David S. Miller | 1f26dac | 2005-09-27 15:24:13 -0700 | [diff] [blame] | 1 | /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. |
| 2 | * |
| 3 | * Copyright (C) 2004 Sun Microsystems Inc. |
| 4 | * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License as |
| 8 | * published by the Free Software Foundation; either version 2 of the |
| 9 | * License, or (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software |
| 18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| 19 | * 02111-1307, USA. |
| 20 | * |
| 21 | * This driver uses the sungem driver (c) David Miller |
| 22 | * (davem@redhat.com) as its basis. |
| 23 | * |
| 24 | * The cassini chip has a number of features that distinguish it from |
| 25 | * the gem chip: |
| 26 | * 4 transmit descriptor rings that are used for either QoS (VLAN) or |
| 27 | * load balancing (non-VLAN mode) |
| 28 | * batching of multiple packets |
| 29 | * multiple CPU dispatching |
| 30 | * page-based RX descriptor engine with separate completion rings |
| 31 | * Gigabit support (GMII and PCS interface) |
| 32 | * MIF link up/down detection works |
| 33 | * |
| 34 | * RX is handled by page sized buffers that are attached as fragments to |
| 35 | * the skb. here's what's done: |
| 36 | * -- driver allocates pages at a time and keeps reference counts |
| 37 | * on them. |
| 38 | * -- the upper protocol layers assume that the header is in the skb |
| 39 | * itself. as a result, cassini will copy a small amount (64 bytes) |
| 40 | * to make them happy. |
| 41 | * -- driver appends the rest of the data pages as frags to skbuffs |
| 42 | * and increments the reference count |
| 43 | * -- on page reclamation, the driver swaps the page with a spare page. |
| 44 | * if that page is still in use, it frees its reference to that page, |
| 45 | * and allocates a new page for use. otherwise, it just recycles the |
| 46 | * the page. |
| 47 | * |
| 48 | * NOTE: cassini can parse the header. however, it's not worth it |
| 49 | * as long as the network stack requires a header copy. |
| 50 | * |
| 51 | * TX has 4 queues. currently these queues are used in a round-robin |
| 52 | * fashion for load balancing. They can also be used for QoS. for that |
| 53 | * to work, however, QoS information needs to be exposed down to the driver |
| 54 | * level so that subqueues get targetted to particular transmit rings. |
| 55 | * alternatively, the queues can be configured via use of the all-purpose |
| 56 | * ioctl. |
| 57 | * |
| 58 | * RX DATA: the rx completion ring has all the info, but the rx desc |
| 59 | * ring has all of the data. RX can conceivably come in under multiple |
| 60 | * interrupts, but the INT# assignment needs to be set up properly by |
| 61 | * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do |
| 62 | * that. also, the two descriptor rings are designed to distinguish between |
| 63 | * encrypted and non-encrypted packets, but we use them for buffering |
| 64 | * instead. |
| 65 | * |
| 66 | * by default, the selective clear mask is set up to process rx packets. |
| 67 | */ |
| 68 | |
| 69 | #include <linux/config.h> |
| 70 | #include <linux/version.h> |
| 71 | |
| 72 | #include <linux/module.h> |
| 73 | #include <linux/kernel.h> |
| 74 | #include <linux/types.h> |
| 75 | #include <linux/compiler.h> |
| 76 | #include <linux/slab.h> |
| 77 | #include <linux/delay.h> |
| 78 | #include <linux/init.h> |
| 79 | #include <linux/ioport.h> |
| 80 | #include <linux/pci.h> |
| 81 | #include <linux/mm.h> |
| 82 | #include <linux/highmem.h> |
