blob: 6b7641873e7a9c9853582b5cbc0e1402fb769424 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +100011 * Right now, I am very wasteful with the buffers. I allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -070012 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
17 *
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
20 *
Greg Ungerer562d2f82005-11-07 14:09:50 +100021 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +100023 *
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
Philippe De Muyter677177c2006-06-27 13:05:33 +100025 * Copyright (c) 2004-2006 Macq Electronique SA.
Linus Torvalds1da177e2005-04-16 15:20:36 -070026 */
27
28#include <linux/config.h>
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/string.h>
32#include <linux/ptrace.h>
33#include <linux/errno.h>
34#include <linux/ioport.h>
35#include <linux/slab.h>
36#include <linux/interrupt.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/delay.h>
40#include <linux/netdevice.h>
41#include <linux/etherdevice.h>
42#include <linux/skbuff.h>
43#include <linux/spinlock.h>
44#include <linux/workqueue.h>
45#include <linux/bitops.h>
46
47#include <asm/irq.h>
48#include <asm/uaccess.h>
49#include <asm/io.h>
50#include <asm/pgtable.h>
51
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +100052#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
Greg Ungerer562d2f82005-11-07 14:09:50 +100053 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
Matt Waddel6b265292006-06-27 13:10:56 +100054 defined(CONFIG_M520x) || defined(CONFIG_M532x)
Linus Torvalds1da177e2005-04-16 15:20:36 -070055#include <asm/coldfire.h>
56#include <asm/mcfsim.h>
57#include "fec.h"
58#else
59#include <asm/8xx_immap.h>
60#include <asm/mpc8xx.h>
61#include "commproc.h"
62#endif
63
64#if defined(CONFIG_FEC2)
65#define FEC_MAX_PORTS 2
66#else
67#define FEC_MAX_PORTS 1
68#endif
69
70/*
71 * Define the fixed address of the FEC hardware.
72 */
73static unsigned int fec_hw[] = {
74#if defined(CONFIG_M5272)
75 (MCF_MBAR + 0x840),
76#elif defined(CONFIG_M527x)
77 (MCF_MBAR + 0x1000),
78 (MCF_MBAR + 0x1800),
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +100079#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 (MCF_MBAR + 0x1000),
Greg Ungerer562d2f82005-11-07 14:09:50 +100081#elif defined(CONFIG_M520x)
82 (MCF_MBAR+0x30000),
Matt Waddel6b265292006-06-27 13:10:56 +100083#elif defined(CONFIG_M532x)
84 (MCF_MBAR+0xfc030000),
Linus Torvalds1da177e2005-04-16 15:20:36 -070085#else
86 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
87#endif
88};
89
90static unsigned char fec_mac_default[] = {
91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
92};
93
94/*
95 * Some hardware gets it MAC address out of local flash memory.
96 * if this is non-zero then assume it is the address to get MAC from.
97 */
98#if defined(CONFIG_NETtel)
99#define FEC_FLASHMAC 0xf0006006
100#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101#define FEC_FLASHMAC 0xf0006000
102#elif defined (CONFIG_MTD_KeyTechnology)
103#define FEC_FLASHMAC 0xffe04000
104#elif defined(CONFIG_CANCam)
105#define FEC_FLASHMAC 0xf0020000
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000106#elif defined (CONFIG_M5272C3)
107#define FEC_FLASHMAC (0xffe04000 + 4)
108#elif defined(CONFIG_MOD5272)
109#define FEC_FLASHMAC 0xffc0406b
Linus Torvalds1da177e2005-04-16 15:20:36 -0700110#else
111#define FEC_FLASHMAC 0
112#endif
113
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114/* Forward declarations of some structures to support different PHYs
115*/
116
117typedef struct {
118 uint mii_data;
119 void (*funct)(uint mii_reg, struct net_device *dev);
120} phy_cmd_t;
121
122typedef struct {
123 uint id;
124 char *name;
125
126 const phy_cmd_t *config;
127 const phy_cmd_t *startup;
128 const phy_cmd_t *ack_int;
129 const phy_cmd_t *shutdown;
130} phy_info_t;
131
132/* The number of Tx and Rx buffers. These are allocated from the page
133 * pool. The code may assume these are power of two, so it it best
134 * to keep them that size.
135 * We don't need to allocate pages for the transmitter. We just use
136 * the skbuffer directly.
137 */
138#define FEC_ENET_RX_PAGES 8
139#define FEC_ENET_RX_FRSIZE 2048
140#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
141#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
142#define FEC_ENET_TX_FRSIZE 2048
143#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
144#define TX_RING_SIZE 16 /* Must be power of two */
145#define TX_RING_MOD_MASK 15 /* for this to work */
146
Greg Ungerer562d2f82005-11-07 14:09:50 +1000147#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
Matt Waddel6b265292006-06-27 13:10:56 +1000148#error "FEC: descriptor ring size constants too large"
Greg Ungerer562d2f82005-11-07 14:09:50 +1000149#endif
150
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151/* Interrupt events/masks.
152*/
153#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
154#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
155#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
156#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
157#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
158#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
159#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
160#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
161#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
162#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
163
164/* The FEC stores dest/src/type, data, and checksum for receive packets.
165 */
166#define PKT_MAXBUF_SIZE 1518
167#define PKT_MINBUF_SIZE 64
168#define PKT_MAXBLR_SIZE 1520
169
170
171/*
Matt Waddel6b265292006-06-27 13:10:56 +1000172 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173 * size bits. Other FEC hardware does not, so we need to take that into
174 * account when setting it.
175 */
Greg Ungerer562d2f82005-11-07 14:09:50 +1000176#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
Matt Waddel6b265292006-06-27 13:10:56 +1000177 defined(CONFIG_M520x) || defined(CONFIG_M532x)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
179#else
180#define OPT_FRAME_SIZE 0
181#endif
182
183/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
184 * tx_bd_base always point to the base of the buffer descriptors. The
185 * cur_rx and cur_tx point to the currently available buffer.
186 * The dirty_tx tracks the current buffer that is being sent by the
187 * controller. The cur_tx and dirty_tx are equal under both completely
188 * empty and completely full conditions. The empty/ready indicator in
189 * the buffer descriptor determines the actual condition.
190 */
191struct fec_enet_private {
192 /* Hardware registers of the FEC device */
193 volatile fec_t *hwp;
194
195 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
196 unsigned char *tx_bounce[TX_RING_SIZE];
197 struct sk_buff* tx_skbuff[TX_RING_SIZE];
198 ushort skb_cur;
199 ushort skb_dirty;
200
201 /* CPM dual port RAM relative addresses.
202 */
203 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
204 cbd_t *tx_bd_base;
205 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
206 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
207 struct net_device_stats stats;
208 uint tx_full;
209 spinlock_t lock;
210
211 uint phy_id;
212 uint phy_id_done;
213 uint phy_status;
214 uint phy_speed;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000215 phy_info_t const *phy;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216 struct work_struct phy_task;
217
218 uint sequence_done;
219 uint mii_phy_task_queued;
220
221 uint phy_addr;
222
223 int index;
224 int opened;
225 int link;
226 int old_link;
227 int full_duplex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700228};
229
230static int fec_enet_open(struct net_device *dev);
231static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
232static void fec_enet_mii(struct net_device *dev);
233static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
234static void fec_enet_tx(struct net_device *dev);
235static void fec_enet_rx(struct net_device *dev);
236static int fec_enet_close(struct net_device *dev);
237static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
238static void set_multicast_list(struct net_device *dev);
239static void fec_restart(struct net_device *dev, int duplex);
240static void fec_stop(struct net_device *dev);
241static void fec_set_mac_address(struct net_device *dev);
242
243
244/* MII processing. We keep this as simple as possible. Requests are
245 * placed on the list (if there is room). When the request is finished
246 * by the MII, an optional function may be called.
247 */
248typedef struct mii_list {
249 uint mii_regval;
250 void (*mii_func)(uint val, struct net_device *dev);
251 struct mii_list *mii_next;
252} mii_list_t;
253
254#define NMII 20
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000255static mii_list_t mii_cmds[NMII];
256static mii_list_t *mii_free;
257static mii_list_t *mii_head;
258static mii_list_t *mii_tail;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259
260static int mii_queue(struct net_device *dev, int request,
261 void (*func)(uint, struct net_device *));
262
263/* Make MII read/write commands for the FEC.
264*/
265#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
266#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
267 (VAL & 0xffff))
268#define mk_mii_end 0
269
270/* Transmitter timeout.
271*/
272#define TX_TIMEOUT (2*HZ)
273
274/* Register definitions for the PHY.
275*/
276
277#define MII_REG_CR 0 /* Control Register */
278#define MII_REG_SR 1 /* Status Register */
279#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
280#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
281#define MII_REG_ANAR 4 /* A-N Advertisement Register */
282#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
283#define MII_REG_ANER 6 /* A-N Expansion Register */
284#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
285#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
286
287/* values for phy_status */
288
289#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
290#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
291#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
292#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
293#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
294#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
295#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
296
297#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
298#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
299#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
300#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
301#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
302#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
303#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
304#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
305
306
307static int
308fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
309{
310 struct fec_enet_private *fep;
311 volatile fec_t *fecp;
312 volatile cbd_t *bdp;
313
314 fep = netdev_priv(dev);
315 fecp = (volatile fec_t*)dev->base_addr;
316
317 if (!fep->link) {
318 /* Link is down or autonegotiation is in progress. */
319 return 1;
320 }
321
322 /* Fill in a Tx ring entry */
323 bdp = fep->cur_tx;
324
325#ifndef final_version
326 if (bdp->cbd_sc & BD_ENET_TX_READY) {
327 /* Ooops. All transmit buffers are full. Bail out.
328 * This should not happen, since dev->tbusy should be set.
