Arne Jansen | 7414a03 | 2011-05-23 14:33:49 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2011 STRATO. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public |
| 6 | * License v2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public |
| 14 | * License along with this program; if not, write to the |
| 15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 16 | * Boston, MA 021110-1307, USA. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/pagemap.h> |
| 21 | #include <linux/writeback.h> |
| 22 | #include <linux/blkdev.h> |
| 23 | #include <linux/rbtree.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/workqueue.h> |
| 26 | #include "ctree.h" |
| 27 | #include "volumes.h" |
| 28 | #include "disk-io.h" |
| 29 | #include "transaction.h" |
| 30 | |
| 31 | #undef DEBUG |
| 32 | |
| 33 | /* |
| 34 | * This is the implementation for the generic read ahead framework. |
| 35 | * |
| 36 | * To trigger a readahead, btrfs_reada_add must be called. It will start |
| 37 | * a read ahead for the given range [start, end) on tree root. The returned |
| 38 | * handle can either be used to wait on the readahead to finish |
| 39 | * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). |
| 40 | * |
| 41 | * The read ahead works as follows: |
| 42 | * On btrfs_reada_add, the root of the tree is inserted into a radix_tree. |
| 43 | * reada_start_machine will then search for extents to prefetch and trigger |
| 44 | * some reads. When a read finishes for a node, all contained node/leaf |
| 45 | * pointers that lie in the given range will also be enqueued. The reads will |
| 46 | * be triggered in sequential order, thus giving a big win over a naive |
| 47 | * enumeration. It will also make use of multi-device layouts. Each disk |
| 48 | * will have its on read pointer and all disks will by utilized in parallel. |
| 49 | * Also will no two disks read both sides of a mirror simultaneously, as this |
| 50 | * would waste seeking capacity. Instead both disks will read different parts |
| 51 | * of the filesystem. |
| 52 | * Any number of readaheads can be started in parallel. The read order will be |
| 53 | * determined globally, i.e. 2 parallel readaheads will normally finish faster |
| 54 | * than the 2 started one after another. |
| 55 | */ |
| 56 | |
| 57 | #define MAX_MIRRORS 2 |
| 58 | #define MAX_IN_FLIGHT 6 |
| 59 | |
| 60 | struct reada_extctl { |
| 61 | struct list_head list; |
| 62 | struct reada_control *rc; |
| 63 | u64 generation; |
| 64 | }; |
| 65 | |
| 66 | struct reada_extent { |
| 67 | u64 logical; |
| 68 | struct btrfs_key top; |
| 69 | u32 blocksize; |
| 70 | int err; |
| 71 | struct list_head extctl; |
| 72 | struct kref refcnt; |
| 73 | spinlock_t lock; |
| 74 | struct reada_zone *zones[MAX_MIRRORS]; |
| 75 | int nzones; |
| 76 | struct btrfs_device *scheduled_for; |
| 77 | }; |
| 78 | |
| 79 | struct reada_zone { |
| 80 | u64 start; |
| 81 | u64 end; |
| 82 | u64 elems; |
| 83 | struct list_head list; |
| 84 | spinlock_t lock; |
| 85 | int locked; |
| 86 | struct btrfs_device *device; |
| 87 | struct btrfs_device *devs[MAX_MIRRORS]; /* full list, incl self */ |
| 88 | int ndevs; |
| 89 | struct kref refcnt; |
| 90 | }; |
| 91 | |
| 92 | struct reada_machine_work { |
| 93 | struct btrfs_work work; |
| 94 | struct btrfs_fs_info *fs_info; |
| 95 | }; |
| 96 | |
| 97 | static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *); |
| 98 | static void reada_control_release(struct kref *kref); |
| 99 | static void reada_zone_release(struct kref *kref); |
| 100 | static void reada_start_machine(struct btrfs_fs_info *fs_info); |
| 101 | static void __reada_start_machine(struct btrfs_fs_info *fs_info); |
| 102 | |
| 103 | static int reada_add_block(struct reada_control *rc, u64 logical, |
| 104 | struct btrfs_key *top, int level, u64 generation); |
| 105 | |
| 106 | /* recurses */ |
| 107 | /* in case of err, eb might be NULL */ |
