Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of the Chelsio T3 Ethernet driver. |
| 3 | * |
| 4 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. |
| 5 | * |
| 6 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this |
| 9 | * release for licensing terms and conditions. |
| 10 | */ |
| 11 | |
| 12 | #include "common.h" |
| 13 | #include "regs.h" |
| 14 | #include "sge_defs.h" |
| 15 | #include "firmware_exports.h" |
| 16 | |
Divy Le Ray | f2c6879 | 2007-01-30 19:44:13 -0800 | [diff] [blame] | 17 | /** |
| 18 | * t3_wait_op_done_val - wait until an operation is completed |
| 19 | * @adapter: the adapter performing the operation |
| 20 | * @reg: the register to check for completion |
| 21 | * @mask: a single-bit field within @reg that indicates completion |
| 22 | * @polarity: the value of the field when the operation is completed |
| 23 | * @attempts: number of check iterations |
| 24 | * @delay: delay in usecs between iterations |
| 25 | * @valp: where to store the value of the register at completion time |
| 26 | * |
| 27 | * Wait until an operation is completed by checking a bit in a register |
| 28 | * up to @attempts times. If @valp is not NULL the value of the register |
| 29 | * at the time it indicated completion is stored there. Returns 0 if the |
| 30 | * operation completes and -EAGAIN otherwise. |
| 31 | */ |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 32 | |
| 33 | int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, |
| 34 | int polarity, int attempts, int delay, u32 *valp) |
| 35 | { |
| 36 | while (1) { |
| 37 | u32 val = t3_read_reg(adapter, reg); |
| 38 | |
| 39 | if (!!(val & mask) == polarity) { |
| 40 | if (valp) |
| 41 | *valp = val; |
| 42 | return 0; |
| 43 | } |
| 44 | if (--attempts == 0) |
| 45 | return -EAGAIN; |
| 46 | if (delay) |
| 47 | udelay(delay); |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | /** |
| 52 | * t3_write_regs - write a bunch of registers |
| 53 | * @adapter: the adapter to program |
| 54 | * @p: an array of register address/register value pairs |
| 55 | * @n: the number of address/value pairs |
| 56 | * @offset: register address offset |
| 57 | * |
| 58 | * Takes an array of register address/register value pairs and writes each |
| 59 | * value to the corresponding register. Register addresses are adjusted |
| 60 | * by the supplied offset. |
| 61 | */ |
| 62 | void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, |
| 63 | int n, unsigned int offset) |
| 64 | { |
| 65 | while (n--) { |
| 66 | t3_write_reg(adapter, p->reg_addr + offset, p->val); |
| 67 | p++; |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | /** |
| 72 | * t3_set_reg_field - set a register field to a value |
| 73 | * @adapter: the adapter to program |
| 74 | * @addr: the register address |
| 75 | * @mask: specifies the portion of the register to modify |
| 76 | * @val: the new value for the register field |
| 77 | * |
| 78 | * Sets a register field specified by the supplied mask to the |
| 79 | * given value. |
| 80 | */ |
| 81 | void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, |
| 82 | u32 val) |
| 83 | { |
| 84 | u32 v = t3_read_reg(adapter, addr) & ~mask; |
| 85 | |
| 86 | t3_write_reg(adapter, addr, v | val); |
| 87 | t3_read_reg(adapter, addr); /* flush */ |
| 88 | } |
| 89 | |
| 90 | /** |
| 91 | * t3_read_indirect - read indirectly addressed registers |
| 92 | * @adap: the adapter |
| 93 | * @addr_reg: register holding the indirect address |
| 94 | * @data_reg: register holding the value of the indirect register |
| 95 | * @vals: where the read register values are stored |
| 96 | * @start_idx: index of first indirect register to read |
| 97 | * @nregs: how many indirect registers to read |
| 98 | * |
| 99 | * Reads registers that are accessed indirectly through an address/data |
| 100 | * register pair. |
| 101 | */ |
| 102 | void t3_read_indirect(struct adapter *adap, unsigned int addr_reg, |
| 103 | unsigned int data_reg, u32 *vals, unsigned int nregs, |
| 104 | unsigned int start_idx) |
| 105 | { |
| 106 | while (nregs--) { |
| 107 | t3_write_reg(adap, addr_reg, start_idx); |
| 108 | *vals++ = t3_read_reg(adap, data_reg); |
| 109 | start_idx++; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | /** |
| 114 | * t3_mc7_bd_read - read from MC7 through backdoor accesses |
| 115 | * @mc7: identifies MC7 to read from |
| 116 | * @start: index of first 64-bit word to read |
| 117 | * @n: number of 64-bit words to read |
| 118 | * @buf: where to store the read result |
| 119 | * |
| 120 | * Read n 64-bit words from MC7 starting at word start, using backdoor |
| 121 | * accesses. |
| 122 | */ |
| 123 | int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, |
| 124 | u64 *buf) |
| 125 | { |
| 126 | static const int shift[] = { 0, 0, 16, 24 }; |
| 127 | static const int step[] = { 0, 32, 16, 8 }; |
| 128 | |
| 129 | unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ |
| 130 | struct adapter *adap = mc7->adapter; |
| 131 | |
| 132 | if (start >= size64 || start + n > size64) |
| 133 | return -EINVAL; |
| 134 | |
| 135 | start *= (8 << mc7->width); |
| 136 | while (n--) { |
| 137 | int i; |
| 138 | u64 val64 = 0; |
| 139 | |
| 140 | for (i = (1 << mc7->width) - 1; i >= 0; --i) { |
| 141 | int attempts = 10; |
| 142 | u32 val; |
| 143 | |
| 144 | t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start); |
| 145 | t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); |
| 146 | val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); |
| 147 | while ((val & F_BUSY) && attempts--) |
| 148 | val = t3_read_reg(adap, |
| 149 | mc7->offset + A_MC7_BD_OP); |
| 150 | if (val & F_BUSY) |
| 151 | return -EIO; |
| 152 | |
| 153 | val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); |
| 154 | if (mc7->width == 0) { |
| 155 | val64 = t3_read_reg(adap, |
| 156 | mc7->offset + |
| 157 | A_MC7_BD_DATA0); |
| 158 | val64 |= (u64) val << 32; |
| 159 | } else { |
| 160 | if (mc7->width > 1) |
| 161 | val >>= shift[mc7->width]; |
| 162 | val64 |= (u64) val << (step[mc7->width] * i); |
| 163 | } |
| 164 | start += 8; |
| 165 | } |
| 166 | *buf++ = val64; |
| 167 | } |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * Initialize MI1. |
| 173 | */ |
| 174 | static void mi1_init(struct adapter *adap, const struct adapter_info *ai) |
| 175 | { |
| 176 | u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; |
| 177 | u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) | |
| 178 | V_CLKDIV(clkdiv); |
| 179 | |
| 180 | if (!(ai->caps & SUPPORTED_10000baseT_Full)) |
| 181 | val |= V_ST(1); |
| 182 | t3_write_reg(adap, A_MI1_CFG, val); |
| 183 | } |
| 184 | |
| 185 | #define MDIO_ATTEMPTS 10 |
| 186 | |
| 187 | /* |
| 188 | * MI1 read/write operations for direct-addressed PHYs. |
| 189 | */ |
| 190 | static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr, |
| 191 | int reg_addr, unsigned int *valp) |
| 192 | { |
| 193 | int ret; |
| 194 | u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); |
| 195 | |
| 196 | if (mmd_addr) |
| 197 | return -EINVAL; |
| 198 | |
| 199 | mutex_lock(&adapter->mdio_lock); |
| 200 | t3_write_reg(adapter, A_MI1_ADDR, addr); |
| 201 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); |
| 202 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| 203 | if (!ret) |
| 204 | *valp = t3_read_reg(adapter, A_MI1_DATA); |
| 205 | mutex_unlock(&adapter->mdio_lock); |
| 206 | return ret; |
| 207 | } |
| 208 | |
| 209 | static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr, |
| 210 | int reg_addr, unsigned int val) |
| 211 | { |
| 212 | int ret; |
| 213 | u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); |
| 214 | |
| 215 | if (mmd_addr) |
| 216 | return -EINVAL; |
| 217 | |
| 218 | mutex_lock(&adapter->mdio_lock); |
| 219 | t3_write_reg(adapter, A_MI1_ADDR, addr); |
| 220 | t3_write_reg(adapter, A_MI1_DATA, val); |
| 221 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); |
| 222 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| 223 | mutex_unlock(&adapter->mdio_lock); |
| 224 | return ret; |
| 225 | } |
| 226 | |
| 227 | static const struct mdio_ops mi1_mdio_ops = { |
| 228 | mi1_read, |
| 229 | mi1_write |
| 230 | }; |
| 231 | |
| 232 | /* |
| 233 | * MI1 read/write operations for indirect-addressed PHYs. |
| 234 | */ |
| 235 | static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr, |
| 236 | int reg_addr, unsigned int *valp) |
| 237 | { |
| 238 | int ret; |
| 239 | u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); |
| 240 | |
| 241 | mutex_lock(&adapter->mdio_lock); |
| 242 | t3_write_reg(adapter, A_MI1_ADDR, addr); |
| 243 | t3_write_reg(adapter, A_MI1_DATA, reg_addr); |
| 244 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); |
| 245 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| 246 | if (!ret) { |
| 247 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); |
| 248 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, |
| 249 | MDIO_ATTEMPTS, 20); |
| 250 | if (!ret) |
| 251 | *valp = t3_read_reg(adapter, A_MI1_DATA); |
| 252 | } |
| 253 | mutex_unlock(&adapter->mdio_lock); |
| 254 | return ret; |
| 255 | } |
| 256 | |
| 257 | static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr, |
| 258 | int reg_addr, unsigned int val) |
| 259 | { |
| 260 | int ret; |
| 261 | u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); |
| 262 | |
| 263 | mutex_lock(&adapter->mdio_lock); |
| 264 | t3_write_reg(adapter, A_MI1_ADDR, addr); |
| 265 | t3_write_reg(adapter, A_MI1_DATA, reg_addr); |
| 266 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); |
| 267 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); |
| 268 | if (!ret) { |
| 269 | t3_write_reg(adapter, A_MI1_DATA, val); |
| 270 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); |
| 271 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, |
| 272 | MDIO_ATTEMPTS, 20); |
| 273 | } |
| 274 | mutex_unlock(&adapter->mdio_lock); |
| 275 | return ret; |
| 276 | } |
| 277 | |
| 278 | static const struct mdio_ops mi1_mdio_ext_ops = { |
| 279 | mi1_ext_read, |
| 280 | mi1_ext_write |
| 281 | }; |
| 282 | |
| 283 | /** |
| 284 | * t3_mdio_change_bits - modify the value of a PHY register |
| 285 | * @phy: the PHY to operate on |
| 286 | * @mmd: the device address |
| 287 | * @reg: the register address |
| 288 | * @clear: what part of the register value to mask off |
| 289 | * @set: what part of the register value to set |
| 290 | * |
| 291 | * Changes the value of a PHY register by applying a mask to its current |
| 292 | * value and ORing the result with a new value. |
| 293 | */ |
| 294 | int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, |
| 295 | unsigned int set) |
| 296 | { |
| 297 | int ret; |
| 298 | unsigned int val; |
| 299 | |
| 300 | ret = mdio_read(phy, mmd, reg, &val); |
| 301 | if (!ret) { |
| 302 | val &= ~clear; |
| 303 | ret = mdio_write(phy, mmd, reg, val | set); |
| 304 | } |
| 305 | return ret; |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * t3_phy_reset - reset a PHY block |
| 310 | * @phy: the PHY to operate on |
| 311 | * @mmd: the device address of the PHY block to reset |
| 312 | * @wait: how long to wait for the reset to complete in 1ms increments |
| 313 | * |
| 314 | * Resets a PHY block and optionally waits for the reset to complete. |
| 315 | * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset |
| 316 | * for 10G PHYs. |
| 317 | */ |
| 318 | int t3_phy_reset(struct cphy *phy, int mmd, int wait) |
| 319 | { |
| 320 | int err; |
| 321 | unsigned int ctl; |
| 322 | |
| 323 | err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET); |
| 324 | if (err || !wait) |
| 325 | return err; |
| 326 | |
| 327 | do { |
| 328 | err = mdio_read(phy, mmd, MII_BMCR, &ctl); |
| 329 | if (err) |
| 330 | return err; |
| 331 | ctl &= BMCR_RESET; |
| 332 | if (ctl) |
| 333 | msleep(1); |
| 334 | } while (ctl && --wait); |
| 335 | |
| 336 | return ctl ? -1 : 0; |
| 337 | } |
| 338 | |
| 339 | /** |
| 340 | * t3_phy_advertise - set the PHY advertisement registers for autoneg |
| 341 | * @phy: the PHY to operate on |
| 342 | * @advert: bitmap of capabilities the PHY should advertise |
| 343 | * |
| 344 | * Sets a 10/100/1000 PHY's advertisement registers to advertise the |
| 345 | * requested capabilities. |
| 346 | */ |
| 347 | int t3_phy_advertise(struct cphy *phy, unsigned int advert) |
| 348 | { |
| 349 | int err; |
| 350 | unsigned int val = 0; |
| 351 | |
| 352 | err = mdio_read(phy, 0, MII_CTRL1000, &val); |
| 353 | if (err) |
| 354 | return err; |
| 355 | |
| 356 | val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); |
| 357 | if (advert & ADVERTISED_1000baseT_Half) |
| 358 | val |= ADVERTISE_1000HALF; |
| 359 | if (advert & ADVERTISED_1000baseT_Full) |
| 360 | val |= ADVERTISE_1000FULL; |
| 361 | |
| 362 | err = mdio_write(phy, 0, MII_CTRL1000, val); |
| 363 | if (err) |
| 364 | return err; |
| 365 | |
| 366 | val = 1; |
| 367 | if (advert & ADVERTISED_10baseT_Half) |
| 368 | val |= ADVERTISE_10HALF; |
| 369 | if (advert & ADVERTISED_10baseT_Full) |
| 370 | val |= ADVERTISE_10FULL; |
| 371 | if (advert & ADVERTISED_100baseT_Half) |
| 372 | val |= ADVERTISE_100HALF; |
| 373 | if (advert & ADVERTISED_100baseT_Full) |
| 374 | val |= ADVERTISE_100FULL; |
| 375 | if (advert & ADVERTISED_Pause) |
| 376 | val |= ADVERTISE_PAUSE_CAP; |
| 377 | if (advert & ADVERTISED_Asym_Pause) |
| 378 | val |= ADVERTISE_PAUSE_ASYM; |
| 379 | return mdio_write(phy, 0, MII_ADVERTISE, val); |
| 380 | } |
| 381 | |
| 382 | /** |
| 383 | * t3_set_phy_speed_duplex - force PHY speed and duplex |
| 384 | * @phy: the PHY to operate on |
| 385 | * @speed: requested PHY speed |
| 386 | * @duplex: requested PHY duplex |
| 387 | * |
| 388 | * Force a 10/100/1000 PHY's speed and duplex. This also disables |
| 389 | * auto-negotiation except for GigE, where auto-negotiation is mandatory. |
| 390 | */ |
| 391 | int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) |
| 392 | { |
| 393 | int err; |
| 394 | unsigned int ctl; |
| 395 | |
| 396 | err = mdio_read(phy, 0, MII_BMCR, &ctl); |
| 397 | if (err) |
| 398 | return err; |
| 399 | |
| 400 | if (speed >= 0) { |
| 401 | ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); |
| 402 | if (speed == SPEED_100) |
| 403 | ctl |= BMCR_SPEED100; |
| 404 | else if (speed == SPEED_1000) |
| 405 | ctl |= BMCR_SPEED1000; |
| 406 | } |
| 407 | if (duplex >= 0) { |
| 408 | ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); |
| 409 | if (duplex == DUPLEX_FULL) |
| 410 | ctl |= BMCR_FULLDPLX; |
| 411 | } |
| 412 | if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ |
| 413 | ctl |= BMCR_ANENABLE; |
| 414 | return mdio_write(phy, 0, MII_BMCR, ctl); |
| 415 | } |
| 416 | |
| 417 | static const struct adapter_info t3_adap_info[] = { |
| 418 | {2, 0, 0, 0, |
| 419 | F_GPIO2_OEN | F_GPIO4_OEN | |
| 420 | F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, |
| 421 | SUPPORTED_OFFLOAD, |
| 422 | &mi1_mdio_ops, "Chelsio PE9000"}, |
| 423 | {2, 0, 0, 0, |
| 424 | F_GPIO2_OEN | F_GPIO4_OEN | |
| 425 | F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, |
| 426 | SUPPORTED_OFFLOAD, |
| 427 | &mi1_mdio_ops, "Chelsio T302"}, |
| 428 | {1, 0, 0, 0, |
| 429 | F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | |
| 430 | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, |
| 431 | SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, |
| 432 | &mi1_mdio_ext_ops, "Chelsio T310"}, |
| 433 | {2, 0, 0, 0, |
| 434 | F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | |
| 435 | F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | |
| 436 | F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, |
| 437 | SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, |
| 438 | &mi1_mdio_ext_ops, "Chelsio T320"}, |
| 439 | }; |
| 440 | |
| 441 | /* |
| 442 | * Return the adapter_info structure with a given index. Out-of-range indices |
| 443 | * return NULL. |
| 444 | */ |
| 445 | const struct adapter_info *t3_get_adapter_info(unsigned int id) |
| 446 | { |
| 447 | return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; |
| 448 | } |
| 449 | |
| 450 | #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \ |
| 451 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII) |
| 452 | #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI) |
| 453 | |
| 454 | static const struct port_type_info port_types[] = { |
| 455 | {NULL}, |
| 456 | {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE, |
| 457 | "10GBASE-XR"}, |
| 458 | {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, |
| 459 | "10/100/1000BASE-T"}, |