329 */
330 printk("%s: tx queue full!.\n", dev->name);
331 return 1;
332 }
333#endif
334
335 /* Clear all of the status flags.
336 */
337 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
338
339 /* Set buffer length and buffer pointer.
340 */
341 bdp->cbd_bufaddr = __pa(skb->data);
342 bdp->cbd_datlen = skb->len;
343
344 /*
345 * On some FEC implementations data must be aligned on
346 * 4-byte boundaries. Use bounce buffers to copy data
347 * and get it aligned. Ugh.
348 */
349 if (bdp->cbd_bufaddr & 0x3) {
350 unsigned int index;
351 index = bdp - fep->tx_bd_base;
352 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
353 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
354 }
355
356 /* Save skb pointer.
357 */
358 fep->tx_skbuff[fep->skb_cur] = skb;
359
360 fep->stats.tx_bytes += skb->len;
361 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
362
363 /* Push the data cache so the CPM does not get stale memory
364 * data.
365 */
366 flush_dcache_range((unsigned long)skb->data,
367 (unsigned long)skb->data + skb->len);
368
369 spin_lock_irq(&fep->lock);
370
371 /* Send it on its way. Tell FEC its ready, interrupt when done,
372 * its the last BD of the frame, and to put the CRC on the end.
373 */
374
375 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
376 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
377
378 dev->trans_start = jiffies;
379
380 /* Trigger transmission start */
381 fecp->fec_x_des_active = 0x01000000;
382
383 /* If this was the last BD in the ring, start at the beginning again.
384 */
385 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
386 bdp = fep->tx_bd_base;
387 } else {
388 bdp++;
389 }
390
391 if (bdp == fep->dirty_tx) {
392 fep->tx_full = 1;
393 netif_stop_queue(dev);
394 }
395
396 fep->cur_tx = (cbd_t *)bdp;
397
398 spin_unlock_irq(&fep->lock);
399
400 return 0;
401}
402
403static void
404fec_timeout(struct net_device *dev)
405{
406 struct fec_enet_private *fep = netdev_priv(dev);
407
408 printk("%s: transmit timed out.\n", dev->name);
409 fep->stats.tx_errors++;
410#ifndef final_version
411 {
412 int i;
413 cbd_t *bdp;
414
415 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
416 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
417 (unsigned long)fep->dirty_tx,
418 (unsigned long)fep->cur_rx);
419
420 bdp = fep->tx_bd_base;
421 printk(" tx: %u buffers\n", TX_RING_SIZE);
422 for (i = 0 ; i < TX_RING_SIZE; i++) {
423 printk(" %08x: %04x %04x %08x\n",
424 (uint) bdp,
425 bdp->cbd_sc,
426 bdp->cbd_datlen,
427 (int) bdp->cbd_bufaddr);
428 bdp++;
429 }
430
431 bdp = fep->rx_bd_base;
432 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
433 for (i = 0 ; i < RX_RING_SIZE; i++) {
434 printk(" %08x: %04x %04x %08x\n",
435 (uint) bdp,
436 bdp->cbd_sc,
437 bdp->cbd_datlen,
438 (int) bdp->cbd_bufaddr);
439 bdp++;
440 }
441 }
442#endif
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000443 fec_restart(dev, fep->full_duplex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444 netif_wake_queue(dev);
445}
446
447/* The interrupt handler.
448 * This is called from the MPC core interrupt.
449 */
450static irqreturn_t
451fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
452{
453 struct net_device *dev = dev_id;
454 volatile fec_t *fecp;
455 uint int_events;
456 int handled = 0;
457
458 fecp = (volatile fec_t*)dev->base_addr;
459
460 /* Get the interrupt events that caused us to be here.
461 */
462 while ((int_events = fecp->fec_ievent) != 0) {
463 fecp->fec_ievent = int_events;
464
465 /* Handle receive event in its own function.
466 */
467 if (int_events & FEC_ENET_RXF) {
468 handled = 1;
469 fec_enet_rx(dev);
470 }
471
472 /* Transmit OK, or non-fatal error. Update the buffer
473 descriptors. FEC handles all errors, we just discover
474 them as part of the transmit process.
475 */
476 if (int_events & FEC_ENET_TXF) {
477 handled = 1;
478 fec_enet_tx(dev);
479 }
480
481 if (int_events & FEC_ENET_MII) {
482 handled = 1;
483 fec_enet_mii(dev);
484 }
485
486 }
487 return IRQ_RETVAL(handled);
488}
489
490
491static void
492fec_enet_tx(struct net_device *dev)
493{
494 struct fec_enet_private *fep;
495 volatile cbd_t *bdp;
496 struct sk_buff *skb;
497
498 fep = netdev_priv(dev);
499 spin_lock(&fep->lock);
500 bdp = fep->dirty_tx;
501
502 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
503 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
504
505 skb = fep->tx_skbuff[fep->skb_dirty];
506 /* Check for errors. */
507 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
508 BD_ENET_TX_RL | BD_ENET_TX_UN |
509 BD_ENET_TX_CSL)) {
510 fep->stats.tx_errors++;
511 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
512 fep->stats.tx_heartbeat_errors++;
513 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
514 fep->stats.tx_window_errors++;
515 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
516 fep->stats.tx_aborted_errors++;
517 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
518 fep->stats.tx_fifo_errors++;
519 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
520 fep->stats.tx_carrier_errors++;
521 } else {
522 fep->stats.tx_packets++;
523 }
524
525#ifndef final_version
526 if (bdp->cbd_sc & BD_ENET_TX_READY)
527 printk("HEY! Enet xmit interrupt and TX_READY.\n");
528#endif
529 /* Deferred means some collisions occurred during transmit,
530 * but we eventually sent the packet OK.
531 */
532 if (bdp->cbd_sc & BD_ENET_TX_DEF)
533 fep->stats.collisions++;
534
535 /* Free the sk buffer associated with this last transmit.
536 */
537 dev_kfree_skb_any(skb);
538 fep->tx_skbuff[fep->skb_dirty] = NULL;
539 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
540
541 /* Update pointer to next buffer descriptor to be transmitted.
542 */
543 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
544 bdp = fep->tx_bd_base;
545 else
546 bdp++;
547
548 /* Since we have freed up a buffer, the ring is no longer
549 * full.
550 */
551 if (fep->tx_full) {
552 fep->tx_full = 0;
553 if (netif_queue_stopped(dev))
554 netif_wake_queue(dev);
555 }
556 }
557 fep->dirty_tx = (cbd_t *)bdp;
558 spin_unlock(&fep->lock);
559}
560
561
562/* During a receive, the cur_rx points to the current incoming buffer.
563 * When we update through the ring, if the next incoming buffer has
564 * not been given to the system, we just set the empty indicator,
565 * effectively tossing the packet.
566 */
567static void
568fec_enet_rx(struct net_device *dev)
569{
570 struct fec_enet_private *fep;
571 volatile fec_t *fecp;
572 volatile cbd_t *bdp;
573 struct sk_buff *skb;
574 ushort pkt_len;
575 __u8 *data;
576
577 fep = netdev_priv(dev);
578 fecp = (volatile fec_t*)dev->base_addr;
579
580 /* First, grab all of the stats for the incoming packet.
581 * These get messed up if we get called due to a busy condition.
582 */
583 bdp = fep->cur_rx;
584
585while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
586
587#ifndef final_version
588 /* Since we have allocated space to hold a complete frame,
589 * the last indicator should be set.
590 */
591 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
592 printk("FEC ENET: rcv is not +last\n");
593#endif
594
595 if (!fep->opened)
596 goto rx_processing_done;
597
598 /* Check for errors. */
599 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
600 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
601 fep->stats.rx_errors++;
602 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
603 /* Frame too long or too short. */
604 fep->stats.rx_length_errors++;
605 }
606 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
607 fep->stats.rx_frame_errors++;
608 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
609 fep->stats.rx_crc_errors++;
610 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
611 fep->stats.rx_crc_errors++;
612 }
613
614 /* Report late collisions as a frame error.
615 * On this error, the BD is closed, but we don't know what we
616 * have in the buffer. So, just drop this frame on the floor.
617 */
618 if (bdp->cbd_sc & BD_ENET_RX_CL) {
619 fep->stats.rx_errors++;
620 fep->stats.rx_frame_errors++;
621 goto rx_processing_done;
622 }
623
624 /* Process the incoming frame.
625 */
626 fep->stats.rx_packets++;
627 pkt_len = bdp->cbd_datlen;
628 fep->stats.rx_bytes += pkt_len;
629 data = (__u8*)__va(bdp->cbd_bufaddr);
630
631 /* This does 16 byte alignment, exactly what we need.
632 * The packet length includes FCS, but we don't want to
633 * include that when passing upstream as it messes up
634 * bridging applications.
635 */
636 skb = dev_alloc_skb(pkt_len-4);
637
638 if (skb == NULL) {
639 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
640 fep->stats.rx_dropped++;
641 } else {
642 skb->dev = dev;
643 skb_put(skb,pkt_len-4); /* Make room */
644 eth_copy_and_sum(skb,
645 (unsigned char *)__va(bdp->cbd_bufaddr),
646 pkt_len-4, 0);
647 skb->protocol=eth_type_trans(skb,dev);
648 netif_rx(skb);
649 }
650 rx_processing_done:
651
652 /* Clear the status flags for this buffer.
653 */
654 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
655
656 /* Mark the buffer empty.
657 */
658 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
659
660 /* Update BD pointer to next entry.
661 */
662 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
663 bdp = fep->rx_bd_base;
664 else
665 bdp++;
666
667#if 1
668 /* Doing this here will keep the FEC running while we process
669 * incoming frames. On a heavily loaded network, we should be
670 * able to keep up at the expense of system resources.
