Ivo van Doorn | 95ea362 | 2007-09-25 17:57:13 -0700 | [diff] [blame] | 1 | /* |
| 2 | Copyright (C) 2004 - 2007 rt2x00 SourceForge Project |
| 3 | <http://rt2x00.serialmonkey.com> |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published by |
| 7 | the Free Software Foundation; either version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, write to the |
| 17 | Free Software Foundation, Inc., |
| 18 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | Module: rt2x00lib |
| 23 | Abstract: rt2x00 generic device routines. |
| 24 | */ |
| 25 | |
| 26 | /* |
| 27 | * Set enviroment defines for rt2x00.h |
| 28 | */ |
| 29 | #define DRV_NAME "rt2x00lib" |
| 30 | |
| 31 | #include <linux/kernel.h> |
| 32 | #include <linux/module.h> |
| 33 | |
| 34 | #include "rt2x00.h" |
| 35 | #include "rt2x00lib.h" |
| 36 | |
| 37 | /* |
| 38 | * Ring handler. |
| 39 | */ |
| 40 | struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev, |
| 41 | const unsigned int queue) |
| 42 | { |
| 43 | int beacon = test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags); |
| 44 | |
| 45 | /* |
| 46 | * Check if we are requesting a reqular TX ring, |
| 47 | * or if we are requesting a Beacon or Atim ring. |
| 48 | * For Atim rings, we should check if it is supported. |
| 49 | */ |
| 50 | if (queue < rt2x00dev->hw->queues && rt2x00dev->tx) |
| 51 | return &rt2x00dev->tx[queue]; |
| 52 | |
| 53 | if (!rt2x00dev->bcn || !beacon) |
| 54 | return NULL; |
| 55 | |
| 56 | if (queue == IEEE80211_TX_QUEUE_BEACON) |
| 57 | return &rt2x00dev->bcn[0]; |
| 58 | else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON) |
| 59 | return &rt2x00dev->bcn[1]; |
| 60 | |
| 61 | return NULL; |
| 62 | } |
| 63 | EXPORT_SYMBOL_GPL(rt2x00lib_get_ring); |
| 64 | |
| 65 | /* |
| 66 | * Link tuning handlers |
| 67 | */ |
| 68 | static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev) |
| 69 | { |
| 70 | rt2x00_clear_link(&rt2x00dev->link); |
| 71 | |
| 72 | /* |
| 73 | * Reset the link tuner. |
| 74 | */ |
| 75 | rt2x00dev->ops->lib->reset_tuner(rt2x00dev); |
| 76 | |
| 77 | queue_delayed_work(rt2x00dev->hw->workqueue, |
| 78 | &rt2x00dev->link.work, LINK_TUNE_INTERVAL); |
| 79 | } |
| 80 | |
| 81 | static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev) |
| 82 | { |
| 83 | if (delayed_work_pending(&rt2x00dev->link.work)) |
| 84 | cancel_rearming_delayed_work(&rt2x00dev->link.work); |
| 85 | } |
| 86 | |
| 87 | void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev) |
| 88 | { |
| 89 | rt2x00lib_stop_link_tuner(rt2x00dev); |
| 90 | rt2x00lib_start_link_tuner(rt2x00dev); |
| 91 | } |
| 92 | |
| 93 | /* |
| 94 | * Radio control handlers. |
| 95 | */ |
| 96 | int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) |
| 97 | { |
| 98 | int status; |
| 99 | |
| 100 | /* |
| 101 | * Don't enable the radio twice. |
| 102 | * And check if the hardware button has been disabled. |
| 103 | */ |
| 104 | if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || |
| 105 | (test_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags) && |
| 106 | !test_bit(DEVICE_ENABLED_RADIO_HW, &rt2x00dev->flags))) |
| 107 | return 0; |
| 108 | |
| 109 | /* |
| 110 | * Enable radio. |
| 111 | */ |
| 112 | status = rt2x00dev->ops->lib->set_device_state(rt2x00dev, |
| 113 | STATE_RADIO_ON); |
| 114 | if (status) |
| 115 | return status; |
| 116 | |
| 117 | __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags); |
| 118 | |
| 119 | /* |
| 120 | * Enable RX. |
| 121 | */ |
| 122 | rt2x00lib_toggle_rx(rt2x00dev, 1); |
| 123 | |
| 124 | /* |
| 125 | * Start the TX queues. |
| 126 | */ |
| 127 | ieee80211_start_queues(rt2x00dev->hw); |
| 128 | |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) |
| 133 | { |
| 134 | if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 135 | return; |
| 136 | |
| 137 | /* |
| 138 | * Stop beacon generation. |
| 139 | */ |
| 140 | if (work_pending(&rt2x00dev->beacon_work)) |
| 141 | cancel_work_sync(&rt2x00dev->beacon_work); |
| 142 | |
| 143 | /* |
| 144 | * Stop the TX queues. |
| 145 | */ |
| 146 | ieee80211_stop_queues(rt2x00dev->hw); |
| 147 | |
| 148 | /* |
| 149 | * Disable RX. |
| 150 | */ |
| 151 | rt2x00lib_toggle_rx(rt2x00dev, 0); |
| 152 | |
| 153 | /* |
| 154 | * Disable radio. |
| 155 | */ |
| 156 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); |
| 157 | } |
| 158 | |
| 159 | void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable) |
| 160 | { |