| 460 | {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, |
| 461 | "10/100/1000BASE-T"}, |
| 462 | {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, |
| 463 | {NULL, CAPS_10G, "10GBASE-KX4"}, |
| 464 | {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, |
| 465 | {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE, |
| 466 | "10GBASE-SR"}, |
| 467 | {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, |
| 468 | }; |
| 469 | |
| 470 | #undef CAPS_1G |
| 471 | #undef CAPS_10G |
| 472 | |
| 473 | #define VPD_ENTRY(name, len) \ |
| 474 | u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] |
| 475 | |
| 476 | /* |
| 477 | * Partial EEPROM Vital Product Data structure. Includes only the ID and |
| 478 | * VPD-R sections. |
| 479 | */ |
| 480 | struct t3_vpd { |
| 481 | u8 id_tag; |
| 482 | u8 id_len[2]; |
| 483 | u8 id_data[16]; |
| 484 | u8 vpdr_tag; |
| 485 | u8 vpdr_len[2]; |
| 486 | VPD_ENTRY(pn, 16); /* part number */ |
| 487 | VPD_ENTRY(ec, 16); /* EC level */ |
| 488 | VPD_ENTRY(sn, 16); /* serial number */ |
| 489 | VPD_ENTRY(na, 12); /* MAC address base */ |
| 490 | VPD_ENTRY(cclk, 6); /* core clock */ |
| 491 | VPD_ENTRY(mclk, 6); /* mem clock */ |
| 492 | VPD_ENTRY(uclk, 6); /* uP clk */ |
| 493 | VPD_ENTRY(mdc, 6); /* MDIO clk */ |
| 494 | VPD_ENTRY(mt, 2); /* mem timing */ |
| 495 | VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ |
| 496 | VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ |
| 497 | VPD_ENTRY(port0, 2); /* PHY0 complex */ |
| 498 | VPD_ENTRY(port1, 2); /* PHY1 complex */ |
| 499 | VPD_ENTRY(port2, 2); /* PHY2 complex */ |
| 500 | VPD_ENTRY(port3, 2); /* PHY3 complex */ |
| 501 | VPD_ENTRY(rv, 1); /* csum */ |
| 502 | u32 pad; /* for multiple-of-4 sizing and alignment */ |
| 503 | }; |
| 504 | |
| 505 | #define EEPROM_MAX_POLL 4 |
| 506 | #define EEPROM_STAT_ADDR 0x4000 |
| 507 | #define VPD_BASE 0xc00 |
| 508 | |
| 509 | /** |
| 510 | * t3_seeprom_read - read a VPD EEPROM location |
| 511 | * @adapter: adapter to read |
| 512 | * @addr: EEPROM address |
| 513 | * @data: where to store the read data |
| 514 | * |
| 515 | * Read a 32-bit word from a location in VPD EEPROM using the card's PCI |
| 516 | * VPD ROM capability. A zero is written to the flag bit when the |
| 517 | * addres is written to the control register. The hardware device will |
| 518 | * set the flag to 1 when 4 bytes have been read into the data register. |
| 519 | */ |
| 520 | int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) |
| 521 | { |
| 522 | u16 val; |
| 523 | int attempts = EEPROM_MAX_POLL; |
| 524 | unsigned int base = adapter->params.pci.vpd_cap_addr; |
| 525 | |
| 526 | if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) |
| 527 | return -EINVAL; |
| 528 | |
| 529 | pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr); |
| 530 | do { |
| 531 | udelay(10); |
| 532 | pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); |
| 533 | } while (!(val & PCI_VPD_ADDR_F) && --attempts); |
| 534 | |
| 535 | if (!(val & PCI_VPD_ADDR_F)) { |
| 536 | CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); |
| 537 | return -EIO; |
| 538 | } |
| 539 | pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data); |
| 540 | *data = le32_to_cpu(*data); |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | /** |
| 545 | * t3_seeprom_write - write a VPD EEPROM location |
| 546 | * @adapter: adapter to write |
| 547 | * @addr: EEPROM address |
| 548 | * @data: value to write |
| 549 | * |
| 550 | * Write a 32-bit word to a location in VPD EEPROM using the card's PCI |
| 551 | * VPD ROM capability. |
| 552 | */ |
| 553 | int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data) |
| 554 | { |
| 555 | u16 val; |
| 556 | int attempts = EEPROM_MAX_POLL; |
| 557 | unsigned int base = adapter->params.pci.vpd_cap_addr; |
| 558 | |
| 559 | if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) |
| 560 | return -EINVAL; |
| 561 | |
| 562 | pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA, |
| 563 | cpu_to_le32(data)); |
| 564 | pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR, |
| 565 | addr | PCI_VPD_ADDR_F); |
| 566 | do { |
| 567 | msleep(1); |
| 568 | pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); |
| 569 | } while ((val & PCI_VPD_ADDR_F) && --attempts); |
| 570 | |
| 571 | if (val & PCI_VPD_ADDR_F) { |
| 572 | CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); |
| 573 | return -EIO; |
| 574 | } |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | /** |
| 579 | * t3_seeprom_wp - enable/disable EEPROM write protection |
| 580 | * @adapter: the adapter |
| 581 | * @enable: 1 to enable write protection, 0 to disable it |
| 582 | * |
| 583 | * Enables or disables write protection on the serial EEPROM. |
| 584 | */ |
| 585 | int t3_seeprom_wp(struct adapter *adapter, int enable) |
| 586 | { |
| 587 | return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Convert a character holding a hex digit to a number. |
| 592 | */ |
| 593 | static unsigned int hex2int(unsigned char c) |
| 594 | { |
| 595 | return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10; |
| 596 | } |
| 597 | |
| 598 | /** |
| 599 | * get_vpd_params - read VPD parameters from VPD EEPROM |
| 600 | * @adapter: adapter to read |
| 601 | * @p: where to store the parameters |
| 602 | * |
| 603 | * Reads card parameters stored in VPD EEPROM. |
| 604 | */ |
| 605 | static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) |
| 606 | { |
| 607 | int i, addr, ret; |
| 608 | struct t3_vpd vpd; |
| 609 | |
| 610 | /* |
| 611 | * Card information is normally at VPD_BASE but some early cards had |
| 612 | * it at 0. |
| 613 | */ |
| 614 | ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd); |
| 615 | if (ret) |
| 616 | return ret; |
| 617 | addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; |
| 618 | |
| 619 | for (i = 0; i < sizeof(vpd); i += 4) { |
| 620 | ret = t3_seeprom_read(adapter, addr + i, |
| 621 | (u32 *)((u8 *)&vpd + i)); |
| 622 | if (ret) |
| 623 | return ret; |
| 624 | } |
| 625 | |
| 626 | p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10); |
| 627 | p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10); |
| 628 | p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10); |
| 629 | p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10); |
| 630 | p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10); |
| 631 | |
| 632 | /* Old eeproms didn't have port information */ |
| 633 | if (adapter->params.rev == 0 && !vpd.port0_data[0]) { |
| 634 | p->port_type[0] = uses_xaui(adapter) ? 1 : 2; |
| 635 | p->port_type[1] = uses_xaui(adapter) ? 6 : 2; |
| 636 | } else { |
| 637 | p->port_type[0] = hex2int(vpd.port0_data[0]); |
| 638 | p->port_type[1] = hex2int(vpd.port1_data[0]); |
| 639 | p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16); |
| 640 | p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16); |
| 641 | } |
| 642 | |
| 643 | for (i = 0; i < 6; i++) |
| 644 | p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 + |
| 645 | hex2int(vpd.na_data[2 * i + 1]); |
| 646 | return 0; |
| 647 | } |
| 648 | |
| 649 | /* serial flash and firmware constants */ |
| 650 | enum { |
| 651 | SF_ATTEMPTS = 5, /* max retries for SF1 operations */ |
| 652 | SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ |
| 653 | SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ |
| 654 | |
| 655 | /* flash command opcodes */ |
| 656 | SF_PROG_PAGE = 2, /* program page */ |
| 657 | SF_WR_DISABLE = 4, /* disable writes */ |
| 658 | SF_RD_STATUS = 5, /* read status register */ |
| 659 | SF_WR_ENABLE = 6, /* enable writes */ |
| 660 | SF_RD_DATA_FAST = 0xb, /* read flash */ |
| 661 | SF_ERASE_SECTOR = 0xd8, /* erase sector */ |
| 662 | |
| 663 | FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ |
| 664 | FW_VERS_ADDR = 0x77ffc /* flash address holding FW version */ |
| 665 | }; |
| 666 | |
| 667 | /** |
| 668 | * sf1_read - read data from the serial flash |
| 669 | * @adapter: the adapter |
| 670 | * @byte_cnt: number of bytes to read |
| 671 | * @cont: whether another operation will be chained |
| 672 | * @valp: where to store the read data |
| 673 | * |
| 674 | * Reads up to 4 bytes of data from the serial flash. The location of |
| 675 | * the read needs to be specified prior to calling this by issuing the |
| 676 | * appropriate commands to the serial flash. |
| 677 | */ |
| 678 | static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| 679 | u32 *valp) |
| 680 | { |
| 681 | int ret; |
| 682 | |
| 683 | if (!byte_cnt || byte_cnt > 4) |
| 684 | return -EINVAL; |
| 685 | if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) |
| 686 | return -EBUSY; |
| 687 | t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); |
| 688 | ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); |
| 689 | if (!ret) |
| 690 | *valp = t3_read_reg(adapter, A_SF_DATA); |
| 691 | return ret; |
| 692 | } |
| 693 | |
| 694 | /** |
| 695 | * sf1_write - write data to the serial flash |
| 696 | * @adapter: the adapter |
| 697 | * @byte_cnt: number of bytes to write |
| 698 | * @cont: whether another operation will be chained |
| 699 | * @val: value to write |
| 700 | * |
| 701 | * Writes up to 4 bytes of data to the serial flash. The location of |
| 702 | * the write needs to be specified prior to calling this by issuing the |
| 703 | * appropriate commands to the serial flash. |
| 704 | */ |
| 705 | static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| 706 | u32 val) |
| 707 | { |
| 708 | if (!byte_cnt || byte_cnt > 4) |
| 709 | return -EINVAL; |
| 710 | if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) |
| 711 | return -EBUSY; |
| 712 | t3_write_reg(adapter, A_SF_DATA, val); |
| 713 | t3_write_reg(adapter, A_SF_OP, |
| 714 | V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); |
| 715 | return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); |
| 716 | } |
| 717 | |
| 718 | /** |
| 719 | * flash_wait_op - wait for a flash operation to complete |
| 720 | * @adapter: the adapter |
| 721 | * @attempts: max number of polls of the status register |
| 722 | * @delay: delay between polls in ms |
| 723 | * |
| 724 | * Wait for a flash operation to complete by polling the status register. |
| 725 | */ |
| 726 | static int flash_wait_op(struct adapter *adapter, int attempts, int delay) |
| 727 | { |
| 728 | int ret; |
| 729 | u32 status; |
| 730 | |
| 731 | while (1) { |
| 732 | if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || |
| 733 | (ret = sf1_read(adapter, 1, 0, &status)) != 0) |
| 734 | return ret; |
| 735 | if (!(status & 1)) |
| 736 | return 0; |
| 737 | if (--attempts == 0) |
| 738 | return -EAGAIN; |
| 739 | if (delay) |
| 740 | msleep(delay); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | /** |
| 745 | * t3_read_flash - read words from serial flash |
| 746 | * @adapter: the adapter |
| 747 | * @addr: the start address for the read |
| 748 | * @nwords: how many 32-bit words to read |
| 749 | * @data: where to store the read data |
| 750 | * @byte_oriented: whether to store data as bytes or as words |
| 751 | * |
| 752 | * Read the specified number of 32-bit words from the serial flash. |
| 753 | * If @byte_oriented is set the read data is stored as a byte array |
| 754 | * (i.e., big-endian), otherwise as 32-bit words in the platform's |
| 755 | * natural endianess. |
| 756 | */ |
| 757 | int t3_read_flash(struct adapter *adapter, unsigned int addr, |
| 758 | unsigned int nwords, u32 *data, int byte_oriented) |
| 759 | { |
| 760 | int ret; |
| 761 | |
| 762 | if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) |
| 763 | return -EINVAL; |
| 764 | |
| 765 | addr = swab32(addr) | SF_RD_DATA_FAST; |
| 766 | |
| 767 | if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || |
| 768 | (ret = sf1_read(adapter, 1, 1, data)) != 0) |
| 769 | return ret; |
| 770 | |
| 771 | for (; nwords; nwords--, data++) { |
| 772 | ret = sf1_read(adapter, 4, nwords > 1, data); |
| 773 | if (ret) |
| 774 | return ret; |
| 775 | if (byte_oriented) |
| 776 | *data = htonl(*data); |
| 777 | } |
| 778 | return 0; |
| 779 | } |
| 780 | |
| 781 | /** |
| 782 | * t3_write_flash - write up to a page of data to the serial flash |
| 783 | * @adapter: the adapter |
| 784 | * @addr: the start address to write |
| 785 | * @n: length of data to write |
| 786 | * @data: the data to write |
| 787 | * |
| 788 | * Writes up to a page of data (256 bytes) to the serial flash starting |
| 789 | * at the given address. |
| 790 | */ |
| 791 | static int t3_write_flash(struct adapter *adapter, unsigned int addr, |
| 792 | unsigned int n, const u8 *data) |
| 793 | { |
| 794 | int ret; |
| 795 | u32 buf[64]; |
| 796 | unsigned int i, c, left, val, offset = addr & 0xff; |
| 797 | |
| 798 | if (addr + n > SF_SIZE || offset + n > 256) |
| 799 | return -EINVAL; |
| 800 | |
| 801 | val = swab32(addr) | SF_PROG_PAGE; |
| 802 | |
| 803 | if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || |
| 804 | (ret = sf1_write(adapter, 4, 1, val)) != 0) |
| 805 | return ret; |
| 806 | |
| 807 | for (left = n; left; left -= c) { |
| 808 | c = min(left, 4U); |
| 809 | for (val = 0, i = 0; i < c; ++i) |
| 810 | val = (val << 8) + *data++; |
| 811 | |
| 812 | ret = sf1_write(adapter, c, c != left, val); |
| 813 | if (ret) |
| 814 | return ret; |
| 815 | } |
| 816 | if ((ret = flash_wait_op(adapter, 5, 1)) != 0) |
| 817 | return ret; |
| 818 | |
| 819 | /* Read the page to verify the write succeeded */ |
| 820 | ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); |
| 821 | if (ret) |
| 822 | return ret; |
| 823 | |
| 824 | if (memcmp(data - n, (u8 *) buf + offset, n)) |
| 825 | return -EIO; |
| 826 | return 0; |
| 827 | } |
| 828 | |
Divy Le Ray | 4aac389 | 2007-01-30 19:43:45 -0800 | [diff] [blame] | 829 | enum fw_version_type { |
| 830 | FW_VERSION_N3, |
| 831 | FW_VERSION_T3 |
| 832 | }; |
| 833 | |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 834 | /** |
| 835 | * t3_get_fw_version - read the firmware version |
| 836 | * @adapter: the adapter |
| 837 | * @vers: where to place the version |
| 838 | * |
| 839 | * Reads the FW version from flash. |
| 840 | */ |
| 841 | int t3_get_fw_version(struct adapter *adapter, u32 *vers) |
| 842 | { |
| 843 | return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); |
| 844 | } |
| 845 | |
| 846 | /** |
| 847 | * t3_check_fw_version - check if the FW is compatible with this driver |
| 848 | * @adapter: the adapter |
| 849 | * |
| 850 | * Checks if an adapter's FW is compatible with the driver. Returns 0 |
| 851 | * if the versions are compatible, a negative error otherwise. |
| 852 | */ |
| 853 | int t3_check_fw_version(struct adapter *adapter) |
| 854 | { |
| 855 | int ret; |
| 856 | u32 vers; |
Divy Le Ray | 4aac389 | 2007-01-30 19:43:45 -0800 | [diff] [blame] | 857 | unsigned int type, major, minor; |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 858 | |
| 859 | ret = t3_get_fw_version(adapter, &vers); |
| 860 | if (ret) |
| 861 | return ret; |
| 862 | |
Divy Le Ray | 4aac389 | 2007-01-30 19:43:45 -0800 | [diff] [blame] | 863 | type = G_FW_VERSION_TYPE(vers); |
| 864 | major = G_FW_VERSION_MAJOR(vers); |
| 865 | minor = G_FW_VERSION_MINOR(vers); |
| 866 | |
| 867 | if (type == FW_VERSION_T3 && major == 3 && minor == 1) |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 868 | return 0; |
| 869 | |
Divy Le Ray | 4aac389 | 2007-01-30 19:43:45 -0800 | [diff] [blame] | 870 | CH_ERR(adapter, "found wrong FW version(%u.%u), " |
| 871 | "driver needs version 3.1\n", major, minor); |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 872 | return -EINVAL; |
| 873 | } |
| 874 | |
| 875 | /** |
| 876 | * t3_flash_erase_sectors - erase a range of flash sectors |
| 877 | * @adapter: the adapter |
| 878 | * @start: the first sector to erase |
| 879 | * @end: the last sector to erase |
| 880 | * |
| 881 | * Erases the sectors in the given range. |
| 882 | */ |
| 883 | static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end) |
| 884 | { |
| 885 | while (start <= end) { |
| 886 | int ret; |
| 887 | |
| 888 | if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || |
| 889 | (ret = sf1_write(adapter, 4, 0, |
| 890 | SF_ERASE_SECTOR | (start << 8))) != 0 || |
| 891 | (ret = flash_wait_op(adapter, 5, 500)) != 0) |
| 892 | return ret; |
| 893 | start++; |
| 894 | } |
| 895 | return 0; |
| 896 | } |
| 897 | |
| 898 | /* |
| 899 | * t3_load_fw - download firmware |
| 900 | * @adapter: the adapter |
| 901 | * @fw_data: the firrware image to write |
| 902 | * @size: image size |
| 903 | * |