| 108 | static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, |
| 109 | u64 start, int err) |
| 110 | { |
| 111 | int level = 0; |
| 112 | int nritems; |
| 113 | int i; |
| 114 | u64 bytenr; |
| 115 | u64 generation; |
| 116 | struct reada_extent *re; |
| 117 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 118 | struct list_head list; |
| 119 | unsigned long index = start >> PAGE_CACHE_SHIFT; |
| 120 | struct btrfs_device *for_dev; |
| 121 | |
| 122 | if (eb) |
| 123 | level = btrfs_header_level(eb); |
| 124 | |
| 125 | /* find extent */ |
| 126 | spin_lock(&fs_info->reada_lock); |
| 127 | re = radix_tree_lookup(&fs_info->reada_tree, index); |
| 128 | if (re) |
| 129 | kref_get(&re->refcnt); |
| 130 | spin_unlock(&fs_info->reada_lock); |
| 131 | |
| 132 | if (!re) |
| 133 | return -1; |
| 134 | |
| 135 | spin_lock(&re->lock); |
| 136 | /* |
| 137 | * just take the full list from the extent. afterwards we |
| 138 | * don't need the lock anymore |
| 139 | */ |
| 140 | list_replace_init(&re->extctl, &list); |
| 141 | for_dev = re->scheduled_for; |
| 142 | re->scheduled_for = NULL; |
| 143 | spin_unlock(&re->lock); |
| 144 | |
| 145 | if (err == 0) { |
| 146 | nritems = level ? btrfs_header_nritems(eb) : 0; |
| 147 | generation = btrfs_header_generation(eb); |
| 148 | /* |
| 149 | * FIXME: currently we just set nritems to 0 if this is a leaf, |
| 150 | * effectively ignoring the content. In a next step we could |
| 151 | * trigger more readahead depending from the content, e.g. |
| 152 | * fetch the checksums for the extents in the leaf. |
| 153 | */ |
| 154 | } else { |
| 155 | /* |
| 156 | * this is the error case, the extent buffer has not been |
| 157 | * read correctly. We won't access anything from it and |
| 158 | * just cleanup our data structures. Effectively this will |
| 159 | * cut the branch below this node from read ahead. |
| 160 | */ |
| 161 | nritems = 0; |
| 162 | generation = 0; |
| 163 | } |
| 164 | |
| 165 | for (i = 0; i < nritems; i++) { |
| 166 | struct reada_extctl *rec; |
| 167 | u64 n_gen; |
| 168 | struct btrfs_key key; |
| 169 | struct btrfs_key next_key; |
| 170 | |
| 171 | btrfs_node_key_to_cpu(eb, &key, i); |
| 172 | if (i + 1 < nritems) |
| 173 | btrfs_node_key_to_cpu(eb, &next_key, i + 1); |
| 174 | else |
| 175 | next_key = re->top; |
| 176 | bytenr = btrfs_node_blockptr(eb, i); |
| 177 | n_gen = btrfs_node_ptr_generation(eb, i); |
| 178 | |
| 179 | list_for_each_entry(rec, &list, list) { |
| 180 | struct reada_control *rc = rec->rc; |
| 181 | |
| 182 | /* |
| 183 | * if the generation doesn't match, just ignore this |
| 184 | * extctl. This will probably cut off a branch from |
| 185 | * prefetch. Alternatively one could start a new (sub-) |
| 186 | * prefetch for this branch, starting again from root. |
| 187 | * FIXME: move the generation check out of this loop |
| 188 | */ |
| 189 | #ifdef DEBUG |
| 190 | if (rec->generation != generation) { |
| 191 | printk(KERN_DEBUG "generation mismatch for " |
| 192 | "(%llu,%d,%llu) %llu != %llu\n", |
| 193 | key.objectid, key.type, key.offset, |
| 194 | rec->generation, generation); |
| 195 | } |
| 196 | #endif |
| 197 | if (rec->generation == generation && |
| 198 | btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 && |
| 199 | btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0) |
| 200 | reada_add_block(rc, bytenr, &next_key, |
| 201 | level - 1, n_gen); |
| 202 | } |
| 203 | } |
| 204 | /* |
| 205 | * free extctl records |
| 206 | */ |
| 207 | while (!list_empty(&list)) { |
| 208 | struct reada_control *rc; |
| 209 | struct reada_extctl *rec; |
| 210 | |
| 211 | rec = list_first_entry(&list, struct reada_extctl, list); |
| 212 | list_del(&rec->list); |
| 213 | rc = rec->rc; |
| 214 | kfree(rec); |
| 215 | |
| 216 | kref_get(&rc->refcnt); |
| 217 | if (atomic_dec_and_test(&rc->elems)) { |
| 218 | kref_put(&rc->refcnt, reada_control_release); |
| 219 | wake_up(&rc->wait); |