| 161 | enum dev_state state = enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF; |
| 162 | |
| 163 | /* |
| 164 | * When we are disabling the RX, we should also stop the link tuner. |
| 165 | */ |
| 166 | if (!enable) |
| 167 | rt2x00lib_stop_link_tuner(rt2x00dev); |
| 168 | |
| 169 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| 170 | |
| 171 | /* |
| 172 | * When we are enabling the RX, we should also start the link tuner. |
| 173 | */ |
| 174 | if (enable && is_interface_present(&rt2x00dev->interface)) |
| 175 | rt2x00lib_start_link_tuner(rt2x00dev); |
| 176 | } |
| 177 | |
| 178 | static void rt2x00lib_precalculate_link_signal(struct link *link) |
| 179 | { |
| 180 | if (link->rx_failed || link->rx_success) |
| 181 | link->rx_percentage = |
| 182 | (link->rx_success * 100) / |
| 183 | (link->rx_failed + link->rx_success); |
| 184 | else |
| 185 | link->rx_percentage = 50; |
| 186 | |
| 187 | if (link->tx_failed || link->tx_success) |
| 188 | link->tx_percentage = |
| 189 | (link->tx_success * 100) / |
| 190 | (link->tx_failed + link->tx_success); |
| 191 | else |
| 192 | link->tx_percentage = 50; |
| 193 | |
| 194 | link->rx_success = 0; |
| 195 | link->rx_failed = 0; |
| 196 | link->tx_success = 0; |
| 197 | link->tx_failed = 0; |
| 198 | } |
| 199 | |
| 200 | static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev, |
| 201 | int rssi) |
| 202 | { |
| 203 | int rssi_percentage = 0; |
| 204 | int signal; |
| 205 | |
| 206 | /* |
| 207 | * We need a positive value for the RSSI. |
| 208 | */ |
| 209 | if (rssi < 0) |
| 210 | rssi += rt2x00dev->rssi_offset; |
| 211 | |
| 212 | /* |
| 213 | * Calculate the different percentages, |
| 214 | * which will be used for the signal. |
| 215 | */ |
| 216 | if (rt2x00dev->rssi_offset) |
| 217 | rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset; |
| 218 | |
| 219 | /* |
| 220 | * Add the individual percentages and use the WEIGHT |
| 221 | * defines to calculate the current link signal. |
| 222 | */ |
| 223 | signal = ((WEIGHT_RSSI * rssi_percentage) + |
| 224 | (WEIGHT_TX * rt2x00dev->link.tx_percentage) + |
| 225 | (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100; |
| 226 | |
| 227 | return (signal > 100) ? 100 : signal; |
| 228 | } |
| 229 | |
| 230 | static void rt2x00lib_link_tuner(struct work_struct *work) |
| 231 | { |
| 232 | struct rt2x00_dev *rt2x00dev = |
| 233 | container_of(work, struct rt2x00_dev, link.work.work); |
| 234 | |
| 235 | /* |
| 236 | * Update statistics. |
| 237 | */ |
| 238 | rt2x00dev->ops->lib->link_stats(rt2x00dev); |
| 239 | |
| 240 | rt2x00dev->low_level_stats.dot11FCSErrorCount += |
| 241 | rt2x00dev->link.rx_failed; |
| 242 | |
| 243 | rt2x00lib_precalculate_link_signal(&rt2x00dev->link); |
| 244 | |
| 245 | /* |
| 246 | * Only perform the link tuning when Link tuning |
| 247 | * has been enabled (This could have been disabled from the EEPROM). |
| 248 | */ |
| 249 | if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags)) |
| 250 | rt2x00dev->ops->lib->link_tuner(rt2x00dev); |
| 251 | |
| 252 | /* |
| 253 | * Increase tuner counter, and reschedule the next link tuner run. |
| 254 | */ |
| 255 | rt2x00dev->link.count++; |
| 256 | queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, |
| 257 | LINK_TUNE_INTERVAL); |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Interrupt context handlers. |
| 262 | */ |
| 263 | static void rt2x00lib_beacondone_scheduled(struct work_struct *work) |
| 264 | { |
| 265 | struct rt2x00_dev *rt2x00dev = |
| 266 | container_of(work, struct rt2x00_dev, beacon_work); |
| 267 | struct data_ring *ring = |
| 268 | rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); |
| 269 | struct data_entry *entry = rt2x00_get_data_entry(ring); |
| 270 | struct sk_buff *skb; |
| 271 | |
| 272 | skb = ieee80211_beacon_get(rt2x00dev->hw, |
| 273 | rt2x00dev->interface.id, |
| 274 | &entry->tx_status.control); |
| 275 | if (!skb) |
| 276 | return; |
| 277 | |
| 278 | rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb, |
| 279 | &entry->tx_status.control); |
| 280 | |
| 281 | dev_kfree_skb(skb); |
| 282 | } |
| 283 | |
| 284 | void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) |
| 285 | { |
| 286 | if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 287 | return; |
| 288 | |
| 289 | queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work); |
| 290 | } |
| 291 | EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); |
| 292 | |
| 293 | void rt2x00lib_txdone(struct data_entry *entry, |
