| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright (c) 2018, Intel Corporation. */ |
| 3 | |
| 4 | /* The driver transmit and receive code */ |
| 5 | |
| 6 | #include <linux/prefetch.h> |
| 7 | #include <linux/mm.h> |
| 8 | #include "ice.h" |
| 9 | |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 10 | #define ICE_RX_HDR_SIZE 256 |
| 11 | |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 12 | /** |
| 13 | * ice_unmap_and_free_tx_buf - Release a Tx buffer |
| 14 | * @ring: the ring that owns the buffer |
| 15 | * @tx_buf: the buffer to free |
| 16 | */ |
| 17 | static void |
| 18 | ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) |
| 19 | { |
| 20 | if (tx_buf->skb) { |
| 21 | dev_kfree_skb_any(tx_buf->skb); |
| 22 | if (dma_unmap_len(tx_buf, len)) |
| 23 | dma_unmap_single(ring->dev, |
| 24 | dma_unmap_addr(tx_buf, dma), |
| 25 | dma_unmap_len(tx_buf, len), |
| 26 | DMA_TO_DEVICE); |
| 27 | } else if (dma_unmap_len(tx_buf, len)) { |
| 28 | dma_unmap_page(ring->dev, |
| 29 | dma_unmap_addr(tx_buf, dma), |
| 30 | dma_unmap_len(tx_buf, len), |
| 31 | DMA_TO_DEVICE); |
| 32 | } |
| 33 | |
| 34 | tx_buf->next_to_watch = NULL; |
| 35 | tx_buf->skb = NULL; |
| 36 | dma_unmap_len_set(tx_buf, len, 0); |
| 37 | /* tx_buf must be completely set up in the transmit path */ |
| 38 | } |
| 39 | |
| 40 | static struct netdev_queue *txring_txq(const struct ice_ring *ring) |
| 41 | { |
| 42 | return netdev_get_tx_queue(ring->netdev, ring->q_index); |
| 43 | } |
| 44 | |
| 45 | /** |
| 46 | * ice_clean_tx_ring - Free any empty Tx buffers |
| 47 | * @tx_ring: ring to be cleaned |
| 48 | */ |
| 49 | void ice_clean_tx_ring(struct ice_ring *tx_ring) |
| 50 | { |
| 51 | unsigned long size; |
| 52 | u16 i; |
| 53 | |
| 54 | /* ring already cleared, nothing to do */ |
| 55 | if (!tx_ring->tx_buf) |
| 56 | return; |
| 57 | |
| 58 | /* Free all the Tx ring sk_bufss */ |
| 59 | for (i = 0; i < tx_ring->count; i++) |
| 60 | ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); |
| 61 | |
| 62 | size = sizeof(struct ice_tx_buf) * tx_ring->count; |
| 63 | memset(tx_ring->tx_buf, 0, size); |
| 64 | |
| 65 | /* Zero out the descriptor ring */ |
| 66 | memset(tx_ring->desc, 0, tx_ring->size); |
| 67 | |
| 68 | tx_ring->next_to_use = 0; |
| 69 | tx_ring->next_to_clean = 0; |
| 70 | |
| 71 | if (!tx_ring->netdev) |
| 72 | return; |
| 73 | |
| 74 | /* cleanup Tx queue statistics */ |
| 75 | netdev_tx_reset_queue(txring_txq(tx_ring)); |
| 76 | } |
| 77 | |
| 78 | /** |
| 79 | * ice_free_tx_ring - Free Tx resources per queue |
| 80 | * @tx_ring: Tx descriptor ring for a specific queue |
| 81 | * |
| 82 | * Free all transmit software resources |
| 83 | */ |
| 84 | void ice_free_tx_ring(struct ice_ring *tx_ring) |
| 85 | { |
| 86 | ice_clean_tx_ring(tx_ring); |
| 87 | devm_kfree(tx_ring->dev, tx_ring->tx_buf); |
| 88 | tx_ring->tx_buf = NULL; |
| 89 | |
| 90 | if (tx_ring->desc) { |
| 91 | dmam_free_coherent(tx_ring->dev, tx_ring->size, |
| 92 | tx_ring->desc, tx_ring->dma); |
| 93 | tx_ring->desc = NULL; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | /** |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 98 | * ice_clean_tx_irq - Reclaim resources after transmit completes |
| 99 | * @vsi: the VSI we care about |
| 100 | * @tx_ring: Tx ring to clean |
| 101 | * @napi_budget: Used to determine if we are in netpoll |
| 102 | * |
| 103 | * Returns true if there's any budget left (e.g. the clean is finished) |
| 104 | */ |
| 105 | static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring, |
| 106 | int napi_budget) |
| 107 | { |
| 108 | unsigned int total_bytes = 0, total_pkts = 0; |
| 109 | unsigned int budget = vsi->work_lmt; |
| 110 | s16 i = tx_ring->next_to_clean; |
| 111 | struct ice_tx_desc *tx_desc; |
| 112 | struct ice_tx_buf *tx_buf; |
| 113 | |
| 114 | tx_buf = &tx_ring->tx_buf[i]; |
| 115 | tx_desc = ICE_TX_DESC(tx_ring, i); |
| 116 | i -= tx_ring->count; |
| 117 | |
| 118 | do { |
| 119 | struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; |
| 120 | |
| 121 | /* if next_to_watch is not set then there is no work pending */ |
| 122 | if (!eop_desc) |
| 123 | break; |
| 124 | |
| 125 | smp_rmb(); /* prevent any other reads prior to eop_desc */ |
| 126 | |
| 127 | /* if the descriptor isn't done, no work yet to do */ |
| 128 | if (!(eop_desc->cmd_type_offset_bsz & |
| 129 | cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| 130 | break; |
| 131 | |
| 132 | /* clear next_to_watch to prevent false hangs */ |
| 133 | tx_buf->next_to_watch = NULL; |
| 134 | |
| 135 | /* update the statistics for this packet */ |
| 136 | total_bytes += tx_buf->bytecount; |
| 137 | total_pkts += tx_buf->gso_segs; |
| 138 | |
| 139 | /* free the skb */ |
| 140 | napi_consume_skb(tx_buf->skb, napi_budget); |
| 141 | |
| 142 | /* unmap skb header data */ |
| 143 | dma_unmap_single(tx_ring->dev, |
| 144 | dma_unmap_addr(tx_buf, dma), |
| 145 | dma_unmap_len(tx_buf, len), |
| 146 | DMA_TO_DEVICE); |
| 147 | |
| 148 | /* clear tx_buf data */ |
| 149 | tx_buf->skb = NULL; |
| 150 | dma_unmap_len_set(tx_buf, len, 0); |
| 151 | |
| 152 | /* unmap remaining buffers */ |
| 153 | while (tx_desc != eop_desc) { |
| 154 | tx_buf++; |
| 155 | tx_desc++; |
| 156 | i++; |
| 157 | if (unlikely(!i)) { |
| 158 | i -= tx_ring->count; |
| 159 | tx_buf = tx_ring->tx_buf; |
| 160 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 161 | } |
| 162 | |
| 163 | /* unmap any remaining paged data */ |
| 164 | if (dma_unmap_len(tx_buf, len)) { |
| 165 | dma_unmap_page(tx_ring->dev, |
| 166 | dma_unmap_addr(tx_buf, dma), |
| 167 | dma_unmap_len(tx_buf, len), |
| 168 | DMA_TO_DEVICE); |
| 169 | dma_unmap_len_set(tx_buf, len, 0); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | /* move us one more past the eop_desc for start of next pkt */ |
| 174 | tx_buf++; |
| 175 | tx_desc++; |
| 176 | i++; |
| 177 | if (unlikely(!i)) { |
| 178 | i -= tx_ring->count; |
| 179 | tx_buf = tx_ring->tx_buf; |
| 180 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 181 | } |
| 182 | |
| 183 | prefetch(tx_desc); |
| 184 | |
| 185 | /* update budget accounting */ |
| 186 | budget--; |
| 187 | } while (likely(budget)); |
| 188 | |
| 189 | i += tx_ring->count; |
| 190 | tx_ring->next_to_clean = i; |
| 191 | u64_stats_update_begin(&tx_ring->syncp); |