| 220 | } |
| 221 | kref_put(&rc->refcnt, reada_control_release); |
| 222 | |
| 223 | reada_extent_put(fs_info, re); /* one ref for each entry */ |
| 224 | } |
| 225 | reada_extent_put(fs_info, re); /* our ref */ |
| 226 | if (for_dev) |
| 227 | atomic_dec(&for_dev->reada_in_flight); |
| 228 | |
| 229 | return 0; |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * start is passed separately in case eb in NULL, which may be the case with |
| 234 | * failed I/O |
| 235 | */ |
| 236 | int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, |
| 237 | u64 start, int err) |
| 238 | { |
| 239 | int ret; |
| 240 | |
| 241 | ret = __readahead_hook(root, eb, start, err); |
| 242 | |
| 243 | reada_start_machine(root->fs_info); |
| 244 | |
| 245 | return ret; |
| 246 | } |
| 247 | |
| 248 | static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, |
| 249 | struct btrfs_device *dev, u64 logical, |
Chris Mason | 806468f | 2011-11-06 03:07:10 -0500 | [diff] [blame] | 250 | struct btrfs_bio *multi) |
Arne Jansen | 7414a03 | 2011-05-23 14:33:49 +0200 | [diff] [blame] | 251 | { |
| 252 | int ret; |
| 253 | int looped = 0; |
| 254 | struct reada_zone *zone; |
| 255 | struct btrfs_block_group_cache *cache = NULL; |
| 256 | u64 start; |
| 257 | u64 end; |
| 258 | int i; |
| 259 | |
| 260 | again: |
| 261 | zone = NULL; |
| 262 | spin_lock(&fs_info->reada_lock); |
| 263 | ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, |
| 264 | logical >> PAGE_CACHE_SHIFT, 1); |
| 265 | if (ret == 1) |
| 266 | kref_get(&zone->refcnt); |
| 267 | spin_unlock(&fs_info->reada_lock); |
| 268 | |
| 269 | if (ret == 1) { |
| 270 | if (logical >= zone->start && logical < zone->end) |
| 271 | return zone; |
| 272 | spin_lock(&fs_info->reada_lock); |
| 273 | kref_put(&zone->refcnt, reada_zone_release); |
| 274 | spin_unlock(&fs_info->reada_lock); |
| 275 | } |
| 276 | |
| 277 | if (looped) |
| 278 | return NULL; |
| 279 | |
| 280 | cache = btrfs_lookup_block_group(fs_info, logical); |
| 281 | if (!cache) |
| 282 | return NULL; |
| 283 | |
| 284 | start = cache->key.objectid; |
| 285 | end = start + cache->key.offset - 1; |
| 286 | btrfs_put_block_group(cache); |
| 287 | |
| 288 | zone = kzalloc(sizeof(*zone), GFP_NOFS); |
| 289 | if (!zone) |
| 290 | return NULL; |
| 291 | |
| 292 | zone->start = start; |
| 293 | zone->end = end; |
| 294 | INIT_LIST_HEAD(&zone->list); |
| 295 | spin_lock_init(&zone->lock); |
| 296 | zone->locked = 0; |
| 297 | kref_init(&zone->refcnt); |
| 298 | zone->elems = 0; |
| 299 | zone->device = dev; /* our device always sits at index 0 */ |
| 300 | for (i = 0; i < multi->num_stripes; ++i) { |
| 301 | /* bounds have already been checked */ |
| 302 | zone->devs[i] = multi->stripes[i].dev; |
| 303 | } |
| 304 | zone->ndevs = multi->num_stripes; |
| 305 | |
| 306 | spin_lock(&fs_info->reada_lock); |
| 307 | ret = radix_tree_insert(&dev->reada_zones, |
| 308 | (unsigned long)zone->end >> PAGE_CACHE_SHIFT, |
| 309 | zone); |
| 310 | spin_unlock(&fs_info->reada_lock); |
| 311 | |
| 312 | if (ret) { |
| 313 | kfree(zone); |
| 314 | looped = 1; |
| 315 | goto again; |
| 316 | } |
| 317 | |
| 318 | return zone; |
| 319 | } |
| 320 | |
| 321 | static struct reada_extent *reada_find_extent(struct btrfs_root *root, |
| 322 | u64 logical, |
| 323 | struct btrfs_key *top, int level) |
| 324 | { |
| 325 | int ret; |
| 326 | int looped = 0; |
| 327 | struct reada_extent *re = NULL; |
| 328 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 329 | struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; |
Chris Mason | 806468f | 2011-11-06 03:07:10 -0500 | [diff] [blame] | 330 | struct btrfs_bio *multi = NULL; |
Arne Jansen | 7414a03 | 2011-05-23 14:33:49 +0200 | [diff] [blame] | 331 | struct btrfs_device *dev; |
| 332 | u32 blocksize; |
| 333 | u64 length; |
| 334 | int nzones = 0; |
| 335 | int i; |
| 336 | unsigned long index = logical >> PAGE_CACHE_SHIFT; |
| 337 | |