| 294 | const int status, const int retry) |
| 295 | { |
| 296 | struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; |
| 297 | struct ieee80211_tx_status *tx_status = &entry->tx_status; |
| 298 | struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats; |
| 299 | int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY); |
| 300 | int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID || |
| 301 | status == TX_FAIL_OTHER); |
| 302 | |
| 303 | /* |
| 304 | * Update TX statistics. |
| 305 | */ |
| 306 | tx_status->flags = 0; |
| 307 | tx_status->ack_signal = 0; |
| 308 | tx_status->excessive_retries = (status == TX_FAIL_RETRY); |
| 309 | tx_status->retry_count = retry; |
| 310 | rt2x00dev->link.tx_success += success; |
| 311 | rt2x00dev->link.tx_failed += retry + fail; |
| 312 | |
| 313 | if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) { |
| 314 | if (success) |
| 315 | tx_status->flags |= IEEE80211_TX_STATUS_ACK; |
| 316 | else |
| 317 | stats->dot11ACKFailureCount++; |
| 318 | } |
| 319 | |
| 320 | tx_status->queue_length = entry->ring->stats.limit; |
| 321 | tx_status->queue_number = tx_status->control.queue; |
| 322 | |
| 323 | if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) { |
| 324 | if (success) |
| 325 | stats->dot11RTSSuccessCount++; |
| 326 | else |
| 327 | stats->dot11RTSFailureCount++; |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Send the tx_status to mac80211, |
| 332 | * that method also cleans up the skb structure. |
| 333 | */ |
| 334 | ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status); |
| 335 | entry->skb = NULL; |
| 336 | } |
| 337 | EXPORT_SYMBOL_GPL(rt2x00lib_txdone); |
| 338 | |
| 339 | void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb, |
| 340 | const int signal, const int rssi, const int ofdm) |
| 341 | { |
| 342 | struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; |
| 343 | struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status; |
| 344 | struct ieee80211_hw_mode *mode; |
| 345 | struct ieee80211_rate *rate; |
| 346 | unsigned int i; |
| 347 | int val = 0; |
| 348 | |
| 349 | /* |
| 350 | * Update RX statistics. |
| 351 | */ |
| 352 | mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode]; |
| 353 | for (i = 0; i < mode->num_rates; i++) { |
| 354 | rate = &mode->rates[i]; |
| 355 | |
| 356 | /* |
| 357 | * When frame was received with an OFDM bitrate, |
| 358 | * the signal is the PLCP value. If it was received with |
| 359 | * a CCK bitrate the signal is the rate in 0.5kbit/s. |
| 360 | */ |
| 361 | if (!ofdm) |
| 362 | val = DEVICE_GET_RATE_FIELD(rate->val, RATE); |
| 363 | else |
| 364 | val = DEVICE_GET_RATE_FIELD(rate->val, PLCP); |
| 365 | |
| 366 | if (val == signal) { |
| 367 | val = rate->val; |
| 368 | break; |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | rt2x00_update_link_rssi(&rt2x00dev->link, rssi); |
| 373 | rt2x00dev->link.rx_success++; |
| 374 | rx_status->rate = val; |
| 375 | rx_status->signal = rt2x00lib_calculate_link_signal(rt2x00dev, rssi); |
| 376 | rx_status->ssi = rssi; |
| 377 | |
| 378 | /* |
| 379 | * Send frame to mac80211 |
| 380 | */ |
| 381 | ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status); |
| 382 | } |
| 383 | EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); |
| 384 | |
| 385 | /* |
| 386 | * TX descriptor initializer |
| 387 | */ |
| 388 | void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev, |
| 389 | struct data_desc *txd, |
| 390 | struct ieee80211_hdr *ieee80211hdr, |
| 391 | unsigned int length, |
| 392 | struct ieee80211_tx_control *control) |
| 393 | { |
| 394 | struct data_entry_desc desc; |
| 395 | struct data_ring *ring; |
| 396 | int tx_rate; |
| 397 | int bitrate; |
| 398 | int duration; |
| 399 | int residual; |
| 400 | u16 frame_control; |
| 401 | u16 seq_ctrl; |
| 402 | |
| 403 | /* |
| 404 | * Make sure the descriptor is properly cleared. |
| 405 | */ |
| 406 | memset(&desc, 0x00, sizeof(desc)); |
| 407 | |
| 408 | /* |
| 409 | * Get ring pointer, if we fail to obtain the |
| 410 | * correct ring, then use the first TX ring. |
| 411 | */ |
| 412 | ring = rt2x00lib_get_ring(rt2x00dev, control->queue); |
| 413 | if (!ring) |
| 414 | ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0); |
| 415 | |
| 416 | desc.cw_min = ring->tx_params.cw_min; |
| 417 | desc.cw_max = ring->tx_params.cw_max; |
| 418 | desc.aifs = ring->tx_params.aifs; |
| 419 | |
| 420 | /* |
| 421 | * Identify queue |