671 */
672 fecp->fec_r_des_active = 0x01000000;
673#endif
674 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
675 fep->cur_rx = (cbd_t *)bdp;
676
677#if 0
678 /* Doing this here will allow us to process all frames in the
679 * ring before the FEC is allowed to put more there. On a heavily
680 * loaded network, some frames may be lost. Unfortunately, this
681 * increases the interrupt overhead since we can potentially work
682 * our way back to the interrupt return only to come right back
683 * here.
684 */
685 fecp->fec_r_des_active = 0x01000000;
686#endif
687}
688
689
690static void
691fec_enet_mii(struct net_device *dev)
692{
693 struct fec_enet_private *fep;
694 volatile fec_t *ep;
695 mii_list_t *mip;
696 uint mii_reg;
697
698 fep = netdev_priv(dev);
699 ep = fep->hwp;
700 mii_reg = ep->fec_mii_data;
701
702 if ((mip = mii_head) == NULL) {
703 printk("MII and no head!\n");
704 return;
705 }
706
707 if (mip->mii_func != NULL)
708 (*(mip->mii_func))(mii_reg, dev);
709
710 mii_head = mip->mii_next;
711 mip->mii_next = mii_free;
712 mii_free = mip;
713
714 if ((mip = mii_head) != NULL)
715 ep->fec_mii_data = mip->mii_regval;
716}
717
718static int
719mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
720{
721 struct fec_enet_private *fep;
722 unsigned long flags;
723 mii_list_t *mip;
724 int retval;
725
726 /* Add PHY address to register command.
727 */
728 fep = netdev_priv(dev);
729 regval |= fep->phy_addr << 23;
730
731 retval = 0;
732
733 save_flags(flags);
734 cli();
735
736 if ((mip = mii_free) != NULL) {
737 mii_free = mip->mii_next;
738 mip->mii_regval = regval;
739 mip->mii_func = func;
740 mip->mii_next = NULL;
741 if (mii_head) {
742 mii_tail->mii_next = mip;
743 mii_tail = mip;
744 }
745 else {
746 mii_head = mii_tail = mip;
747 fep->hwp->fec_mii_data = regval;
748 }
749 }
750 else {
751 retval = 1;
752 }
753
754 restore_flags(flags);
755
756 return(retval);
757}
758
759static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
760{
761 int k;
762
763 if(!c)
764 return;
765
766 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
767 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
768 }
769}
770
771static void mii_parse_sr(uint mii_reg, struct net_device *dev)
772{
773 struct fec_enet_private *fep = netdev_priv(dev);
774 volatile uint *s = &(fep->phy_status);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000775 uint status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000777 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778
779 if (mii_reg & 0x0004)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000780 status |= PHY_STAT_LINK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700781 if (mii_reg & 0x0010)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000782 status |= PHY_STAT_FAULT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783 if (mii_reg & 0x0020)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000784 status |= PHY_STAT_ANC;
785
786 *s = status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787}
788
789static void mii_parse_cr(uint mii_reg, struct net_device *dev)
790{
791 struct fec_enet_private *fep = netdev_priv(dev);
792 volatile uint *s = &(fep->phy_status);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000793 uint status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700794
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000795 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796
797 if (mii_reg & 0x1000)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000798 status |= PHY_CONF_ANE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799 if (mii_reg & 0x4000)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000800 status |= PHY_CONF_LOOP;
801 *s = status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802}
803
804static void mii_parse_anar(uint mii_reg, struct net_device *dev)
805{
806 struct fec_enet_private *fep = netdev_priv(dev);
807 volatile uint *s = &(fep->phy_status);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000808 uint status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000810 status = *s & ~(PHY_CONF_SPMASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811
812 if (mii_reg & 0x0020)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000813 status |= PHY_CONF_10HDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814 if (mii_reg & 0x0040)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000815 status |= PHY_CONF_10FDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816 if (mii_reg & 0x0080)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000817 status |= PHY_CONF_100HDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818 if (mii_reg & 0x00100)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000819 status |= PHY_CONF_100FDX;
820 *s = status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821}
822
823/* ------------------------------------------------------------------------- */
824/* The Level one LXT970 is used by many boards */
825
826#define MII_LXT970_MIRROR 16 /* Mirror register */
827#define MII_LXT970_IER 17 /* Interrupt Enable Register */
828#define MII_LXT970_ISR 18 /* Interrupt Status Register */
829#define MII_LXT970_CONFIG 19 /* Configuration Register */
830#define MII_LXT970_CSR 20 /* Chip Status Register */
831
832static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
833{
834 struct fec_enet_private *fep = netdev_priv(dev);
835 volatile uint *s = &(fep->phy_status);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000836 uint status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000838 status = *s & ~(PHY_STAT_SPMASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839 if (mii_reg & 0x0800) {
840 if (mii_reg & 0x1000)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000841 status |= PHY_STAT_100FDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842 else
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000843 status |= PHY_STAT_100HDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844 } else {
845 if (mii_reg & 0x1000)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000846 status |= PHY_STAT_10FDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700847 else
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000848 status |= PHY_STAT_10HDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700849 }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000850 *s = status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851}
852
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000853static phy_cmd_t const phy_cmd_lxt970_config[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854 { mk_mii_read(MII_REG_CR), mii_parse_cr },
855 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
856 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000857 };
858static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
860 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
861 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000862 };
863static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864 /* read SR and ISR to acknowledge */
865 { mk_mii_read(MII_REG_SR), mii_parse_sr },
866 { mk_mii_read(MII_LXT970_ISR), NULL },
867
868 /* find out the current status */
869 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
870 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000871 };
872static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700873 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
874 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000875 };
876static phy_info_t const phy_info_lxt970 = {
877 .id = 0x07810000,
878 .name = "LXT970",
879 .config = phy_cmd_lxt970_config,
880 .startup = phy_cmd_lxt970_startup,
881 .ack_int = phy_cmd_lxt970_ack_int,
882 .shutdown = phy_cmd_lxt970_shutdown
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883};
884
885/* ------------------------------------------------------------------------- */
886/* The Level one LXT971 is used on some of my custom boards */
887
888/* register definitions for the 971 */
889
890#define MII_LXT971_PCR 16 /* Port Control Register */
891#define MII_LXT971_SR2 17 /* Status Register 2 */
892#define MII_LXT971_IER 18 /* Interrupt Enable Register */
893#define MII_LXT971_ISR 19 /* Interrupt Status Register */
894#define MII_LXT971_LCR 20 /* LED Control Register */
895#define MII_LXT971_TCR 30 /* Transmit Control Register */
896
897/*
898 * I had some nice ideas of running the MDIO faster...
899 * The 971 should support 8MHz and I tried it, but things acted really
900 * weird, so 2.5 MHz ought to be enough for anyone...
901 */
902
903static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
904{
905 struct fec_enet_private *fep = netdev_priv(dev);
906 volatile uint *s = &(fep->phy_status);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000907 uint status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000909 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700910
911 if (mii_reg & 0x0400) {
912 fep->link = 1;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000913 status |= PHY_STAT_LINK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700914 } else {
915 fep->link = 0;
916 }
917 if (mii_reg & 0x0080)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000918 status |= PHY_STAT_ANC;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919 if (mii_reg & 0x4000) {
920 if (mii_reg & 0x0200)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000921 status |= PHY_STAT_100FDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922 else
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000923 status |= PHY_STAT_100HDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924 } else {
925 if (mii_reg & 0x0200)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000926 status |= PHY_STAT_10FDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927 else
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000928 status |= PHY_STAT_10HDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 }
930 if (mii_reg & 0x0008)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000931 status |= PHY_STAT_FAULT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700932
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000933 *s = status;
934}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700935
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000936static phy_cmd_t const phy_cmd_lxt971_config[] = {
937 /* limit to 10MBit because my prototype board
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938 * doesn't work with 100. */
939 { mk_mii_read(MII_REG_CR), mii_parse_cr },
940 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
941 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
942 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000943 };
944static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
946 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
947 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
948 /* Somehow does the 971 tell me that the link is down
949 * the first read after power-up.
950 * read here to get a valid value in ack_int */
951 { mk_mii_read(MII_REG_SR), mii_parse_sr },
952 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000953 };
954static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
955 /* acknowledge the int before reading status ! */
956 { mk_mii_read(MII_LXT971_ISR), NULL },
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957 /* find out the current status */
958 { mk_mii_read(MII_REG_SR), mii_parse_sr },
959 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000961 };
962static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700963 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
964 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000965 };
966static phy_info_t const phy_info_lxt971 = {
967 .id = 0x0001378e,
968 .name = "LXT971",
969 .config = phy_cmd_lxt971_config,
970 .startup = phy_cmd_lxt971_startup,
971 .ack_int = phy_cmd_lxt971_ack_int,
972 .shutdown = phy_cmd_lxt971_shutdown
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973};
974
975/* ------------------------------------------------------------------------- */
976/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
977
978/* register definitions */
979
980#define MII_QS6612_MCR 17 /* Mode Control Register */
981#define MII_QS6612_FTR 27 /* Factory Test Register */
982#define MII_QS6612_MCO 28 /* Misc. Control Register */
983#define MII_QS6612_ISR 29 /* Interrupt Source Register */
984#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
985#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
986
987static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
988{
989 struct fec_enet_private *fep = netdev_priv(dev);
990 volatile uint *s = &(fep->phy_status);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000991 uint status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000993 status = *s & ~(PHY_STAT_SPMASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700994
995 switch((mii_reg >> 2) & 7) {
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +1000996 case 1: status |= PHY_STAT_10HDX; break;
997 case 2: status |= PHY_STAT_100HDX; break;
998 case 5: status |= PHY_STAT_10FDX; break;
999 case 6: status |= PHY_STAT_100FDX; break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000}
1001
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001002 *s = status;
1003}
1004
1005static phy_cmd_t const phy_cmd_qs6612_config[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006 /* The PHY powers up isolated on the RPX,
1007 * so send a command to allow operation.