| 83 | #include <linux/list.h> |
| 84 | #include <linux/dma-mapping.h> |
| 85 | |
| 86 | #include <linux/netdevice.h> |
| 87 | #include <linux/etherdevice.h> |
| 88 | #include <linux/skbuff.h> |
| 89 | #include <linux/ethtool.h> |
| 90 | #include <linux/crc32.h> |
| 91 | #include <linux/random.h> |
| 92 | #include <linux/mii.h> |
| 93 | #include <linux/ip.h> |
| 94 | #include <linux/tcp.h> |
| 95 | |
| 96 | #include <net/checksum.h> |
| 97 | |
| 98 | #include <asm/atomic.h> |
| 99 | #include <asm/system.h> |
| 100 | #include <asm/io.h> |
| 101 | #include <asm/byteorder.h> |
| 102 | #include <asm/uaccess.h> |
| 103 | |
| 104 | #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) |
| 105 | #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) |
| 106 | #define CAS_NCPUS num_online_cpus() |
| 107 | |
| 108 | #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL) |
| 109 | #define USE_NAPI |
| 110 | #define cas_skb_release(x) netif_receive_skb(x) |
| 111 | #else |
| 112 | #define cas_skb_release(x) netif_rx(x) |
| 113 | #endif |
| 114 | |
| 115 | /* select which firmware to use */ |
| 116 | #define USE_HP_WORKAROUND |
| 117 | #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ |
| 118 | #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ |
| 119 | |
| 120 | #include "cassini.h" |
| 121 | |
| 122 | #define USE_TX_COMPWB /* use completion writeback registers */ |
| 123 | #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ |
| 124 | #define USE_RX_BLANK /* hw interrupt mitigation */ |
| 125 | #undef USE_ENTROPY_DEV /* don't test for entropy device */ |
| 126 | |
| 127 | /* NOTE: these aren't useable unless PCI interrupts can be assigned. |
| 128 | * also, we need to make cp->lock finer-grained. |
| 129 | */ |
| 130 | #undef USE_PCI_INTB |
| 131 | #undef USE_PCI_INTC |
| 132 | #undef USE_PCI_INTD |
| 133 | #undef USE_QOS |
| 134 | |
| 135 | #undef USE_VPD_DEBUG /* debug vpd information if defined */ |
| 136 | |
| 137 | /* rx processing options */ |
| 138 | #define USE_PAGE_ORDER /* specify to allocate large rx pages */ |
| 139 | #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ |
| 140 | #define RX_COPY_ALWAYS 0 /* if 0, use frags */ |
| 141 | #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ |
| 142 | #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ |
| 143 | |
| 144 | #define DRV_MODULE_NAME "cassini" |
| 145 | #define PFX DRV_MODULE_NAME ": " |
| 146 | #define DRV_MODULE_VERSION "1.4" |
| 147 | #define DRV_MODULE_RELDATE "1 July 2004" |
| 148 | |
| 149 | #define CAS_DEF_MSG_ENABLE \ |
| 150 | (NETIF_MSG_DRV | \ |
| 151 | NETIF_MSG_PROBE | \ |
| 152 | NETIF_MSG_LINK | \ |
| 153 | NETIF_MSG_TIMER | \ |
| 154 | NETIF_MSG_IFDOWN | \ |
| 155 | NETIF_MSG_IFUP | \ |
| 156 | NETIF_MSG_RX_ERR | \ |
| 157 | NETIF_MSG_TX_ERR) |
| 158 | |
| 159 | /* length of time before we decide the hardware is borked, |
| 160 | * and dev->tx_timeout() should be called to fix the problem |
| 161 | */ |
| 162 | #define CAS_TX_TIMEOUT (HZ) |
| 163 | #define CAS_LINK_TIMEOUT (22*HZ/10) |
| 164 | #define CAS_LINK_FAST_TIMEOUT (1) |
| 165 | |
| 166 | /* timeout values for state changing. these specify the number |
| 167 | * of 10us delays to be used before giving up. |
| 168 | */ |
| 169 | #define STOP_TRIES_PHY 1000 |
| 170 | #define STOP_TRIES 5000 |
| 171 | |
| 172 | /* specify a minimum frame size to deal with some fifo issues |
| 173 | * max mtu == 2 * page size - ethernet header - 64 - swivel = |
| 174 | * 2 * page_size - 0x50 |
| 175 | */ |
| 176 | #define CAS_MIN_FRAME 97 |