| 904 | * Write the supplied firmware image to the card's serial flash. |
| 905 | * The FW image has the following sections: @size - 8 bytes of code and |
| 906 | * data, followed by 4 bytes of FW version, followed by the 32-bit |
| 907 | * 1's complement checksum of the whole image. |
| 908 | */ |
| 909 | int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size) |
| 910 | { |
| 911 | u32 csum; |
| 912 | unsigned int i; |
| 913 | const u32 *p = (const u32 *)fw_data; |
| 914 | int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; |
| 915 | |
| 916 | if (size & 3) |
| 917 | return -EINVAL; |
| 918 | if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR) |
| 919 | return -EFBIG; |
| 920 | |
| 921 | for (csum = 0, i = 0; i < size / sizeof(csum); i++) |
| 922 | csum += ntohl(p[i]); |
| 923 | if (csum != 0xffffffff) { |
| 924 | CH_ERR(adapter, "corrupted firmware image, checksum %u\n", |
| 925 | csum); |
| 926 | return -EINVAL; |
| 927 | } |
| 928 | |
| 929 | ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); |
| 930 | if (ret) |
| 931 | goto out; |
| 932 | |
| 933 | size -= 8; /* trim off version and checksum */ |
| 934 | for (addr = FW_FLASH_BOOT_ADDR; size;) { |
| 935 | unsigned int chunk_size = min(size, 256U); |
| 936 | |
| 937 | ret = t3_write_flash(adapter, addr, chunk_size, fw_data); |
| 938 | if (ret) |
| 939 | goto out; |
| 940 | |
| 941 | addr += chunk_size; |
| 942 | fw_data += chunk_size; |
| 943 | size -= chunk_size; |
| 944 | } |
| 945 | |
| 946 | ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data); |
| 947 | out: |
| 948 | if (ret) |
| 949 | CH_ERR(adapter, "firmware download failed, error %d\n", ret); |
| 950 | return ret; |
| 951 | } |
| 952 | |
| 953 | #define CIM_CTL_BASE 0x2000 |
| 954 | |
| 955 | /** |
| 956 | * t3_cim_ctl_blk_read - read a block from CIM control region |
| 957 | * |
| 958 | * @adap: the adapter |
| 959 | * @addr: the start address within the CIM control region |
| 960 | * @n: number of words to read |
| 961 | * @valp: where to store the result |
| 962 | * |
| 963 | * Reads a block of 4-byte words from the CIM control region. |
| 964 | */ |
| 965 | int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, |
| 966 | unsigned int n, unsigned int *valp) |
| 967 | { |
| 968 | int ret = 0; |
| 969 | |
| 970 | if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) |
| 971 | return -EBUSY; |
| 972 | |
| 973 | for ( ; !ret && n--; addr += 4) { |
| 974 | t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); |
| 975 | ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, |
| 976 | 0, 5, 2); |
| 977 | if (!ret) |
| 978 | *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); |
| 979 | } |
| 980 | return ret; |
| 981 | } |
| 982 | |
| 983 | |
| 984 | /** |
| 985 | * t3_link_changed - handle interface link changes |
| 986 | * @adapter: the adapter |
| 987 | * @port_id: the port index that changed link state |
| 988 | * |
| 989 | * Called when a port's link settings change to propagate the new values |
| 990 | * to the associated PHY and MAC. After performing the common tasks it |
| 991 | * invokes an OS-specific handler. |
| 992 | */ |
| 993 | void t3_link_changed(struct adapter *adapter, int port_id) |
| 994 | { |
| 995 | int link_ok, speed, duplex, fc; |
| 996 | struct port_info *pi = adap2pinfo(adapter, port_id); |
| 997 | struct cphy *phy = &pi->phy; |
| 998 | struct cmac *mac = &pi->mac; |
| 999 | struct link_config *lc = &pi->link_config; |
| 1000 | |
| 1001 | phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); |
| 1002 | |
| 1003 | if (link_ok != lc->link_ok && adapter->params.rev > 0 && |
| 1004 | uses_xaui(adapter)) { |
| 1005 | if (link_ok) |
| 1006 | t3b_pcs_reset(mac); |
| 1007 | t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, |
| 1008 | link_ok ? F_TXACTENABLE | F_RXEN : 0); |
| 1009 | } |
| 1010 | lc->link_ok = link_ok; |
| 1011 | lc->speed = speed < 0 ? SPEED_INVALID : speed; |
| 1012 | lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; |
| 1013 | if (lc->requested_fc & PAUSE_AUTONEG) |
| 1014 | fc &= lc->requested_fc; |
| 1015 | else |
| 1016 | fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| 1017 | |
| 1018 | if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { |
| 1019 | /* Set MAC speed, duplex, and flow control to match PHY. */ |
| 1020 | t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); |
| 1021 | lc->fc = fc; |
| 1022 | } |
| 1023 | |
| 1024 | t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc); |
| 1025 | } |
| 1026 | |
| 1027 | /** |
| 1028 | * t3_link_start - apply link configuration to MAC/PHY |
| 1029 | * @phy: the PHY to setup |
| 1030 | * @mac: the MAC to setup |
| 1031 | * @lc: the requested link configuration |
| 1032 | * |
| 1033 | * Set up a port's MAC and PHY according to a desired link configuration. |
| 1034 | * - If the PHY can auto-negotiate first decide what to advertise, then |
| 1035 | * enable/disable auto-negotiation as desired, and reset. |
| 1036 | * - If the PHY does not auto-negotiate just reset it. |
| 1037 | * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, |
| 1038 | * otherwise do it later based on the outcome of auto-negotiation. |
| 1039 | */ |
| 1040 | int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) |
| 1041 | { |
| 1042 | unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| 1043 | |
| 1044 | lc->link_ok = 0; |
| 1045 | if (lc->supported & SUPPORTED_Autoneg) { |
| 1046 | lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); |
| 1047 | if (fc) { |
| 1048 | lc->advertising |= ADVERTISED_Asym_Pause; |
| 1049 | if (fc & PAUSE_RX) |
| 1050 | lc->advertising |= ADVERTISED_Pause; |
| 1051 | } |
| 1052 | phy->ops->advertise(phy, lc->advertising); |
| 1053 | |
| 1054 | if (lc->autoneg == AUTONEG_DISABLE) { |
| 1055 | lc->speed = lc->requested_speed; |
| 1056 | lc->duplex = lc->requested_duplex; |
| 1057 | lc->fc = (unsigned char)fc; |
| 1058 | t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, |
| 1059 | fc); |
| 1060 | /* Also disables autoneg */ |
| 1061 | phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); |
| 1062 | phy->ops->reset(phy, 0); |
| 1063 | } else |
| 1064 | phy->ops->autoneg_enable(phy); |
| 1065 | } else { |
| 1066 | t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); |
| 1067 | lc->fc = (unsigned char)fc; |
| 1068 | phy->ops->reset(phy, 0); |
| 1069 | } |
| 1070 | return 0; |
| 1071 | } |
| 1072 | |
| 1073 | /** |
| 1074 | * t3_set_vlan_accel - control HW VLAN extraction |
| 1075 | * @adapter: the adapter |
| 1076 | * @ports: bitmap of adapter ports to operate on |
| 1077 | * @on: enable (1) or disable (0) HW VLAN extraction |
| 1078 | * |
| 1079 | * Enables or disables HW extraction of VLAN tags for the given port. |
| 1080 | */ |
| 1081 | void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on) |
| 1082 | { |
| 1083 | t3_set_reg_field(adapter, A_TP_OUT_CONFIG, |
| 1084 | ports << S_VLANEXTRACTIONENABLE, |
| 1085 | on ? (ports << S_VLANEXTRACTIONENABLE) : 0); |
| 1086 | } |
| 1087 | |
| 1088 | struct intr_info { |
| 1089 | unsigned int mask; /* bits to check in interrupt status */ |
| 1090 | const char *msg; /* message to print or NULL */ |
| 1091 | short stat_idx; /* stat counter to increment or -1 */ |
| 1092 | unsigned short fatal:1; /* whether the condition reported is fatal */ |
| 1093 | }; |
| 1094 | |
| 1095 | /** |
| 1096 | * t3_handle_intr_status - table driven interrupt handler |
| 1097 | * @adapter: the adapter that generated the interrupt |
| 1098 | * @reg: the interrupt status register to process |
| 1099 | * @mask: a mask to apply to the interrupt status |
| 1100 | * @acts: table of interrupt actions |
| 1101 | * @stats: statistics counters tracking interrupt occurences |
| 1102 | * |
| 1103 | * A table driven interrupt handler that applies a set of masks to an |
| 1104 | * interrupt status word and performs the corresponding actions if the |
| 1105 | * interrupts described by the mask have occured. The actions include |
| 1106 | * optionally printing a warning or alert message, and optionally |
| 1107 | * incrementing a stat counter. The table is terminated by an entry |
| 1108 | * specifying mask 0. Returns the number of fatal interrupt conditions. |
| 1109 | */ |
| 1110 | static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg, |
| 1111 | unsigned int mask, |
| 1112 | const struct intr_info *acts, |
| 1113 | unsigned long *stats) |
| 1114 | { |
| 1115 | int fatal = 0; |
| 1116 | unsigned int status = t3_read_reg(adapter, reg) & mask; |
| 1117 | |
| 1118 | for (; acts->mask; ++acts) { |
| 1119 | if (!(status & acts->mask)) |
| 1120 | continue; |
| 1121 | if (acts->fatal) { |
| 1122 | fatal++; |
| 1123 | CH_ALERT(adapter, "%s (0x%x)\n", |
| 1124 | acts->msg, status & acts->mask); |
| 1125 | } else if (acts->msg) |
| 1126 | CH_WARN(adapter, "%s (0x%x)\n", |
| 1127 | acts->msg, status & acts->mask); |
| 1128 | if (acts->stat_idx >= 0) |
| 1129 | stats[acts->stat_idx]++; |
| 1130 | } |
| 1131 | if (status) /* clear processed interrupts */ |
| 1132 | t3_write_reg(adapter, reg, status); |
| 1133 | return fatal; |
| 1134 | } |
| 1135 | |
| 1136 | #define SGE_INTR_MASK (F_RSPQDISABLED) |
| 1137 | #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ |
| 1138 | F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ |
| 1139 | F_NFASRCHFAIL) |
| 1140 | #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) |
| 1141 | #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ |
| 1142 | V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ |
| 1143 | F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW) |
| 1144 | #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ |
| 1145 | F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ |
| 1146 | F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ |
| 1147 | F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ |
| 1148 | V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ |
| 1149 | V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) |
| 1150 | #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ |
| 1151 | F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ |
| 1152 | /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ |
| 1153 | V_BISTERR(M_BISTERR) | F_PEXERR) |
| 1154 | #define ULPRX_INTR_MASK F_PARERR |
| 1155 | #define ULPTX_INTR_MASK 0 |
| 1156 | #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \ |
| 1157 | F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ |
| 1158 | F_ZERO_SWITCH_ERROR) |
| 1159 | #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ |
| 1160 | F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ |
| 1161 | F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ |
| 1162 | F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT) |
| 1163 | #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ |
| 1164 | V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ |
| 1165 | V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) |
| 1166 | #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ |
| 1167 | V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ |
| 1168 | V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) |
| 1169 | #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ |
| 1170 | V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ |
| 1171 | V_RXTPPARERRENB(M_RXTPPARERRENB) | \ |
| 1172 | V_MCAPARERRENB(M_MCAPARERRENB)) |
| 1173 | #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ |
| 1174 | F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ |
| 1175 | F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ |
| 1176 | F_MPS0 | F_CPL_SWITCH) |
| 1177 | |
| 1178 | /* |
| 1179 | * Interrupt handler for the PCIX1 module. |
| 1180 | */ |
| 1181 | static void pci_intr_handler(struct adapter *adapter) |
| 1182 | { |
| 1183 | static const struct intr_info pcix1_intr_info[] = { |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 1184 | {F_MSTDETPARERR, "PCI master detected parity error", -1, 1}, |
| 1185 | {F_SIGTARABT, "PCI signaled target abort", -1, 1}, |
| 1186 | {F_RCVTARABT, "PCI received target abort", -1, 1}, |
| 1187 | {F_RCVMSTABT, "PCI received master abort", -1, 1}, |
| 1188 | {F_SIGSYSERR, "PCI signaled system error", -1, 1}, |
| 1189 | {F_DETPARERR, "PCI detected parity error", -1, 1}, |
| 1190 | {F_SPLCMPDIS, "PCI split completion discarded", -1, 1}, |
| 1191 | {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1}, |
| 1192 | {F_RCVSPLCMPERR, "PCI received split completion error", -1, |
| 1193 | 1}, |
| 1194 | {F_DETCORECCERR, "PCI correctable ECC error", |
| 1195 | STAT_PCI_CORR_ECC, 0}, |
| 1196 | {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1}, |
| 1197 | {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, |
| 1198 | {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, |
| 1199 | 1}, |
| 1200 | {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, |
| 1201 | 1}, |
| 1202 | {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, |
| 1203 | 1}, |
| 1204 | {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " |
| 1205 | "error", -1, 1}, |
| 1206 | {0} |
| 1207 | }; |
| 1208 | |
| 1209 | if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, |
| 1210 | pcix1_intr_info, adapter->irq_stats)) |
| 1211 | t3_fatal_err(adapter); |
| 1212 | } |
| 1213 | |
| 1214 | /* |
| 1215 | * Interrupt handler for the PCIE module. |
| 1216 | */ |
| 1217 | static void pcie_intr_handler(struct adapter *adapter) |
| 1218 | { |
| 1219 | static const struct intr_info pcie_intr_info[] = { |
Divy Le Ray | b5a44bc | 2007-01-30 19:44:01 -0800 | [diff] [blame] | 1220 | {F_PEXERR, "PCI PEX error", -1, 1}, |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 1221 | {F_UNXSPLCPLERRR, |
| 1222 | "PCI unexpected split completion DMA read error", -1, 1}, |
| 1223 | {F_UNXSPLCPLERRC, |
| 1224 | "PCI unexpected split completion DMA command error", -1, 1}, |
| 1225 | {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, |
| 1226 | {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1}, |
| 1227 | {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1}, |
| 1228 | {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1}, |
| 1229 | {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), |
| 1230 | "PCI MSI-X table/PBA parity error", -1, 1}, |
| 1231 | {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1}, |
| 1232 | {0} |
| 1233 | }; |
| 1234 | |
| 1235 | if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, |
| 1236 | pcie_intr_info, adapter->irq_stats)) |
| 1237 | t3_fatal_err(adapter); |
| 1238 | } |
| 1239 | |
| 1240 | /* |
| 1241 | * TP interrupt handler. |
| 1242 | */ |
| 1243 | static void tp_intr_handler(struct adapter *adapter) |
| 1244 | { |
| 1245 | static const struct intr_info tp_intr_info[] = { |
| 1246 | {0xffffff, "TP parity error", -1, 1}, |
| 1247 | {0x1000000, "TP out of Rx pages", -1, 1}, |
| 1248 | {0x2000000, "TP out of Tx pages", -1, 1}, |
| 1249 | {0} |
| 1250 | }; |
| 1251 | |
| 1252 | if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, |
| 1253 | tp_intr_info, NULL)) |
| 1254 | t3_fatal_err(adapter); |
| 1255 | } |
| 1256 | |
| 1257 | /* |
| 1258 | * CIM interrupt handler. |
| 1259 | */ |
| 1260 | static void cim_intr_handler(struct adapter *adapter) |
| 1261 | { |
| 1262 | static const struct intr_info cim_intr_info[] = { |
| 1263 | {F_RSVDSPACEINT, "CIM reserved space write", -1, 1}, |
| 1264 | {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1}, |
| 1265 | {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1}, |
| 1266 | {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1}, |
| 1267 | {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1}, |
| 1268 | {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1}, |
| 1269 | {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1}, |
| 1270 | {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1}, |
| 1271 | {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1}, |
| 1272 | {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1}, |
| 1273 | {F_BLKRDPLINT, "CIM block read from PL space", -1, 1}, |
| 1274 | {F_BLKWRPLINT, "CIM block write to PL space", -1, 1}, |
| 1275 | {0} |
| 1276 | }; |
| 1277 | |
| 1278 | if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff, |
| 1279 | cim_intr_info, NULL)) |
| 1280 | t3_fatal_err(adapter); |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * ULP RX interrupt handler. |
| 1285 | */ |
| 1286 | static void ulprx_intr_handler(struct adapter *adapter) |
| 1287 | { |
| 1288 | static const struct intr_info ulprx_intr_info[] = { |
| 1289 | {F_PARERR, "ULP RX parity error", -1, 1}, |
| 1290 | {0} |
| 1291 | }; |
