285 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1286
1287 return IRQ_HANDLED;
1288}
1289
1290/*
1291 * Device probe functions.
1292 */
1293static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1294{
1295 struct eeprom_93cx6 eeprom;
1296 u32 reg;
1297 u16 word;
1298 u8 *mac;
1299
1300 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1301
1302 eeprom.data = rt2x00dev;
1303 eeprom.register_read = rt2400pci_eepromregister_read;
1304 eeprom.register_write = rt2400pci_eepromregister_write;
1305 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1306 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1307 eeprom.reg_data_in = 0;
1308 eeprom.reg_data_out = 0;
1309 eeprom.reg_data_clock = 0;
1310 eeprom.reg_chip_select = 0;
1311
1312 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1313 EEPROM_SIZE / sizeof(u16));
1314
1315 /*
1316 * Start validation of the data that has been read.
1317 */
1318 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1319 if (!is_valid_ether_addr(mac)) {
Joe Perches0795af52007-10-03 17:59:30 -07001320 DECLARE_MAC_BUF(macbuf);
1321
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001322 random_ether_addr(mac);
Joe Perches0795af52007-10-03 17:59:30 -07001323 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001324 }
1325
1326 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1327 if (word == 0xffff) {
1328 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1329 return -EINVAL;
1330 }
1331
1332 return 0;
1333}
1334
1335static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1336{
1337 u32 reg;
1338 u16 value;
1339 u16 eeprom;
1340
1341 /*
1342 * Read EEPROM word for configuration.
1343 */
1344 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1345
1346 /*
1347 * Identify RF chipset.
1348 */
1349 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1350 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1351 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1352
1353 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1354 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1355 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1356 return -ENODEV;
1357 }
1358
1359 /*
1360 * Identify default antenna configuration.
1361 */
1362 rt2x00dev->hw->conf.antenna_sel_tx =
1363 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1364 rt2x00dev->hw->conf.antenna_sel_rx =
1365 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1366
1367 /*
1368 * Store led mode, for correct led behaviour.
1369 */
1370 rt2x00dev->led_mode =
1371 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1372
1373 /*
1374 * Detect if this device has an hardware controlled radio.
1375 */
1376 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1377 __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1378
1379 /*
1380 * Check if the BBP tuning should be enabled.
1381 */
1382 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1383 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1384
1385 return 0;
1386}
1387
1388/*
1389 * RF value list for RF2420 & RF2421
1390 * Supports: 2.4 GHz
1391 */
1392static const struct rf_channel rf_vals_bg[] = {
1393 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1394 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1395 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1396 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1397 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1398 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1399 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1400 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1401 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1402 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1403 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1404 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1405 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1406 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1407};
1408
1409static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1410{
1411 struct hw_mode_spec *spec = &rt2x00dev->spec;
1412 u8 *txpower;
1413 unsigned int i;
1414
1415 /*
1416 * Initialize all hw fields.
1417 */
Johannes Berg4150c572007-09-17 01:29:23 -04001418 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001419 rt2x00dev->hw->extra_tx_headroom = 0;
1420 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1421 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1422 rt2x00dev->hw->queues = 2;
1423
1424 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1425 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1426 rt2x00_eeprom_addr(rt2x00dev,
1427 EEPROM_MAC_ADDR_0));
1428
1429 /*
1430 * Convert tx_power array in eeprom.
1431 */
1432 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1433 for (i = 0; i < 14; i++)
1434 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1435
1436 /*
1437 * Initialize hw_mode information.
1438 */
1439 spec->num_modes = 1;
1440 spec->num_rates = 4;
1441 spec->tx_power_a = NULL;
1442 spec->tx_power_bg = txpower;
1443 spec->tx_power_default = DEFAULT_TXPOWER;
1444
1445 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1446 spec->channels = rf_vals_bg;
1447}
1448
1449static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1450{
1451 int retval;
1452
1453 /*
1454 * Allocate eeprom data.