| 422 | */ |
| 423 | if (control->queue < rt2x00dev->hw->queues) |
| 424 | desc.queue = control->queue; |
| 425 | else if (control->queue == IEEE80211_TX_QUEUE_BEACON || |
| 426 | control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON) |
| 427 | desc.queue = QUEUE_MGMT; |
| 428 | else |
| 429 | desc.queue = QUEUE_OTHER; |
| 430 | |
| 431 | /* |
| 432 | * Read required fields from ieee80211 header. |
| 433 | */ |
| 434 | frame_control = le16_to_cpu(ieee80211hdr->frame_control); |
| 435 | seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl); |
| 436 | |
| 437 | tx_rate = control->tx_rate; |
| 438 | |
| 439 | /* |
| 440 | * Check if this is a RTS/CTS frame |
| 441 | */ |
| 442 | if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) { |
| 443 | __set_bit(ENTRY_TXD_BURST, &desc.flags); |
| 444 | if (is_rts_frame(frame_control)) |
| 445 | __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags); |
| 446 | if (control->rts_cts_rate) |
| 447 | tx_rate = control->rts_cts_rate; |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * Check for OFDM |
| 452 | */ |
| 453 | if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK) |
| 454 | __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags); |
| 455 | |
| 456 | /* |
| 457 | * Check if more fragments are pending |
| 458 | */ |
| 459 | if (ieee80211_get_morefrag(ieee80211hdr)) { |
| 460 | __set_bit(ENTRY_TXD_BURST, &desc.flags); |
| 461 | __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags); |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * Beacons and probe responses require the tsf timestamp |
| 466 | * to be inserted into the frame. |
| 467 | */ |
| 468 | if (control->queue == IEEE80211_TX_QUEUE_BEACON || |
| 469 | is_probe_resp(frame_control)) |
| 470 | __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags); |
| 471 | |
| 472 | /* |
| 473 | * Determine with what IFS priority this frame should be send. |
| 474 | * Set ifs to IFS_SIFS when the this is not the first fragment, |
| 475 | * or this fragment came after RTS/CTS. |
| 476 | */ |
| 477 | if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 || |
| 478 | test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags)) |
| 479 | desc.ifs = IFS_SIFS; |
| 480 | else |
| 481 | desc.ifs = IFS_BACKOFF; |
| 482 | |
| 483 | /* |
| 484 | * PLCP setup |
| 485 | * Length calculation depends on OFDM/CCK rate. |
| 486 | */ |
| 487 | desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP); |
| 488 | desc.service = 0x04; |
| 489 | |
| 490 | if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) { |
| 491 | desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f; |
| 492 | desc.length_low = ((length + FCS_LEN) & 0x3f); |
| 493 | } else { |
| 494 | bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE); |
| 495 | |
| 496 | /* |
| 497 | * Convert length to microseconds. |
| 498 | */ |
| 499 | residual = get_duration_res(length + FCS_LEN, bitrate); |
| 500 | duration = get_duration(length + FCS_LEN, bitrate); |
| 501 | |
| 502 | if (residual != 0) { |
| 503 | duration++; |
| 504 | |
| 505 | /* |
| 506 | * Check if we need to set the Length Extension |
| 507 | */ |
| 508 | if (bitrate == 110 && residual <= 3) |
| 509 | desc.service |= 0x80; |
| 510 | } |
| 511 | |
| 512 | desc.length_high = (duration >> 8) & 0xff; |
| 513 | desc.length_low = duration & 0xff; |
| 514 | |
| 515 | /* |
| 516 | * When preamble is enabled we should set the |
| 517 | * preamble bit for the signal. |
| 518 | */ |
| 519 | if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE)) |
| 520 | desc.signal |= 0x08; |
| 521 | } |
| 522 | |
| 523 | rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc, |
| 524 | ieee80211hdr, length, control); |
| 525 | } |
| 526 | EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc); |
| 527 | |
| 528 | /* |
| 529 | * Driver initialization handlers. |
| 530 | */ |
| 531 | static void rt2x00lib_channel(struct ieee80211_channel *entry, |
| 532 | const int channel, const int tx_power, |
| 533 | const int value) |
| 534 | { |
| 535 | entry->chan = channel; |
| 536 | if (channel <= 14) |
| 537 | entry->freq = 2407 + (5 * channel); |
| 538 | else |
| 539 | entry->freq = 5000 + (5 * channel); |
| 540 | entry->val = value; |
| 541 | entry->flag = |
| 542 | IEEE80211_CHAN_W_IBSS | |
| 543 | IEEE80211_CHAN_W_ACTIVE_SCAN | |
| 544 | IEEE80211_CHAN_W_SCAN; |
| 545 | entry->power_level = tx_power; |
| 546 | entry->antenna_max = 0xff; |
| 547 | } |
| 548 | |