1008 */
1009 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1010
1011 /* parse cr and anar to get some info */
1012 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1013 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1014 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001015 };
1016static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1018 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1019 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001020 };
1021static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022 /* we need to read ISR, SR and ANER to acknowledge */
1023 { mk_mii_read(MII_QS6612_ISR), NULL },
1024 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1025 { mk_mii_read(MII_REG_ANER), NULL },
1026
1027 /* read pcr to get info */
1028 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1029 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001030 };
1031static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1033 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001034 };
1035static phy_info_t const phy_info_qs6612 = {
1036 .id = 0x00181440,
1037 .name = "QS6612",
1038 .config = phy_cmd_qs6612_config,
1039 .startup = phy_cmd_qs6612_startup,
1040 .ack_int = phy_cmd_qs6612_ack_int,
1041 .shutdown = phy_cmd_qs6612_shutdown
Linus Torvalds1da177e2005-04-16 15:20:36 -07001042};
1043
1044/* ------------------------------------------------------------------------- */
1045/* AMD AM79C874 phy */
1046
1047/* register definitions for the 874 */
1048
1049#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1050#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1051#define MII_AM79C874_DR 18 /* Diagnostic Register */
1052#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1053#define MII_AM79C874_MCR 21 /* ModeControl Register */
1054#define MII_AM79C874_DC 23 /* Disconnect Counter */
1055#define MII_AM79C874_REC 24 /* Recieve Error Counter */
1056
1057static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1058{
1059 struct fec_enet_private *fep = netdev_priv(dev);
1060 volatile uint *s = &(fep->phy_status);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001061 uint status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001062
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001063 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001064
1065 if (mii_reg & 0x0080)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001066 status |= PHY_STAT_ANC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067 if (mii_reg & 0x0400)
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001068 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001069 else
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001070 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1071
1072 *s = status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001073}
1074
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001075static phy_cmd_t const phy_cmd_am79c874_config[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1077 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1078 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1079 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001080 };
1081static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001082 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1083 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1084 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1085 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001086 };
1087static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001088 /* find out the current status */
1089 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1090 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1091 /* we only need to read ISR to acknowledge */
1092 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1093 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001094 };
1095static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001096 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1097 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001098 };
1099static phy_info_t const phy_info_am79c874 = {
1100 .id = 0x00022561,
1101 .name = "AM79C874",
1102 .config = phy_cmd_am79c874_config,
1103 .startup = phy_cmd_am79c874_startup,
1104 .ack_int = phy_cmd_am79c874_ack_int,
1105 .shutdown = phy_cmd_am79c874_shutdown
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106};
1107
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001108
Linus Torvalds1da177e2005-04-16 15:20:36 -07001109/* ------------------------------------------------------------------------- */
1110/* Kendin KS8721BL phy */
1111
1112/* register definitions for the 8721 */
1113
1114#define MII_KS8721BL_RXERCR 21
1115#define MII_KS8721BL_ICSR 22
1116#define MII_KS8721BL_PHYCR 31
1117
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001118static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1120 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1121 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001122 };
1123static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1125 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1126 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1127 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001128 };
1129static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130 /* find out the current status */
1131 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1132 /* we only need to read ISR to acknowledge */
1133 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1134 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001135 };
1136static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1138 { mk_mii_end, }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001139 };
1140static phy_info_t const phy_info_ks8721bl = {
1141 .id = 0x00022161,
1142 .name = "KS8721BL",
1143 .config = phy_cmd_ks8721bl_config,
1144 .startup = phy_cmd_ks8721bl_startup,
1145 .ack_int = phy_cmd_ks8721bl_ack_int,
1146 .shutdown = phy_cmd_ks8721bl_shutdown
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147};
1148
1149/* ------------------------------------------------------------------------- */
Greg Ungerer562d2f82005-11-07 14:09:50 +10001150/* register definitions for the DP83848 */
1151
1152#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1153
1154static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1155{
1156 struct fec_enet_private *fep = dev->priv;
1157 volatile uint *s = &(fep->phy_status);
1158
1159 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1160
1161 /* Link up */
1162 if (mii_reg & 0x0001) {
1163 fep->link = 1;
1164 *s |= PHY_STAT_LINK;
1165 } else
1166 fep->link = 0;
1167 /* Status of link */
1168 if (mii_reg & 0x0010) /* Autonegotioation complete */
1169 *s |= PHY_STAT_ANC;
1170 if (mii_reg & 0x0002) { /* 10MBps? */
1171 if (mii_reg & 0x0004) /* Full Duplex? */
1172 *s |= PHY_STAT_10FDX;
1173 else
1174 *s |= PHY_STAT_10HDX;
1175 } else { /* 100 Mbps? */
1176 if (mii_reg & 0x0004) /* Full Duplex? */
1177 *s |= PHY_STAT_100FDX;
1178 else
1179 *s |= PHY_STAT_100HDX;
1180 }
1181 if (mii_reg & 0x0008)
1182 *s |= PHY_STAT_FAULT;
1183}
1184
1185static phy_info_t phy_info_dp83848= {
1186 0x020005c9,
1187 "DP83848",
1188
1189 (const phy_cmd_t []) { /* config */
1190 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1191 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1192 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1193 { mk_mii_end, }
1194 },
1195 (const phy_cmd_t []) { /* startup - enable interrupts */
1196 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1197 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1198 { mk_mii_end, }
1199 },
1200 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1201 { mk_mii_end, }
1202 },
1203 (const phy_cmd_t []) { /* shutdown */
1204 { mk_mii_end, }
1205 },
1206};
1207
1208/* ------------------------------------------------------------------------- */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001210static phy_info_t const * const phy_info[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001211 &phy_info_lxt970,
1212 &phy_info_lxt971,
1213 &phy_info_qs6612,
1214 &phy_info_am79c874,
1215 &phy_info_ks8721bl,
Greg Ungerer562d2f82005-11-07 14:09:50 +10001216 &phy_info_dp83848,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001217 NULL
1218};
1219
1220/* ------------------------------------------------------------------------- */
Matt Waddel6b265292006-06-27 13:10:56 +10001221#if !defined(CONFIG_M532x)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222#ifdef CONFIG_RPXCLASSIC
1223static void
1224mii_link_interrupt(void *dev_id);
1225#else
1226static irqreturn_t
1227mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
1228#endif
Matt Waddel6b265292006-06-27 13:10:56 +10001229#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230
1231#if defined(CONFIG_M5272)
1232
1233/*
1234 * Code specific to Coldfire 5272 setup.
1235 */
1236static void __inline__ fec_request_intrs(struct net_device *dev)
1237{
1238 volatile unsigned long *icrp;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001239 static const struct idesc {
1240 char *name;
1241 unsigned short irq;
1242 irqreturn_t (*handler)(int, void *, struct pt_regs *);
1243 } *idp, id[] = {
1244 { "fec(RX)", 86, fec_enet_interrupt },
1245 { "fec(TX)", 87, fec_enet_interrupt },
1246 { "fec(OTHER)", 88, fec_enet_interrupt },
1247 { "fec(MII)", 66, mii_link_interrupt },
1248 { NULL },
1249 };
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250
1251 /* Setup interrupt handlers. */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001252 for (idp = id; idp->name; idp++) {
1253 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1254 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1255 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256
1257 /* Unmask interrupt at ColdFire 5272 SIM */
1258 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1259 *icrp = 0x00000ddd;
1260 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1261 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1262}
1263
1264static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1265{
1266 volatile fec_t *fecp;
1267
1268 fecp = fep->hwp;
1269 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1270 fecp->fec_x_cntrl = 0x00;
1271
1272 /*
1273 * Set MII speed to 2.5 MHz
1274 * See 5272 manual section 11.5.8: MSCR
1275 */
1276 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1277 fecp->fec_mii_speed = fep->phy_speed;
1278
1279 fec_restart(dev, 0);
1280}
1281
1282static void __inline__ fec_get_mac(struct net_device *dev)
1283{
1284 struct fec_enet_private *fep = netdev_priv(dev);
1285 volatile fec_t *fecp;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001286 unsigned char *iap, tmpaddr[ETH_ALEN];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001287
1288 fecp = fep->hwp;
1289
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001290 if (FEC_FLASHMAC) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291 /*
1292 * Get MAC address from FLASH.
1293 * If it is all 1's or 0's, use the default.
1294 */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001295 iap = (unsigned char *)FEC_FLASHMAC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1297 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1298 iap = fec_mac_default;
1299 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1300 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1301 iap = fec_mac_default;
1302 } else {
1303 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1304 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1305 iap = &tmpaddr[0];
1306 }
1307
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001308 memcpy(dev->dev_addr, iap, ETH_ALEN);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309
1310 /* Adjust MAC if using default MAC address */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001311 if (iap == fec_mac_default)
1312 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001313}
1314
1315static void __inline__ fec_enable_phy_intr(void)
1316{
1317}
1318
1319static void __inline__ fec_disable_phy_intr(void)
1320{
1321 volatile unsigned long *icrp;
1322 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1323 *icrp = (*icrp & 0x70777777) | 0x08000000;
1324}
1325
1326static void __inline__ fec_phy_ack_intr(void)
1327{
1328 volatile unsigned long *icrp;
1329 /* Acknowledge the interrupt */
1330 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1331 *icrp = (*icrp & 0x77777777) | 0x08000000;
1332}
1333
1334static void __inline__ fec_localhw_setup(void)
1335{
1336}
1337
1338/*
1339 * Do not need to make region uncached on 5272.