1455 */
1456 retval = rt2400pci_validate_eeprom(rt2x00dev);
1457 if (retval)
1458 return retval;
1459
1460 retval = rt2400pci_init_eeprom(rt2x00dev);
1461 if (retval)
1462 return retval;
1463
1464 /*
1465 * Initialize hw specifications.
1466 */
1467 rt2400pci_probe_hw_mode(rt2x00dev);
1468
1469 /*
1470 * This device requires the beacon ring
1471 */
1472 __set_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags);
1473
1474 /*
1475 * Set the rssi offset.
1476 */
1477 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1478
1479 return 0;
1480}
1481
1482/*
1483 * IEEE80211 stack callback functions.
1484 */
Johannes Berg4150c572007-09-17 01:29:23 -04001485static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1486 unsigned int changed_flags,
1487 unsigned int *total_flags,
1488 int mc_count,
1489 struct dev_addr_list *mc_list)
1490{
1491 struct rt2x00_dev *rt2x00dev = hw->priv;
1492 struct interface *intf = &rt2x00dev->interface;
1493 u32 reg;
1494
1495 /*
1496 * Mask off any flags we are going to ignore from
1497 * the total_flags field.
1498 */
1499 *total_flags &=
1500 FIF_ALLMULTI |
1501 FIF_FCSFAIL |
1502 FIF_PLCPFAIL |
1503 FIF_CONTROL |
1504 FIF_OTHER_BSS |
1505 FIF_PROMISC_IN_BSS;
1506
1507 /*
1508 * Apply some rules to the filters:
1509 * - Some filters imply different filters to be set.
1510 * - Some things we can't filter out at all.
1511 * - Some filters are set based on interface type.
1512 */
1513 *total_flags |= FIF_ALLMULTI;
1514 if (changed_flags & FIF_OTHER_BSS ||
1515 changed_flags & FIF_PROMISC_IN_BSS)
1516 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1517 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1518 *total_flags |= FIF_PROMISC_IN_BSS;
1519
1520 /*
1521 * Check if there is any work left for us.
1522 */
1523 if (intf->filter == *total_flags)
1524 return;
1525 intf->filter = *total_flags;
1526
1527 /*
1528 * Start configuration steps.
1529 * Note that the version error will always be dropped
1530 * since there is no filter for it at this time.
1531 */
1532 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1533 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1534 !(*total_flags & FIF_FCSFAIL));
1535 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1536 !(*total_flags & FIF_PLCPFAIL));
1537 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1538 !(*total_flags & FIF_CONTROL));
1539 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1540 !(*total_flags & FIF_PROMISC_IN_BSS));
1541 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1542 !(*total_flags & FIF_PROMISC_IN_BSS));
1543 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1544 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1545}
1546
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001547static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1548 u32 short_retry, u32 long_retry)
1549{
1550 struct rt2x00_dev *rt2x00dev = hw->priv;
1551 u32 reg;
1552
1553 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1554 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1555 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1556 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1557
1558 return 0;
1559}
1560
1561static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1562 int queue,
1563 const struct ieee80211_tx_queue_params *params)
1564{
1565 struct rt2x00_dev *rt2x00dev = hw->priv;
1566
1567 /*
1568 * We don't support variating cw_min and cw_max variables
1569 * per queue. So by default we only configure the TX queue,
1570 * and ignore all other configurations.
1571 */
1572 if (queue != IEEE80211_TX_QUEUE_DATA0)
1573 return -EINVAL;
1574
1575 if (rt2x00mac_conf_tx(hw, queue, params))
1576 return -EINVAL;
1577
1578 /*
1579 * Write configuration to register.