| 177 | #define CAS_1000MB_MIN_FRAME 255 |
| 178 | #define CAS_MIN_MTU 60 |
| 179 | #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) |
| 180 | |
| 181 | #if 1 |
| 182 | /* |
| 183 | * Eliminate these and use separate atomic counters for each, to |
| 184 | * avoid a race condition. |
| 185 | */ |
| 186 | #else |
| 187 | #define CAS_RESET_MTU 1 |
| 188 | #define CAS_RESET_ALL 2 |
| 189 | #define CAS_RESET_SPARE 3 |
| 190 | #endif |
| 191 | |
| 192 | static char version[] __devinitdata = |
| 193 | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| 194 | |
| 195 | MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); |
| 196 | MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); |
| 197 | MODULE_LICENSE("GPL"); |
| 198 | MODULE_PARM(cassini_debug, "i"); |
| 199 | MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); |
| 200 | MODULE_PARM(link_mode, "i"); |
| 201 | MODULE_PARM_DESC(link_mode, "default link mode"); |
| 202 | |
| 203 | /* |
| 204 | * Work around for a PCS bug in which the link goes down due to the chip |
| 205 | * being confused and never showing a link status of "up." |
| 206 | */ |
| 207 | #define DEFAULT_LINKDOWN_TIMEOUT 5 |
| 208 | /* |
| 209 | * Value in seconds, for user input. |
| 210 | */ |
| 211 | static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; |
| 212 | MODULE_PARM(linkdown_timeout, "i"); |
| 213 | MODULE_PARM_DESC(linkdown_timeout, |
| 214 | "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); |
| 215 | |
| 216 | /* |
| 217 | * value in 'ticks' (units used by jiffies). Set when we init the |
| 218 | * module because 'HZ' in actually a function call on some flavors of |
| 219 | * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. |
| 220 | */ |
| 221 | static int link_transition_timeout; |
| 222 | |
| 223 | |
| 224 | static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ |
| 225 | static int link_mode; |
| 226 | |
| 227 | static u16 link_modes[] __devinitdata = { |
| 228 | BMCR_ANENABLE, /* 0 : autoneg */ |
| 229 | 0, /* 1 : 10bt half duplex */ |
| 230 | BMCR_SPEED100, /* 2 : 100bt half duplex */ |
| 231 | BMCR_FULLDPLX, /* 3 : 10bt full duplex */ |
| 232 | BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ |
| 233 | CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ |
| 234 | }; |
| 235 | |
| 236 | static struct pci_device_id cas_pci_tbl[] __devinitdata = { |
| 237 | { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, |
| 238 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| 239 | { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, |
| 240 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| 241 | { 0, } |
| 242 | }; |
| 243 | |
| 244 | MODULE_DEVICE_TABLE(pci, cas_pci_tbl); |
| 245 | |
| 246 | static void cas_set_link_modes(struct cas *cp); |
| 247 | |
| 248 | static inline void cas_lock_tx(struct cas *cp) |
| 249 | { |
| 250 | int i; |
| 251 | |
| 252 | for (i = 0; i < N_TX_RINGS; i++) |
| 253 | spin_lock(&cp->tx_lock[i]); |
| 254 | } |
| 255 | |
| 256 | static inline void cas_lock_all(struct cas *cp) |
| 257 | { |
| 258 | spin_lock_irq(&cp->lock); |
| 259 | cas_lock_tx(cp); |
| 260 | } |
| 261 | |
| 262 | /* WTZ: QA was finding deadlock problems with the previous |
| 263 | * versions after long test runs with multiple cards per machine. |
| 264 | * See if replacing cas_lock_all with safer versions helps. The |
| 265 | * symptoms QA is reporting match those we'd expect if interrupts |
| 266 | * aren't being properly restored, and we fixed a previous deadlock |