| 1292 | |
| 1293 | if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, |
| 1294 | ulprx_intr_info, NULL)) |
| 1295 | t3_fatal_err(adapter); |
| 1296 | } |
| 1297 | |
| 1298 | /* |
| 1299 | * ULP TX interrupt handler. |
| 1300 | */ |
| 1301 | static void ulptx_intr_handler(struct adapter *adapter) |
| 1302 | { |
| 1303 | static const struct intr_info ulptx_intr_info[] = { |
| 1304 | {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", |
| 1305 | STAT_ULP_CH0_PBL_OOB, 0}, |
| 1306 | {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", |
| 1307 | STAT_ULP_CH1_PBL_OOB, 0}, |
| 1308 | {0} |
| 1309 | }; |
| 1310 | |
| 1311 | if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, |
| 1312 | ulptx_intr_info, adapter->irq_stats)) |
| 1313 | t3_fatal_err(adapter); |
| 1314 | } |
| 1315 | |
| 1316 | #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ |
| 1317 | F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ |
| 1318 | F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ |
| 1319 | F_ICSPI1_TX_FRAMING_ERROR) |
| 1320 | #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ |
| 1321 | F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ |
| 1322 | F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ |
| 1323 | F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) |
| 1324 | |
| 1325 | /* |
| 1326 | * PM TX interrupt handler. |
| 1327 | */ |
| 1328 | static void pmtx_intr_handler(struct adapter *adapter) |
| 1329 | { |
| 1330 | static const struct intr_info pmtx_intr_info[] = { |
| 1331 | {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1}, |
| 1332 | {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1}, |
| 1333 | {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1}, |
| 1334 | {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), |
| 1335 | "PMTX ispi parity error", -1, 1}, |
| 1336 | {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), |
| 1337 | "PMTX ospi parity error", -1, 1}, |
| 1338 | {0} |
| 1339 | }; |
| 1340 | |
| 1341 | if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, |
| 1342 | pmtx_intr_info, NULL)) |
| 1343 | t3_fatal_err(adapter); |
| 1344 | } |
| 1345 | |
| 1346 | #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ |
| 1347 | F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ |
| 1348 | F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ |
| 1349 | F_IESPI1_TX_FRAMING_ERROR) |
| 1350 | #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ |
| 1351 | F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ |
| 1352 | F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ |
| 1353 | F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) |
| 1354 | |
| 1355 | /* |
| 1356 | * PM RX interrupt handler. |
| 1357 | */ |
| 1358 | static void pmrx_intr_handler(struct adapter *adapter) |
| 1359 | { |
| 1360 | static const struct intr_info pmrx_intr_info[] = { |
| 1361 | {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1}, |
| 1362 | {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1}, |
| 1363 | {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1}, |
| 1364 | {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), |
| 1365 | "PMRX ispi parity error", -1, 1}, |
| 1366 | {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), |
| 1367 | "PMRX ospi parity error", -1, 1}, |
| 1368 | {0} |
| 1369 | }; |
| 1370 | |
| 1371 | if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, |
| 1372 | pmrx_intr_info, NULL)) |
| 1373 | t3_fatal_err(adapter); |
| 1374 | } |
| 1375 | |
| 1376 | /* |
| 1377 | * CPL switch interrupt handler. |
| 1378 | */ |
| 1379 | static void cplsw_intr_handler(struct adapter *adapter) |
| 1380 | { |
| 1381 | static const struct intr_info cplsw_intr_info[] = { |
| 1382 | /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */ |
| 1383 | {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1}, |
| 1384 | {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1}, |
| 1385 | {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1}, |
| 1386 | {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1}, |
| 1387 | {0} |
| 1388 | }; |
| 1389 | |
| 1390 | if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, |
| 1391 | cplsw_intr_info, NULL)) |
| 1392 | t3_fatal_err(adapter); |
| 1393 | } |
| 1394 | |
| 1395 | /* |
| 1396 | * MPS interrupt handler. |
| 1397 | */ |
| 1398 | static void mps_intr_handler(struct adapter *adapter) |
| 1399 | { |
| 1400 | static const struct intr_info mps_intr_info[] = { |
| 1401 | {0x1ff, "MPS parity error", -1, 1}, |
| 1402 | {0} |
| 1403 | }; |
| 1404 | |
| 1405 | if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, |
| 1406 | mps_intr_info, NULL)) |
| 1407 | t3_fatal_err(adapter); |
| 1408 | } |
| 1409 | |
| 1410 | #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) |
| 1411 | |
| 1412 | /* |
| 1413 | * MC7 interrupt handler. |
| 1414 | */ |
| 1415 | static void mc7_intr_handler(struct mc7 *mc7) |
| 1416 | { |
| 1417 | struct adapter *adapter = mc7->adapter; |
| 1418 | u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); |
| 1419 | |
| 1420 | if (cause & F_CE) { |
| 1421 | mc7->stats.corr_err++; |
| 1422 | CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " |
| 1423 | "data 0x%x 0x%x 0x%x\n", mc7->name, |
| 1424 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), |
| 1425 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), |
| 1426 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), |
| 1427 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); |
| 1428 | } |
| 1429 | |
| 1430 | if (cause & F_UE) { |
| 1431 | mc7->stats.uncorr_err++; |
| 1432 | CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " |
| 1433 | "data 0x%x 0x%x 0x%x\n", mc7->name, |
| 1434 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), |
| 1435 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), |
| 1436 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), |
| 1437 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); |
| 1438 | } |
| 1439 | |
| 1440 | if (G_PE(cause)) { |
| 1441 | mc7->stats.parity_err++; |
| 1442 | CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", |
| 1443 | mc7->name, G_PE(cause)); |
| 1444 | } |
| 1445 | |
| 1446 | if (cause & F_AE) { |
| 1447 | u32 addr = 0; |
| 1448 | |
| 1449 | if (adapter->params.rev > 0) |
| 1450 | addr = t3_read_reg(adapter, |
| 1451 | mc7->offset + A_MC7_ERR_ADDR); |
| 1452 | mc7->stats.addr_err++; |
| 1453 | CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", |
| 1454 | mc7->name, addr); |
| 1455 | } |
| 1456 | |
| 1457 | if (cause & MC7_INTR_FATAL) |
| 1458 | t3_fatal_err(adapter); |
| 1459 | |
| 1460 | t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); |
| 1461 | } |
| 1462 | |
| 1463 | #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ |
| 1464 | V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) |
| 1465 | /* |
| 1466 | * XGMAC interrupt handler. |
| 1467 | */ |
| 1468 | static int mac_intr_handler(struct adapter *adap, unsigned int idx) |
| 1469 | { |
| 1470 | struct cmac *mac = &adap2pinfo(adap, idx)->mac; |
| 1471 | u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset); |
| 1472 | |
| 1473 | if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { |
| 1474 | mac->stats.tx_fifo_parity_err++; |
| 1475 | CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); |
| 1476 | } |
| 1477 | if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { |
| 1478 | mac->stats.rx_fifo_parity_err++; |
| 1479 | CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); |
| 1480 | } |
| 1481 | if (cause & F_TXFIFO_UNDERRUN) |
| 1482 | mac->stats.tx_fifo_urun++; |
| 1483 | if (cause & F_RXFIFO_OVERFLOW) |
| 1484 | mac->stats.rx_fifo_ovfl++; |
| 1485 | if (cause & V_SERDES_LOS(M_SERDES_LOS)) |
| 1486 | mac->stats.serdes_signal_loss++; |
| 1487 | if (cause & F_XAUIPCSCTCERR) |
| 1488 | mac->stats.xaui_pcs_ctc_err++; |
| 1489 | if (cause & F_XAUIPCSALIGNCHANGE) |
| 1490 | mac->stats.xaui_pcs_align_change++; |
| 1491 | |
| 1492 | t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); |
| 1493 | if (cause & XGM_INTR_FATAL) |
| 1494 | t3_fatal_err(adap); |
| 1495 | return cause != 0; |
| 1496 | } |
| 1497 | |
| 1498 | /* |
| 1499 | * Interrupt handler for PHY events. |
| 1500 | */ |
| 1501 | int t3_phy_intr_handler(struct adapter *adapter) |
| 1502 | { |
| 1503 | static const int intr_gpio_bits[] = { 8, 0x20 }; |
| 1504 | |
| 1505 | u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); |
| 1506 | |
| 1507 | for_each_port(adapter, i) { |
| 1508 | if (cause & intr_gpio_bits[i]) { |
| 1509 | struct cphy *phy = &adap2pinfo(adapter, i)->phy; |
| 1510 | int phy_cause = phy->ops->intr_handler(phy); |
| 1511 | |
| 1512 | if (phy_cause & cphy_cause_link_change) |
| 1513 | t3_link_changed(adapter, i); |
| 1514 | if (phy_cause & cphy_cause_fifo_error) |
| 1515 | phy->fifo_errors++; |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); |
| 1520 | return 0; |
| 1521 | } |
| 1522 | |
| 1523 | /* |
| 1524 | * T3 slow path (non-data) interrupt handler. |
| 1525 | */ |
| 1526 | int t3_slow_intr_handler(struct adapter *adapter) |
| 1527 | { |
| 1528 | u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); |
| 1529 | |
| 1530 | cause &= adapter->slow_intr_mask; |
| 1531 | if (!cause) |
| 1532 | return 0; |
| 1533 | if (cause & F_PCIM0) { |
| 1534 | if (is_pcie(adapter)) |
| 1535 | pcie_intr_handler(adapter); |
| 1536 | else |
| 1537 | pci_intr_handler(adapter); |
| 1538 | } |
| 1539 | if (cause & F_SGE3) |
| 1540 | t3_sge_err_intr_handler(adapter); |
| 1541 | if (cause & F_MC7_PMRX) |
| 1542 | mc7_intr_handler(&adapter->pmrx); |
| 1543 | if (cause & F_MC7_PMTX) |
| 1544 | mc7_intr_handler(&adapter->pmtx); |
| 1545 | if (cause & F_MC7_CM) |
| 1546 | mc7_intr_handler(&adapter->cm); |
| 1547 | if (cause & F_CIM) |
| 1548 | cim_intr_handler(adapter); |
| 1549 | if (cause & F_TP1) |
| 1550 | tp_intr_handler(adapter); |
| 1551 | if (cause & F_ULP2_RX) |
| 1552 | ulprx_intr_handler(adapter); |
| 1553 | if (cause & F_ULP2_TX) |
| 1554 | ulptx_intr_handler(adapter); |
| 1555 | if (cause & F_PM1_RX) |
| 1556 | pmrx_intr_handler(adapter); |
| 1557 | if (cause & F_PM1_TX) |
| 1558 | pmtx_intr_handler(adapter); |
| 1559 | if (cause & F_CPL_SWITCH) |
| 1560 | cplsw_intr_handler(adapter); |
| 1561 | if (cause & F_MPS0) |
| 1562 | mps_intr_handler(adapter); |
| 1563 | if (cause & F_MC5A) |
| 1564 | t3_mc5_intr_handler(&adapter->mc5); |
| 1565 | if (cause & F_XGMAC0_0) |
| 1566 | mac_intr_handler(adapter, 0); |
| 1567 | if (cause & F_XGMAC0_1) |
| 1568 | mac_intr_handler(adapter, 1); |
| 1569 | if (cause & F_T3DBG) |
| 1570 | t3_os_ext_intr_handler(adapter); |
| 1571 | |
| 1572 | /* Clear the interrupts just processed. */ |
| 1573 | t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); |
| 1574 | t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ |
| 1575 | return 1; |
| 1576 | } |
| 1577 | |
| 1578 | /** |
| 1579 | * t3_intr_enable - enable interrupts |
| 1580 | * @adapter: the adapter whose interrupts should be enabled |
| 1581 | * |
| 1582 | * Enable interrupts by setting the interrupt enable registers of the |
| 1583 | * various HW modules and then enabling the top-level interrupt |
| 1584 | * concentrator. |
| 1585 | */ |
| 1586 | void t3_intr_enable(struct adapter *adapter) |
| 1587 | { |
| 1588 | static const struct addr_val_pair intr_en_avp[] = { |
| 1589 | {A_SG_INT_ENABLE, SGE_INTR_MASK}, |
| 1590 | {A_MC7_INT_ENABLE, MC7_INTR_MASK}, |
| 1591 | {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, |
| 1592 | MC7_INTR_MASK}, |
| 1593 | {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, |
| 1594 | MC7_INTR_MASK}, |
| 1595 | {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK}, |
| 1596 | {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK}, |
| 1597 | {A_TP_INT_ENABLE, 0x3bfffff}, |
| 1598 | {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK}, |
| 1599 | {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK}, |
| 1600 | {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK}, |
| 1601 | {A_MPS_INT_ENABLE, MPS_INTR_MASK}, |
| 1602 | }; |
| 1603 | |
| 1604 | adapter->slow_intr_mask = PL_INTR_MASK; |
| 1605 | |
| 1606 | t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); |
| 1607 | |
| 1608 | if (adapter->params.rev > 0) { |
| 1609 | t3_write_reg(adapter, A_CPL_INTR_ENABLE, |
| 1610 | CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); |
| 1611 | t3_write_reg(adapter, A_ULPTX_INT_ENABLE, |
| 1612 | ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | |
| 1613 | F_PBL_BOUND_ERR_CH1); |
| 1614 | } else { |
| 1615 | t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); |
| 1616 | t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); |
| 1617 | } |
| 1618 | |
| 1619 | t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, |
| 1620 | adapter_info(adapter)->gpio_intr); |
| 1621 | t3_write_reg(adapter, A_T3DBG_INT_ENABLE, |
| 1622 | adapter_info(adapter)->gpio_intr); |
| 1623 | if (is_pcie(adapter)) |
| 1624 | t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); |
| 1625 | else |
| 1626 | t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); |
| 1627 | t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); |
| 1628 | t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ |
| 1629 | } |
| 1630 | |
| 1631 | /** |
| 1632 | * t3_intr_disable - disable a card's interrupts |
| 1633 | * @adapter: the adapter whose interrupts should be disabled |
| 1634 | * |
| 1635 | * Disable interrupts. We only disable the top-level interrupt |
| 1636 | * concentrator and the SGE data interrupts. |
| 1637 | */ |
| 1638 | void t3_intr_disable(struct adapter *adapter) |
| 1639 | { |
| 1640 | t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); |
| 1641 | t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ |
| 1642 | adapter->slow_intr_mask = 0; |
| 1643 | } |
| 1644 | |
| 1645 | /** |
| 1646 | * t3_intr_clear - clear all interrupts |
| 1647 | * @adapter: the adapter whose interrupts should be cleared |
| 1648 | * |
| 1649 | * Clears all interrupts. |
| 1650 | */ |
| 1651 | void t3_intr_clear(struct adapter *adapter) |
| 1652 | { |
| 1653 | static const unsigned int cause_reg_addr[] = { |
| 1654 | A_SG_INT_CAUSE, |
| 1655 | A_SG_RSPQ_FL_STATUS, |
| 1656 | A_PCIX_INT_CAUSE, |
| 1657 | A_MC7_INT_CAUSE, |
| 1658 | A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, |
| 1659 | A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, |
| 1660 | A_CIM_HOST_INT_CAUSE, |
| 1661 | A_TP_INT_CAUSE, |
| 1662 | A_MC5_DB_INT_CAUSE, |
| 1663 | A_ULPRX_INT_CAUSE, |
| 1664 | A_ULPTX_INT_CAUSE, |
| 1665 | A_CPL_INTR_CAUSE, |
| 1666 | A_PM1_TX_INT_CAUSE, |
| 1667 | A_PM1_RX_INT_CAUSE, |
| 1668 | A_MPS_INT_CAUSE, |
| 1669 | A_T3DBG_INT_CAUSE, |
| 1670 | }; |
| 1671 | unsigned int i; |
| 1672 | |
| 1673 | /* Clear PHY and MAC interrupts for each port. */ |
| 1674 | for_each_port(adapter, i) |
| 1675 | t3_port_intr_clear(adapter, i); |
| 1676 | |
| 1677 | for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) |
| 1678 | t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); |
| 1679 | |
| 1680 | t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); |
| 1681 | t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ |
| 1682 | } |
| 1683 | |
| 1684 | /** |
| 1685 | * t3_port_intr_enable - enable port-specific interrupts |
| 1686 | * @adapter: associated adapter |
| 1687 | * @idx: index of port whose interrupts should be enabled |
| 1688 | * |
| 1689 | * Enable port-specific (i.e., MAC and PHY) interrupts for the given |
| 1690 | * adapter port. |
| 1691 | */ |
| 1692 | void t3_port_intr_enable(struct adapter *adapter, int idx) |
| 1693 | { |
| 1694 | struct cphy *phy = &adap2pinfo(adapter, idx)->phy; |
| 1695 | |
| 1696 | t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK); |
| 1697 | t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ |
| 1698 | phy->ops->intr_enable(phy); |
| 1699 | } |
| 1700 | |
| 1701 | /** |
| 1702 | * t3_port_intr_disable - disable port-specific interrupts |
| 1703 | * @adapter: associated adapter |
| 1704 | * @idx: index of port whose interrupts should be disabled |
| 1705 | * |
| 1706 | * Disable port-specific (i.e., MAC and PHY) interrupts for the given |
| 1707 | * adapter port. |
| 1708 | */ |
| 1709 | void t3_port_intr_disable(struct adapter *adapter, int idx) |
| 1710 | { |
| 1711 | struct cphy *phy = &adap2pinfo(adapter, idx)->phy; |
| 1712 | |
| 1713 | t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0); |
| 1714 | t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ |
| 1715 | phy->ops->intr_disable(phy); |
| 1716 | } |
| 1717 | |
| 1718 | /** |