| 192 | tx_ring->stats.bytes += total_bytes; |
| 193 | tx_ring->stats.pkts += total_pkts; |
| 194 | u64_stats_update_end(&tx_ring->syncp); |
| 195 | tx_ring->q_vector->tx.total_bytes += total_bytes; |
| 196 | tx_ring->q_vector->tx.total_pkts += total_pkts; |
| 197 | |
| 198 | netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, |
| 199 | total_bytes); |
| 200 | |
| 201 | #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) |
| 202 | if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && |
| 203 | (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| 204 | /* Make sure that anybody stopping the queue after this |
| 205 | * sees the new next_to_clean. |
| 206 | */ |
| 207 | smp_mb(); |
| 208 | if (__netif_subqueue_stopped(tx_ring->netdev, |
| 209 | tx_ring->q_index) && |
| 210 | !test_bit(__ICE_DOWN, vsi->state)) { |
| 211 | netif_wake_subqueue(tx_ring->netdev, |
| 212 | tx_ring->q_index); |
| 213 | ++tx_ring->tx_stats.restart_q; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | return !!budget; |
| 218 | } |
| 219 | |
| 220 | /** |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 221 | * ice_setup_tx_ring - Allocate the Tx descriptors |
| 222 | * @tx_ring: the tx ring to set up |
| 223 | * |
| 224 | * Return 0 on success, negative on error |
| 225 | */ |
| 226 | int ice_setup_tx_ring(struct ice_ring *tx_ring) |
| 227 | { |
| 228 | struct device *dev = tx_ring->dev; |
| 229 | int bi_size; |
| 230 | |
| 231 | if (!dev) |
| 232 | return -ENOMEM; |
| 233 | |
| 234 | /* warn if we are about to overwrite the pointer */ |
| 235 | WARN_ON(tx_ring->tx_buf); |
| 236 | bi_size = sizeof(struct ice_tx_buf) * tx_ring->count; |
| 237 | tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL); |
| 238 | if (!tx_ring->tx_buf) |
| 239 | return -ENOMEM; |
| 240 | |
| 241 | /* round up to nearest 4K */ |
| 242 | tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc); |
| 243 | tx_ring->size = ALIGN(tx_ring->size, 4096); |
| 244 | tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, |
| 245 | GFP_KERNEL); |
| 246 | if (!tx_ring->desc) { |
| 247 | dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", |
| 248 | tx_ring->size); |
| 249 | goto err; |
| 250 | } |
| 251 | |
| 252 | tx_ring->next_to_use = 0; |
| 253 | tx_ring->next_to_clean = 0; |
| 254 | return 0; |
| 255 | |
| 256 | err: |
| 257 | devm_kfree(dev, tx_ring->tx_buf); |
| 258 | tx_ring->tx_buf = NULL; |
| 259 | return -ENOMEM; |
| 260 | } |
| 261 | |
| 262 | /** |
| 263 | * ice_clean_rx_ring - Free Rx buffers |
| 264 | * @rx_ring: ring to be cleaned |
| 265 | */ |
| 266 | void ice_clean_rx_ring(struct ice_ring *rx_ring) |
| 267 | { |
| 268 | struct device *dev = rx_ring->dev; |
| 269 | unsigned long size; |
| 270 | u16 i; |
| 271 | |
| 272 | /* ring already cleared, nothing to do */ |
| 273 | if (!rx_ring->rx_buf) |
| 274 | return; |
| 275 | |
| 276 | /* Free all the Rx ring sk_buffs */ |
| 277 | for (i = 0; i < rx_ring->count; i++) { |
| 278 | struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; |
| 279 | |
| 280 | if (rx_buf->skb) { |
| 281 | dev_kfree_skb(rx_buf->skb); |
| 282 | rx_buf->skb = NULL; |
| 283 | } |
| 284 | if (!rx_buf->page) |
| 285 | continue; |
| 286 | |
| 287 | dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE); |
| 288 | __free_pages(rx_buf->page, 0); |
| 289 | |
| 290 | rx_buf->page = NULL; |
| 291 | rx_buf->page_offset = 0; |
| 292 | } |
| 293 | |
| 294 | size = sizeof(struct ice_rx_buf) * rx_ring->count; |
| 295 | memset(rx_ring->rx_buf, 0, size); |
| 296 | |
| 297 | /* Zero out the descriptor ring */ |
| 298 | memset(rx_ring->desc, 0, rx_ring->size); |
| 299 | |
| 300 | rx_ring->next_to_alloc = 0; |
| 301 | rx_ring->next_to_clean = 0; |
| 302 | rx_ring->next_to_use = 0; |
| 303 | } |
| 304 | |
| 305 | /** |
| 306 | * ice_free_rx_ring - Free Rx resources |
| 307 | * @rx_ring: ring to clean the resources from |
| 308 | * |
| 309 | * Free all receive software resources |
| 310 | */ |
| 311 | void ice_free_rx_ring(struct ice_ring *rx_ring) |
| 312 | { |
| 313 | ice_clean_rx_ring(rx_ring); |
| 314 | devm_kfree(rx_ring->dev, rx_ring->rx_buf); |
| 315 | rx_ring->rx_buf = NULL; |
| 316 | |
| 317 | if (rx_ring->desc) { |
| 318 | dmam_free_coherent(rx_ring->dev, rx_ring->size, |
| 319 | rx_ring->desc, rx_ring->dma); |
| 320 | rx_ring->desc = NULL; |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | /** |
| 325 | * ice_setup_rx_ring - Allocate the Rx descriptors |
| 326 | * @rx_ring: the rx ring to set up |
| 327 | * |
| 328 | * Return 0 on success, negative on error |
| 329 | */ |
| 330 | int ice_setup_rx_ring(struct ice_ring *rx_ring) |
| 331 | { |
| 332 | struct device *dev = rx_ring->dev; |
| 333 | int bi_size; |
| 334 | |
| 335 | if (!dev) |
| 336 | return -ENOMEM; |
| 337 | |
| 338 | /* warn if we are about to overwrite the pointer */ |
| 339 | WARN_ON(rx_ring->rx_buf); |
| 340 | bi_size = sizeof(struct ice_rx_buf) * rx_ring->count; |
| 341 | rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL); |
| 342 | if (!rx_ring->rx_buf) |
| 343 | return -ENOMEM; |
| 344 | |
| 345 | /* round up to nearest 4K */ |
| 346 | rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc); |
| 347 | rx_ring->size = ALIGN(rx_ring->size, 4096); |
| 348 | rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, |
| 349 | GFP_KERNEL); |
| 350 | if (!rx_ring->desc) { |
| 351 | dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", |
| 352 | rx_ring->size); |
| 353 | goto err; |
| 354 | } |
| 355 | |
| 356 | rx_ring->next_to_use = 0; |
| 357 | rx_ring->next_to_clean = 0; |
| 358 | return 0; |
| 359 | |
| 360 | err: |
| 361 | devm_kfree(dev, rx_ring->rx_buf); |
| 362 | rx_ring->rx_buf = NULL; |
| 363 | return -ENOMEM; |
| 364 | } |
| 365 | |
| 366 | /** |
| 367 | * ice_release_rx_desc - Store the new tail and head values |
| 368 | * @rx_ring: ring to bump |
| 369 | * @val: new head index |
| 370 | */ |
| 371 | static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val) |
| 372 | { |
| 373 | rx_ring->next_to_use = val; |
| 374 | |
| 375 | /* update next to alloc since we have filled the ring */ |
| 376 | rx_ring->next_to_alloc = val; |
| 377 | |
| 378 | /* Force memory writes to complete before letting h/w |
| 379 | * know there are new descriptors to fetch. (Only |
| 380 | * applicable for weak-ordered memory model archs, |