1340 */
1341static void __inline__ fec_uncache(unsigned long addr)
1342{
1343}
1344
1345/* ------------------------------------------------------------------------- */
1346
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001347#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348
1349/*
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001350 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1351 * the 5270/5271/5274/5275 and 5280/5282 setups.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001352 */
1353static void __inline__ fec_request_intrs(struct net_device *dev)
1354{
1355 struct fec_enet_private *fep;
1356 int b;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001357 static const struct idesc {
1358 char *name;
1359 unsigned short irq;
1360 } *idp, id[] = {
1361 { "fec(TXF)", 23 },
1362 { "fec(TXB)", 24 },
1363 { "fec(TXFIFO)", 25 },
1364 { "fec(TXCR)", 26 },
1365 { "fec(RXF)", 27 },
1366 { "fec(RXB)", 28 },
1367 { "fec(MII)", 29 },
1368 { "fec(LC)", 30 },
1369 { "fec(HBERR)", 31 },
1370 { "fec(GRA)", 32 },
1371 { "fec(EBERR)", 33 },
1372 { "fec(BABT)", 34 },
1373 { "fec(BABR)", 35 },
1374 { NULL },
1375 };
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376
1377 fep = netdev_priv(dev);
1378 b = (fep->index) ? 128 : 64;
1379
1380 /* Setup interrupt handlers. */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001381 for (idp = id; idp->name; idp++) {
1382 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1383 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1384 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385
1386 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1387 {
1388 volatile unsigned char *icrp;
1389 volatile unsigned long *imrp;
Willson Callan83901fc2006-06-27 13:13:44 +10001390 int i, ilip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001391
1392 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1393 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1394 MCFINTC_ICR0);
Willson Callan83901fc2006-06-27 13:13:44 +10001395 for (i = 23, ilip = 0x28; (i < 36); i++)
1396 icrp[i] = ilip--;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001397
1398 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1399 MCFINTC_IMRH);
1400 *imrp &= ~0x0000000f;
1401 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1402 MCFINTC_IMRL);
1403 *imrp &= ~0xff800001;
1404 }
1405
1406#if defined(CONFIG_M528x)
1407 /* Set up gpio outputs for MII lines */
1408 {
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001409 volatile u16 *gpio_paspar;
1410 volatile u8 *gpio_pehlpar;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001412 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1413 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1414 *gpio_paspar |= 0x0f00;
1415 *gpio_pehlpar = 0xc0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416 }
1417#endif
1418}
1419
1420static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1421{
1422 volatile fec_t *fecp;
1423
1424 fecp = fep->hwp;
1425 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1426 fecp->fec_x_cntrl = 0x00;
1427
1428 /*
1429 * Set MII speed to 2.5 MHz
1430 * See 5282 manual section 17.5.4.7: MSCR
1431 */
1432 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1433 fecp->fec_mii_speed = fep->phy_speed;
1434
1435 fec_restart(dev, 0);
1436}
1437
1438static void __inline__ fec_get_mac(struct net_device *dev)
1439{
1440 struct fec_enet_private *fep = netdev_priv(dev);
1441 volatile fec_t *fecp;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001442 unsigned char *iap, tmpaddr[ETH_ALEN];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443
1444 fecp = fep->hwp;
1445
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001446 if (FEC_FLASHMAC) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447 /*
1448 * Get MAC address from FLASH.
1449 * If it is all 1's or 0's, use the default.
1450 */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001451 iap = FEC_FLASHMAC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1453 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1454 iap = fec_mac_default;
1455 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1456 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1457 iap = fec_mac_default;
1458 } else {
1459 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1460 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1461 iap = &tmpaddr[0];
1462 }
1463
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001464 memcpy(dev->dev_addr, iap, ETH_ALEN);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001465
1466 /* Adjust MAC if using default MAC address */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001467 if (iap == fec_mac_default)
1468 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469}
1470
1471static void __inline__ fec_enable_phy_intr(void)
1472{
1473}
1474
1475static void __inline__ fec_disable_phy_intr(void)
1476{
1477}
1478
1479static void __inline__ fec_phy_ack_intr(void)
1480{
1481}
1482
1483static void __inline__ fec_localhw_setup(void)
1484{
1485}
1486
1487/*
1488 * Do not need to make region uncached on 5272.
1489 */
1490static void __inline__ fec_uncache(unsigned long addr)
1491{
1492}
1493
1494/* ------------------------------------------------------------------------- */
1495
Greg Ungerer562d2f82005-11-07 14:09:50 +10001496#elif defined(CONFIG_M520x)
1497
1498/*
1499 * Code specific to Coldfire 520x
1500 */
1501static void __inline__ fec_request_intrs(struct net_device *dev)
1502{
1503 struct fec_enet_private *fep;
1504 int b;
1505 static const struct idesc {
1506 char *name;
1507 unsigned short irq;
1508 } *idp, id[] = {
1509 { "fec(TXF)", 23 },
1510 { "fec(TXB)", 24 },
1511 { "fec(TXFIFO)", 25 },
1512 { "fec(TXCR)", 26 },
1513 { "fec(RXF)", 27 },
1514 { "fec(RXB)", 28 },
1515 { "fec(MII)", 29 },
1516 { "fec(LC)", 30 },
1517 { "fec(HBERR)", 31 },
1518 { "fec(GRA)", 32 },
1519 { "fec(EBERR)", 33 },
1520 { "fec(BABT)", 34 },
1521 { "fec(BABR)", 35 },
1522 { NULL },
1523 };
1524
1525 fep = netdev_priv(dev);
1526 b = 64 + 13;
1527
1528 /* Setup interrupt handlers. */
1529 for (idp = id; idp->name; idp++) {
1530 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1531 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1532 }
1533
1534 /* Unmask interrupts at ColdFire interrupt controller */
1535 {
1536 volatile unsigned char *icrp;
1537 volatile unsigned long *imrp;
1538
1539 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1540 MCFINTC_ICR0);
1541 for (b = 36; (b < 49); b++)
1542 icrp[b] = 0x04;
1543 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1544 MCFINTC_IMRH);
1545 *imrp &= ~0x0001FFF0;
1546 }
1547 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1548 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1549}
1550
1551static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1552{
1553 volatile fec_t *fecp;
1554
1555 fecp = fep->hwp;
1556 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1557 fecp->fec_x_cntrl = 0x00;
1558
1559 /*
1560 * Set MII speed to 2.5 MHz
1561 * See 5282 manual section 17.5.4.7: MSCR
1562 */
1563 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1564 fecp->fec_mii_speed = fep->phy_speed;
1565
1566 fec_restart(dev, 0);
1567}
1568
1569static void __inline__ fec_get_mac(struct net_device *dev)
1570{
1571 struct fec_enet_private *fep = netdev_priv(dev);
1572 volatile fec_t *fecp;
1573 unsigned char *iap, tmpaddr[ETH_ALEN];
1574
1575 fecp = fep->hwp;
1576
1577 if (FEC_FLASHMAC) {
1578 /*
1579 * Get MAC address from FLASH.
1580 * If it is all 1's or 0's, use the default.
1581 */
1582 iap = FEC_FLASHMAC;
1583 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1584 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1585 iap = fec_mac_default;
1586 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1587 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1588 iap = fec_mac_default;
1589 } else {
1590 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1591 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1592 iap = &tmpaddr[0];
1593 }
1594
1595 memcpy(dev->dev_addr, iap, ETH_ALEN);
1596
1597 /* Adjust MAC if using default MAC address */
1598 if (iap == fec_mac_default)
1599 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1600}
1601
1602static void __inline__ fec_enable_phy_intr(void)
1603{
1604}
1605
1606static void __inline__ fec_disable_phy_intr(void)
1607{
1608}
1609
1610static void __inline__ fec_phy_ack_intr(void)
1611{
1612}
1613
1614static void __inline__ fec_localhw_setup(void)
1615{
1616}
1617
1618static void __inline__ fec_uncache(unsigned long addr)
1619{
1620}
1621
1622/* ------------------------------------------------------------------------- */
1623
Matt Waddel6b265292006-06-27 13:10:56 +10001624#elif defined(CONFIG_M532x)
1625/*
1626 * Code specific for M532x
1627 */
1628static void __inline__ fec_request_intrs(struct net_device *dev)
1629{
1630 struct fec_enet_private *fep;
1631 int b;
1632 static const struct idesc {
1633 char *name;
1634 unsigned short irq;
1635 } *idp, id[] = {
1636 { "fec(TXF)", 36 },
1637 { "fec(TXB)", 37 },
1638 { "fec(TXFIFO)", 38 },
1639 { "fec(TXCR)", 39 },
1640 { "fec(RXF)", 40 },
1641 { "fec(RXB)", 41 },
1642 { "fec(MII)", 42 },
1643 { "fec(LC)", 43 },
1644 { "fec(HBERR)", 44 },
1645 { "fec(GRA)", 45 },
1646 { "fec(EBERR)", 46 },
1647 { "fec(BABT)", 47 },
1648 { "fec(BABR)", 48 },
1649 { NULL },
1650 };
1651
1652 fep = netdev_priv(dev);
1653 b = (fep->index) ? 128 : 64;
1654
1655 /* Setup interrupt handlers. */
1656 for (idp = id; idp->name; idp++) {
1657 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1658 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1659 idp->name, b+idp->irq);
1660 }
1661
1662 /* Unmask interrupts */
1663 MCF_INTC0_ICR36 = 0x2;
1664 MCF_INTC0_ICR37 = 0x2;
1665 MCF_INTC0_ICR38 = 0x2;
1666 MCF_INTC0_ICR39 = 0x2;
1667 MCF_INTC0_ICR40 = 0x2;
1668 MCF_INTC0_ICR41 = 0x2;
1669 MCF_INTC0_ICR42 = 0x2;
1670 MCF_INTC0_ICR43 = 0x2;
1671 MCF_INTC0_ICR44 = 0x2;
1672 MCF_INTC0_ICR45 = 0x2;
1673 MCF_INTC0_ICR46 = 0x2;
1674 MCF_INTC0_ICR47 = 0x2;
1675 MCF_INTC0_ICR48 = 0x2;
1676
1677 MCF_INTC0_IMRH &= ~(
1678 MCF_INTC_IMRH_INT_MASK36 |
1679 MCF_INTC_IMRH_INT_MASK37 |
1680 MCF_INTC_IMRH_INT_MASK38 |
1681 MCF_INTC_IMRH_INT_MASK39 |
1682 MCF_INTC_IMRH_INT_MASK40 |
1683 MCF_INTC_IMRH_INT_MASK41 |
1684 MCF_INTC_IMRH_INT_MASK42 |
1685 MCF_INTC_IMRH_INT_MASK43 |
1686 MCF_INTC_IMRH_INT_MASK44 |
1687 MCF_INTC_IMRH_INT_MASK45 |
1688 MCF_INTC_IMRH_INT_MASK46 |
1689 MCF_INTC_IMRH_INT_MASK47 |
1690 MCF_INTC_IMRH_INT_MASK48 );
1691
1692 /* Set up gpio outputs for MII lines */
1693 MCF_GPIO_PAR_FECI2C |= (0 |
1694 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1695 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1696 MCF_GPIO_PAR_FEC = (0 |
1697 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1698 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1699}
1700
1701static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1702{
1703 volatile fec_t *fecp;
1704
1705 fecp = fep->hwp;
1706 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1707 fecp->fec_x_cntrl = 0x00;
1708
1709 /*
1710 * Set MII speed to 2.5 MHz
1711 */
1712 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1713 fecp->fec_mii_speed = fep->phy_speed;
1714
1715 fec_restart(dev, 0);
1716}
1717
1718static void __inline__ fec_get_mac(struct net_device *dev)
1719{
1720 struct fec_enet_private *fep = netdev_priv(dev);
1721 volatile fec_t *fecp;
1722 unsigned char *iap, tmpaddr[ETH_ALEN];
1723
1724 fecp = fep->hwp;
1725
1726 if (FEC_FLASHMAC) {
1727 /*
1728 * Get MAC address from FLASH.