| 338 | again: |
| 339 | spin_lock(&fs_info->reada_lock); |
| 340 | re = radix_tree_lookup(&fs_info->reada_tree, index); |
| 341 | if (re) |
| 342 | kref_get(&re->refcnt); |
| 343 | spin_unlock(&fs_info->reada_lock); |
| 344 | |
| 345 | if (re || looped) |
| 346 | return re; |
| 347 | |
| 348 | re = kzalloc(sizeof(*re), GFP_NOFS); |
| 349 | if (!re) |
| 350 | return NULL; |
| 351 | |
| 352 | blocksize = btrfs_level_size(root, level); |
| 353 | re->logical = logical; |
| 354 | re->blocksize = blocksize; |
| 355 | re->top = *top; |
| 356 | INIT_LIST_HEAD(&re->extctl); |
| 357 | spin_lock_init(&re->lock); |
| 358 | kref_init(&re->refcnt); |
| 359 | |
| 360 | /* |
| 361 | * map block |
| 362 | */ |
| 363 | length = blocksize; |
| 364 | ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &multi, 0); |
| 365 | if (ret || !multi || length < blocksize) |
| 366 | goto error; |
| 367 | |
| 368 | if (multi->num_stripes > MAX_MIRRORS) { |
| 369 | printk(KERN_ERR "btrfs readahead: more than %d copies not " |
| 370 | "supported", MAX_MIRRORS); |
| 371 | goto error; |
| 372 | } |
| 373 | |
| 374 | for (nzones = 0; nzones < multi->num_stripes; ++nzones) { |
| 375 | struct reada_zone *zone; |
| 376 | |
| 377 | dev = multi->stripes[nzones].dev; |
| 378 | zone = reada_find_zone(fs_info, dev, logical, multi); |
| 379 | if (!zone) |
| 380 | break; |
| 381 | |
| 382 | re->zones[nzones] = zone; |
| 383 | spin_lock(&zone->lock); |
| 384 | if (!zone->elems) |
| 385 | kref_get(&zone->refcnt); |
| 386 | ++zone->elems; |
| 387 | spin_unlock(&zone->lock); |
| 388 | spin_lock(&fs_info->reada_lock); |
| 389 | kref_put(&zone->refcnt, reada_zone_release); |
| 390 | spin_unlock(&fs_info->reada_lock); |
| 391 | } |
| 392 | re->nzones = nzones; |
| 393 | if (nzones == 0) { |
| 394 | /* not a single zone found, error and out */ |
| 395 | goto error; |
| 396 | } |
| 397 | |
| 398 | /* insert extent in reada_tree + all per-device trees, all or nothing */ |
| 399 | spin_lock(&fs_info->reada_lock); |
| 400 | ret = radix_tree_insert(&fs_info->reada_tree, index, re); |
| 401 | if (ret) { |
| 402 | spin_unlock(&fs_info->reada_lock); |
| 403 | if (ret != -ENOMEM) { |
| 404 | /* someone inserted the extent in the meantime */ |
| 405 | looped = 1; |
| 406 | } |
| 407 | goto error; |
| 408 | } |
| 409 | for (i = 0; i < nzones; ++i) { |
| 410 | dev = multi->stripes[i].dev; |
| 411 | ret = radix_tree_insert(&dev->reada_extents, index, re); |
| 412 | if (ret) { |
| 413 | while (--i >= 0) { |
| 414 | dev = multi->stripes[i].dev; |
| 415 | BUG_ON(dev == NULL); |
| 416 | radix_tree_delete(&dev->reada_extents, index); |
| 417 | } |
| 418 | BUG_ON(fs_info == NULL); |
| 419 | radix_tree_delete(&fs_info->reada_tree, index); |
| 420 | spin_unlock(&fs_info->reada_lock); |
| 421 | goto error; |
| 422 | } |
| 423 | } |
| 424 | spin_unlock(&fs_info->reada_lock); |
| 425 | |
Ilya Dryomov | 9510dc4 | 2011-11-04 09:41:02 -0400 | [diff] [blame^] | 426 | kfree(multi); |
Arne Jansen | 7414a03 | 2011-05-23 14:33:49 +0200 | [diff] [blame] | 427 | return re; |
| 428 | |
| 429 | error: |
| 430 | while (nzones) { |
| 431 | struct reada_zone *zone; |
| 432 | |
| 433 | --nzones; |
| 434 | zone = re->zones[nzones]; |
| 435 | kref_get(&zone->refcnt); |
| 436 | spin_lock(&zone->lock); |
| 437 | --zone->elems; |
| 438 | if (zone->elems == 0) { |
| 439 | /* |
| 440 | * no fs_info->reada_lock needed, as this can't be |
| 441 | * the last ref |
| 442 | */ |
| 443 | kref_put(&zone->refcnt, reada_zone_release); |
| 444 | } |
| 445 | spin_unlock(&zone->lock); |
| 446 | |
| 447 | spin_lock(&fs_info->reada_lock); |
| 448 | kref_put(&zone->refcnt, reada_zone_release); |
| 449 | spin_unlock(&fs_info->reada_lock); |
| 450 | } |
Ilya Dryomov | 9510dc4 | 2011-11-04 09:41:02 -0400 | [diff] [blame^] | 451 | kfree(multi); |
Arne Jansen | 7414a03 | 2011-05-23 14:33:49 +0200 | [diff] [blame] | 452 | kfree(re); |
| 453 | if (looped) |
| 454 | goto again; |