| 381 | * such as IA-64). |
| 382 | */ |
| 383 | wmb(); |
| 384 | writel(val, rx_ring->tail); |
| 385 | } |
| 386 | |
| 387 | /** |
| 388 | * ice_alloc_mapped_page - recycle or make a new page |
| 389 | * @rx_ring: ring to use |
| 390 | * @bi: rx_buf struct to modify |
| 391 | * |
| 392 | * Returns true if the page was successfully allocated or |
| 393 | * reused. |
| 394 | */ |
| 395 | static bool ice_alloc_mapped_page(struct ice_ring *rx_ring, |
| 396 | struct ice_rx_buf *bi) |
| 397 | { |
| 398 | struct page *page = bi->page; |
| 399 | dma_addr_t dma; |
| 400 | |
| 401 | /* since we are recycling buffers we should seldom need to alloc */ |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 402 | if (likely(page)) { |
| 403 | rx_ring->rx_stats.page_reuse_count++; |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 404 | return true; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 405 | } |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 406 | |
| 407 | /* alloc new page for storage */ |
| 408 | page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 409 | if (unlikely(!page)) { |
| 410 | rx_ring->rx_stats.alloc_page_failed++; |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 411 | return false; |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 412 | } |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 413 | |
| 414 | /* map page for use */ |
| 415 | dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); |
| 416 | |
| 417 | /* if mapping failed free memory back to system since |
| 418 | * there isn't much point in holding memory we can't use |
| 419 | */ |
| 420 | if (dma_mapping_error(rx_ring->dev, dma)) { |
| 421 | __free_pages(page, 0); |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 422 | rx_ring->rx_stats.alloc_page_failed++; |
| Anirudh Venkataramanan | cdedef5 | 2018-03-20 07:58:13 -0700 | [diff] [blame] | 423 | return false; |
| 424 | } |
| 425 | |
| 426 | bi->dma = dma; |
| 427 | bi->page = page; |
| 428 | bi->page_offset = 0; |
| 429 | |
| 430 | return true; |
| 431 | } |
| 432 | |
| 433 | /** |
| 434 | * ice_alloc_rx_bufs - Replace used receive buffers |
| 435 | * @rx_ring: ring to place buffers on |
| 436 | * @cleaned_count: number of buffers to replace |
| 437 | * |
| 438 | * Returns false if all allocations were successful, true if any fail |
| 439 | */ |
| 440 | bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) |
| 441 | { |
| 442 | union ice_32b_rx_flex_desc *rx_desc; |
| 443 | u16 ntu = rx_ring->next_to_use; |
| 444 | struct ice_rx_buf *bi; |
| 445 | |
| 446 | /* do nothing if no valid netdev defined */ |
| 447 | if (!rx_ring->netdev || !cleaned_count) |
| 448 | return false; |
| 449 | |
| 450 | /* get the RX descriptor and buffer based on next_to_use */ |
| 451 | rx_desc = ICE_RX_DESC(rx_ring, ntu); |
| 452 | bi = &rx_ring->rx_buf[ntu]; |
| 453 | |
| 454 | do { |
| 455 | if (!ice_alloc_mapped_page(rx_ring, bi)) |
| 456 | goto no_bufs; |
| 457 | |
| 458 | /* Refresh the desc even if buffer_addrs didn't change |
| 459 | * because each write-back erases this info. |
| 460 | */ |
| 461 | rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
| 462 | |
| 463 | rx_desc++; |
| 464 | bi++; |
| 465 | ntu++; |
| 466 | if (unlikely(ntu == rx_ring->count)) { |
| 467 | rx_desc = ICE_RX_DESC(rx_ring, 0); |
| 468 | bi = rx_ring->rx_buf; |
| 469 | ntu = 0; |
| 470 | } |
| 471 | |
| 472 | /* clear the status bits for the next_to_use descriptor */ |
| 473 | rx_desc->wb.status_error0 = 0; |
| 474 | |
| 475 | cleaned_count--; |
| 476 | } while (cleaned_count); |
| 477 | |
| 478 | if (rx_ring->next_to_use != ntu) |
| 479 | ice_release_rx_desc(rx_ring, ntu); |
| 480 | |
| 481 | return false; |
| 482 | |
| 483 | no_bufs: |
| 484 | if (rx_ring->next_to_use != ntu) |
| 485 | ice_release_rx_desc(rx_ring, ntu); |
| 486 | |
| 487 | /* make sure to come back via polling to try again after |
| 488 | * allocation failure |
| 489 | */ |
| 490 | return true; |
| 491 | } |
| Anirudh Venkataramanan | 2b245cb | 2018-03-20 07:58:14 -0700 | [diff] [blame^] | 492 | |
| 493 | /** |
| 494 | * ice_page_is_reserved - check if reuse is possible |
| 495 | * @page: page struct to check |
| 496 | */ |
| 497 | static bool ice_page_is_reserved(struct page *page) |
| 498 | { |
| 499 | return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); |
| 500 | } |
| 501 | |
| 502 | /** |
| 503 | * ice_add_rx_frag - Add contents of Rx buffer to sk_buff |
| 504 | * @rx_buf: buffer containing page to add |
| 505 | * @rx_desc: descriptor containing length of buffer written by hardware |
| 506 | * @skb: sk_buf to place the data into |
| 507 | * |
| 508 | * This function will add the data contained in rx_buf->page to the skb. |
| 509 | * This is done either through a direct copy if the data in the buffer is |
| 510 | * less than the skb header size, otherwise it will just attach the page as |
| 511 | * a frag to the skb. |
| 512 | * |
| 513 | * The function will then update the page offset if necessary and return |
| 514 | * true if the buffer can be reused by the adapter. |
| 515 | */ |
| 516 | static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf, |
| 517 | union ice_32b_rx_flex_desc *rx_desc, |
| 518 | struct sk_buff *skb) |
| 519 | { |
| 520 | #if (PAGE_SIZE < 8192) |
| 521 | unsigned int truesize = ICE_RXBUF_2048; |
| 522 | #else |
| 523 | unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048; |
| 524 | unsigned int truesize; |
| 525 | #endif /* PAGE_SIZE < 8192) */ |
| 526 | |
| 527 | struct page *page; |
| 528 | unsigned int size; |
| 529 | |
| 530 | size = le16_to_cpu(rx_desc->wb.pkt_len) & |
| 531 | ICE_RX_FLX_DESC_PKT_LEN_M; |
| 532 | |
| 533 | page = rx_buf->page; |
| 534 | |
| 535 | #if (PAGE_SIZE >= 8192) |
| 536 | truesize = ALIGN(size, L1_CACHE_BYTES); |
| 537 | #endif /* PAGE_SIZE >= 8192) */ |
| 538 | |
| 539 | /* will the data fit in the skb we allocated? if so, just |
| 540 | * copy it as it is pretty small anyway |
| 541 | */ |
| 542 | if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) { |
| 543 | unsigned char *va = page_address(page) + rx_buf->page_offset; |
| 544 | |
| 545 | memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); |
| 546 | |
| 547 | /* page is not reserved, we can reuse buffer as-is */ |
| 548 | if (likely(!ice_page_is_reserved(page))) |