| 267 | * with similar symptoms by using save/restore versions in other |
| 268 | * places. |
| 269 | */ |
| 270 | #define cas_lock_all_save(cp, flags) \ |
| 271 | do { \ |
| 272 | struct cas *xxxcp = (cp); \ |
| 273 | spin_lock_irqsave(&xxxcp->lock, flags); \ |
| 274 | cas_lock_tx(xxxcp); \ |
| 275 | } while (0) |
| 276 | |
| 277 | static inline void cas_unlock_tx(struct cas *cp) |
| 278 | { |
| 279 | int i; |
| 280 | |
| 281 | for (i = N_TX_RINGS; i > 0; i--) |
| 282 | spin_unlock(&cp->tx_lock[i - 1]); |
| 283 | } |
| 284 | |
| 285 | static inline void cas_unlock_all(struct cas *cp) |
| 286 | { |
| 287 | cas_unlock_tx(cp); |
| 288 | spin_unlock_irq(&cp->lock); |
| 289 | } |
| 290 | |
| 291 | #define cas_unlock_all_restore(cp, flags) \ |
| 292 | do { \ |
| 293 | struct cas *xxxcp = (cp); \ |
| 294 | cas_unlock_tx(xxxcp); \ |
| 295 | spin_unlock_irqrestore(&xxxcp->lock, flags); \ |
| 296 | } while (0) |
| 297 | |
| 298 | static void cas_disable_irq(struct cas *cp, const int ring) |
| 299 | { |
| 300 | /* Make sure we won't get any more interrupts */ |
| 301 | if (ring == 0) { |
| 302 | writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); |
| 303 | return; |
| 304 | } |
| 305 | |
| 306 | /* disable completion interrupts and selectively mask */ |
| 307 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| 308 | switch (ring) { |
| 309 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| 310 | #ifdef USE_PCI_INTB |
| 311 | case 1: |
| 312 | #endif |
| 313 | #ifdef USE_PCI_INTC |
| 314 | case 2: |
| 315 | #endif |
| 316 | #ifdef USE_PCI_INTD |
| 317 | case 3: |
| 318 | #endif |
| 319 | writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, |
| 320 | cp->regs + REG_PLUS_INTRN_MASK(ring)); |
| 321 | break; |
| 322 | #endif |
| 323 | default: |
| 324 | writel(INTRN_MASK_CLEAR_ALL, cp->regs + |
| 325 | REG_PLUS_INTRN_MASK(ring)); |
| 326 | break; |
| 327 | } |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | static inline void cas_mask_intr(struct cas *cp) |
| 332 | { |
| 333 | int i; |
| 334 | |
| 335 | for (i = 0; i < N_RX_COMP_RINGS; i++) |
| 336 | cas_disable_irq(cp, i); |
| 337 | } |
| 338 | |
| 339 | static void cas_enable_irq(struct cas *cp, const int ring) |
| 340 | { |
| 341 | if (ring == 0) { /* all but TX_DONE */ |
| 342 | writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); |
| 343 | return; |
| 344 | } |
| 345 | |
| 346 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| 347 | switch (ring) { |
| 348 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| 349 | #ifdef USE_PCI_INTB |
| 350 | case 1: |
| 351 | #endif |
| 352 | #ifdef USE_PCI_INTC |
| 353 | case 2: |
| 354 | #endif |
| 355 | #ifdef USE_PCI_INTD |
| 356 | case 3: |
| 357 | #endif |
| 358 | writel(INTRN_MASK_RX_EN, cp->regs + |
| 359 | REG_PLUS_INTRN_MASK(ring)); |
| 360 | break; |
| 361 | #endif |
| 362 | default: |
| 363 | break; |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | static inline void cas_unmask_intr(struct cas *cp) |
| 369 | { |
| 370 | int i; |
| 371 | |
| 372 | for (i = 0; i < N_RX_COMP_RINGS; i++) |
| 373 | cas_enable_irq(cp, i); |
| 374 | } |
| 375 | |
| 376 | static inline void cas_entropy_gather(struct cas *cp) |
| 377 | { |
| 378 | #ifdef USE_ENTROPY_DEV |
| 379 | if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) |
| 380 | return; |
| 381 | |
| 382 | batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), |
| 383 | readl(cp->regs + REG_ENTROPY_IV), |
| 384 | sizeof(uint64_t)*8); |
| 385 | #endif |
| 386 | } |
| 387 | |
| 388 | static inline void cas_entropy_reset(struct cas *cp) |