| 455 | return NULL; |
| 456 | } |
| 457 | |
| 458 | static void reada_kref_dummy(struct kref *kr) |
| 459 | { |
| 460 | } |
| 461 | |
| 462 | static void reada_extent_put(struct btrfs_fs_info *fs_info, |
| 463 | struct reada_extent *re) |
| 464 | { |
| 465 | int i; |
| 466 | unsigned long index = re->logical >> PAGE_CACHE_SHIFT; |
| 467 | |
| 468 | spin_lock(&fs_info->reada_lock); |
| 469 | if (!kref_put(&re->refcnt, reada_kref_dummy)) { |
| 470 | spin_unlock(&fs_info->reada_lock); |
| 471 | return; |
| 472 | } |
| 473 | |
| 474 | radix_tree_delete(&fs_info->reada_tree, index); |
| 475 | for (i = 0; i < re->nzones; ++i) { |
| 476 | struct reada_zone *zone = re->zones[i]; |
| 477 | |
| 478 | radix_tree_delete(&zone->device->reada_extents, index); |
| 479 | } |
| 480 | |
| 481 | spin_unlock(&fs_info->reada_lock); |
| 482 | |
| 483 | for (i = 0; i < re->nzones; ++i) { |
| 484 | struct reada_zone *zone = re->zones[i]; |
| 485 | |
| 486 | kref_get(&zone->refcnt); |
| 487 | spin_lock(&zone->lock); |
| 488 | --zone->elems; |
| 489 | if (zone->elems == 0) { |
| 490 | /* no fs_info->reada_lock needed, as this can't be |
| 491 | * the last ref */ |
| 492 | kref_put(&zone->refcnt, reada_zone_release); |
| 493 | } |
| 494 | spin_unlock(&zone->lock); |
| 495 | |
| 496 | spin_lock(&fs_info->reada_lock); |
| 497 | kref_put(&zone->refcnt, reada_zone_release); |
| 498 | spin_unlock(&fs_info->reada_lock); |
| 499 | } |
| 500 | if (re->scheduled_for) |
| 501 | atomic_dec(&re->scheduled_for->reada_in_flight); |
| 502 | |
| 503 | kfree(re); |
| 504 | } |
| 505 | |
| 506 | static void reada_zone_release(struct kref *kref) |
| 507 | { |
| 508 | struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt); |
| 509 | |
| 510 | radix_tree_delete(&zone->device->reada_zones, |
| 511 | zone->end >> PAGE_CACHE_SHIFT); |
| 512 | |
| 513 | kfree(zone); |
| 514 | } |
| 515 | |
| 516 | static void reada_control_release(struct kref *kref) |
| 517 | { |
| 518 | struct reada_control *rc = container_of(kref, struct reada_control, |
| 519 | refcnt); |
| 520 | |
| 521 | kfree(rc); |
| 522 | } |
| 523 | |
| 524 | static int reada_add_block(struct reada_control *rc, u64 logical, |
| 525 | struct btrfs_key *top, int level, u64 generation) |
| 526 | { |
| 527 | struct btrfs_root *root = rc->root; |
| 528 | struct reada_extent *re; |
| 529 | struct reada_extctl *rec; |
| 530 | |
| 531 | re = reada_find_extent(root, logical, top, level); /* takes one ref */ |
| 532 | if (!re) |
| 533 | return -1; |
| 534 | |
| 535 | rec = kzalloc(sizeof(*rec), GFP_NOFS); |
| 536 | if (!rec) { |
| 537 | reada_extent_put(root->fs_info, re); |
| 538 | return -1; |
| 539 | } |
| 540 | |
| 541 | rec->rc = rc; |
| 542 | rec->generation = generation; |
| 543 | atomic_inc(&rc->elems); |
| 544 | |
| 545 | spin_lock(&re->lock); |
| 546 | list_add_tail(&rec->list, &re->extctl); |
| 547 | spin_unlock(&re->lock); |
| 548 | |
| 549 | /* leave the ref on the extent */ |
| 550 | |
| 551 | return 0; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * called with fs_info->reada_lock held |
| 556 | */ |
| 557 | static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock) |
| 558 | { |
| 559 | int i; |
| 560 | unsigned long index = zone->end >> PAGE_CACHE_SHIFT; |
| 561 | |
| 562 | for (i = 0; i < zone->ndevs; ++i) { |
| 563 | struct reada_zone *peer; |
| 564 | peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index); |
| 565 | if (peer && peer->device != zone->device) |
| 566 | peer->locked = lock; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * called with fs_info->reada_lock held |
| 572 | */ |
| 573 | static int reada_pick_zone(struct btrfs_device *dev) |
| 574 | { |
| 575 | struct reada_zone *top_zone = NULL; |
| 576 | struct reada_zone *top_locked_zone = NULL; |
| 577 | u64 top_elems = 0; |
| 578 | u64 top_locked_elems = 0; |
| 579 | unsigned long index = 0; |
| 580 | int ret; |
| 581 | |
| 582 | if (dev->reada_curr_zone) { |