| 549 | return true; |
| 550 | |
| 551 | /* this page cannot be reused so discard it */ |
| 552 | __free_pages(page, 0); |
| 553 | return false; |
| 554 | } |
| 555 | |
| 556 | skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, |
| 557 | rx_buf->page_offset, size, truesize); |
| 558 | |
| 559 | /* avoid re-using remote pages */ |
| 560 | if (unlikely(ice_page_is_reserved(page))) |
| 561 | return false; |
| 562 | |
| 563 | #if (PAGE_SIZE < 8192) |
| 564 | /* if we are only owner of page we can reuse it */ |
| 565 | if (unlikely(page_count(page) != 1)) |
| 566 | return false; |
| 567 | |
| 568 | /* flip page offset to other buffer */ |
| 569 | rx_buf->page_offset ^= truesize; |
| 570 | #else |
| 571 | /* move offset up to the next cache line */ |
| 572 | rx_buf->page_offset += truesize; |
| 573 | |
| 574 | if (rx_buf->page_offset > last_offset) |
| 575 | return false; |
| 576 | #endif /* PAGE_SIZE < 8192) */ |
| 577 | |
| 578 | /* Even if we own the page, we are not allowed to use atomic_set() |
| 579 | * This would break get_page_unless_zero() users. |
| 580 | */ |
| 581 | get_page(rx_buf->page); |
| 582 | |
| 583 | return true; |
| 584 | } |
| 585 | |
| 586 | /** |
| 587 | * ice_reuse_rx_page - page flip buffer and store it back on the ring |
| 588 | * @rx_ring: rx descriptor ring to store buffers on |
| 589 | * @old_buf: donor buffer to have page reused |
| 590 | * |
| 591 | * Synchronizes page for reuse by the adapter |
| 592 | */ |
| 593 | static void ice_reuse_rx_page(struct ice_ring *rx_ring, |
| 594 | struct ice_rx_buf *old_buf) |
| 595 | { |
| 596 | u16 nta = rx_ring->next_to_alloc; |
| 597 | struct ice_rx_buf *new_buf; |
| 598 | |
| 599 | new_buf = &rx_ring->rx_buf[nta]; |
| 600 | |
| 601 | /* update, and store next to alloc */ |
| 602 | nta++; |
| 603 | rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| 604 | |
| 605 | /* transfer page from old buffer to new buffer */ |
| 606 | *new_buf = *old_buf; |
| 607 | } |
| 608 | |
| 609 | /** |
| 610 | * ice_fetch_rx_buf - Allocate skb and populate it |
| 611 | * @rx_ring: rx descriptor ring to transact packets on |
| 612 | * @rx_desc: descriptor containing info written by hardware |
| 613 | * |
| 614 | * This function allocates an skb on the fly, and populates it with the page |
| 615 | * data from the current receive descriptor, taking care to set up the skb |
| 616 | * correctly, as well as handling calling the page recycle function if |
| 617 | * necessary. |
| 618 | */ |
| 619 | static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring, |
| 620 | union ice_32b_rx_flex_desc *rx_desc) |
| 621 | { |
| 622 | struct ice_rx_buf *rx_buf; |
| 623 | struct sk_buff *skb; |
| 624 | struct page *page; |
| 625 | |
| 626 | rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; |
| 627 | page = rx_buf->page; |
| 628 | prefetchw(page); |
| 629 | |
| 630 | skb = rx_buf->skb; |
| 631 | |
| 632 | if (likely(!skb)) { |
| 633 | u8 *page_addr = page_address(page) + rx_buf->page_offset; |
| 634 | |
| 635 | /* prefetch first cache line of first page */ |
| 636 | prefetch(page_addr); |
| 637 | #if L1_CACHE_BYTES < 128 |
| 638 | prefetch((void *)(page_addr + L1_CACHE_BYTES)); |
| 639 | #endif /* L1_CACHE_BYTES */ |
| 640 | |
| 641 | /* allocate a skb to store the frags */ |
| 642 | skb = __napi_alloc_skb(&rx_ring->q_vector->napi, |
| 643 | ICE_RX_HDR_SIZE, |
| 644 | GFP_ATOMIC | __GFP_NOWARN); |
| 645 | if (unlikely(!skb)) { |
| 646 | rx_ring->rx_stats.alloc_buf_failed++; |
| 647 | return NULL; |
| 648 | } |
| 649 | |
| 650 | /* we will be copying header into skb->data in |
| 651 | * pskb_may_pull so it is in our interest to prefetch |
| 652 | * it now to avoid a possible cache miss |
| 653 | */ |
| 654 | prefetchw(skb->data); |
| 655 | |
| 656 | skb_record_rx_queue(skb, rx_ring->q_index); |
| 657 | } else { |
| 658 | /* we are reusing so sync this buffer for CPU use */ |
| 659 | dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, |
| 660 | rx_buf->page_offset, |
| 661 | ICE_RXBUF_2048, |
| 662 | DMA_FROM_DEVICE); |
| 663 | |
| 664 | rx_buf->skb = NULL; |
| 665 | } |
| 666 | |
| 667 | /* pull page into skb */ |
| 668 | if (ice_add_rx_frag(rx_buf, rx_desc, skb)) { |
| 669 | /* hand second half of page back to the ring */ |
| 670 | ice_reuse_rx_page(rx_ring, rx_buf); |
| 671 | rx_ring->rx_stats.page_reuse_count++; |
| 672 | } else { |
| 673 | /* we are not reusing the buffer so unmap it */ |
| 674 | dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE, |
| 675 | DMA_FROM_DEVICE); |
| 676 | } |
| 677 | |
| 678 | /* clear contents of buffer_info */ |
| 679 | rx_buf->page = NULL; |
| 680 | |
| 681 | return skb; |
| 682 | } |
| 683 | |
| 684 | /** |
| 685 | * ice_pull_tail - ice specific version of skb_pull_tail |
| 686 | * @skb: pointer to current skb being adjusted |
| 687 | * |
| 688 | * This function is an ice specific version of __pskb_pull_tail. The |
| 689 | * main difference between this version and the original function is that |
| 690 | * this function can make several assumptions about the state of things |
| 691 | * that allow for significant optimizations versus the standard function. |
| 692 | * As a result we can do things like drop a frag and maintain an accurate |
| 693 | * truesize for the skb. |
| 694 | */ |
| 695 | static void ice_pull_tail(struct sk_buff *skb) |
| 696 | { |
| 697 | struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; |
| 698 | unsigned int pull_len; |
| 699 | unsigned char *va; |
| 700 | |
| 701 | /* it is valid to use page_address instead of kmap since we are |
| 702 | * working with pages allocated out of the lomem pool per |
| 703 | * alloc_page(GFP_ATOMIC) |
| 704 | */ |
| 705 | va = skb_frag_address(frag); |
| 706 | |
| 707 | /* we need the header to contain the greater of either ETH_HLEN or |
| 708 | * 60 bytes if the skb->len is less than 60 for skb_pad. |
| 709 | */ |
| 710 | pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE); |
| 711 | |
| 712 | /* align pull length to size of long to optimize memcpy performance */ |
| 713 | skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); |
| 714 | |
| 715 | /* update all of the pointers */ |
| 716 | skb_frag_size_sub(frag, pull_len); |
| 717 | frag->page_offset += pull_len; |
| 718 | skb->data_len -= pull_len; |
| 719 | skb->tail += pull_len; |