| 549 | static void rt2x00lib_rate(struct ieee80211_rate *entry, |
| 550 | const int rate, const int mask, |
| 551 | const int plcp, const int flags) |
| 552 | { |
| 553 | entry->rate = rate; |
| 554 | entry->val = |
| 555 | DEVICE_SET_RATE_FIELD(rate, RATE) | |
| 556 | DEVICE_SET_RATE_FIELD(mask, RATEMASK) | |
| 557 | DEVICE_SET_RATE_FIELD(plcp, PLCP); |
| 558 | entry->flags = flags; |
| 559 | entry->val2 = entry->val; |
| 560 | if (entry->flags & IEEE80211_RATE_PREAMBLE2) |
| 561 | entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE); |
| 562 | entry->min_rssi_ack = 0; |
| 563 | entry->min_rssi_ack_delta = 0; |
| 564 | } |
| 565 | |
| 566 | static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, |
| 567 | struct hw_mode_spec *spec) |
| 568 | { |
| 569 | struct ieee80211_hw *hw = rt2x00dev->hw; |
| 570 | struct ieee80211_hw_mode *hwmodes; |
| 571 | struct ieee80211_channel *channels; |
| 572 | struct ieee80211_rate *rates; |
| 573 | unsigned int i; |
| 574 | unsigned char tx_power; |
| 575 | |
| 576 | hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL); |
| 577 | if (!hwmodes) |
| 578 | goto exit; |
| 579 | |
| 580 | channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); |
| 581 | if (!channels) |
| 582 | goto exit_free_modes; |
| 583 | |
| 584 | rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL); |
| 585 | if (!rates) |
| 586 | goto exit_free_channels; |
| 587 | |
| 588 | /* |
| 589 | * Initialize Rate list. |
| 590 | */ |
| 591 | rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB, |
| 592 | 0x00, IEEE80211_RATE_CCK); |
| 593 | rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB, |
| 594 | 0x01, IEEE80211_RATE_CCK_2); |
| 595 | rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB, |
| 596 | 0x02, IEEE80211_RATE_CCK_2); |
| 597 | rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB, |
| 598 | 0x03, IEEE80211_RATE_CCK_2); |
| 599 | |
| 600 | if (spec->num_rates > 4) { |
| 601 | rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB, |
| 602 | 0x0b, IEEE80211_RATE_OFDM); |
| 603 | rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB, |
| 604 | 0x0f, IEEE80211_RATE_OFDM); |
| 605 | rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB, |
| 606 | 0x0a, IEEE80211_RATE_OFDM); |
| 607 | rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB, |
| 608 | 0x0e, IEEE80211_RATE_OFDM); |
| 609 | rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB, |
| 610 | 0x09, IEEE80211_RATE_OFDM); |
| 611 | rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB, |
| 612 | 0x0d, IEEE80211_RATE_OFDM); |
| 613 | rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB, |
| 614 | 0x08, IEEE80211_RATE_OFDM); |
| 615 | rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB, |
| 616 | 0x0c, IEEE80211_RATE_OFDM); |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * Initialize Channel list. |
| 621 | */ |
| 622 | for (i = 0; i < spec->num_channels; i++) { |
| 623 | if (spec->channels[i].channel <= 14) |
| 624 | tx_power = spec->tx_power_bg[i]; |
| 625 | else if (spec->tx_power_a) |
| 626 | tx_power = spec->tx_power_a[i]; |
| 627 | else |
| 628 | tx_power = spec->tx_power_default; |
| 629 | |
| 630 | rt2x00lib_channel(&channels[i], |
| 631 | spec->channels[i].channel, tx_power, i); |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * Intitialize 802.11b |
| 636 | * Rates: CCK. |
| 637 | * Channels: OFDM. |
| 638 | */ |
| 639 | if (spec->num_modes > HWMODE_B) { |
| 640 | hwmodes[HWMODE_B].mode = MODE_IEEE80211B; |
| 641 | hwmodes[HWMODE_B].num_channels = 14; |
| 642 | hwmodes[HWMODE_B].num_rates = 4; |
| 643 | hwmodes[HWMODE_B].channels = channels; |
| 644 | hwmodes[HWMODE_B].rates = rates; |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * Intitialize 802.11g |
| 649 | * Rates: CCK, OFDM. |
| 650 | * Channels: OFDM. |
| 651 | */ |
| 652 | if (spec->num_modes > HWMODE_G) { |
| 653 | hwmodes[HWMODE_G].mode = MODE_IEEE80211G; |
| 654 | hwmodes[HWMODE_G].num_channels = 14; |
| 655 | hwmodes[HWMODE_G].num_rates = spec->num_rates; |
| 656 | hwmodes[HWMODE_G].channels = channels; |
| 657 | hwmodes[HWMODE_G].rates = rates; |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * Intitialize 802.11a |
| 662 | * Rates: OFDM. |
| 663 | * Channels: OFDM, UNII, HiperLAN2. |
| 664 | */ |
| 665 | if (spec->num_modes > HWMODE_A) { |
| 666 | hwmodes[HWMODE_A].mode = MODE_IEEE80211A; |
| 667 | hwmodes[HWMODE_A].num_channels = spec->num_channels - 14; |
| 668 | hwmodes[HWMODE_A].num_rates = spec->num_rates - 4; |