| 583 | reada_peer_zones_set_lock(dev->reada_curr_zone, 0); |
| 584 | kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release); |
| 585 | dev->reada_curr_zone = NULL; |
| 586 | } |
| 587 | /* pick the zone with the most elements */ |
| 588 | while (1) { |
| 589 | struct reada_zone *zone; |
| 590 | |
| 591 | ret = radix_tree_gang_lookup(&dev->reada_zones, |
| 592 | (void **)&zone, index, 1); |
| 593 | if (ret == 0) |
| 594 | break; |
| 595 | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; |
| 596 | if (zone->locked) { |
| 597 | if (zone->elems > top_locked_elems) { |
| 598 | top_locked_elems = zone->elems; |
| 599 | top_locked_zone = zone; |
| 600 | } |
| 601 | } else { |
| 602 | if (zone->elems > top_elems) { |
| 603 | top_elems = zone->elems; |
| 604 | top_zone = zone; |
| 605 | } |
| 606 | } |
| 607 | } |
| 608 | if (top_zone) |
| 609 | dev->reada_curr_zone = top_zone; |
| 610 | else if (top_locked_zone) |
| 611 | dev->reada_curr_zone = top_locked_zone; |
| 612 | else |
| 613 | return 0; |
| 614 | |
| 615 | dev->reada_next = dev->reada_curr_zone->start; |
| 616 | kref_get(&dev->reada_curr_zone->refcnt); |
| 617 | reada_peer_zones_set_lock(dev->reada_curr_zone, 1); |
| 618 | |
| 619 | return 1; |
| 620 | } |
| 621 | |
| 622 | static int reada_start_machine_dev(struct btrfs_fs_info *fs_info, |
| 623 | struct btrfs_device *dev) |
| 624 | { |
| 625 | struct reada_extent *re = NULL; |
| 626 | int mirror_num = 0; |
| 627 | struct extent_buffer *eb = NULL; |
| 628 | u64 logical; |
| 629 | u32 blocksize; |
| 630 | int ret; |
| 631 | int i; |
| 632 | int need_kick = 0; |
| 633 | |
| 634 | spin_lock(&fs_info->reada_lock); |
| 635 | if (dev->reada_curr_zone == NULL) { |
| 636 | ret = reada_pick_zone(dev); |
| 637 | if (!ret) { |
| 638 | spin_unlock(&fs_info->reada_lock); |
| 639 | return 0; |
| 640 | } |
| 641 | } |
| 642 | /* |
| 643 | * FIXME currently we issue the reads one extent at a time. If we have |
| 644 | * a contiguous block of extents, we could also coagulate them or use |
| 645 | * plugging to speed things up |
| 646 | */ |
| 647 | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, |
| 648 | dev->reada_next >> PAGE_CACHE_SHIFT, 1); |
| 649 | if (ret == 0 || re->logical >= dev->reada_curr_zone->end) { |
| 650 | ret = reada_pick_zone(dev); |
| 651 | if (!ret) { |
| 652 | spin_unlock(&fs_info->reada_lock); |
| 653 | return 0; |
| 654 | } |
| 655 | re = NULL; |
| 656 | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, |
| 657 | dev->reada_next >> PAGE_CACHE_SHIFT, 1); |
| 658 | } |
| 659 | if (ret == 0) { |
| 660 | spin_unlock(&fs_info->reada_lock); |
| 661 | return 0; |
| 662 | } |
| 663 | dev->reada_next = re->logical + re->blocksize; |
| 664 | kref_get(&re->refcnt); |
| 665 | |
| 666 | spin_unlock(&fs_info->reada_lock); |
| 667 | |
| 668 | /* |
| 669 | * find mirror num |
| 670 | */ |
| 671 | for (i = 0; i < re->nzones; ++i) { |
| 672 | if (re->zones[i]->device == dev) { |
| 673 | mirror_num = i + 1; |
| 674 | break; |
| 675 | } |
| 676 | } |
| 677 | logical = re->logical; |
| 678 | blocksize = re->blocksize; |
| 679 | |
| 680 | spin_lock(&re->lock); |
| 681 | if (re->scheduled_for == NULL) { |
| 682 | re->scheduled_for = dev; |
| 683 | need_kick = 1; |
| 684 | } |
| 685 | spin_unlock(&re->lock); |
| 686 | |
| 687 | reada_extent_put(fs_info, re); |
| 688 | |
| 689 | if (!need_kick) |
| 690 | return 0; |
| 691 | |
| 692 | atomic_inc(&dev->reada_in_flight); |
| 693 | ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize, |
| 694 | mirror_num, &eb); |
| 695 | if (ret) |
| 696 | __readahead_hook(fs_info->extent_root, NULL, logical, ret); |
| 697 | else if (eb) |
| 698 | __readahead_hook(fs_info->extent_root, eb, eb->start, ret); |
| 699 | |
| 700 | if (eb) |
| 701 | free_extent_buffer(eb); |
| 702 | |
| 703 | return 1; |
| 704 | |
| 705 | } |
| 706 | |
| 707 | static void reada_start_machine_worker(struct btrfs_work *work) |