| 720 | } |
| 721 | |
| 722 | /** |
| 723 | * ice_cleanup_headers - Correct empty headers |
| 724 | * @skb: pointer to current skb being fixed |
| 725 | * |
| 726 | * Also address the case where we are pulling data in on pages only |
| 727 | * and as such no data is present in the skb header. |
| 728 | * |
| 729 | * In addition if skb is not at least 60 bytes we need to pad it so that |
| 730 | * it is large enough to qualify as a valid Ethernet frame. |
| 731 | * |
| 732 | * Returns true if an error was encountered and skb was freed. |
| 733 | */ |
| 734 | static bool ice_cleanup_headers(struct sk_buff *skb) |
| 735 | { |
| 736 | /* place header in linear portion of buffer */ |
| 737 | if (skb_is_nonlinear(skb)) |
| 738 | ice_pull_tail(skb); |
| 739 | |
| 740 | /* if eth_skb_pad returns an error the skb was freed */ |
| 741 | if (eth_skb_pad(skb)) |
| 742 | return true; |
| 743 | |
| 744 | return false; |
| 745 | } |
| 746 | |
| 747 | /** |
| 748 | * ice_test_staterr - tests bits in Rx descriptor status and error fields |
| 749 | * @rx_desc: pointer to receive descriptor (in le64 format) |
| 750 | * @stat_err_bits: value to mask |
| 751 | * |
| 752 | * This function does some fast chicanery in order to return the |
| 753 | * value of the mask which is really only used for boolean tests. |
| 754 | * The status_error_len doesn't need to be shifted because it begins |
| 755 | * at offset zero. |
| 756 | */ |
| 757 | static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc, |
| 758 | const u16 stat_err_bits) |
| 759 | { |
| 760 | return !!(rx_desc->wb.status_error0 & |
| 761 | cpu_to_le16(stat_err_bits)); |
| 762 | } |
| 763 | |
| 764 | /** |
| 765 | * ice_is_non_eop - process handling of non-EOP buffers |
| 766 | * @rx_ring: Rx ring being processed |
| 767 | * @rx_desc: Rx descriptor for current buffer |
| 768 | * @skb: Current socket buffer containing buffer in progress |
| 769 | * |
| 770 | * This function updates next to clean. If the buffer is an EOP buffer |
| 771 | * this function exits returning false, otherwise it will place the |
| 772 | * sk_buff in the next buffer to be chained and return true indicating |
| 773 | * that this is in fact a non-EOP buffer. |
| 774 | */ |
| 775 | static bool ice_is_non_eop(struct ice_ring *rx_ring, |
| 776 | union ice_32b_rx_flex_desc *rx_desc, |
| 777 | struct sk_buff *skb) |
| 778 | { |
| 779 | u32 ntc = rx_ring->next_to_clean + 1; |
| 780 | |
| 781 | /* fetch, update, and store next to clean */ |
| 782 | ntc = (ntc < rx_ring->count) ? ntc : 0; |
| 783 | rx_ring->next_to_clean = ntc; |
| 784 | |
| 785 | prefetch(ICE_RX_DESC(rx_ring, ntc)); |
| 786 | |
| 787 | /* if we are the last buffer then there is nothing else to do */ |
| 788 | #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) |
| 789 | if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) |
| 790 | return false; |
| 791 | |
| 792 | /* place skb in next buffer to be received */ |
| 793 | rx_ring->rx_buf[ntc].skb = skb; |
| 794 | rx_ring->rx_stats.non_eop_descs++; |
| 795 | |
| 796 | return true; |
| 797 | } |
| 798 | |
| 799 | /** |
| 800 | * ice_receive_skb - Send a completed packet up the stack |
| 801 | * @rx_ring: rx ring in play |
| 802 | * @skb: packet to send up |
| 803 | * @vlan_tag: vlan tag for packet |
| 804 | * |
| 805 | * This function sends the completed packet (via. skb) up the stack using |
| 806 | * gro receive functions (with/without vlan tag) |
| 807 | */ |
| 808 | static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, |
| 809 | u16 vlan_tag) |
| 810 | { |
| 811 | if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && |
| 812 | (vlan_tag & VLAN_VID_MASK)) { |
| 813 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); |
| 814 | } |
| 815 | napi_gro_receive(&rx_ring->q_vector->napi, skb); |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf |
| 820 | * @rx_ring: rx descriptor ring to transact packets on |
| 821 | * @budget: Total limit on number of packets to process |
| 822 | * |
| 823 | * This function provides a "bounce buffer" approach to Rx interrupt |
| 824 | * processing. The advantage to this is that on systems that have |
| 825 | * expensive overhead for IOMMU access this provides a means of avoiding |
| 826 | * it by maintaining the mapping of the page to the system. |
| 827 | * |
| 828 | * Returns amount of work completed |
| 829 | */ |
| 830 | static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) |
| 831 | { |
| 832 | unsigned int total_rx_bytes = 0, total_rx_pkts = 0; |
| 833 | u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); |
| 834 | bool failure = false; |
| 835 | |
| 836 | /* start the loop to process RX packets bounded by 'budget' */ |
| 837 | while (likely(total_rx_pkts < (unsigned int)budget)) { |
| 838 | union ice_32b_rx_flex_desc *rx_desc; |
| 839 | struct sk_buff *skb; |
| 840 | u16 stat_err_bits; |
| 841 | u16 vlan_tag = 0; |
| 842 | |
| 843 | /* return some buffers to hardware, one at a time is too slow */ |
| 844 | if (cleaned_count >= ICE_RX_BUF_WRITE) { |
| 845 | failure = failure || |
| 846 | ice_alloc_rx_bufs(rx_ring, cleaned_count); |
| 847 | cleaned_count = 0; |
| 848 | } |
| 849 | |
| 850 | /* get the RX desc from RX ring based on 'next_to_clean' */ |
| 851 | rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| 852 | |
| 853 | /* status_error_len will always be zero for unused descriptors |
| 854 | * because it's cleared in cleanup, and overlaps with hdr_addr |
| 855 | * which is always zero because packet split isn't used, if the |
| 856 | * hardware wrote DD then it will be non-zero |
| 857 | */ |
| 858 | stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); |
| 859 | if (!ice_test_staterr(rx_desc, stat_err_bits)) |
| 860 | break; |
| 861 | |
| 862 | /* This memory barrier is needed to keep us from reading |
| 863 | * any other fields out of the rx_desc until we know the |
| 864 | * DD bit is set. |
| 865 | */ |
| 866 | dma_rmb(); |
| 867 | |
| 868 | /* allocate (if needed) and populate skb */ |
| 869 | skb = ice_fetch_rx_buf(rx_ring, rx_desc); |
| 870 | if (!skb) |
| 871 | break; |
| 872 | |
| 873 | cleaned_count++; |
| 874 | |
| 875 | /* skip if it is NOP desc */ |
| 876 | if (ice_is_non_eop(rx_ring, rx_desc, skb)) |
| 877 | continue; |
| 878 | |
| 879 | stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); |