| 669 | hwmodes[HWMODE_A].channels = &channels[14]; |
| 670 | hwmodes[HWMODE_A].rates = &rates[4]; |
| 671 | } |
| 672 | |
| 673 | if (spec->num_modes > HWMODE_G && |
| 674 | ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G])) |
| 675 | goto exit_free_rates; |
| 676 | |
| 677 | if (spec->num_modes > HWMODE_B && |
| 678 | ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B])) |
| 679 | goto exit_free_rates; |
| 680 | |
| 681 | if (spec->num_modes > HWMODE_A && |
| 682 | ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A])) |
| 683 | goto exit_free_rates; |
| 684 | |
| 685 | rt2x00dev->hwmodes = hwmodes; |
| 686 | |
| 687 | return 0; |
| 688 | |
| 689 | exit_free_rates: |
| 690 | kfree(rates); |
| 691 | |
| 692 | exit_free_channels: |
| 693 | kfree(channels); |
| 694 | |
| 695 | exit_free_modes: |
| 696 | kfree(hwmodes); |
| 697 | |
| 698 | exit: |
| 699 | ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); |
| 700 | return -ENOMEM; |
| 701 | } |
| 702 | |
| 703 | static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) |
| 704 | { |
| 705 | if (test_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags)) |
| 706 | ieee80211_unregister_hw(rt2x00dev->hw); |
| 707 | |
| 708 | if (likely(rt2x00dev->hwmodes)) { |
| 709 | kfree(rt2x00dev->hwmodes->channels); |
| 710 | kfree(rt2x00dev->hwmodes->rates); |
| 711 | kfree(rt2x00dev->hwmodes); |
| 712 | rt2x00dev->hwmodes = NULL; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) |
| 717 | { |
| 718 | struct hw_mode_spec *spec = &rt2x00dev->spec; |
| 719 | int status; |
| 720 | |
| 721 | /* |
| 722 | * Initialize HW modes. |
| 723 | */ |
| 724 | status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); |
| 725 | if (status) |
| 726 | return status; |
| 727 | |
| 728 | /* |
| 729 | * Register HW. |
| 730 | */ |
| 731 | status = ieee80211_register_hw(rt2x00dev->hw); |
| 732 | if (status) { |
| 733 | rt2x00lib_remove_hw(rt2x00dev); |
| 734 | return status; |
| 735 | } |
| 736 | |
| 737 | __set_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags); |
| 738 | |
| 739 | return 0; |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * Initialization/uninitialization handlers. |
| 744 | */ |
| 745 | static int rt2x00lib_alloc_entries(struct data_ring *ring, |
| 746 | const u16 max_entries, const u16 data_size, |
| 747 | const u16 desc_size) |
| 748 | { |
| 749 | struct data_entry *entry; |
| 750 | unsigned int i; |
| 751 | |
| 752 | ring->stats.limit = max_entries; |
| 753 | ring->data_size = data_size; |
| 754 | ring->desc_size = desc_size; |
| 755 | |
| 756 | /* |
| 757 | * Allocate all ring entries. |
| 758 | */ |
| 759 | entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL); |
| 760 | if (!entry) |
| 761 | return -ENOMEM; |
| 762 | |
| 763 | for (i = 0; i < ring->stats.limit; i++) { |
| 764 | entry[i].flags = 0; |
| 765 | entry[i].ring = ring; |
| 766 | entry[i].skb = NULL; |
| 767 | } |
| 768 | |
| 769 | ring->entry = entry; |
| 770 | |
| 771 | return 0; |
| 772 | } |
| 773 | |
| 774 | static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev) |
| 775 | { |
| 776 | struct data_ring *ring; |
| 777 | |
| 778 | /* |
| 779 | * Allocate the RX ring. |
| 780 | */ |
| 781 | if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE, |
| 782 | rt2x00dev->ops->rxd_size)) |
| 783 | return -ENOMEM; |
| 784 | |
| 785 | /* |
| 786 | * First allocate the TX rings. |
| 787 | */ |
| 788 | txring_for_each(rt2x00dev, ring) { |
| 789 | if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE, |
| 790 | rt2x00dev->ops->txd_size)) |
| 791 | return -ENOMEM; |
| 792 | } |
| 793 | |
| 794 | if (!test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags)) |
| 795 | return 0; |
| 796 | |
| 797 | /* |
| 798 | * Allocate the BEACON ring. |
| 799 | */ |
| 800 | if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES, |
| 801 | MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size)) |
| 802 | return -ENOMEM; |
| 803 | |
| 804 | /* |
| 805 | * Allocate the Atim ring. |
| 806 | */ |
| 807 | if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES, |
| 808 | DATA_FRAME_SIZE, rt2x00dev->ops->txd_size)) |
| 809 | return -ENOMEM; |
| 810 | |
| 811 | return 0; |
| 812 | } |
| 813 | |
| 814 | static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev) |
| 815 | { |
| 816 | struct data_ring *ring; |
| 817 | |
| 818 | ring_for_each(rt2x00dev, ring) { |
| 819 | kfree(ring->entry); |
| 820 | ring->entry = NULL; |
| 821 | } |
| 822 | } |