| 1719 | * t3_port_intr_clear - clear port-specific interrupts |
| 1720 | * @adapter: associated adapter |
| 1721 | * @idx: index of port whose interrupts to clear |
| 1722 | * |
| 1723 | * Clear port-specific (i.e., MAC and PHY) interrupts for the given |
| 1724 | * adapter port. |
| 1725 | */ |
| 1726 | void t3_port_intr_clear(struct adapter *adapter, int idx) |
| 1727 | { |
| 1728 | struct cphy *phy = &adap2pinfo(adapter, idx)->phy; |
| 1729 | |
| 1730 | t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff); |
| 1731 | t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */ |
| 1732 | phy->ops->intr_clear(phy); |
| 1733 | } |
| 1734 | |
| 1735 | /** |
| 1736 | * t3_sge_write_context - write an SGE context |
| 1737 | * @adapter: the adapter |
| 1738 | * @id: the context id |
| 1739 | * @type: the context type |
| 1740 | * |
| 1741 | * Program an SGE context with the values already loaded in the |
| 1742 | * CONTEXT_DATA? registers. |
| 1743 | */ |
| 1744 | static int t3_sge_write_context(struct adapter *adapter, unsigned int id, |
| 1745 | unsigned int type) |
| 1746 | { |
| 1747 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); |
| 1748 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); |
| 1749 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); |
| 1750 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); |
| 1751 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| 1752 | V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); |
| 1753 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 1754 | 0, 5, 1); |
| 1755 | } |
| 1756 | |
| 1757 | /** |
| 1758 | * t3_sge_init_ecntxt - initialize an SGE egress context |
| 1759 | * @adapter: the adapter to configure |
| 1760 | * @id: the context id |
| 1761 | * @gts_enable: whether to enable GTS for the context |
| 1762 | * @type: the egress context type |
| 1763 | * @respq: associated response queue |
| 1764 | * @base_addr: base address of queue |
| 1765 | * @size: number of queue entries |
| 1766 | * @token: uP token |
| 1767 | * @gen: initial generation value for the context |
| 1768 | * @cidx: consumer pointer |
| 1769 | * |
| 1770 | * Initialize an SGE egress context and make it ready for use. If the |
| 1771 | * platform allows concurrent context operations, the caller is |
| 1772 | * responsible for appropriate locking. |
| 1773 | */ |
| 1774 | int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, |
| 1775 | enum sge_context_type type, int respq, u64 base_addr, |
| 1776 | unsigned int size, unsigned int token, int gen, |
| 1777 | unsigned int cidx) |
| 1778 | { |
| 1779 | unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; |
| 1780 | |
| 1781 | if (base_addr & 0xfff) /* must be 4K aligned */ |
| 1782 | return -EINVAL; |
| 1783 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 1784 | return -EBUSY; |
| 1785 | |
| 1786 | base_addr >>= 12; |
| 1787 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | |
| 1788 | V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); |
| 1789 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | |
| 1790 | V_EC_BASE_LO(base_addr & 0xffff)); |
| 1791 | base_addr >>= 16; |
| 1792 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr); |
| 1793 | base_addr >>= 32; |
| 1794 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, |
| 1795 | V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) | |
| 1796 | V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | |
| 1797 | F_EC_VALID); |
| 1798 | return t3_sge_write_context(adapter, id, F_EGRESS); |
| 1799 | } |
| 1800 | |
| 1801 | /** |
| 1802 | * t3_sge_init_flcntxt - initialize an SGE free-buffer list context |
| 1803 | * @adapter: the adapter to configure |
| 1804 | * @id: the context id |
| 1805 | * @gts_enable: whether to enable GTS for the context |
| 1806 | * @base_addr: base address of queue |
| 1807 | * @size: number of queue entries |
| 1808 | * @bsize: size of each buffer for this queue |
| 1809 | * @cong_thres: threshold to signal congestion to upstream producers |
| 1810 | * @gen: initial generation value for the context |
| 1811 | * @cidx: consumer pointer |
| 1812 | * |
| 1813 | * Initialize an SGE free list context and make it ready for use. The |
| 1814 | * caller is responsible for ensuring only one context operation occurs |
| 1815 | * at a time. |
| 1816 | */ |
| 1817 | int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, |
| 1818 | int gts_enable, u64 base_addr, unsigned int size, |
| 1819 | unsigned int bsize, unsigned int cong_thres, int gen, |
| 1820 | unsigned int cidx) |
| 1821 | { |
| 1822 | if (base_addr & 0xfff) /* must be 4K aligned */ |
| 1823 | return -EINVAL; |
| 1824 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 1825 | return -EBUSY; |
| 1826 | |
| 1827 | base_addr >>= 12; |
| 1828 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr); |
| 1829 | base_addr >>= 32; |
| 1830 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, |
| 1831 | V_FL_BASE_HI((u32) base_addr) | |
| 1832 | V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); |
| 1833 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | |
| 1834 | V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | |
| 1835 | V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); |
| 1836 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, |
| 1837 | V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | |
| 1838 | V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); |
| 1839 | return t3_sge_write_context(adapter, id, F_FREELIST); |
| 1840 | } |
| 1841 | |
| 1842 | /** |
| 1843 | * t3_sge_init_rspcntxt - initialize an SGE response queue context |
| 1844 | * @adapter: the adapter to configure |
| 1845 | * @id: the context id |
| 1846 | * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ |
| 1847 | * @base_addr: base address of queue |
| 1848 | * @size: number of queue entries |
| 1849 | * @fl_thres: threshold for selecting the normal or jumbo free list |
| 1850 | * @gen: initial generation value for the context |
| 1851 | * @cidx: consumer pointer |
| 1852 | * |
| 1853 | * Initialize an SGE response queue context and make it ready for use. |
| 1854 | * The caller is responsible for ensuring only one context operation |
| 1855 | * occurs at a time. |
| 1856 | */ |
| 1857 | int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, |
| 1858 | int irq_vec_idx, u64 base_addr, unsigned int size, |
| 1859 | unsigned int fl_thres, int gen, unsigned int cidx) |
| 1860 | { |
| 1861 | unsigned int intr = 0; |
| 1862 | |
| 1863 | if (base_addr & 0xfff) /* must be 4K aligned */ |
| 1864 | return -EINVAL; |
| 1865 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 1866 | return -EBUSY; |
| 1867 | |
| 1868 | base_addr >>= 12; |
| 1869 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | |
| 1870 | V_CQ_INDEX(cidx)); |
| 1871 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); |
| 1872 | base_addr >>= 32; |
| 1873 | if (irq_vec_idx >= 0) |
| 1874 | intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN; |
| 1875 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, |
| 1876 | V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen)); |
| 1877 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); |
| 1878 | return t3_sge_write_context(adapter, id, F_RESPONSEQ); |
| 1879 | } |
| 1880 | |
| 1881 | /** |
| 1882 | * t3_sge_init_cqcntxt - initialize an SGE completion queue context |
| 1883 | * @adapter: the adapter to configure |
| 1884 | * @id: the context id |
| 1885 | * @base_addr: base address of queue |
| 1886 | * @size: number of queue entries |
| 1887 | * @rspq: response queue for async notifications |
| 1888 | * @ovfl_mode: CQ overflow mode |
| 1889 | * @credits: completion queue credits |
| 1890 | * @credit_thres: the credit threshold |
| 1891 | * |
| 1892 | * Initialize an SGE completion queue context and make it ready for use. |
| 1893 | * The caller is responsible for ensuring only one context operation |
| 1894 | * occurs at a time. |
| 1895 | */ |
| 1896 | int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, |
| 1897 | unsigned int size, int rspq, int ovfl_mode, |
| 1898 | unsigned int credits, unsigned int credit_thres) |
| 1899 | { |
| 1900 | if (base_addr & 0xfff) /* must be 4K aligned */ |
| 1901 | return -EINVAL; |
| 1902 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 1903 | return -EBUSY; |
| 1904 | |
| 1905 | base_addr >>= 12; |
| 1906 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); |
| 1907 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); |
| 1908 | base_addr >>= 32; |
| 1909 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, |
| 1910 | V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) | |
| 1911 | V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode)); |
| 1912 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | |
| 1913 | V_CQ_CREDIT_THRES(credit_thres)); |
| 1914 | return t3_sge_write_context(adapter, id, F_CQ); |
| 1915 | } |
| 1916 | |
| 1917 | /** |
| 1918 | * t3_sge_enable_ecntxt - enable/disable an SGE egress context |
| 1919 | * @adapter: the adapter |
| 1920 | * @id: the egress context id |
| 1921 | * @enable: enable (1) or disable (0) the context |
| 1922 | * |
| 1923 | * Enable or disable an SGE egress context. The caller is responsible for |
| 1924 | * ensuring only one context operation occurs at a time. |
| 1925 | */ |
| 1926 | int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable) |
| 1927 | { |
| 1928 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 1929 | return -EBUSY; |
| 1930 | |
| 1931 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); |
| 1932 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| 1933 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); |
| 1934 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); |
| 1935 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); |
| 1936 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| 1937 | V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); |
| 1938 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 1939 | 0, 5, 1); |
| 1940 | } |
| 1941 | |
| 1942 | /** |
| 1943 | * t3_sge_disable_fl - disable an SGE free-buffer list |
| 1944 | * @adapter: the adapter |
| 1945 | * @id: the free list context id |
| 1946 | * |
| 1947 | * Disable an SGE free-buffer list. The caller is responsible for |
| 1948 | * ensuring only one context operation occurs at a time. |
| 1949 | */ |
| 1950 | int t3_sge_disable_fl(struct adapter *adapter, unsigned int id) |
| 1951 | { |
| 1952 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 1953 | return -EBUSY; |
| 1954 | |
| 1955 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); |
| 1956 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| 1957 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); |
| 1958 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); |
| 1959 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); |
| 1960 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| 1961 | V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); |
| 1962 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 1963 | 0, 5, 1); |
| 1964 | } |
| 1965 | |
| 1966 | /** |
| 1967 | * t3_sge_disable_rspcntxt - disable an SGE response queue |
| 1968 | * @adapter: the adapter |
| 1969 | * @id: the response queue context id |
| 1970 | * |
| 1971 | * Disable an SGE response queue. The caller is responsible for |
| 1972 | * ensuring only one context operation occurs at a time. |
| 1973 | */ |
| 1974 | int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id) |
| 1975 | { |
| 1976 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 1977 | return -EBUSY; |
| 1978 | |
| 1979 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); |
| 1980 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| 1981 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); |
| 1982 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); |
| 1983 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); |
| 1984 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| 1985 | V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); |
| 1986 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 1987 | 0, 5, 1); |
| 1988 | } |
| 1989 | |
| 1990 | /** |
| 1991 | * t3_sge_disable_cqcntxt - disable an SGE completion queue |
| 1992 | * @adapter: the adapter |
| 1993 | * @id: the completion queue context id |
| 1994 | * |
| 1995 | * Disable an SGE completion queue. The caller is responsible for |
| 1996 | * ensuring only one context operation occurs at a time. |
| 1997 | */ |
| 1998 | int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id) |
| 1999 | { |
| 2000 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 2001 | return -EBUSY; |
| 2002 | |
| 2003 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); |
| 2004 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); |
| 2005 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); |
| 2006 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); |
| 2007 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); |
| 2008 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| 2009 | V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); |
| 2010 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 2011 | 0, 5, 1); |
| 2012 | } |
| 2013 | |
| 2014 | /** |
| 2015 | * t3_sge_cqcntxt_op - perform an operation on a completion queue context |
| 2016 | * @adapter: the adapter |
| 2017 | * @id: the context id |
| 2018 | * @op: the operation to perform |
| 2019 | * |
| 2020 | * Perform the selected operation on an SGE completion queue context. |
| 2021 | * The caller is responsible for ensuring only one context operation |
| 2022 | * occurs at a time. |
| 2023 | */ |
| 2024 | int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, |
| 2025 | unsigned int credits) |
| 2026 | { |
| 2027 | u32 val; |
| 2028 | |
| 2029 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 2030 | return -EBUSY; |
| 2031 | |
| 2032 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); |
| 2033 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | |
| 2034 | V_CONTEXT(id) | F_CQ); |
| 2035 | if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, |
| 2036 | 0, 5, 1, &val)) |
| 2037 | return -EIO; |
| 2038 | |
| 2039 | if (op >= 2 && op < 7) { |
| 2040 | if (adapter->params.rev > 0) |
| 2041 | return G_CQ_INDEX(val); |
| 2042 | |
| 2043 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| 2044 | V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); |
| 2045 | if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, |
| 2046 | F_CONTEXT_CMD_BUSY, 0, 5, 1)) |
| 2047 | return -EIO; |
| 2048 | return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); |
| 2049 | } |
| 2050 | return 0; |
| 2051 | } |
| 2052 | |
| 2053 | /** |
| 2054 | * t3_sge_read_context - read an SGE context |
| 2055 | * @type: the context type |
| 2056 | * @adapter: the adapter |
| 2057 | * @id: the context id |
| 2058 | * @data: holds the retrieved context |
| 2059 | * |
| 2060 | * Read an SGE egress context. The caller is responsible for ensuring |
| 2061 | * only one context operation occurs at a time. |
| 2062 | */ |
| 2063 | static int t3_sge_read_context(unsigned int type, struct adapter *adapter, |
| 2064 | unsigned int id, u32 data[4]) |
| 2065 | { |
| 2066 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) |
| 2067 | return -EBUSY; |
| 2068 | |
| 2069 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, |
| 2070 | V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id)); |
| 2071 | if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, |
| 2072 | 5, 1)) |
| 2073 | return -EIO; |
| 2074 | data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0); |
| 2075 | data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1); |
| 2076 | data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2); |
| 2077 | data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3); |
| 2078 | return 0; |
| 2079 | } |
| 2080 | |
| 2081 | /** |
| 2082 | * t3_sge_read_ecntxt - read an SGE egress context |
| 2083 | * @adapter: the adapter |
| 2084 | * @id: the context id |
| 2085 | * @data: holds the retrieved context |
| 2086 | * |
| 2087 | * Read an SGE egress context. The caller is responsible for ensuring |
| 2088 | * only one context operation occurs at a time. |
| 2089 | */ |
| 2090 | int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4]) |
| 2091 | { |
| 2092 | if (id >= 65536) |
| 2093 | return -EINVAL; |
| 2094 | return t3_sge_read_context(F_EGRESS, adapter, id, data); |
| 2095 | } |
| 2096 | |
| 2097 | /** |