1580 */
1581 rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
1582
1583 return 0;
1584}
1585
1586static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1587{
1588 struct rt2x00_dev *rt2x00dev = hw->priv;
1589 u64 tsf;
1590 u32 reg;
1591
1592 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1593 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1594 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1595 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1596
1597 return tsf;
1598}
1599
1600static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1601{
1602 struct rt2x00_dev *rt2x00dev = hw->priv;
1603
1604 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1605 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1606}
1607
1608static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1609{
1610 struct rt2x00_dev *rt2x00dev = hw->priv;
1611 u32 reg;
1612
1613 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1614 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1615}
1616
1617static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1618 .tx = rt2x00mac_tx,
Johannes Berg4150c572007-09-17 01:29:23 -04001619 .start = rt2x00mac_start,
1620 .stop = rt2x00mac_stop,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001621 .add_interface = rt2x00mac_add_interface,
1622 .remove_interface = rt2x00mac_remove_interface,
1623 .config = rt2x00mac_config,
1624 .config_interface = rt2x00mac_config_interface,
Johannes Berg4150c572007-09-17 01:29:23 -04001625 .configure_filter = rt2400pci_configure_filter,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001626 .get_stats = rt2x00mac_get_stats,
1627 .set_retry_limit = rt2400pci_set_retry_limit,
1628 .conf_tx = rt2400pci_conf_tx,
1629 .get_tx_stats = rt2x00mac_get_tx_stats,
1630 .get_tsf = rt2400pci_get_tsf,
1631 .reset_tsf = rt2400pci_reset_tsf,
1632 .beacon_update = rt2x00pci_beacon_update,
1633 .tx_last_beacon = rt2400pci_tx_last_beacon,
1634};
1635
1636static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1637 .irq_handler = rt2400pci_interrupt,
1638 .probe_hw = rt2400pci_probe_hw,
1639 .initialize = rt2x00pci_initialize,
1640 .uninitialize = rt2x00pci_uninitialize,
1641 .set_device_state = rt2400pci_set_device_state,
1642#ifdef CONFIG_RT2400PCI_RFKILL
1643 .rfkill_poll = rt2400pci_rfkill_poll,
1644#endif /* CONFIG_RT2400PCI_RFKILL */
1645 .link_stats = rt2400pci_link_stats,
1646 .reset_tuner = rt2400pci_reset_tuner,
1647 .link_tuner = rt2400pci_link_tuner,
1648 .write_tx_desc = rt2400pci_write_tx_desc,
1649 .write_tx_data = rt2x00pci_write_tx_data,
1650 .kick_tx_queue = rt2400pci_kick_tx_queue,
1651 .fill_rxdone = rt2400pci_fill_rxdone,
1652 .config_mac_addr = rt2400pci_config_mac_addr,
1653 .config_bssid = rt2400pci_config_bssid,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001654 .config_type = rt2400pci_config_type,
1655 .config = rt2400pci_config,
1656};
1657
1658static const struct rt2x00_ops rt2400pci_ops = {
1659 .name = DRV_NAME,
1660 .rxd_size = RXD_DESC_SIZE,
1661 .txd_size = TXD_DESC_SIZE,
1662 .eeprom_size = EEPROM_SIZE,
1663 .rf_size = RF_SIZE,
1664 .lib = &rt2400pci_rt2x00_ops,
1665 .hw = &rt2400pci_mac80211_ops,
1666#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1667 .debugfs = &rt2400pci_rt2x00debug,
1668#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1669};
1670
1671/*
1672 * RT2400pci module information.
1673 */
1674static struct pci_device_id rt2400pci_device_table[] = {
1675 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1676 { 0, }
1677};
1678
1679MODULE_AUTHOR(DRV_PROJECT);
1680MODULE_VERSION(DRV_VERSION);
1681MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1682MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1683MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1684MODULE_LICENSE("GPL");
1685
1686static struct pci_driver rt2400pci_driver = {
1687 .name = DRV_NAME,
1688 .id_table = rt2400pci_device_table,
1689 .probe = rt2x00pci_probe,
1690 .remove = __devexit_p(rt2x00pci_remove),
1691 .suspend = rt2x00pci_suspend,
1692 .resume = rt2x00pci_resume,
1693};
1694
1695static int __init rt2400pci_init(void)
1696{
1697 return pci_register_driver(&rt2400pci_driver);
1698}
1699
1700static void __exit rt2400pci_exit(void)
1701{
1702 pci_unregister_driver(&rt2400pci_driver);
1703}
1704
1705module_init(rt2400pci_init);
1706module_exit(rt2400pci_exit);