| 823 | |
| 824 | void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) |
| 825 | { |
| 826 | if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) |
| 827 | return; |
| 828 | |
| 829 | /* |
| 830 | * Unregister rfkill. |
| 831 | */ |
| 832 | rt2x00rfkill_unregister(rt2x00dev); |
| 833 | |
| 834 | /* |
| 835 | * Allow the HW to uninitialize. |
| 836 | */ |
| 837 | rt2x00dev->ops->lib->uninitialize(rt2x00dev); |
| 838 | |
| 839 | /* |
| 840 | * Free allocated ring entries. |
| 841 | */ |
| 842 | rt2x00lib_free_ring_entries(rt2x00dev); |
| 843 | } |
| 844 | |
| 845 | int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) |
| 846 | { |
| 847 | int status; |
| 848 | |
| 849 | if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) |
| 850 | return 0; |
| 851 | |
| 852 | /* |
| 853 | * Allocate all ring entries. |
| 854 | */ |
| 855 | status = rt2x00lib_alloc_ring_entries(rt2x00dev); |
| 856 | if (status) { |
| 857 | ERROR(rt2x00dev, "Ring entries allocation failed.\n"); |
| 858 | return status; |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * Initialize the device. |
| 863 | */ |
| 864 | status = rt2x00dev->ops->lib->initialize(rt2x00dev); |
| 865 | if (status) |
| 866 | goto exit; |
| 867 | |
| 868 | __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags); |
| 869 | |
| 870 | /* |
| 871 | * Register the rfkill handler. |
| 872 | */ |
| 873 | status = rt2x00rfkill_register(rt2x00dev); |
| 874 | if (status) |
| 875 | goto exit_unitialize; |
| 876 | |
| 877 | return 0; |
| 878 | |
| 879 | exit_unitialize: |
| 880 | rt2x00lib_uninitialize(rt2x00dev); |
| 881 | |
| 882 | exit: |
| 883 | rt2x00lib_free_ring_entries(rt2x00dev); |
| 884 | |
| 885 | return status; |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * driver allocation handlers. |
| 890 | */ |
| 891 | static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev) |
| 892 | { |
| 893 | struct data_ring *ring; |
| 894 | |
| 895 | /* |
| 896 | * We need the following rings: |
| 897 | * RX: 1 |
| 898 | * TX: hw->queues |
| 899 | * Beacon: 1 (if required) |
| 900 | * Atim: 1 (if required) |
| 901 | */ |
| 902 | rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues + |
| 903 | (2 * test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags)); |
| 904 | |
| 905 | ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL); |
| 906 | if (!ring) { |
| 907 | ERROR(rt2x00dev, "Ring allocation failed.\n"); |
| 908 | return -ENOMEM; |
| 909 | } |
| 910 | |
| 911 | /* |
| 912 | * Initialize pointers |
| 913 | */ |
| 914 | rt2x00dev->rx = ring; |
| 915 | rt2x00dev->tx = &rt2x00dev->rx[1]; |
| 916 | if (test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags)) |
| 917 | rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues]; |
| 918 | |
| 919 | /* |
| 920 | * Initialize ring parameters. |
| 921 | * cw_min: 2^5 = 32. |
| 922 | * cw_max: 2^10 = 1024. |
| 923 | */ |
| 924 | ring_for_each(rt2x00dev, ring) { |
| 925 | ring->rt2x00dev = rt2x00dev; |
| 926 | ring->tx_params.aifs = 2; |
| 927 | ring->tx_params.cw_min = 5; |
| 928 | ring->tx_params.cw_max = 10; |
| 929 | } |
| 930 | |
| 931 | return 0; |
| 932 | } |
| 933 | |
| 934 | static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev) |
| 935 | { |
| 936 | kfree(rt2x00dev->rx); |
| 937 | rt2x00dev->rx = NULL; |
| 938 | rt2x00dev->tx = NULL; |
| 939 | rt2x00dev->bcn = NULL; |
| 940 | } |
| 941 | |
| 942 | int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) |
| 943 | { |
| 944 | int retval = -ENOMEM; |
| 945 | |
| 946 | /* |
| 947 | * Let the driver probe the device to detect the capabilities. |
| 948 | */ |
| 949 | retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); |
| 950 | if (retval) { |
| 951 | ERROR(rt2x00dev, "Failed to allocate device.\n"); |
| 952 | goto exit; |
| 953 | } |
| 954 | |
| 955 | /* |
| 956 | * Initialize configuration work. |
| 957 | */ |
| 958 | INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled); |
| 959 | INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner); |
| 960 | |
| 961 | /* |
| 962 | * Reset current working type. |
| 963 | */ |
| 964 | rt2x00dev->interface.type = INVALID_INTERFACE; |
| 965 | |
| 966 | /* |
| 967 | * Allocate ring array. |
| 968 | */ |
| 969 | retval = rt2x00lib_alloc_rings(rt2x00dev); |
| 970 | if (retval) |
| 971 | goto exit; |
| 972 | |
| 973 | /* |
| 974 | * Initialize ieee80211 structure. |
| 975 | */ |
| 976 | retval = rt2x00lib_probe_hw(rt2x00dev); |
| 977 | if (retval) { |