| 880 | if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { |
| 881 | dev_kfree_skb_any(skb); |
| 882 | continue; |
| 883 | } |
| 884 | |
| 885 | stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); |
| 886 | if (ice_test_staterr(rx_desc, stat_err_bits)) |
| 887 | vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); |
| 888 | |
| 889 | /* correct empty headers and pad skb if needed (to make valid |
| 890 | * ethernet frame |
| 891 | */ |
| 892 | if (ice_cleanup_headers(skb)) { |
| 893 | skb = NULL; |
| 894 | continue; |
| 895 | } |
| 896 | |
| 897 | /* probably a little skewed due to removing CRC */ |
| 898 | total_rx_bytes += skb->len; |
| 899 | |
| 900 | /* send completed skb up the stack */ |
| 901 | ice_receive_skb(rx_ring, skb, vlan_tag); |
| 902 | |
| 903 | /* update budget accounting */ |
| 904 | total_rx_pkts++; |
| 905 | } |
| 906 | |
| 907 | /* update queue and vector specific stats */ |
| 908 | u64_stats_update_begin(&rx_ring->syncp); |
| 909 | rx_ring->stats.pkts += total_rx_pkts; |
| 910 | rx_ring->stats.bytes += total_rx_bytes; |
| 911 | u64_stats_update_end(&rx_ring->syncp); |
| 912 | rx_ring->q_vector->rx.total_pkts += total_rx_pkts; |
| 913 | rx_ring->q_vector->rx.total_bytes += total_rx_bytes; |
| 914 | |
| 915 | /* guarantee a trip back through this routine if there was a failure */ |
| 916 | return failure ? budget : (int)total_rx_pkts; |
| 917 | } |
| 918 | |
| 919 | /** |
| 920 | * ice_napi_poll - NAPI polling Rx/Tx cleanup routine |
| 921 | * @napi: napi struct with our devices info in it |
| 922 | * @budget: amount of work driver is allowed to do this pass, in packets |
| 923 | * |
| 924 | * This function will clean all queues associated with a q_vector. |
| 925 | * |
| 926 | * Returns the amount of work done |
| 927 | */ |
| 928 | int ice_napi_poll(struct napi_struct *napi, int budget) |
| 929 | { |
| 930 | struct ice_q_vector *q_vector = |
| 931 | container_of(napi, struct ice_q_vector, napi); |
| 932 | struct ice_vsi *vsi = q_vector->vsi; |
| 933 | struct ice_pf *pf = vsi->back; |
| 934 | bool clean_complete = true; |
| 935 | int budget_per_ring = 0; |
| 936 | struct ice_ring *ring; |
| 937 | int work_done = 0; |
| 938 | |
| 939 | /* Since the actual Tx work is minimal, we can give the Tx a larger |
| 940 | * budget and be more aggressive about cleaning up the Tx descriptors. |
| 941 | */ |
| 942 | ice_for_each_ring(ring, q_vector->tx) |
| 943 | if (!ice_clean_tx_irq(vsi, ring, budget)) |
| 944 | clean_complete = false; |
| 945 | |
| 946 | /* Handle case where we are called by netpoll with a budget of 0 */ |
| 947 | if (budget <= 0) |
| 948 | return budget; |
| 949 | |
| 950 | /* We attempt to distribute budget to each Rx queue fairly, but don't |
| 951 | * allow the budget to go below 1 because that would exit polling early. |
| 952 | */ |
| 953 | if (q_vector->num_ring_rx) |
| 954 | budget_per_ring = max(budget / q_vector->num_ring_rx, 1); |
| 955 | |
| 956 | ice_for_each_ring(ring, q_vector->rx) { |
| 957 | int cleaned; |
| 958 | |
| 959 | cleaned = ice_clean_rx_irq(ring, budget_per_ring); |
| 960 | work_done += cleaned; |
| 961 | /* if we clean as many as budgeted, we must not be done */ |
| 962 | if (cleaned >= budget_per_ring) |
| 963 | clean_complete = false; |
| 964 | } |
| 965 | |
| 966 | /* If work not completed, return budget and polling will return */ |
| 967 | if (!clean_complete) |
| 968 | return budget; |
| 969 | |
| 970 | /* Work is done so exit the polling mode and re-enable the interrupt */ |
| 971 | napi_complete_done(napi, work_done); |
| 972 | if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) |
| 973 | ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector); |
| 974 | return 0; |
| 975 | } |
| 976 | |
| 977 | /* helper function for building cmd/type/offset */ |
| 978 | static __le64 |
| 979 | build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag) |
| 980 | { |
| 981 | return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | |
| 982 | (td_cmd << ICE_TXD_QW1_CMD_S) | |
| 983 | (td_offset << ICE_TXD_QW1_OFFSET_S) | |
| 984 | ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | |
| 985 | (td_tag << ICE_TXD_QW1_L2TAG1_S)); |
| 986 | } |
| 987 | |
| 988 | /** |
| 989 | * __ice_maybe_stop_tx - 2nd level check for tx stop conditions |
| 990 | * @tx_ring: the ring to be checked |
| 991 | * @size: the size buffer we want to assure is available |
| 992 | * |
| 993 | * Returns -EBUSY if a stop is needed, else 0 |
| 994 | */ |
| 995 | static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) |
| 996 | { |
| 997 | netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); |
| 998 | /* Memory barrier before checking head and tail */ |
| 999 | smp_mb(); |
| 1000 | |
| 1001 | /* Check again in a case another CPU has just made room available. */ |
| 1002 | if (likely(ICE_DESC_UNUSED(tx_ring) < size)) |
| 1003 | return -EBUSY; |
| 1004 | |
| 1005 | /* A reprieve! - use start_subqueue because it doesn't call schedule */ |
| 1006 | netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); |
| 1007 | ++tx_ring->tx_stats.restart_q; |
| 1008 | return 0; |
| 1009 | } |
| 1010 | |
| 1011 | /** |
| 1012 | * ice_maybe_stop_tx - 1st level check for tx stop conditions |
| 1013 | * @tx_ring: the ring to be checked |
| 1014 | * @size: the size buffer we want to assure is available |
| 1015 | * |
| 1016 | * Returns 0 if stop is not needed |
| 1017 | */ |
| 1018 | static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) |
| 1019 | { |
| 1020 | if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) |
| 1021 | return 0; |
| 1022 | return __ice_maybe_stop_tx(tx_ring, size); |
| 1023 | } |
| 1024 | |
| 1025 | /** |
| 1026 | * ice_tx_map - Build the Tx descriptor |
| 1027 | * @tx_ring: ring to send buffer on |
| 1028 | * @first: first buffer info buffer to use |
| 1029 | * |
| 1030 | * This function loops over the skb data pointed to by *first |
| 1031 | * and gets a physical address for each memory location and programs |
| 1032 | * it and the length into the transmit descriptor. |
| 1033 | */ |
| 1034 | static void ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first) |
| 1035 | { |
| 1036 | u64 td_offset = 0, td_tag = 0, td_cmd = 0; |
| 1037 | u16 i = tx_ring->next_to_use; |
| 1038 | struct skb_frag_struct *frag; |