1729 * If it is all 1's or 0's, use the default.
1730 */
1731 iap = FEC_FLASHMAC;
1732 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1733 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1734 iap = fec_mac_default;
1735 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1736 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1737 iap = fec_mac_default;
1738 } else {
1739 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1740 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1741 iap = &tmpaddr[0];
1742 }
1743
1744 memcpy(dev->dev_addr, iap, ETH_ALEN);
1745
1746 /* Adjust MAC if using default MAC address */
1747 if (iap == fec_mac_default)
1748 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1749}
1750
1751static void __inline__ fec_enable_phy_intr(void)
1752{
1753}
1754
1755static void __inline__ fec_disable_phy_intr(void)
1756{
1757}
1758
1759static void __inline__ fec_phy_ack_intr(void)
1760{
1761}
1762
1763static void __inline__ fec_localhw_setup(void)
1764{
1765}
1766
1767/*
1768 * Do not need to make region uncached on 532x.
1769 */
1770static void __inline__ fec_uncache(unsigned long addr)
1771{
1772}
1773
1774/* ------------------------------------------------------------------------- */
1775
1776
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777#else
1778
1779/*
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001780 * Code specific to the MPC860T setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781 */
1782static void __inline__ fec_request_intrs(struct net_device *dev)
1783{
1784 volatile immap_t *immap;
1785
1786 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1787
1788 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1789 panic("Could not allocate FEC IRQ!");
1790
1791#ifdef CONFIG_RPXCLASSIC
1792 /* Make Port C, bit 15 an input that causes interrupts.
1793 */
1794 immap->im_ioport.iop_pcpar &= ~0x0001;
1795 immap->im_ioport.iop_pcdir &= ~0x0001;
1796 immap->im_ioport.iop_pcso &= ~0x0001;
1797 immap->im_ioport.iop_pcint |= 0x0001;
1798 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1799
1800 /* Make LEDS reflect Link status.
1801 */
1802 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1803#endif
1804#ifdef CONFIG_FADS
1805 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1806 panic("Could not allocate MII IRQ!");
1807#endif
1808}
1809
1810static void __inline__ fec_get_mac(struct net_device *dev)
1811{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812 bd_t *bd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814 bd = (bd_t *)__res;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001815 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816
1817#ifdef CONFIG_RPXCLASSIC
1818 /* The Embedded Planet boards have only one MAC address in
1819 * the EEPROM, but can have two Ethernet ports. For the
1820 * FEC port, we create another address by setting one of
1821 * the address bits above something that would have (up to
1822 * now) been allocated.
1823 */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001824 dev->dev_adrd[3] |= 0x80;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001825#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001826}
1827
1828static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1829{
1830 extern uint _get_IMMR(void);
1831 volatile immap_t *immap;
1832 volatile fec_t *fecp;
1833
1834 fecp = fep->hwp;
1835 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1836
1837 /* Configure all of port D for MII.
1838 */
1839 immap->im_ioport.iop_pdpar = 0x1fff;
1840
1841 /* Bits moved from Rev. D onward.
1842 */
1843 if ((_get_IMMR() & 0xffff) < 0x0501)
1844 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1845 else
1846 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1847
1848 /* Set MII speed to 2.5 MHz
1849 */
1850 fecp->fec_mii_speed = fep->phy_speed =
1851 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1852}
1853
1854static void __inline__ fec_enable_phy_intr(void)
1855{
1856 volatile fec_t *fecp;
1857
1858 fecp = fep->hwp;
1859
1860 /* Enable MII command finished interrupt
1861 */
1862 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1863}
1864
1865static void __inline__ fec_disable_phy_intr(void)
1866{
1867}
1868
1869static void __inline__ fec_phy_ack_intr(void)
1870{
1871}
1872
1873static void __inline__ fec_localhw_setup(void)
1874{
1875 volatile fec_t *fecp;
1876
1877 fecp = fep->hwp;
1878 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1879 /* Enable big endian and don't care about SDMA FC.
1880 */
1881 fecp->fec_fun_code = 0x78000000;
1882}
1883
1884static void __inline__ fec_uncache(unsigned long addr)
1885{
1886 pte_t *pte;
1887 pte = va_to_pte(mem_addr);
1888 pte_val(*pte) |= _PAGE_NO_CACHE;
1889 flush_tlb_page(init_mm.mmap, mem_addr);
1890}
1891
1892#endif
1893
1894/* ------------------------------------------------------------------------- */
1895
1896static void mii_display_status(struct net_device *dev)
1897{
1898 struct fec_enet_private *fep = netdev_priv(dev);
1899 volatile uint *s = &(fep->phy_status);
1900
1901 if (!fep->link && !fep->old_link) {
1902 /* Link is still down - don't print anything */
1903 return;
1904 }
1905
1906 printk("%s: status: ", dev->name);
1907
1908 if (!fep->link) {
1909 printk("link down");
1910 } else {
1911 printk("link up");
1912
1913 switch(*s & PHY_STAT_SPMASK) {
1914 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1915 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1916 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1917 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1918 default:
1919 printk(", Unknown speed/duplex");
1920 }
1921
1922 if (*s & PHY_STAT_ANC)
1923 printk(", auto-negotiation complete");
1924 }
1925
1926 if (*s & PHY_STAT_FAULT)
1927 printk(", remote fault");
1928
1929 printk(".\n");
1930}
1931
1932static void mii_display_config(struct net_device *dev)
1933{
1934 struct fec_enet_private *fep = netdev_priv(dev);
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001935 uint status = fep->phy_status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001936
1937 /*
1938 ** When we get here, phy_task is already removed from
1939 ** the workqueue. It is thus safe to allow to reuse it.
1940 */
1941 fep->mii_phy_task_queued = 0;
1942 printk("%s: config: auto-negotiation ", dev->name);
1943
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001944 if (status & PHY_CONF_ANE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945 printk("on");
1946 else
1947 printk("off");
1948
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001949 if (status & PHY_CONF_100FDX)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950 printk(", 100FDX");
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001951 if (status & PHY_CONF_100HDX)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952 printk(", 100HDX");
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001953 if (status & PHY_CONF_10FDX)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954 printk(", 10FDX");
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001955 if (status & PHY_CONF_10HDX)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001956 printk(", 10HDX");
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001957 if (!(status & PHY_CONF_SPMASK))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 printk(", No speed/duplex selected?");
1959
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10001960 if (status & PHY_CONF_LOOP)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001961 printk(", loopback enabled");
1962
1963 printk(".\n");
1964
1965 fep->sequence_done = 1;
1966}
1967
1968static void mii_relink(struct net_device *dev)
1969{
1970 struct fec_enet_private *fep = netdev_priv(dev);
1971 int duplex;
1972
1973 /*
1974 ** When we get here, phy_task is already removed from
1975 ** the workqueue. It is thus safe to allow to reuse it.
1976 */
1977 fep->mii_phy_task_queued = 0;
1978 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1979 mii_display_status(dev);
1980 fep->old_link = fep->link;
1981
1982 if (fep->link) {
1983 duplex = 0;
1984 if (fep->phy_status
1985 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1986 duplex = 1;
1987 fec_restart(dev, duplex);
1988 }
1989 else
1990 fec_stop(dev);
1991
1992#if 0
1993 enable_irq(fep->mii_irq);
1994#endif
1995
1996}
1997
1998/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1999static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2000{
2001 struct fec_enet_private *fep = netdev_priv(dev);
2002
2003 /*
2004 ** We cannot queue phy_task twice in the workqueue. It
2005 ** would cause an endless loop in the workqueue.
2006 ** Fortunately, if the last mii_relink entry has not yet been
2007 ** executed now, it will do the job for the current interrupt,
2008 ** which is just what we want.