| 708 | { |
| 709 | struct reada_machine_work *rmw; |
| 710 | struct btrfs_fs_info *fs_info; |
| 711 | |
| 712 | rmw = container_of(work, struct reada_machine_work, work); |
| 713 | fs_info = rmw->fs_info; |
| 714 | |
| 715 | kfree(rmw); |
| 716 | |
| 717 | __reada_start_machine(fs_info); |
| 718 | } |
| 719 | |
| 720 | static void __reada_start_machine(struct btrfs_fs_info *fs_info) |
| 721 | { |
| 722 | struct btrfs_device *device; |
| 723 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| 724 | u64 enqueued; |
| 725 | u64 total = 0; |
| 726 | int i; |
| 727 | |
| 728 | do { |
| 729 | enqueued = 0; |
| 730 | list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| 731 | if (atomic_read(&device->reada_in_flight) < |
| 732 | MAX_IN_FLIGHT) |
| 733 | enqueued += reada_start_machine_dev(fs_info, |
| 734 | device); |
| 735 | } |
| 736 | total += enqueued; |
| 737 | } while (enqueued && total < 10000); |
| 738 | |
| 739 | if (enqueued == 0) |
| 740 | return; |
| 741 | |
| 742 | /* |
| 743 | * If everything is already in the cache, this is effectively single |
| 744 | * threaded. To a) not hold the caller for too long and b) to utilize |
| 745 | * more cores, we broke the loop above after 10000 iterations and now |
| 746 | * enqueue to workers to finish it. This will distribute the load to |
| 747 | * the cores. |
| 748 | */ |
| 749 | for (i = 0; i < 2; ++i) |
| 750 | reada_start_machine(fs_info); |
| 751 | } |
| 752 | |
| 753 | static void reada_start_machine(struct btrfs_fs_info *fs_info) |
| 754 | { |
| 755 | struct reada_machine_work *rmw; |
| 756 | |
| 757 | rmw = kzalloc(sizeof(*rmw), GFP_NOFS); |
| 758 | if (!rmw) { |
| 759 | /* FIXME we cannot handle this properly right now */ |
| 760 | BUG(); |
| 761 | } |
| 762 | rmw->work.func = reada_start_machine_worker; |
| 763 | rmw->fs_info = fs_info; |
| 764 | |
| 765 | btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work); |
| 766 | } |
| 767 | |
| 768 | #ifdef DEBUG |
| 769 | static void dump_devs(struct btrfs_fs_info *fs_info, int all) |
| 770 | { |
| 771 | struct btrfs_device *device; |
| 772 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| 773 | unsigned long index; |
| 774 | int ret; |
| 775 | int i; |
| 776 | int j; |
| 777 | int cnt; |
| 778 | |
| 779 | spin_lock(&fs_info->reada_lock); |
| 780 | list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| 781 | printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid, |
| 782 | atomic_read(&device->reada_in_flight)); |
| 783 | index = 0; |
| 784 | while (1) { |
| 785 | struct reada_zone *zone; |
| 786 | ret = radix_tree_gang_lookup(&device->reada_zones, |
| 787 | (void **)&zone, index, 1); |
| 788 | if (ret == 0) |
| 789 | break; |
| 790 | printk(KERN_DEBUG " zone %llu-%llu elems %llu locked " |
| 791 | "%d devs", zone->start, zone->end, zone->elems, |
| 792 | zone->locked); |
| 793 | for (j = 0; j < zone->ndevs; ++j) { |
| 794 | printk(KERN_CONT " %lld", |
| 795 | zone->devs[j]->devid); |
| 796 | } |
| 797 | if (device->reada_curr_zone == zone) |
| 798 | printk(KERN_CONT " curr off %llu", |
| 799 | device->reada_next - zone->start); |
| 800 | printk(KERN_CONT "\n"); |
| 801 | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; |
| 802 | } |
| 803 | cnt = 0; |
| 804 | index = 0; |
| 805 | while (all) { |
| 806 | struct reada_extent *re = NULL; |
| 807 | |
| 808 | ret = radix_tree_gang_lookup(&device->reada_extents, |
| 809 | (void **)&re, index, 1); |
| 810 | if (ret == 0) |
| 811 | break; |
| 812 | printk(KERN_DEBUG |
| 813 | " re: logical %llu size %u empty %d for %lld", |
| 814 | re->logical, re->blocksize, |
| 815 | list_empty(&re->extctl), re->scheduled_for ? |
| 816 | re->scheduled_for->devid : -1); |
| 817 | |
| 818 | for (i = 0; i < re->nzones; ++i) { |
| 819 | printk(KERN_CONT " zone %llu-%llu devs", |
| 820 | re->zones[i]->start, |
| 821 | re->zones[i]->end); |
| 822 | for (j = 0; j < re->zones[i]->ndevs; ++j) { |