| 1039 | unsigned int data_len, size; |
| 1040 | struct ice_tx_desc *tx_desc; |
| 1041 | struct ice_tx_buf *tx_buf; |
| 1042 | struct sk_buff *skb; |
| 1043 | dma_addr_t dma; |
| 1044 | |
| 1045 | skb = first->skb; |
| 1046 | |
| 1047 | data_len = skb->data_len; |
| 1048 | size = skb_headlen(skb); |
| 1049 | |
| 1050 | tx_desc = ICE_TX_DESC(tx_ring, i); |
| 1051 | |
| 1052 | dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| 1053 | |
| 1054 | tx_buf = first; |
| 1055 | |
| 1056 | for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| 1057 | unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| 1058 | |
| 1059 | if (dma_mapping_error(tx_ring->dev, dma)) |
| 1060 | goto dma_error; |
| 1061 | |
| 1062 | /* record length, and DMA address */ |
| 1063 | dma_unmap_len_set(tx_buf, len, size); |
| 1064 | dma_unmap_addr_set(tx_buf, dma, dma); |
| 1065 | |
| 1066 | /* align size to end of page */ |
| 1067 | max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); |
| 1068 | tx_desc->buf_addr = cpu_to_le64(dma); |
| 1069 | |
| 1070 | /* account for data chunks larger than the hardware |
| 1071 | * can handle |
| 1072 | */ |
| 1073 | while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { |
| 1074 | tx_desc->cmd_type_offset_bsz = |
| 1075 | build_ctob(td_cmd, td_offset, max_data, td_tag); |
| 1076 | |
| 1077 | tx_desc++; |
| 1078 | i++; |
| 1079 | |
| 1080 | if (i == tx_ring->count) { |
| 1081 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 1082 | i = 0; |
| 1083 | } |
| 1084 | |
| 1085 | dma += max_data; |
| 1086 | size -= max_data; |
| 1087 | |
| 1088 | max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| 1089 | tx_desc->buf_addr = cpu_to_le64(dma); |
| 1090 | } |
| 1091 | |
| 1092 | if (likely(!data_len)) |
| 1093 | break; |
| 1094 | |
| 1095 | tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, |
| 1096 | size, td_tag); |
| 1097 | |
| 1098 | tx_desc++; |
| 1099 | i++; |
| 1100 | |
| 1101 | if (i == tx_ring->count) { |
| 1102 | tx_desc = ICE_TX_DESC(tx_ring, 0); |
| 1103 | i = 0; |
| 1104 | } |
| 1105 | |
| 1106 | size = skb_frag_size(frag); |
| 1107 | data_len -= size; |
| 1108 | |
| 1109 | dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| 1110 | DMA_TO_DEVICE); |
| 1111 | |
| 1112 | tx_buf = &tx_ring->tx_buf[i]; |
| 1113 | } |
| 1114 | |
| 1115 | /* record bytecount for BQL */ |
| 1116 | netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); |
| 1117 | |
| 1118 | /* record SW timestamp if HW timestamp is not available */ |
| 1119 | skb_tx_timestamp(first->skb); |
| 1120 | |
| 1121 | i++; |
| 1122 | if (i == tx_ring->count) |
| 1123 | i = 0; |
| 1124 | |
| 1125 | /* write last descriptor with RS and EOP bits */ |
| 1126 | td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); |
| 1127 | tx_desc->cmd_type_offset_bsz = |
| 1128 | build_ctob(td_cmd, td_offset, size, td_tag); |
| 1129 | |
| 1130 | /* Force memory writes to complete before letting h/w know there |
| 1131 | * are new descriptors to fetch. |
| 1132 | * |
| 1133 | * We also use this memory barrier to make certain all of the |
| 1134 | * status bits have been updated before next_to_watch is written. |
| 1135 | */ |
| 1136 | wmb(); |
| 1137 | |
| 1138 | /* set next_to_watch value indicating a packet is present */ |
| 1139 | first->next_to_watch = tx_desc; |
| 1140 | |
| 1141 | tx_ring->next_to_use = i; |
| 1142 | |
| 1143 | ice_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| 1144 | |
| 1145 | /* notify HW of packet */ |
| 1146 | if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { |
| 1147 | writel(i, tx_ring->tail); |
| 1148 | |
| 1149 | /* we need this if more than one processor can write to our tail |
| 1150 | * at a time, it synchronizes IO on IA64/Altix systems |
| 1151 | */ |
| 1152 | mmiowb(); |
| 1153 | } |
| 1154 | |
| 1155 | return; |
| 1156 | |
| 1157 | dma_error: |
| 1158 | /* clear dma mappings for failed tx_buf map */ |
| 1159 | for (;;) { |
| 1160 | tx_buf = &tx_ring->tx_buf[i]; |
| 1161 | ice_unmap_and_free_tx_buf(tx_ring, tx_buf); |
| 1162 | if (tx_buf == first) |
| 1163 | break; |
| 1164 | if (i == 0) |
| 1165 | i = tx_ring->count; |
| 1166 | i--; |
| 1167 | } |
| 1168 | |
| 1169 | tx_ring->next_to_use = i; |
| 1170 | } |
| 1171 | |
| 1172 | /** |
| 1173 | * ice_txd_use_count - estimate the number of descriptors needed for Tx |
| 1174 | * @size: transmit request size in bytes |
| 1175 | * |
| 1176 | * Due to hardware alignment restrictions (4K alignment), we need to |
| 1177 | * assume that we can have no more than 12K of data per descriptor, even |
| 1178 | * though each descriptor can take up to 16K - 1 bytes of aligned memory. |
| 1179 | * Thus, we need to divide by 12K. But division is slow! Instead, |
| 1180 | * we decompose the operation into shifts and one relatively cheap |
| 1181 | * multiply operation. |
| 1182 | * |
| 1183 | * To divide by 12K, we first divide by 4K, then divide by 3: |
| 1184 | * To divide by 4K, shift right by 12 bits |
| 1185 | * To divide by 3, multiply by 85, then divide by 256 |
| 1186 | * (Divide by 256 is done by shifting right by 8 bits) |
| 1187 | * Finally, we add one to round up. Because 256 isn't an exact multiple of |
| 1188 | * 3, we'll underestimate near each multiple of 12K. This is actually more |
| 1189 | * accurate as we have 4K - 1 of wiggle room that we can fit into the last |
| 1190 | * segment. For our purposes this is accurate out to 1M which is orders of |
| 1191 | * magnitude greater than our largest possible GSO size. |
| 1192 | * |
| 1193 | * This would then be implemented as: |
| 1194 | * return (((size >> 12) * 85) >> 8) + 1; |
| 1195 | * |
| 1196 | * Since multiplication and division are commutative, we can reorder |
| 1197 | * operations into: |
| 1198 | * return ((size * 85) >> 20) + 1; |
| 1199 | */ |
| 1200 | static unsigned int ice_txd_use_count(unsigned int size) |
| 1201 | { |
| 1202 | return ((size * 85) >> 20) + 1; |
| 1203 | } |
| 1204 | |
| 1205 | /** |
| 1206 | * ice_xmit_desc_count - calculate number of tx descriptors needed |
| 1207 | * @skb: send buffer |
| 1208 | * |
| 1209 | * Returns number of data descriptors needed for this skb. |
| 1210 | */ |
| 1211 | static unsigned int ice_xmit_desc_count(struct sk_buff *skb) |
| 1212 | { |
| 1213 | const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; |