2009 */
2010 if (fep->mii_phy_task_queued)
2011 return;
2012
2013 fep->mii_phy_task_queued = 1;
2014 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
2015 schedule_work(&fep->phy_task);
2016}
2017
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002018/* mii_queue_config is called in interrupt context from fec_enet_mii */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019static void mii_queue_config(uint mii_reg, struct net_device *dev)
2020{
2021 struct fec_enet_private *fep = netdev_priv(dev);
2022
2023 if (fep->mii_phy_task_queued)
2024 return;
2025
2026 fep->mii_phy_task_queued = 1;
2027 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
2028 schedule_work(&fep->phy_task);
2029}
2030
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002031phy_cmd_t const phy_cmd_relink[] = {
2032 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2033 { mk_mii_end, }
2034 };
2035phy_cmd_t const phy_cmd_config[] = {
2036 { mk_mii_read(MII_REG_CR), mii_queue_config },
2037 { mk_mii_end, }
2038 };
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039
2040/* Read remainder of PHY ID.
2041*/
2042static void
2043mii_discover_phy3(uint mii_reg, struct net_device *dev)
2044{
2045 struct fec_enet_private *fep;
2046 int i;
2047
2048 fep = netdev_priv(dev);
2049 fep->phy_id |= (mii_reg & 0xffff);
2050 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2051
2052 for(i = 0; phy_info[i]; i++) {
2053 if(phy_info[i]->id == (fep->phy_id >> 4))
2054 break;
2055 }
2056
2057 if (phy_info[i])
2058 printk(" -- %s\n", phy_info[i]->name);
2059 else
2060 printk(" -- unknown PHY!\n");
2061
2062 fep->phy = phy_info[i];
2063 fep->phy_id_done = 1;
2064}
2065
2066/* Scan all of the MII PHY addresses looking for someone to respond
2067 * with a valid ID. This usually happens quickly.
2068 */
2069static void
2070mii_discover_phy(uint mii_reg, struct net_device *dev)
2071{
2072 struct fec_enet_private *fep;
2073 volatile fec_t *fecp;
2074 uint phytype;
2075
2076 fep = netdev_priv(dev);
2077 fecp = fep->hwp;
2078
2079 if (fep->phy_addr < 32) {
2080 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2081
2082 /* Got first part of ID, now get remainder.
2083 */
2084 fep->phy_id = phytype << 16;
2085 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2086 mii_discover_phy3);
2087 }
2088 else {
2089 fep->phy_addr++;
2090 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2091 mii_discover_phy);
2092 }
2093 } else {
2094 printk("FEC: No PHY device found.\n");
2095 /* Disable external MII interface */
2096 fecp->fec_mii_speed = fep->phy_speed = 0;
2097 fec_disable_phy_intr();
2098 }
2099}
2100
2101/* This interrupt occurs when the PHY detects a link change.
2102*/
2103#ifdef CONFIG_RPXCLASSIC
2104static void
2105mii_link_interrupt(void *dev_id)
2106#else
2107static irqreturn_t
2108mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
2109#endif
2110{
2111 struct net_device *dev = dev_id;
2112 struct fec_enet_private *fep = netdev_priv(dev);
2113
2114 fec_phy_ack_intr();
2115
2116#if 0
2117 disable_irq(fep->mii_irq); /* disable now, enable later */
2118#endif
2119
2120 mii_do_cmd(dev, fep->phy->ack_int);
2121 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2122
2123 return IRQ_HANDLED;
2124}
2125
2126static int
2127fec_enet_open(struct net_device *dev)
2128{
2129 struct fec_enet_private *fep = netdev_priv(dev);
2130
2131 /* I should reset the ring buffers here, but I don't yet know
2132 * a simple way to do that.
2133 */
2134 fec_set_mac_address(dev);
2135
2136 fep->sequence_done = 0;
2137 fep->link = 0;
2138
2139 if (fep->phy) {
2140 mii_do_cmd(dev, fep->phy->ack_int);
2141 mii_do_cmd(dev, fep->phy->config);
2142 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2143
Matt Waddel6b265292006-06-27 13:10:56 +10002144 /* Poll until the PHY tells us its configuration
2145 * (not link state).
2146 * Request is initiated by mii_do_cmd above, but answer
2147 * comes by interrupt.
2148 * This should take about 25 usec per register at 2.5 MHz,
2149 * and we read approximately 5 registers.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002150 */
2151 while(!fep->sequence_done)
2152 schedule();
2153
2154 mii_do_cmd(dev, fep->phy->startup);
2155
2156 /* Set the initial link state to true. A lot of hardware
2157 * based on this device does not implement a PHY interrupt,
2158 * so we are never notified of link change.
2159 */
2160 fep->link = 1;
2161 } else {
2162 fep->link = 1; /* lets just try it and see */
2163 /* no phy, go full duplex, it's most likely a hub chip */
2164 fec_restart(dev, 1);
2165 }
2166
2167 netif_start_queue(dev);
2168 fep->opened = 1;
2169 return 0; /* Success */
2170}
2171
2172static int
2173fec_enet_close(struct net_device *dev)
2174{
2175 struct fec_enet_private *fep = netdev_priv(dev);
2176
2177 /* Don't know what to do yet.
2178 */
2179 fep->opened = 0;
2180 netif_stop_queue(dev);
2181 fec_stop(dev);
2182
2183 return 0;
2184}
2185
2186static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
2187{
2188 struct fec_enet_private *fep = netdev_priv(dev);
2189
2190 return &fep->stats;
2191}
2192
2193/* Set or clear the multicast filter for this adaptor.
2194 * Skeleton taken from sunlance driver.
2195 * The CPM Ethernet implementation allows Multicast as well as individual
2196 * MAC address filtering. Some of the drivers check to make sure it is
2197 * a group multicast address, and discard those that are not. I guess I
2198 * will do the same for now, but just remove the test if you want
2199 * individual filtering as well (do the upper net layers want or support
2200 * this kind of feature?).
2201 */
2202
2203#define HASH_BITS 6 /* #bits in hash */
2204#define CRC32_POLY 0xEDB88320
2205
2206static void set_multicast_list(struct net_device *dev)
2207{
2208 struct fec_enet_private *fep;
2209 volatile fec_t *ep;
2210 struct dev_mc_list *dmi;
2211 unsigned int i, j, bit, data, crc;
2212 unsigned char hash;
2213
2214 fep = netdev_priv(dev);
2215 ep = fep->hwp;
2216
2217 if (dev->flags&IFF_PROMISC) {
2218 /* Log any net taps. */
2219 printk("%s: Promiscuous mode enabled.\n", dev->name);
2220 ep->fec_r_cntrl |= 0x0008;
2221 } else {
2222
2223 ep->fec_r_cntrl &= ~0x0008;
2224
2225 if (dev->flags & IFF_ALLMULTI) {
2226 /* Catch all multicast addresses, so set the
2227 * filter to all 1's.
2228 */
2229 ep->fec_hash_table_high = 0xffffffff;
2230 ep->fec_hash_table_low = 0xffffffff;
2231 } else {
2232 /* Clear filter and add the addresses in hash register.
2233 */
2234 ep->fec_hash_table_high = 0;
2235 ep->fec_hash_table_low = 0;
2236
2237 dmi = dev->mc_list;
2238
2239 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2240 {
2241 /* Only support group multicast for now.
2242 */
2243 if (!(dmi->dmi_addr[0] & 1))
2244 continue;
2245
2246 /* calculate crc32 value of mac address
2247 */
2248 crc = 0xffffffff;
2249
2250 for (i = 0; i < dmi->dmi_addrlen; i++)
2251 {
2252 data = dmi->dmi_addr[i];
2253 for (bit = 0; bit < 8; bit++, data >>= 1)
2254 {
2255 crc = (crc >> 1) ^
2256 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2257 }
2258 }
2259
2260 /* only upper 6 bits (HASH_BITS) are used
2261 which point to specific bit in he hash registers
2262 */
2263 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2264
2265 if (hash > 31)
2266 ep->fec_hash_table_high |= 1 << (hash - 32);
2267 else
2268 ep->fec_hash_table_low |= 1 << hash;
2269 }
2270 }
2271 }
2272}
2273
2274/* Set a MAC change in hardware.
2275 */
2276static void
2277fec_set_mac_address(struct net_device *dev)
2278{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279 volatile fec_t *fecp;
2280
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002281 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282
2283 /* Set station address. */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002284 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2285 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2286 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2287 (dev->dev_addr[4] << 24);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288
2289}
2290
2291/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2292 */
2293 /*
2294 * XXX: We need to clean up on failure exits here.
2295 */
2296int __init fec_enet_init(struct net_device *dev)
2297{
2298 struct fec_enet_private *fep = netdev_priv(dev);
2299 unsigned long mem_addr;
2300 volatile cbd_t *bdp;
2301 cbd_t *cbd_base;
2302 volatile fec_t *fecp;
2303 int i, j;
2304 static int index = 0;
2305
2306 /* Only allow us to be probed once. */
2307 if (index >= FEC_MAX_PORTS)
2308 return -ENXIO;
2309
Greg Ungerer562d2f82005-11-07 14:09:50 +10002310 /* Allocate memory for buffer descriptors.
2311 */
2312 mem_addr = __get_free_page(GFP_KERNEL);
2313 if (mem_addr == 0) {
2314 printk("FEC: allocate descriptor memory failed?\n");
2315 return -ENOMEM;
2316 }
2317
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318 /* Create an Ethernet device instance.
2319 */
2320 fecp = (volatile fec_t *) fec_hw[index];
2321
2322 fep->index = index;
2323 fep->hwp = fecp;
2324
2325 /* Whack a reset. We should wait for this.
2326 */
2327 fecp->fec_ecntrl = 1;
2328 udelay(10);
2329
Linus Torvalds1da177e2005-04-16 15:20:36 -07002330 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2331 * this needs some work to get unique addresses.