| 823 | printk(KERN_CONT " %lld", |
| 824 | re->zones[i]->devs[j]->devid); |
| 825 | } |
| 826 | } |
| 827 | printk(KERN_CONT "\n"); |
| 828 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; |
| 829 | if (++cnt > 15) |
| 830 | break; |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | index = 0; |
| 835 | cnt = 0; |
| 836 | while (all) { |
| 837 | struct reada_extent *re = NULL; |
| 838 | |
| 839 | ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re, |
| 840 | index, 1); |
| 841 | if (ret == 0) |
| 842 | break; |
| 843 | if (!re->scheduled_for) { |
| 844 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; |
| 845 | continue; |
| 846 | } |
| 847 | printk(KERN_DEBUG |
| 848 | "re: logical %llu size %u list empty %d for %lld", |
| 849 | re->logical, re->blocksize, list_empty(&re->extctl), |
| 850 | re->scheduled_for ? re->scheduled_for->devid : -1); |
| 851 | for (i = 0; i < re->nzones; ++i) { |
| 852 | printk(KERN_CONT " zone %llu-%llu devs", |
| 853 | re->zones[i]->start, |
| 854 | re->zones[i]->end); |
| 855 | for (i = 0; i < re->nzones; ++i) { |
| 856 | printk(KERN_CONT " zone %llu-%llu devs", |
| 857 | re->zones[i]->start, |
| 858 | re->zones[i]->end); |
| 859 | for (j = 0; j < re->zones[i]->ndevs; ++j) { |
| 860 | printk(KERN_CONT " %lld", |
| 861 | re->zones[i]->devs[j]->devid); |
| 862 | } |
| 863 | } |
| 864 | } |
| 865 | printk(KERN_CONT "\n"); |
| 866 | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; |
| 867 | } |
| 868 | spin_unlock(&fs_info->reada_lock); |
| 869 | } |
| 870 | #endif |
| 871 | |
| 872 | /* |
| 873 | * interface |
| 874 | */ |
| 875 | struct reada_control *btrfs_reada_add(struct btrfs_root *root, |
| 876 | struct btrfs_key *key_start, struct btrfs_key *key_end) |
| 877 | { |
| 878 | struct reada_control *rc; |
| 879 | u64 start; |
| 880 | u64 generation; |
| 881 | int level; |
| 882 | struct extent_buffer *node; |
| 883 | static struct btrfs_key max_key = { |
| 884 | .objectid = (u64)-1, |
| 885 | .type = (u8)-1, |
| 886 | .offset = (u64)-1 |
| 887 | }; |
| 888 | |
| 889 | rc = kzalloc(sizeof(*rc), GFP_NOFS); |
| 890 | if (!rc) |
| 891 | return ERR_PTR(-ENOMEM); |
| 892 | |
| 893 | rc->root = root; |
| 894 | rc->key_start = *key_start; |
| 895 | rc->key_end = *key_end; |
| 896 | atomic_set(&rc->elems, 0); |
| 897 | init_waitqueue_head(&rc->wait); |
| 898 | kref_init(&rc->refcnt); |
| 899 | kref_get(&rc->refcnt); /* one ref for having elements */ |
| 900 | |
| 901 | node = btrfs_root_node(root); |
| 902 | start = node->start; |
| 903 | level = btrfs_header_level(node); |
| 904 | generation = btrfs_header_generation(node); |
| 905 | free_extent_buffer(node); |
| 906 | |
| 907 | reada_add_block(rc, start, &max_key, level, generation); |
| 908 | |
| 909 | reada_start_machine(root->fs_info); |
| 910 | |
| 911 | return rc; |
| 912 | } |
| 913 | |
| 914 | #ifdef DEBUG |
| 915 | int btrfs_reada_wait(void *handle) |
| 916 | { |
| 917 | struct reada_control *rc = handle; |
| 918 | |
| 919 | while (atomic_read(&rc->elems)) { |
| 920 | wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, |
| 921 | 5 * HZ); |
| 922 | dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); |
| 923 | } |
| 924 | |
| 925 | dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); |
| 926 | |
| 927 | kref_put(&rc->refcnt, reada_control_release); |
| 928 | |
| 929 | return 0; |
| 930 | } |
| 931 | #else |
| 932 | int btrfs_reada_wait(void *handle) |
| 933 | { |
| 934 | struct reada_control *rc = handle; |
| 935 | |
| 936 | while (atomic_read(&rc->elems)) { |
| 937 | wait_event(rc->wait, atomic_read(&rc->elems) == 0); |
| 938 | } |
| 939 | |
| 940 | kref_put(&rc->refcnt, reada_control_release); |
| 941 | |
| 942 | return 0; |
| 943 | } |
| 944 | #endif |
| 945 | |
| 946 | void btrfs_reada_detach(void *handle) |
| 947 | { |
| 948 | struct reada_control *rc = handle; |
| 949 | |
| 950 | kref_put(&rc->refcnt, reada_control_release); |
| 951 | } |