| 978 | ERROR(rt2x00dev, "Failed to initialize hw.\n"); |
| 979 | goto exit; |
| 980 | } |
| 981 | |
| 982 | /* |
| 983 | * Allocatie rfkill. |
| 984 | */ |
| 985 | retval = rt2x00rfkill_allocate(rt2x00dev); |
| 986 | if (retval) |
| 987 | goto exit; |
| 988 | |
| 989 | /* |
| 990 | * Open the debugfs entry. |
| 991 | */ |
| 992 | rt2x00debug_register(rt2x00dev); |
| 993 | |
| 994 | return 0; |
| 995 | |
| 996 | exit: |
| 997 | rt2x00lib_remove_dev(rt2x00dev); |
| 998 | |
| 999 | return retval; |
| 1000 | } |
| 1001 | EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); |
| 1002 | |
| 1003 | void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) |
| 1004 | { |
| 1005 | /* |
| 1006 | * Disable radio. |
| 1007 | */ |
| 1008 | rt2x00lib_disable_radio(rt2x00dev); |
| 1009 | |
| 1010 | /* |
| 1011 | * Uninitialize device. |
| 1012 | */ |
| 1013 | rt2x00lib_uninitialize(rt2x00dev); |
| 1014 | |
| 1015 | /* |
| 1016 | * Close debugfs entry. |
| 1017 | */ |
| 1018 | rt2x00debug_deregister(rt2x00dev); |
| 1019 | |
| 1020 | /* |
| 1021 | * Free rfkill |
| 1022 | */ |
| 1023 | rt2x00rfkill_free(rt2x00dev); |
| 1024 | |
| 1025 | /* |
| 1026 | * Free ieee80211_hw memory. |
| 1027 | */ |
| 1028 | rt2x00lib_remove_hw(rt2x00dev); |
| 1029 | |
| 1030 | /* |
| 1031 | * Free firmware image. |
| 1032 | */ |
| 1033 | rt2x00lib_free_firmware(rt2x00dev); |
| 1034 | |
| 1035 | /* |
| 1036 | * Free ring structures. |
| 1037 | */ |
| 1038 | rt2x00lib_free_rings(rt2x00dev); |
| 1039 | } |
| 1040 | EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); |
| 1041 | |
| 1042 | /* |
| 1043 | * Device state handlers |
| 1044 | */ |
| 1045 | #ifdef CONFIG_PM |
| 1046 | int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) |
| 1047 | { |
| 1048 | int retval; |
| 1049 | |
| 1050 | NOTICE(rt2x00dev, "Going to sleep.\n"); |
| 1051 | |
| 1052 | /* |
| 1053 | * Disable radio and unitialize all items |
| 1054 | * that must be recreated on resume. |
| 1055 | */ |
| 1056 | rt2x00lib_disable_radio(rt2x00dev); |
| 1057 | rt2x00lib_uninitialize(rt2x00dev); |
| 1058 | rt2x00debug_deregister(rt2x00dev); |
| 1059 | |
| 1060 | /* |
| 1061 | * Set device mode to sleep for power management. |
| 1062 | */ |
| 1063 | retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP); |
| 1064 | if (retval) |
| 1065 | return retval; |
| 1066 | |
| 1067 | return 0; |
| 1068 | } |
| 1069 | EXPORT_SYMBOL_GPL(rt2x00lib_suspend); |
| 1070 | |
| 1071 | int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) |
| 1072 | { |
| 1073 | struct interface *intf = &rt2x00dev->interface; |
| 1074 | int retval; |
| 1075 | |
| 1076 | NOTICE(rt2x00dev, "Waking up.\n"); |
| 1077 | __set_bit(INTERFACE_RESUME, &rt2x00dev->flags); |
| 1078 | |
| 1079 | /* |
| 1080 | * Open the debugfs entry. |
| 1081 | */ |
| 1082 | rt2x00debug_register(rt2x00dev); |
| 1083 | |
| 1084 | /* |
| 1085 | * Reinitialize device and all active interfaces. |
| 1086 | */ |
| 1087 | retval = rt2x00mac_start(rt2x00dev->hw); |
| 1088 | if (retval) |
| 1089 | goto exit; |
| 1090 | |
| 1091 | /* |
| 1092 | * Reconfigure device. |
| 1093 | */ |
| 1094 | retval = rt2x00mac_config(rt2x00dev->hw, &rt2x00dev->hw->conf); |
| 1095 | if (retval) |
| 1096 | goto exit; |
| 1097 | |
| 1098 | rt2x00lib_config_mac_addr(rt2x00dev, intf->mac); |
| 1099 | rt2x00lib_config_bssid(rt2x00dev, intf->bssid); |
| 1100 | rt2x00lib_config_type(rt2x00dev, intf->type); |
| 1101 | rt2x00lib_config_packet_filter(rt2x00dev, intf->filter); |
| 1102 | |
| 1103 | /* |
| 1104 | * When in Master or Ad-hoc mode, |
| 1105 | * restart Beacon transmitting by faking a beacondone event. |
| 1106 | */ |
| 1107 | if (intf->type == IEEE80211_IF_TYPE_AP || |
| 1108 | intf->type == IEEE80211_IF_TYPE_IBSS) |
| 1109 | rt2x00lib_beacondone(rt2x00dev); |
| 1110 | |
| 1111 | __clear_bit(INTERFACE_RESUME, &rt2x00dev->flags); |
| 1112 | |
| 1113 | return 0; |
| 1114 | |
| 1115 | exit: |
| 1116 | rt2x00lib_disable_radio(rt2x00dev); |
| 1117 | rt2x00lib_uninitialize(rt2x00dev); |
| 1118 | rt2x00debug_deregister(rt2x00dev); |
| 1119 | |
| 1120 | __clear_bit(INTERFACE_RESUME, &rt2x00dev->flags); |
| 1121 | |
| 1122 | return retval; |
| 1123 | } |
| 1124 | EXPORT_SYMBOL_GPL(rt2x00lib_resume); |
| 1125 | #endif /* CONFIG_PM */ |
| 1126 | |
| 1127 | /* |
| 1128 | * rt2x00lib module information. |
| 1129 | */ |
| 1130 | MODULE_AUTHOR(DRV_PROJECT); |
| 1131 | MODULE_VERSION(DRV_VERSION); |
| 1132 | MODULE_DESCRIPTION("rt2x00 library"); |
| 1133 | MODULE_LICENSE("GPL"); |