| 2098 | * t3_sge_read_cq - read an SGE CQ context |
| 2099 | * @adapter: the adapter |
| 2100 | * @id: the context id |
| 2101 | * @data: holds the retrieved context |
| 2102 | * |
| 2103 | * Read an SGE CQ context. The caller is responsible for ensuring |
| 2104 | * only one context operation occurs at a time. |
| 2105 | */ |
| 2106 | int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4]) |
| 2107 | { |
| 2108 | if (id >= 65536) |
| 2109 | return -EINVAL; |
| 2110 | return t3_sge_read_context(F_CQ, adapter, id, data); |
| 2111 | } |
| 2112 | |
| 2113 | /** |
| 2114 | * t3_sge_read_fl - read an SGE free-list context |
| 2115 | * @adapter: the adapter |
| 2116 | * @id: the context id |
| 2117 | * @data: holds the retrieved context |
| 2118 | * |
| 2119 | * Read an SGE free-list context. The caller is responsible for ensuring |
| 2120 | * only one context operation occurs at a time. |
| 2121 | */ |
| 2122 | int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4]) |
| 2123 | { |
| 2124 | if (id >= SGE_QSETS * 2) |
| 2125 | return -EINVAL; |
| 2126 | return t3_sge_read_context(F_FREELIST, adapter, id, data); |
| 2127 | } |
| 2128 | |
| 2129 | /** |
| 2130 | * t3_sge_read_rspq - read an SGE response queue context |
| 2131 | * @adapter: the adapter |
| 2132 | * @id: the context id |
| 2133 | * @data: holds the retrieved context |
| 2134 | * |
| 2135 | * Read an SGE response queue context. The caller is responsible for |
| 2136 | * ensuring only one context operation occurs at a time. |
| 2137 | */ |
| 2138 | int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4]) |
| 2139 | { |
| 2140 | if (id >= SGE_QSETS) |
| 2141 | return -EINVAL; |
| 2142 | return t3_sge_read_context(F_RESPONSEQ, adapter, id, data); |
| 2143 | } |
| 2144 | |
| 2145 | /** |
| 2146 | * t3_config_rss - configure Rx packet steering |
| 2147 | * @adapter: the adapter |
| 2148 | * @rss_config: RSS settings (written to TP_RSS_CONFIG) |
| 2149 | * @cpus: values for the CPU lookup table (0xff terminated) |
| 2150 | * @rspq: values for the response queue lookup table (0xffff terminated) |
| 2151 | * |
| 2152 | * Programs the receive packet steering logic. @cpus and @rspq provide |
| 2153 | * the values for the CPU and response queue lookup tables. If they |
| 2154 | * provide fewer values than the size of the tables the supplied values |
| 2155 | * are used repeatedly until the tables are fully populated. |
| 2156 | */ |
| 2157 | void t3_config_rss(struct adapter *adapter, unsigned int rss_config, |
| 2158 | const u8 * cpus, const u16 *rspq) |
| 2159 | { |
| 2160 | int i, j, cpu_idx = 0, q_idx = 0; |
| 2161 | |
| 2162 | if (cpus) |
| 2163 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| 2164 | u32 val = i << 16; |
| 2165 | |
| 2166 | for (j = 0; j < 2; ++j) { |
| 2167 | val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); |
| 2168 | if (cpus[cpu_idx] == 0xff) |
| 2169 | cpu_idx = 0; |
| 2170 | } |
| 2171 | t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); |
| 2172 | } |
| 2173 | |
| 2174 | if (rspq) |
| 2175 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| 2176 | t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, |
| 2177 | (i << 16) | rspq[q_idx++]); |
| 2178 | if (rspq[q_idx] == 0xffff) |
| 2179 | q_idx = 0; |
| 2180 | } |
| 2181 | |
| 2182 | t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); |
| 2183 | } |
| 2184 | |
| 2185 | /** |
| 2186 | * t3_read_rss - read the contents of the RSS tables |
| 2187 | * @adapter: the adapter |
| 2188 | * @lkup: holds the contents of the RSS lookup table |
| 2189 | * @map: holds the contents of the RSS map table |
| 2190 | * |
| 2191 | * Reads the contents of the receive packet steering tables. |
| 2192 | */ |
| 2193 | int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map) |
| 2194 | { |
| 2195 | int i; |
| 2196 | u32 val; |
| 2197 | |
| 2198 | if (lkup) |
| 2199 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| 2200 | t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, |
| 2201 | 0xffff0000 | i); |
| 2202 | val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE); |
| 2203 | if (!(val & 0x80000000)) |
| 2204 | return -EAGAIN; |
| 2205 | *lkup++ = val; |
| 2206 | *lkup++ = (val >> 8); |
| 2207 | } |
| 2208 | |
| 2209 | if (map) |
| 2210 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { |
| 2211 | t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, |
| 2212 | 0xffff0000 | i); |
| 2213 | val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE); |
| 2214 | if (!(val & 0x80000000)) |
| 2215 | return -EAGAIN; |
| 2216 | *map++ = val; |
| 2217 | } |
| 2218 | return 0; |
| 2219 | } |
| 2220 | |
| 2221 | /** |
| 2222 | * t3_tp_set_offload_mode - put TP in NIC/offload mode |
| 2223 | * @adap: the adapter |
| 2224 | * @enable: 1 to select offload mode, 0 for regular NIC |
| 2225 | * |
| 2226 | * Switches TP to NIC/offload mode. |
| 2227 | */ |
| 2228 | void t3_tp_set_offload_mode(struct adapter *adap, int enable) |
| 2229 | { |
| 2230 | if (is_offload(adap) || !enable) |
| 2231 | t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, |
| 2232 | V_NICMODE(!enable)); |
| 2233 | } |
| 2234 | |
| 2235 | /** |
| 2236 | * pm_num_pages - calculate the number of pages of the payload memory |
| 2237 | * @mem_size: the size of the payload memory |
| 2238 | * @pg_size: the size of each payload memory page |
| 2239 | * |
| 2240 | * Calculate the number of pages, each of the given size, that fit in a |
| 2241 | * memory of the specified size, respecting the HW requirement that the |
| 2242 | * number of pages must be a multiple of 24. |
| 2243 | */ |
| 2244 | static inline unsigned int pm_num_pages(unsigned int mem_size, |
| 2245 | unsigned int pg_size) |
| 2246 | { |
| 2247 | unsigned int n = mem_size / pg_size; |
| 2248 | |
| 2249 | return n - n % 24; |
| 2250 | } |
| 2251 | |
| 2252 | #define mem_region(adap, start, size, reg) \ |
| 2253 | t3_write_reg((adap), A_ ## reg, (start)); \ |
| 2254 | start += size |
| 2255 | |
| 2256 | /* |
| 2257 | * partition_mem - partition memory and configure TP memory settings |
| 2258 | * @adap: the adapter |
| 2259 | * @p: the TP parameters |
| 2260 | * |
| 2261 | * Partitions context and payload memory and configures TP's memory |
| 2262 | * registers. |
| 2263 | */ |
| 2264 | static void partition_mem(struct adapter *adap, const struct tp_params *p) |
| 2265 | { |
| 2266 | unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); |
| 2267 | unsigned int timers = 0, timers_shift = 22; |
| 2268 | |
| 2269 | if (adap->params.rev > 0) { |
| 2270 | if (tids <= 16 * 1024) { |
| 2271 | timers = 1; |
| 2272 | timers_shift = 16; |
| 2273 | } else if (tids <= 64 * 1024) { |
| 2274 | timers = 2; |
| 2275 | timers_shift = 18; |
| 2276 | } else if (tids <= 256 * 1024) { |
| 2277 | timers = 3; |
| 2278 | timers_shift = 20; |
| 2279 | } |
| 2280 | } |
| 2281 | |
| 2282 | t3_write_reg(adap, A_TP_PMM_SIZE, |
| 2283 | p->chan_rx_size | (p->chan_tx_size >> 16)); |
| 2284 | |
| 2285 | t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); |
| 2286 | t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); |
| 2287 | t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); |
| 2288 | t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), |
| 2289 | V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); |
| 2290 | |
| 2291 | t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); |
| 2292 | t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); |
| 2293 | t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); |
| 2294 | |
| 2295 | pstructs = p->rx_num_pgs + p->tx_num_pgs; |
| 2296 | /* Add a bit of headroom and make multiple of 24 */ |
| 2297 | pstructs += 48; |
| 2298 | pstructs -= pstructs % 24; |
| 2299 | t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); |
| 2300 | |
| 2301 | m = tids * TCB_SIZE; |
| 2302 | mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); |
| 2303 | mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); |
| 2304 | t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); |
| 2305 | m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); |
| 2306 | mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); |
| 2307 | mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); |
| 2308 | mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); |
| 2309 | mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); |
| 2310 | |
| 2311 | m = (m + 4095) & ~0xfff; |
| 2312 | t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); |
| 2313 | t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); |
| 2314 | |
| 2315 | tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; |
| 2316 | m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - |
| 2317 | adap->params.mc5.nfilters - adap->params.mc5.nroutes; |
| 2318 | if (tids < m) |
| 2319 | adap->params.mc5.nservers += m - tids; |
| 2320 | } |
| 2321 | |
| 2322 | static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr, |
| 2323 | u32 val) |
| 2324 | { |
| 2325 | t3_write_reg(adap, A_TP_PIO_ADDR, addr); |
| 2326 | t3_write_reg(adap, A_TP_PIO_DATA, val); |
| 2327 | } |
| 2328 | |
| 2329 | static void tp_config(struct adapter *adap, const struct tp_params *p) |
| 2330 | { |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 2331 | t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | |
| 2332 | F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | |
| 2333 | F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); |
| 2334 | t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | |
| 2335 | F_MTUENABLE | V_WINDOWSCALEMODE(1) | |
| 2336 | V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); |
| 2337 | t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | |
| 2338 | V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | |
| 2339 | V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) | |
| 2340 | F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); |
| 2341 | t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE, |
| 2342 | F_IPV6ENABLE | F_NICMODE); |
| 2343 | t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); |
| 2344 | t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); |
| 2345 | t3_set_reg_field(adap, A_TP_PARA_REG6, |
| 2346 | adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND, |
| 2347 | 0); |
| 2348 | |
Divy Le Ray | 3b1d307 | 2007-01-30 19:44:07 -0800 | [diff] [blame] | 2349 | t3_set_reg_field(adap, A_TP_PC_CONFIG, |
| 2350 | F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL, |
| 2351 | F_TXDEFERENABLE | F_HEARBEATDACK | F_TXCONGESTIONMODE | |
| 2352 | F_RXCONGESTIONMODE); |
| 2353 | t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0); |
Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 2354 | |
| 2355 | if (adap->params.rev > 0) { |
| 2356 | tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); |
| 2357 | t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO, |
| 2358 | F_TXPACEAUTO); |
| 2359 | t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); |
| 2360 | t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT); |
| 2361 | } else |
| 2362 | t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); |
| 2363 | |
| 2364 | t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212); |
| 2365 | t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212); |
| 2366 | t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212); |
| 2367 | } |
| 2368 | |
| 2369 | /* Desired TP timer resolution in usec */ |
| 2370 | #define TP_TMR_RES 50 |
| 2371 | |
| 2372 | /* TCP timer values in ms */ |
| 2373 | #define TP_DACK_TIMER 50 |
| 2374 | #define TP_RTO_MIN 250 |
| 2375 | |
| 2376 | /** |
| 2377 | * tp_set_timers - set TP timing parameters |
| 2378 | * @adap: the adapter to set |
| 2379 | * @core_clk: the core clock frequency in Hz |
| 2380 | * |
| 2381 | * Set TP's timing parameters, such as the various timer resolutions and |
| 2382 | * the TCP timer values. |
| 2383 | */ |
| 2384 | static void tp_set_timers(struct adapter *adap, unsigned int core_clk) |
| 2385 | { |
| 2386 | unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1; |
| 2387 | unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */ |
| 2388 | unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ |
| 2389 | unsigned int tps = core_clk >> tre; |
| 2390 | |
| 2391 | t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | |
| 2392 | V_DELAYEDACKRESOLUTION(dack_re) | |
| 2393 | V_TIMESTAMPRESOLUTION(tstamp_re)); |
| 2394 | t3_write_reg(adap, A_TP_DACK_TIMER, |
| 2395 | (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); |
| 2396 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); |
| 2397 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); |
| 2398 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); |
| 2399 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); |
| 2400 | t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | |
| 2401 | V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | |
| 2402 | V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | |
| 2403 | V_KEEPALIVEMAX(9)); |
| 2404 | |
| 2405 | #define SECONDS * tps |
| 2406 | |
| 2407 | t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS); |
| 2408 | t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); |
| 2409 | t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); |
| 2410 | t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); |
| 2411 | t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); |
| 2412 | t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); |
| 2413 | t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); |
| 2414 | t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); |
| 2415 | t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); |
| 2416 | |
| 2417 | #undef SECONDS |
| 2418 | } |
| 2419 | |
| 2420 | /** |
| 2421 | * t3_tp_set_coalescing_size - set receive coalescing size |
| 2422 | * @adap: the adapter |
| 2423 | * @size: the receive coalescing size |
| 2424 | * @psh: whether a set PSH bit should deliver coalesced data |
| 2425 | * |
| 2426 | * Set the receive coalescing size and PSH bit handling. |
| 2427 | */ |
| 2428 | int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh) |
| 2429 | { |
| 2430 | u32 val; |
| 2431 | |
| 2432 | if (size > MAX_RX_COALESCING_LEN) |
| 2433 | return -EINVAL; |
| 2434 | |
| 2435 | val = t3_read_reg(adap, A_TP_PARA_REG3); |
| 2436 | val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); |
| 2437 | |
| 2438 | if (size) { |
| 2439 | val |= F_RXCOALESCEENABLE; |
| 2440 | if (psh) |
| 2441 | val |= F_RXCOALESCEPSHEN; |
| 2442 | t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | |
| 2443 | V_MAXRXDATA(MAX_RX_COALESCING_LEN)); |
| 2444 | } |
| 2445 | t3_write_reg(adap, A_TP_PARA_REG3, val); |
| 2446 | return 0; |
| 2447 | } |
| 2448 | |
| 2449 | /** |
| 2450 | * t3_tp_set_max_rxsize - set the max receive size |
| 2451 | * @adap: the adapter |
| 2452 | * @size: the max receive size |
| 2453 | * |
| 2454 | * Set TP's max receive size. This is the limit that applies when |
| 2455 | * receive coalescing is disabled. |
| 2456 | */ |
| 2457 | void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size) |
| 2458 | { |
| 2459 | t3_write_reg(adap, A_TP_PARA_REG7, |
| 2460 | V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); |
| 2461 | } |
| 2462 | |
| 2463 | static void __devinit init_mtus(unsigned short mtus[]) |
| 2464 | { |
| 2465 | /* |
| 2466 | * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so |
| 2467 | * it can accomodate max size TCP/IP headers when SACK and timestamps |
| 2468 | * are enabled and still have at least 8 bytes of payload. |
| 2469 | */ |
| 2470 | mtus[0] = 88; |
| 2471 | mtus[1] = 256; |
| 2472 | mtus[2] = 512; |
| 2473 | mtus[3] = 576; |
| 2474 | mtus[4] = 808; |
| 2475 | mtus[5] = 1024; |
| 2476 | mtus[6] = 1280; |
| 2477 | mtus[7] = 1492; |
| 2478 | mtus[8] = 1500; |
| 2479 | mtus[9] = 2002; |
| 2480 | mtus[10] = 2048; |
| 2481 | mtus[11] = 4096; |
| 2482 | mtus[12] = 4352; |
| 2483 | mtus[13] = 8192; |
| 2484 | mtus[14] = 9000; |
| 2485 | mtus[15] = 9600; |
| 2486 | } |
| 2487 | |
| 2488 | /* |
| 2489 | * Initial congestion control parameters. |
| 2490 | */ |
| 2491 | static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) |
| 2492 | { |
| 2493 | a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; |
| 2494 | a[9] = 2; |
| 2495 | a[10] = 3; |
| 2496 | a[11] = 4; |
| 2497 | a[12] = 5; |
| 2498 | a[13] = 6; |
| 2499 | a[14] = 7; |
| 2500 | a[15] = 8; |
| 2501 | a[16] = 9; |
| 2502 | a[17] = 10; |
| 2503 | a[18] = 14; |
| 2504 | a[19] = 17; |
| 2505 | a[20] = 21; |
| 2506 | a[21] = 25; |
| 2507 | a[22] = 30; |