2332 *
2333 * This is our default MAC address unless the user changes
2334 * it via eth_mac_addr (our dev->set_mac_addr handler).
2335 */
2336 fec_get_mac(dev);
2337
Linus Torvalds1da177e2005-04-16 15:20:36 -07002338 cbd_base = (cbd_t *)mem_addr;
2339 /* XXX: missing check for allocation failure */
2340
2341 fec_uncache(mem_addr);
2342
2343 /* Set receive and transmit descriptor base.
2344 */
2345 fep->rx_bd_base = cbd_base;
2346 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2347
2348 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2349 fep->cur_rx = fep->rx_bd_base;
2350
2351 fep->skb_cur = fep->skb_dirty = 0;
2352
2353 /* Initialize the receive buffer descriptors.
2354 */
2355 bdp = fep->rx_bd_base;
2356 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2357
2358 /* Allocate a page.
2359 */
2360 mem_addr = __get_free_page(GFP_KERNEL);
2361 /* XXX: missing check for allocation failure */
2362
2363 fec_uncache(mem_addr);
2364
2365 /* Initialize the BD for every fragment in the page.
2366 */
2367 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2368 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2369 bdp->cbd_bufaddr = __pa(mem_addr);
2370 mem_addr += FEC_ENET_RX_FRSIZE;
2371 bdp++;
2372 }
2373 }
2374
2375 /* Set the last buffer to wrap.
2376 */
2377 bdp--;
2378 bdp->cbd_sc |= BD_SC_WRAP;
2379
2380 /* ...and the same for transmmit.
2381 */
2382 bdp = fep->tx_bd_base;
2383 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2384 if (j >= FEC_ENET_TX_FRPPG) {
2385 mem_addr = __get_free_page(GFP_KERNEL);
2386 j = 1;
2387 } else {
2388 mem_addr += FEC_ENET_TX_FRSIZE;
2389 j++;
2390 }
2391 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2392
2393 /* Initialize the BD for every fragment in the page.
2394 */
2395 bdp->cbd_sc = 0;
2396 bdp->cbd_bufaddr = 0;
2397 bdp++;
2398 }
2399
2400 /* Set the last buffer to wrap.
2401 */
2402 bdp--;
2403 bdp->cbd_sc |= BD_SC_WRAP;
2404
2405 /* Set receive and transmit descriptor base.
2406 */
2407 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2408 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2409
2410 /* Install our interrupt handlers. This varies depending on
2411 * the architecture.
2412 */
2413 fec_request_intrs(dev);
2414
Greg Ungerer562d2f82005-11-07 14:09:50 +10002415 fecp->fec_hash_table_high = 0;
2416 fecp->fec_hash_table_low = 0;
2417 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2418 fecp->fec_ecntrl = 2;
Matt Waddel6b265292006-06-27 13:10:56 +10002419 fecp->fec_r_des_active = 0;
Greg Ungerer562d2f82005-11-07 14:09:50 +10002420
Linus Torvalds1da177e2005-04-16 15:20:36 -07002421 dev->base_addr = (unsigned long)fecp;
2422
2423 /* The FEC Ethernet specific entries in the device structure. */
2424 dev->open = fec_enet_open;
2425 dev->hard_start_xmit = fec_enet_start_xmit;
2426 dev->tx_timeout = fec_timeout;
2427 dev->watchdog_timeo = TX_TIMEOUT;
2428 dev->stop = fec_enet_close;
2429 dev->get_stats = fec_enet_get_stats;
2430 dev->set_multicast_list = set_multicast_list;
2431
2432 for (i=0; i<NMII-1; i++)
2433 mii_cmds[i].mii_next = &mii_cmds[i+1];
2434 mii_free = mii_cmds;
2435
2436 /* setup MII interface */
2437 fec_set_mii(dev, fep);
2438
Matt Waddel6b265292006-06-27 13:10:56 +10002439 /* Clear and enable interrupts */
2440 fecp->fec_ievent = 0xffc00000;
2441 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2442 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2443
Linus Torvalds1da177e2005-04-16 15:20:36 -07002444 /* Queue up command to detect the PHY and initialize the
2445 * remainder of the interface.
2446 */
2447 fep->phy_id_done = 0;
2448 fep->phy_addr = 0;
2449 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2450
2451 index++;
2452 return 0;
2453}
2454
2455/* This function is called to start or restart the FEC during a link
2456 * change. This only happens when switching between half and full
2457 * duplex.
2458 */
2459static void
2460fec_restart(struct net_device *dev, int duplex)
2461{
2462 struct fec_enet_private *fep;
2463 volatile cbd_t *bdp;
2464 volatile fec_t *fecp;
2465 int i;
2466
2467 fep = netdev_priv(dev);
2468 fecp = fep->hwp;
2469
2470 /* Whack a reset. We should wait for this.
2471 */
2472 fecp->fec_ecntrl = 1;
2473 udelay(10);
2474
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475 /* Clear any outstanding interrupt.
2476 */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002477 fecp->fec_ievent = 0xffc00000;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002478 fec_enable_phy_intr();
2479
2480 /* Set station address.
2481 */
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002482 fec_set_mac_address(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483
2484 /* Reset all multicast.
2485 */
2486 fecp->fec_hash_table_high = 0;
2487 fecp->fec_hash_table_low = 0;
2488
2489 /* Set maximum receive buffer size.
2490 */
2491 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2492
2493 fec_localhw_setup();
2494
2495 /* Set receive and transmit descriptor base.
2496 */
2497 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2498 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2499
2500 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2501 fep->cur_rx = fep->rx_bd_base;
2502
2503 /* Reset SKB transmit buffers.
2504 */
2505 fep->skb_cur = fep->skb_dirty = 0;
2506 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2507 if (fep->tx_skbuff[i] != NULL) {
2508 dev_kfree_skb_any(fep->tx_skbuff[i]);
2509 fep->tx_skbuff[i] = NULL;
2510 }
2511 }
2512
2513 /* Initialize the receive buffer descriptors.
2514 */
2515 bdp = fep->rx_bd_base;
2516 for (i=0; i<RX_RING_SIZE; i++) {
2517
2518 /* Initialize the BD for every fragment in the page.
2519 */
2520 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2521 bdp++;
2522 }
2523
2524 /* Set the last buffer to wrap.
2525 */
2526 bdp--;
2527 bdp->cbd_sc |= BD_SC_WRAP;
2528
2529 /* ...and the same for transmmit.
2530 */
2531 bdp = fep->tx_bd_base;
2532 for (i=0; i<TX_RING_SIZE; i++) {
2533
2534 /* Initialize the BD for every fragment in the page.
2535 */
2536 bdp->cbd_sc = 0;
2537 bdp->cbd_bufaddr = 0;
2538 bdp++;
2539 }
2540
2541 /* Set the last buffer to wrap.
2542 */
2543 bdp--;
2544 bdp->cbd_sc |= BD_SC_WRAP;
2545
2546 /* Enable MII mode.
2547 */
2548 if (duplex) {
2549 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2550 fecp->fec_x_cntrl = 0x04; /* FD enable */
2551 }
2552 else {
2553 /* MII enable|No Rcv on Xmit */
2554 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2555 fecp->fec_x_cntrl = 0x00;
2556 }
2557 fep->full_duplex = duplex;
2558
2559 /* Set MII speed.
2560 */
2561 fecp->fec_mii_speed = fep->phy_speed;
2562
2563 /* And last, enable the transmit and receive processing.
2564 */
2565 fecp->fec_ecntrl = 2;
Matt Waddel6b265292006-06-27 13:10:56 +10002566 fecp->fec_r_des_active = 0;
2567
2568 /* Enable interrupts we wish to service.
2569 */
2570 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2571 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002572}
2573
2574static void
2575fec_stop(struct net_device *dev)
2576{
2577 volatile fec_t *fecp;
2578 struct fec_enet_private *fep;
2579
2580 fep = netdev_priv(dev);
2581 fecp = fep->hwp;
2582
Philippe De Muyter677177c2006-06-27 13:05:33 +10002583 /*
2584 ** We cannot expect a graceful transmit stop without link !!!
2585 */
2586 if (fep->link)
2587 {
2588 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2589 udelay(10);
2590 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2591 printk("fec_stop : Graceful transmit stop did not complete !\n");
2592 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593
2594 /* Whack a reset. We should wait for this.
2595 */
2596 fecp->fec_ecntrl = 1;
2597 udelay(10);
2598
2599 /* Clear outstanding MII command interrupts.
2600 */
2601 fecp->fec_ievent = FEC_ENET_MII;
2602 fec_enable_phy_intr();
2603
2604 fecp->fec_imask = FEC_ENET_MII;
2605 fecp->fec_mii_speed = fep->phy_speed;
2606}
2607
2608static int __init fec_enet_module_init(void)
2609{
2610 struct net_device *dev;
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002611 int i, j, err;
2612
2613 printk("FEC ENET Version 0.2\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002614
2615 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2616 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2617 if (!dev)
2618 return -ENOMEM;
2619 err = fec_enet_init(dev);
2620 if (err) {
2621 free_netdev(dev);
2622 continue;
2623 }
2624 if (register_netdev(dev) != 0) {
2625 /* XXX: missing cleanup here */
2626 free_netdev(dev);
2627 return -EIO;
2628 }
Greg Ungerer7dd6a2a2005-09-12 11:18:10 +10002629
2630 printk("%s: ethernet ", dev->name);
2631 for (j = 0; (j < 5); j++)
2632 printk("%02x:", dev->dev_addr[j]);
2633 printk("%02x\n", dev->dev_addr[5]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002634 }
2635 return 0;
2636}
2637
2638module_init(fec_enet_module_init);
2639
2640MODULE_LICENSE("GPL");