| 1214 | unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
| 1215 | unsigned int count = 0, size = skb_headlen(skb); |
| 1216 | |
| 1217 | for (;;) { |
| 1218 | count += ice_txd_use_count(size); |
| 1219 | |
| 1220 | if (!nr_frags--) |
| 1221 | break; |
| 1222 | |
| 1223 | size = skb_frag_size(frag++); |
| 1224 | } |
| 1225 | |
| 1226 | return count; |
| 1227 | } |
| 1228 | |
| 1229 | /** |
| 1230 | * __ice_chk_linearize - Check if there are more than 8 buffers per packet |
| 1231 | * @skb: send buffer |
| 1232 | * |
| 1233 | * Note: This HW can't DMA more than 8 buffers to build a packet on the wire |
| 1234 | * and so we need to figure out the cases where we need to linearize the skb. |
| 1235 | * |
| 1236 | * For TSO we need to count the TSO header and segment payload separately. |
| 1237 | * As such we need to check cases where we have 7 fragments or more as we |
| 1238 | * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for |
| 1239 | * the segment payload in the first descriptor, and another 7 for the |
| 1240 | * fragments. |
| 1241 | */ |
| 1242 | static bool __ice_chk_linearize(struct sk_buff *skb) |
| 1243 | { |
| 1244 | const struct skb_frag_struct *frag, *stale; |
| 1245 | int nr_frags, sum; |
| 1246 | |
| 1247 | /* no need to check if number of frags is less than 7 */ |
| 1248 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 1249 | if (nr_frags < (ICE_MAX_BUF_TXD - 1)) |
| 1250 | return false; |
| 1251 | |
| 1252 | /* We need to walk through the list and validate that each group |
| 1253 | * of 6 fragments totals at least gso_size. |
| 1254 | */ |
| 1255 | nr_frags -= ICE_MAX_BUF_TXD - 2; |
| 1256 | frag = &skb_shinfo(skb)->frags[0]; |
| 1257 | |
| 1258 | /* Initialize size to the negative value of gso_size minus 1. We |
| 1259 | * use this as the worst case scenerio in which the frag ahead |
| 1260 | * of us only provides one byte which is why we are limited to 6 |
| 1261 | * descriptors for a single transmit as the header and previous |
| 1262 | * fragment are already consuming 2 descriptors. |
| 1263 | */ |
| 1264 | sum = 1 - skb_shinfo(skb)->gso_size; |
| 1265 | |
| 1266 | /* Add size of frags 0 through 4 to create our initial sum */ |
| 1267 | sum += skb_frag_size(frag++); |
| 1268 | sum += skb_frag_size(frag++); |
| 1269 | sum += skb_frag_size(frag++); |
| 1270 | sum += skb_frag_size(frag++); |
| 1271 | sum += skb_frag_size(frag++); |
| 1272 | |
| 1273 | /* Walk through fragments adding latest fragment, testing it, and |
| 1274 | * then removing stale fragments from the sum. |
| 1275 | */ |
| 1276 | stale = &skb_shinfo(skb)->frags[0]; |
| 1277 | for (;;) { |
| 1278 | sum += skb_frag_size(frag++); |
| 1279 | |
| 1280 | /* if sum is negative we failed to make sufficient progress */ |
| 1281 | if (sum < 0) |
| 1282 | return true; |
| 1283 | |
| 1284 | if (!nr_frags--) |
| 1285 | break; |
| 1286 | |
| 1287 | sum -= skb_frag_size(stale++); |
| 1288 | } |
| 1289 | |
| 1290 | return false; |
| 1291 | } |
| 1292 | |
| 1293 | /** |
| 1294 | * ice_chk_linearize - Check if there are more than 8 fragments per packet |
| 1295 | * @skb: send buffer |
| 1296 | * @count: number of buffers used |
| 1297 | * |
| 1298 | * Note: Our HW can't scatter-gather more than 8 fragments to build |
| 1299 | * a packet on the wire and so we need to figure out the cases where we |
| 1300 | * need to linearize the skb. |
| 1301 | */ |
| 1302 | static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) |
| 1303 | { |
| 1304 | /* Both TSO and single send will work if count is less than 8 */ |
| 1305 | if (likely(count < ICE_MAX_BUF_TXD)) |
| 1306 | return false; |
| 1307 | |
| 1308 | if (skb_is_gso(skb)) |
| 1309 | return __ice_chk_linearize(skb); |
| 1310 | |
| 1311 | /* we can support up to 8 data buffers for a single send */ |
| 1312 | return count != ICE_MAX_BUF_TXD; |
| 1313 | } |
| 1314 | |
| 1315 | /** |
| 1316 | * ice_xmit_frame_ring - Sends buffer on Tx ring |
| 1317 | * @skb: send buffer |
| 1318 | * @tx_ring: ring to send buffer on |
| 1319 | * |
| 1320 | * Returns NETDEV_TX_OK if sent, else an error code |
| 1321 | */ |
| 1322 | static netdev_tx_t |
| 1323 | ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) |
| 1324 | { |
| 1325 | struct ice_tx_buf *first; |
| 1326 | unsigned int count; |
| 1327 | |
| 1328 | count = ice_xmit_desc_count(skb); |
| 1329 | if (ice_chk_linearize(skb, count)) { |
| 1330 | if (__skb_linearize(skb)) |
| 1331 | goto out_drop; |
| 1332 | count = ice_txd_use_count(skb->len); |
| 1333 | tx_ring->tx_stats.tx_linearize++; |
| 1334 | } |
| 1335 | |
| 1336 | /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD, |
| 1337 | * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, |
| 1338 | * + 4 desc gap to avoid the cache line where head is, |
| 1339 | * + 1 desc for context descriptor, |
| 1340 | * otherwise try next time |
| 1341 | */ |
| 1342 | if (ice_maybe_stop_tx(tx_ring, count + 4 + 1)) { |
| 1343 | tx_ring->tx_stats.tx_busy++; |
| 1344 | return NETDEV_TX_BUSY; |
| 1345 | } |
| 1346 | |
| 1347 | /* record the location of the first descriptor for this packet */ |
| 1348 | first = &tx_ring->tx_buf[tx_ring->next_to_use]; |
| 1349 | first->skb = skb; |
| 1350 | first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); |
| 1351 | first->gso_segs = 1; |
| 1352 | |
| 1353 | ice_tx_map(tx_ring, first); |
| 1354 | return NETDEV_TX_OK; |
| 1355 | |
| 1356 | out_drop: |
| 1357 | dev_kfree_skb_any(skb); |
| 1358 | return NETDEV_TX_OK; |
| 1359 | } |
| 1360 | |
| 1361 | /** |
| 1362 | * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer |
| 1363 | * @skb: send buffer |
| 1364 | * @netdev: network interface device structure |
| 1365 | * |
| 1366 | * Returns NETDEV_TX_OK if sent, else an error code |
| 1367 | */ |
| 1368 | netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) |
| 1369 | { |
| 1370 | struct ice_netdev_priv *np = netdev_priv(netdev); |
| 1371 | struct ice_vsi *vsi = np->vsi; |
| 1372 | struct ice_ring *tx_ring; |
| 1373 | |
| 1374 | tx_ring = vsi->tx_rings[skb->queue_mapping]; |
| 1375 | |
| 1376 | /* hardware can't handle really short frames, hardware padding works |
| 1377 | * beyond this point |
| 1378 | */ |
| 1379 | if (skb_put_padto(skb, ICE_MIN_TX_LEN)) |
| 1380 | return NETDEV_TX_OK; |
| 1381 | |
| 1382 | return ice_xmit_frame_ring(skb, tx_ring); |
| 1383 | } |