| 2508 | a[23] = 35; |
| 2509 | a[24] = 45; |
| 2510 | a[25] = 60; |
| 2511 | a[26] = 80; |
| 2512 | a[27] = 100; |
| 2513 | a[28] = 200; |
| 2514 | a[29] = 300; |
| 2515 | a[30] = 400; |
| 2516 | a[31] = 500; |
| 2517 | |
| 2518 | b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; |
| 2519 | b[9] = b[10] = 1; |
| 2520 | b[11] = b[12] = 2; |
| 2521 | b[13] = b[14] = b[15] = b[16] = 3; |
| 2522 | b[17] = b[18] = b[19] = b[20] = b[21] = 4; |
| 2523 | b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; |
| 2524 | b[28] = b[29] = 6; |
| 2525 | b[30] = b[31] = 7; |
| 2526 | } |
| 2527 | |
| 2528 | /* The minimum additive increment value for the congestion control table */ |
| 2529 | #define CC_MIN_INCR 2U |
| 2530 | |
| 2531 | /** |
| 2532 | * t3_load_mtus - write the MTU and congestion control HW tables |
| 2533 | * @adap: the adapter |
| 2534 | * @mtus: the unrestricted values for the MTU table |
| 2535 | * @alphs: the values for the congestion control alpha parameter |
| 2536 | * @beta: the values for the congestion control beta parameter |
| 2537 | * @mtu_cap: the maximum permitted effective MTU |
| 2538 | * |
| 2539 | * Write the MTU table with the supplied MTUs capping each at &mtu_cap. |
| 2540 | * Update the high-speed congestion control table with the supplied alpha, |
| 2541 | * beta, and MTUs. |
| 2542 | */ |
| 2543 | void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], |
| 2544 | unsigned short alpha[NCCTRL_WIN], |
| 2545 | unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) |
| 2546 | { |
| 2547 | static const unsigned int avg_pkts[NCCTRL_WIN] = { |
| 2548 | 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, |
| 2549 | 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, |
| 2550 | 28672, 40960, 57344, 81920, 114688, 163840, 229376 |
| 2551 | }; |
| 2552 | |
| 2553 | unsigned int i, w; |
| 2554 | |
| 2555 | for (i = 0; i < NMTUS; ++i) { |
| 2556 | unsigned int mtu = min(mtus[i], mtu_cap); |
| 2557 | unsigned int log2 = fls(mtu); |
| 2558 | |
| 2559 | if (!(mtu & ((1 << log2) >> 2))) /* round */ |
| 2560 | log2--; |
| 2561 | t3_write_reg(adap, A_TP_MTU_TABLE, |
| 2562 | (i << 24) | (log2 << 16) | mtu); |
| 2563 | |
| 2564 | for (w = 0; w < NCCTRL_WIN; ++w) { |
| 2565 | unsigned int inc; |
| 2566 | |
| 2567 | inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], |
| 2568 | CC_MIN_INCR); |
| 2569 | |
| 2570 | t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | |
| 2571 | (w << 16) | (beta[w] << 13) | inc); |
| 2572 | } |
| 2573 | } |
| 2574 | } |
| 2575 | |
| 2576 | /** |
| 2577 | * t3_read_hw_mtus - returns the values in the HW MTU table |
| 2578 | * @adap: the adapter |
| 2579 | * @mtus: where to store the HW MTU values |
| 2580 | * |
| 2581 | * Reads the HW MTU table. |
| 2582 | */ |
| 2583 | void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS]) |
| 2584 | { |
| 2585 | int i; |
| 2586 | |
| 2587 | for (i = 0; i < NMTUS; ++i) { |
| 2588 | unsigned int val; |
| 2589 | |
| 2590 | t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i); |
| 2591 | val = t3_read_reg(adap, A_TP_MTU_TABLE); |
| 2592 | mtus[i] = val & 0x3fff; |
| 2593 | } |
| 2594 | } |
| 2595 | |
| 2596 | /** |
| 2597 | * t3_get_cong_cntl_tab - reads the congestion control table |
| 2598 | * @adap: the adapter |
| 2599 | * @incr: where to store the alpha values |
| 2600 | * |
| 2601 | * Reads the additive increments programmed into the HW congestion |
| 2602 | * control table. |
| 2603 | */ |
| 2604 | void t3_get_cong_cntl_tab(struct adapter *adap, |
| 2605 | unsigned short incr[NMTUS][NCCTRL_WIN]) |
| 2606 | { |
| 2607 | unsigned int mtu, w; |
| 2608 | |
| 2609 | for (mtu = 0; mtu < NMTUS; ++mtu) |
| 2610 | for (w = 0; w < NCCTRL_WIN; ++w) { |
| 2611 | t3_write_reg(adap, A_TP_CCTRL_TABLE, |
| 2612 | 0xffff0000 | (mtu << 5) | w); |
| 2613 | incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) & |
| 2614 | 0x1fff; |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | /** |
| 2619 | * t3_tp_get_mib_stats - read TP's MIB counters |
| 2620 | * @adap: the adapter |
| 2621 | * @tps: holds the returned counter values |
| 2622 | * |
| 2623 | * Returns the values of TP's MIB counters. |
| 2624 | */ |
| 2625 | void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps) |
| 2626 | { |
| 2627 | t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps, |
| 2628 | sizeof(*tps) / sizeof(u32), 0); |
| 2629 | } |
| 2630 | |
| 2631 | #define ulp_region(adap, name, start, len) \ |
| 2632 | t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ |
| 2633 | t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ |
| 2634 | (start) + (len) - 1); \ |
| 2635 | start += len |
| 2636 | |
| 2637 | #define ulptx_region(adap, name, start, len) \ |
| 2638 | t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ |
| 2639 | t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ |
| 2640 | (start) + (len) - 1) |
| 2641 | |
| 2642 | static void ulp_config(struct adapter *adap, const struct tp_params *p) |
| 2643 | { |
| 2644 | unsigned int m = p->chan_rx_size; |
| 2645 | |
| 2646 | ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); |
| 2647 | ulp_region(adap, TDDP, m, p->chan_rx_size / 8); |
| 2648 | ulptx_region(adap, TPT, m, p->chan_rx_size / 4); |
| 2649 | ulp_region(adap, STAG, m, p->chan_rx_size / 4); |
| 2650 | ulp_region(adap, RQ, m, p->chan_rx_size / 4); |
| 2651 | ulptx_region(adap, PBL, m, p->chan_rx_size / 4); |
| 2652 | ulp_region(adap, PBL, m, p->chan_rx_size / 4); |
| 2653 | t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); |
| 2654 | } |
| 2655 | |
| 2656 | void t3_config_trace_filter(struct adapter *adapter, |
| 2657 | const struct trace_params *tp, int filter_index, |
| 2658 | int invert, int enable) |
| 2659 | { |
| 2660 | u32 addr, key[4], mask[4]; |
| 2661 | |
| 2662 | key[0] = tp->sport | (tp->sip << 16); |
| 2663 | key[1] = (tp->sip >> 16) | (tp->dport << 16); |
| 2664 | key[2] = tp->dip; |
| 2665 | key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); |
| 2666 | |
| 2667 | mask[0] = tp->sport_mask | (tp->sip_mask << 16); |
| 2668 | mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); |
| 2669 | mask[2] = tp->dip_mask; |
| 2670 | mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); |
| 2671 | |
| 2672 | if (invert) |
| 2673 | key[3] |= (1 << 29); |
| 2674 | if (enable) |
| 2675 | key[3] |= (1 << 28); |
| 2676 | |
| 2677 | addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; |
| 2678 | tp_wr_indirect(adapter, addr++, key[0]); |
| 2679 | tp_wr_indirect(adapter, addr++, mask[0]); |
| 2680 | tp_wr_indirect(adapter, addr++, key[1]); |
| 2681 | tp_wr_indirect(adapter, addr++, mask[1]); |
| 2682 | tp_wr_indirect(adapter, addr++, key[2]); |
| 2683 | tp_wr_indirect(adapter, addr++, mask[2]); |
| 2684 | tp_wr_indirect(adapter, addr++, key[3]); |
| 2685 | tp_wr_indirect(adapter, addr, mask[3]); |
| 2686 | t3_read_reg(adapter, A_TP_PIO_DATA); |
| 2687 | } |
| 2688 | |
| 2689 | /** |
| 2690 | * t3_config_sched - configure a HW traffic scheduler |
| 2691 | * @adap: the adapter |
| 2692 | * @kbps: target rate in Kbps |
| 2693 | * @sched: the scheduler index |
| 2694 | * |
| 2695 | * Configure a HW scheduler for the target rate |
| 2696 | */ |
| 2697 | int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched) |
| 2698 | { |
| 2699 | unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; |
| 2700 | unsigned int clk = adap->params.vpd.cclk * 1000; |
| 2701 | unsigned int selected_cpt = 0, selected_bpt = 0; |
| 2702 | |
| 2703 | if (kbps > 0) { |
| 2704 | kbps *= 125; /* -> bytes */ |
| 2705 | for (cpt = 1; cpt <= 255; cpt++) { |
| 2706 | tps = clk / cpt; |
| 2707 | bpt = (kbps + tps / 2) / tps; |
| 2708 | if (bpt > 0 && bpt <= 255) { |
| 2709 | v = bpt * tps; |
| 2710 | delta = v >= kbps ? v - kbps : kbps - v; |
| 2711 | if (delta <= mindelta) { |
| 2712 | mindelta = delta; |
| 2713 | selected_cpt = cpt; |
| 2714 | selected_bpt = bpt; |
| 2715 | } |
| 2716 | } else if (selected_cpt) |
| 2717 | break; |
| 2718 | } |
| 2719 | if (!selected_cpt) |
| 2720 | return -EINVAL; |
| 2721 | } |
| 2722 | t3_write_reg(adap, A_TP_TM_PIO_ADDR, |
| 2723 | A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); |
| 2724 | v = t3_read_reg(adap, A_TP_TM_PIO_DATA); |
| 2725 | if (sched & 1) |
| 2726 | v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); |
| 2727 | else |
| 2728 | v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); |
| 2729 | t3_write_reg(adap, A_TP_TM_PIO_DATA, v); |
| 2730 | return 0; |
| 2731 | } |
| 2732 | |
| 2733 | static int tp_init(struct adapter *adap, const struct tp_params *p) |
| 2734 | { |
| 2735 | int busy = 0; |
| 2736 | |
| 2737 | tp_config(adap, p); |
| 2738 | t3_set_vlan_accel(adap, 3, 0); |
| 2739 | |
| 2740 | if (is_offload(adap)) { |
| 2741 | tp_set_timers(adap, adap->params.vpd.cclk * 1000); |
| 2742 | t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); |
| 2743 | busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, |
| 2744 | 0, 1000, 5); |
| 2745 | if (busy) |
| 2746 | CH_ERR(adap, "TP initialization timed out\n"); |
| 2747 | } |
| 2748 | |
| 2749 | if (!busy) |
| 2750 | t3_write_reg(adap, A_TP_RESET, F_TPRESET); |
| 2751 | return busy; |
| 2752 | } |
| 2753 | |
| 2754 | int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask) |
| 2755 | { |
| 2756 | if (port_mask & ~((1 << adap->params.nports) - 1)) |
| 2757 | return -EINVAL; |
| 2758 | t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE, |
| 2759 | port_mask << S_PORT0ACTIVE); |
| 2760 | return 0; |
| 2761 | } |
| 2762 | |
| 2763 | /* |
| 2764 | * Perform the bits of HW initialization that are dependent on the number |
| 2765 | * of available ports. |
| 2766 | */ |
| 2767 | static void init_hw_for_avail_ports(struct adapter *adap, int nports) |
| 2768 | { |
| 2769 | int i; |
| 2770 | |
| 2771 | if (nports == 1) { |
| 2772 | t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); |
| 2773 | t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); |
| 2774 | t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN | |
| 2775 | F_PORT0ACTIVE | F_ENFORCEPKT); |
| 2776 | t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000); |
| 2777 | } else { |
| 2778 | t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); |
| 2779 | t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); |
| 2780 | t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, |
| 2781 | V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); |
| 2782 | t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | |
| 2783 | F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | |
| 2784 | F_ENFORCEPKT); |
| 2785 | t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); |
| 2786 | t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); |
| 2787 | t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, |
| 2788 | V_TX_MOD_QUEUE_REQ_MAP(0xaa)); |
| 2789 | for (i = 0; i < 16; i++) |
| 2790 | t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, |
| 2791 | (i << 16) | 0x1010); |
| 2792 | } |
| 2793 | } |
| 2794 | |
| 2795 | static int calibrate_xgm(struct adapter *adapter) |
| 2796 | { |
| 2797 | if (uses_xaui(adapter)) { |
| 2798 | unsigned int v, i; |
| 2799 | |
| 2800 | for (i = 0; i < 5; ++i) { |
| 2801 | t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); |
| 2802 | t3_read_reg(adapter, A_XGM_XAUI_IMP); |
| 2803 | msleep(1); |
| 2804 | v = t3_read_reg(adapter, A_XGM_XAUI_IMP); |
| 2805 | if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { |
| 2806 | t3_write_reg(adapter, A_XGM_XAUI_IMP, |
| 2807 | V_XAUIIMP(G_CALIMP(v) >> 2)); |
| 2808 | return 0; |
| 2809 | } |
| 2810 | } |
| 2811 | CH_ERR(adapter, "MAC calibration failed\n"); |
| 2812 | return -1; |
| 2813 | } else { |
| 2814 | t3_write_reg(adapter, A_XGM_RGMII_IMP, |
| 2815 | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); |
| 2816 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, |
| 2817 | F_XGM_IMPSETUPDATE); |
| 2818 | } |
| 2819 | return 0; |
| 2820 | } |
| 2821 | |
| 2822 | static void calibrate_xgm_t3b(struct adapter *adapter) |
| 2823 | { |
| 2824 | if (!uses_xaui(adapter)) { |
| 2825 | t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | |
| 2826 | F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); |
| 2827 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); |
| 2828 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, |
| 2829 | F_XGM_IMPSETUPDATE); |
| 2830 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, |
| 2831 | 0); |
| 2832 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); |
| 2833 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); |
| 2834 | } |
| 2835 | } |
| 2836 | |
| 2837 | struct mc7_timing_params { |
| 2838 | unsigned char ActToPreDly; |
| 2839 | unsigned char ActToRdWrDly; |
| 2840 | unsigned char PreCyc; |
| 2841 | unsigned char RefCyc[5]; |
| 2842 | unsigned char BkCyc; |
| 2843 | unsigned char WrToRdDly; |
| 2844 | unsigned char RdToWrDly; |
| 2845 | }; |
| 2846 | |
| 2847 | /* |
| 2848 | * Write a value to a register and check that the write completed. These |
| 2849 | * writes normally complete in a cycle or two, so one read should suffice. |
| 2850 | * The very first read exists to flush the posted write to the device. |
| 2851 | */ |
| 2852 | static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val) |
| 2853 | { |
| 2854 | t3_write_reg(adapter, addr, val); |
| 2855 | t3_read_reg(adapter, addr); /* flush */ |
| 2856 | if (!(t3_read_reg(adapter, addr) & F_BUSY)) |
| 2857 | return 0; |
| 2858 | CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); |
| 2859 | return -EIO; |
| 2860 | } |
| 2861 | |
| 2862 | static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) |
| 2863 | { |
| 2864 | static const unsigned int mc7_mode[] = { |
| 2865 | 0x632, 0x642, 0x652, 0x432, 0x442 |
| 2866 | }; |
| 2867 | static const struct mc7_timing_params mc7_timings[] = { |
| 2868 | {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4}, |
| 2869 | {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4}, |
| 2870 | {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4}, |
| 2871 | {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4}, |
| 2872 | {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4} |
| 2873 | }; |
| 2874 | |
| 2875 | u32 val; |
| 2876 | unsigned int width, density, slow, attempts; |
| 2877 | struct adapter *adapter = mc7->adapter; |
| 2878 | const struct mc7_timing_params *p = &mc7_timings[mem_type]; |
| 2879 | |
| 2880 | val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); |
| 2881 | slow = val & F_SLOW; |
| 2882 | width = G_WIDTH(val); |
| 2883 | density = G_DEN(val); |
| 2884 | |
| 2885 | t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); |
| 2886 | val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ |
| 2887 | msleep(1); |
| 2888 | |
| 2889 | if (!slow) { |
| 2890 | t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); |
| 2891 | t3_read_reg(adapter, mc7->offset + A_MC7_CAL); |
| 2892 | msleep(1); |
| 2893 | if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & |
| 2894 | (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { |
| 2895 | CH_ERR(adapter, "%s MC7 calibration timed out\n", |
| 2896 | mc7->name); |
| 2897 | goto out_fail; |
| 2898 | } |
| 2899 | } |
| 2900 | |
| 2901 | t3_write_reg(adapter, mc7->offset + A_MC7_PARM, |
| 2902 | V_ACTTOPREDLY(p->ActToPreDly) | |
| 2903 | V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | |
| 2904 | V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | |
| 2905 | V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); |
| 2906 | |
| 2907 | t3_write_reg(adapter, mc7->offset + A_MC7_CFG, |
| 2908 | val | F_CLKEN | F_TERM150); |
| 2909 | t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ |
| 2910 | |
| 2911 | if (!slow) |
| 2912 | t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, |
| 2913 | F_DLLENB); |
| 2914 | udelay(1); |
| 2915 | |
| 2916 | val = slow ? 3 : 6; |
| 2917 | if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || |
| 2918 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || |
| 2919 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || |
| 2920 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) |
| 2921 | goto out_fail; |
| 2922 | |
| 2923 | if (!slow) { |
| 2924 | t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); |
| 2925 | t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0); |
| 2926 | udelay(5); |
| 2927 | } |
| 2928 | |
| 2929 | if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || |
| 2930 | wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || |
| 2931 | wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || |
| 2932 | wrreg_wait(adapter, mc7->offset + A_MC7_MODE, |
| 2933 | mc7_mode[mem_type]) || |
| 2934 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || |
| 2935 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) |
| 2936 | goto out_fail; |
| 2937 | |
| 2938 | /* clock value is in KHz */ |
| 2939 | mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ |
| 2940 | mc7_clock /= 1000000; /* KHz->MHz, ns->us */ |
| 2941 | |
| 2942 | t3_write_reg(adapter, mc7->offset + A_MC7_REF, |
| 2943 | F_PERREFEN | V_PREREFDIV(mc7_clock)); |
| 2944 | t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ |
| 2945 | |
| 2946 | t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN); |
| 2947 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); |
| 2948 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); |
| 2949 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, |
| 2950 | (mc7->size << width) - 1); |
| 2951 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); |
| 2952 | t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ |
| 2953 | |
| 2954 | attempts = 50; |
| 2955 | do { |
| 2956 | msleep(250); |
| 2957 | val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); |
| 2958 | } while ((val & F_BUSY) && --attempts); |
| 2959 | if (val & F_BUSY) { |
| 2960 | CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); |
| 2961 | goto out_fail; |
| 2962 | } |
| 2963 | |
| 2964 | /* Enable normal memory accesses. */ |
| 2965 | t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); |
| 2966 | return 0; |
| 2967 | |
| 2968 | out_fail: |
| 2969 | return -1; |
| 2970 | } |
| 2971 | |
| 2972 | static void config_pcie(struct adapter *adap) |
| 2973 | { |
| 2974 | static const u16 ack_lat[4][6] = { |
| 2975 | {237, 416, 559, 1071, 2095, 4143}, |
| 2976 | {128, 217, 289, 545, 1057, 2081}, |
| 2977 | {73, 118, 154, 282, 538, 1050}, |
| 2978 | {67, 107, 86, 150, 278, 534} |
| 2979 | }; |
| 2980 | static const u16 rpl_tmr[4][6] = { |
| 2981 | {711, 1248, 1677, 3213, 6285, 12429}, |
| 2982 | {384, 651, 867, 1635, 3171, 6243}, |
| 2983 | {219, 354, 462, 846, 1614, 3150}, |
| 2984 | {201, 321, 258, 450, 834, 1602} |
| 2985 | }; |
| 2986 | |
| 2987 | u16 val; |
| 2988 | unsigned int log2_width, pldsize; |
| 2989 | unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; |
| 2990 | |
| 2991 | pci_read_config_word(adap->pdev, |
| 2992 | adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL, |
| 2993 | &val); |
| 2994 | pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; |
| 2995 | pci_read_config_word(adap->pdev, |
| 2996 | adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL, |
| 2997 | &val); |
| 2998 | |
| 2999 | fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); |
| 3000 | fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : |
| 3001 | G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); |
| 3002 | log2_width = fls(adap->params.pci.width) - 1; |
| 3003 | acklat = ack_lat[log2_width][pldsize]; |
| 3004 | if (val & 1) /* check LOsEnable */ |
| 3005 | acklat += fst_trn_tx * 4; |
| 3006 | rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; |
| 3007 | |
| 3008 | if (adap->params.rev == 0) |
| 3009 | t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, |
| 3010 | V_T3A_ACKLAT(M_T3A_ACKLAT), |
| 3011 | V_T3A_ACKLAT(acklat)); |
| 3012 | else |
| 3013 | t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), |
| 3014 | V_ACKLAT(acklat)); |
| 3015 | |
| 3016 | t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), |
| 3017 | V_REPLAYLMT(rpllmt)); |
| 3018 | |
| 3019 | t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); |
| 3020 | t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN); |
| 3021 | } |
| 3022 | |
| 3023 | /* |
| 3024 | * Initialize and configure T3 HW modules. This performs the |
| 3025 | * initialization steps that need to be done once after a card is reset. |
| 3026 | * MAC and PHY initialization is handled separarely whenever a port is enabled. |
| 3027 | * |
| 3028 | * fw_params are passed to FW and their value is platform dependent. Only the |
| 3029 | * top 8 bits are available for use, the rest must be 0. |
| 3030 | */ |
| 3031 | int t3_init_hw(struct adapter *adapter, u32 fw_params) |
| 3032 | { |
| 3033 | int err = -EIO, attempts = 100; |
| 3034 | const struct vpd_params *vpd = &adapter->params.vpd; |
| 3035 | |
| 3036 | if (adapter->params.rev > 0) |
| 3037 | calibrate_xgm_t3b(adapter); |
| 3038 | else if (calibrate_xgm(adapter)) |
| 3039 | goto out_err; |
| 3040 | |
| 3041 | if (vpd->mclk) { |
| 3042 | partition_mem(adapter, &adapter->params.tp); |
| 3043 | |
| 3044 | if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || |
| 3045 | mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || |
| 3046 | mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || |
| 3047 | t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, |
| 3048 | adapter->params.mc5.nfilters, |
| 3049 | adapter->params.mc5.nroutes)) |
| 3050 | goto out_err; |
| 3051 | } |
| 3052 | |
| 3053 | if (tp_init(adapter, &adapter->params.tp)) |
| 3054 | goto out_err; |
| 3055 | |
| 3056 | t3_tp_set_coalescing_size(adapter, |
| 3057 | min(adapter->params.sge.max_pkt_size, |
| 3058 | MAX_RX_COALESCING_LEN), 1); |
| 3059 | t3_tp_set_max_rxsize(adapter, |
| 3060 | min(adapter->params.sge.max_pkt_size, 16384U)); |
| 3061 | ulp_config(adapter, &adapter->params.tp); |
| 3062 | |
| 3063 | if (is_pcie(adapter)) |
| 3064 | config_pcie(adapter); |
| 3065 | else |
| 3066 | t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN); |
| 3067 | |
| 3068 | t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000); |
| 3069 | init_hw_for_avail_ports(adapter, adapter->params.nports); |
| 3070 | t3_sge_init(adapter, &adapter->params.sge); |
| 3071 | |
| 3072 | t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); |
| 3073 | t3_write_reg(adapter, A_CIM_BOOT_CFG, |
| 3074 | V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); |
| 3075 | t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ |
| 3076 | |
| 3077 | do { /* wait for uP to initialize */ |
| 3078 | msleep(20); |
| 3079 | } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); |
| 3080 | if (!attempts) |
| 3081 | goto out_err; |
| 3082 | |
| 3083 | err = 0; |
| 3084 | out_err: |
| 3085 | return err; |
| 3086 | } |
| 3087 | |
| 3088 | /** |
| 3089 | * get_pci_mode - determine a card's PCI mode |
| 3090 | * @adapter: the adapter |
| 3091 | * @p: where to store the PCI settings |
| 3092 | * |
| 3093 | * Determines a card's PCI mode and associated parameters, such as speed |
| 3094 | * and width. |
| 3095 | */ |
| 3096 | static void __devinit get_pci_mode(struct adapter *adapter, |
| 3097 | struct pci_params *p) |
| 3098 | { |
| 3099 | static unsigned short speed_map[] = { 33, 66, 100, 133 }; |
| 3100 | u32 pci_mode, pcie_cap; |
| 3101 | |
| 3102 | pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
| 3103 | if (pcie_cap) { |
| 3104 | u16 val; |
| 3105 | |
| 3106 | p->variant = PCI_VARIANT_PCIE; |
| 3107 | p->pcie_cap_addr = pcie_cap; |
| 3108 | pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA, |
| 3109 | &val); |
| 3110 | p->width = (val >> 4) & 0x3f; |
| 3111 | return; |
| 3112 | } |
| 3113 | |
| 3114 | pci_mode = t3_read_reg(adapter, A_PCIX_MODE); |
| 3115 | p->speed = speed_map[G_PCLKRANGE(pci_mode)]; |
| 3116 | p->width = (pci_mode & F_64BIT) ? 64 : 32; |
| 3117 | pci_mode = G_PCIXINITPAT(pci_mode); |
| 3118 | if (pci_mode == 0) |
| 3119 | p->variant = PCI_VARIANT_PCI; |
| 3120 | else if (pci_mode < 4) |
| 3121 | p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; |
| 3122 | else if (pci_mode < 8) |
| 3123 | p->variant = PCI_VARIANT_PCIX_MODE1_ECC; |
| 3124 | else |
| 3125 | p->variant = PCI_VARIANT_PCIX_266_MODE2; |
| 3126 | } |
| 3127 | |
| 3128 | /** |
| 3129 | * init_link_config - initialize a link's SW state |
| 3130 | * @lc: structure holding the link state |
| 3131 | * @ai: information about the current card |
| 3132 | * |
| 3133 | * Initializes the SW state maintained for each link, including the link's |
| 3134 | * capabilities and default speed/duplex/flow-control/autonegotiation |
| 3135 | * settings. |
| 3136 | */ |
| 3137 | static void __devinit init_link_config(struct link_config *lc, |
| 3138 | unsigned int caps) |
| 3139 | { |
| 3140 | lc->supported = caps; |
| 3141 | lc->requested_speed = lc->speed = SPEED_INVALID; |
| 3142 | lc->requested_duplex = lc->duplex = DUPLEX_INVALID; |
| 3143 | lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; |
| 3144 | if (lc->supported & SUPPORTED_Autoneg) { |
| 3145 | lc->advertising = lc->supported; |
| 3146 | lc->autoneg = AUTONEG_ENABLE; |
| 3147 | lc->requested_fc |= PAUSE_AUTONEG; |
| 3148 | } else { |
| 3149 | lc->advertising = 0; |
| 3150 | lc->autoneg = AUTONEG_DISABLE; |
| 3151 | } |
| 3152 | } |
| 3153 | |
| 3154 | /** |
| 3155 | * mc7_calc_size - calculate MC7 memory size |
| 3156 | * @cfg: the MC7 configuration |
| 3157 | * |
| 3158 | * Calculates the size of an MC7 memory in bytes from the value of its |
| 3159 | * configuration register. |
| 3160 | */ |
| 3161 | static unsigned int __devinit mc7_calc_size(u32 cfg) |
| 3162 | { |
| 3163 | unsigned int width = G_WIDTH(cfg); |
| 3164 | unsigned int banks = !!(cfg & F_BKS) + 1; |
| 3165 | unsigned int org = !!(cfg & F_ORG) + 1; |
| 3166 | unsigned int density = G_DEN(cfg); |
| 3167 | unsigned int MBs = ((256 << density) * banks) / (org << width); |
| 3168 | |
| 3169 | return MBs << 20; |
| 3170 | } |
| 3171 | |
| 3172 | static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7, |
| 3173 | unsigned int base_addr, const char *name) |
| 3174 | { |
| 3175 | u32 cfg; |
| 3176 | |
| 3177 | mc7->adapter = adapter; |
| 3178 | mc7->name = name; |
| 3179 | mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; |
| 3180 | cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); |
| 3181 | mc7->size = mc7_calc_size(cfg); |
| 3182 | mc7->width = G_WIDTH(cfg); |
| 3183 | } |
| 3184 | |
| 3185 | void mac_prep(struct cmac *mac, struct adapter *adapter, int index) |
| 3186 | { |
| 3187 | mac->adapter = adapter; |
| 3188 | mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; |
| 3189 | mac->nucast = 1; |
| 3190 | |
| 3191 | if (adapter->params.rev == 0 && uses_xaui(adapter)) { |
| 3192 | t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, |
| 3193 | is_10G(adapter) ? 0x2901c04 : 0x2301c04); |
| 3194 | t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, |
| 3195 | F_ENRGMII, 0); |
| 3196 | } |
| 3197 | } |
| 3198 | |
| 3199 | void early_hw_init(struct adapter *adapter, const struct adapter_info *ai) |
| 3200 | { |
| 3201 | u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2); |
| 3202 | |
| 3203 | mi1_init(adapter, ai); |
| 3204 | t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ |
| 3205 | V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); |
| 3206 | t3_write_reg(adapter, A_T3DBG_GPIO_EN, |
| 3207 | ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); |
| 3208 | |
| 3209 | if (adapter->params.rev == 0 || !uses_xaui(adapter)) |
| 3210 | val |= F_ENRGMII; |
| 3211 | |
| 3212 | /* Enable MAC clocks so we can access the registers */ |
| 3213 | t3_write_reg(adapter, A_XGM_PORT_CFG, val); |
| 3214 | t3_read_reg(adapter, A_XGM_PORT_CFG); |
| 3215 | |
| 3216 | val |= F_CLKDIVRESET_; |
| 3217 | t3_write_reg(adapter, A_XGM_PORT_CFG, val); |
| 3218 | t3_read_reg(adapter, A_XGM_PORT_CFG); |
| 3219 | t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); |
| 3220 | t3_read_reg(adapter, A_XGM_PORT_CFG); |
| 3221 | } |
| 3222 | |
| 3223 | /* |
| 3224 | * Reset the adapter. PCIe cards lose their config space during reset, PCI-X |
| 3225 | * ones don't. |
| 3226 | */ |
| 3227 | int t3_reset_adapter(struct adapter *adapter) |
| 3228 | { |
| 3229 | int i; |
| 3230 | uint16_t devid = 0; |
| 3231 | |
| 3232 | if (is_pcie(adapter)) |
| 3233 | pci_save_state(adapter->pdev); |
| 3234 | t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); |
| 3235 | |
| 3236 | /* |
| 3237 | * Delay. Give Some time to device to reset fully. |
| 3238 | * XXX The delay time should be modified. |
| 3239 | */ |
| 3240 | for (i = 0; i < 10; i++) { |
| 3241 | msleep(50); |
| 3242 | pci_read_config_word(adapter->pdev, 0x00, &devid); |
| 3243 | if (devid == 0x1425) |
| 3244 | break; |
| 3245 | } |
| 3246 | |
| 3247 | if (devid != 0x1425) |
| 3248 | return -1; |
| 3249 | |
| 3250 | if (is_pcie(adapter)) |
| 3251 | pci_restore_state(adapter->pdev); |
| 3252 | return 0; |
| 3253 | } |
| 3254 | |
| 3255 | /* |
| 3256 | * Initialize adapter SW state for the various HW modules, set initial values |
| 3257 | * for some adapter tunables, take PHYs out of reset, and initialize the MDIO |
| 3258 | * interface. |
| 3259 | */ |
| 3260 | int __devinit t3_prep_adapter(struct adapter *adapter, |
| 3261 | const struct adapter_info *ai, int reset) |
| 3262 | { |
| 3263 | int ret; |
| 3264 | unsigned int i, j = 0; |
| 3265 | |
| 3266 | get_pci_mode(adapter, &adapter->params.pci); |
| 3267 | |
| 3268 | adapter->params.info = ai; |
| 3269 | adapter->params.nports = ai->nports; |
| 3270 | adapter->params.rev = t3_read_reg(adapter, A_PL_REV); |
| 3271 | adapter->params.linkpoll_period = 0; |
| 3272 | adapter->params.stats_update_period = is_10G(adapter) ? |
| 3273 | MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); |
| 3274 | adapter->params.pci.vpd_cap_addr = |
| 3275 | pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD); |
| 3276 | ret = get_vpd_params(adapter, &adapter->params.vpd); |
| 3277 | if (ret < 0) |
| 3278 | return ret; |
| 3279 | |
| 3280 | if (reset && t3_reset_adapter(adapter)) |
| 3281 | return -1; |
| 3282 | |
| 3283 | t3_sge_prep(adapter, &adapter->params.sge); |
| 3284 | |
| 3285 | if (adapter->params.vpd.mclk) { |
| 3286 | struct tp_params *p = &adapter->params.tp; |
| 3287 | |
| 3288 | mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); |
| 3289 | mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); |
| 3290 | mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); |
| 3291 | |
| 3292 | p->nchan = ai->nports; |
| 3293 | p->pmrx_size = t3_mc7_size(&adapter->pmrx); |
| 3294 | p->pmtx_size = t3_mc7_size(&adapter->pmtx); |
| 3295 | p->cm_size = t3_mc7_size(&adapter->cm); |
| 3296 | p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ |
| 3297 | p->chan_tx_size = p->pmtx_size / p->nchan; |
| 3298 | p->rx_pg_size = 64 * 1024; |
| 3299 | p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; |
| 3300 | p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); |
| 3301 | p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); |
| 3302 | p->ntimer_qs = p->cm_size >= (128 << 20) || |
| 3303 | adapter->params.rev > 0 ? 12 : 6; |
| 3304 | |
| 3305 | adapter->params.mc5.nservers = DEFAULT_NSERVERS; |
| 3306 | adapter->params.mc5.nfilters = adapter->params.rev > 0 ? |
| 3307 | DEFAULT_NFILTERS : 0; |
| 3308 | adapter->params.mc5.nroutes = 0; |
| 3309 | t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); |
| 3310 | |
| 3311 | init_mtus(adapter->params.mtus); |
| 3312 | init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); |
| 3313 | } |
| 3314 | |
| 3315 | early_hw_init(adapter, ai); |
| 3316 | |
| 3317 | for_each_port(adapter, i) { |
| 3318 | u8 hw_addr[6]; |
| 3319 | struct port_info *p = adap2pinfo(adapter, i); |
| 3320 | |
| 3321 | while (!adapter->params.vpd.port_type[j]) |
| 3322 | ++j; |
| 3323 | |
| 3324 | p->port_type = &port_types[adapter->params.vpd.port_type[j]]; |
| 3325 | p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j, |
| 3326 | ai->mdio_ops); |
| 3327 | mac_prep(&p->mac, adapter, j); |
| 3328 | ++j; |
| 3329 | |
| 3330 | /* |
| 3331 | * The VPD EEPROM stores the base Ethernet address for the |
| 3332 | * card. A port's address is derived from the base by adding |
| 3333 | * the port's index to the base's low octet. |
| 3334 | */ |
| 3335 | memcpy(hw_addr, adapter->params.vpd.eth_base, 5); |
| 3336 | hw_addr[5] = adapter->params.vpd.eth_base[5] + i; |
| 3337 | |
| 3338 | memcpy(adapter->port[i]->dev_addr, hw_addr, |
| 3339 | ETH_ALEN); |
| 3340 | memcpy(adapter->port[i]->perm_addr, hw_addr, |
| 3341 | ETH_ALEN); |
| 3342 | init_link_config(&p->link_config, p->port_type->caps); |
| 3343 | p->phy.ops->power_down(&p->phy, 1); |
| 3344 | if (!(p->port_type->caps & SUPPORTED_IRQ)) |
| 3345 | adapter->params.linkpoll_period = 10; |
| 3346 | } |
| 3347 | |
| 3348 | return 0; |
| 3349 | } |
| 3350 | |
| 3351 | void t3_led_ready(struct adapter *adapter) |
| 3352 | { |
| 3353 | t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, |
| 3354 | F_GPIO0_OUT_VAL); |
| 3355 | } |