| 389 | { |
| 390 | #ifdef USE_ENTROPY_DEV |
| 391 | if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) |
| 392 | return; |
| 393 | |
| 394 | writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, |
| 395 | cp->regs + REG_BIM_LOCAL_DEV_EN); |
| 396 | writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); |
| 397 | writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); |
| 398 | |
| 399 | /* if we read back 0x0, we don't have an entropy device */ |
| 400 | if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) |
| 401 | cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; |
| 402 | #endif |
| 403 | } |
| 404 | |
| 405 | /* access to the phy. the following assumes that we've initialized the MIF to |
| 406 | * be in frame rather than bit-bang mode |
| 407 | */ |
| 408 | static u16 cas_phy_read(struct cas *cp, int reg) |
| 409 | { |
| 410 | u32 cmd; |
| 411 | int limit = STOP_TRIES_PHY; |
| 412 | |
| 413 | cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; |
| 414 | cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); |
| 415 | cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); |
| 416 | cmd |= MIF_FRAME_TURN_AROUND_MSB; |
| 417 | writel(cmd, cp->regs + REG_MIF_FRAME); |
| 418 | |
| 419 | /* poll for completion */ |
| 420 | while (limit-- > 0) { |
| 421 | udelay(10); |
| 422 | cmd = readl(cp->regs + REG_MIF_FRAME); |
| 423 | if (cmd & MIF_FRAME_TURN_AROUND_LSB) |
| 424 | return (cmd & MIF_FRAME_DATA_MASK); |
| 425 | } |
| 426 | return 0xFFFF; /* -1 */ |
| 427 | } |
| 428 | |
| 429 | static int cas_phy_write(struct cas *cp, int reg, u16 val) |
| 430 | { |
| 431 | int limit = STOP_TRIES_PHY; |
| 432 | u32 cmd; |
| 433 | |
| 434 | cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; |
| 435 | cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); |
| 436 | cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); |
| 437 | cmd |= MIF_FRAME_TURN_AROUND_MSB; |
| 438 | cmd |= val & MIF_FRAME_DATA_MASK; |
| 439 | writel(cmd, cp->regs + REG_MIF_FRAME); |
| 440 | |
| 441 | /* poll for completion */ |
| 442 | while (limit-- > 0) { |
| 443 | udelay(10); |
| 444 | cmd = readl(cp->regs + REG_MIF_FRAME); |
| 445 | if (cmd & MIF_FRAME_TURN_AROUND_LSB) |
| 446 | return 0; |
| 447 | } |
| 448 | return -1; |
| 449 | } |
| 450 | |
| 451 | static void cas_phy_powerup(struct cas *cp) |
| 452 | { |
| 453 | u16 ctl = cas_phy_read(cp, MII_BMCR); |
| 454 | |
| 455 | if ((ctl & BMCR_PDOWN) == 0) |
| 456 | return; |
| 457 | ctl &= ~BMCR_PDOWN; |
| 458 | cas_phy_write(cp, MII_BMCR, ctl); |
| 459 | } |
| 460 | |
| 461 | static void cas_phy_powerdown(struct cas *cp) |
| 462 | { |
| 463 | u16 ctl = cas_phy_read(cp, MII_BMCR); |
| 464 | |
| 465 | if (ctl & BMCR_PDOWN) |
| 466 | return; |
| 467 | ctl |= BMCR_PDOWN; |
| 468 | cas_phy_write(cp, MII_BMCR, ctl); |
| 469 | } |
| 470 | |
| 471 | /* cp->lock held. note: the last put_page will free the buffer */ |
| 472 | static int cas_page_free(struct cas *cp, cas_page_t *page) |
| 473 | { |
| 474 | pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, |
| 475 | PCI_DMA_FROMDEVICE); |
| 476 | __free_pages(page->buffer, cp->page_order); |
| 477 | kfree(page); |
| 478 | return 0; |
| 479 | } |
| 480 | |
| 481 | #ifdef RX_COUNT_BUFFERS |
| 482 | #define RX_USED_ADD(x, y) ((x)->used += (y)) |
| 483 | #define RX_USED_SET(x, y) ((x)->used = (y)) |
| 484 | #else |
| 485 | #define RX_USED_ADD(x, y) |
| 486 | #define RX_USED_SET(x, y) |
| 487 | #endif |
| 488 | |
| 489 | /* local page allocation routines for the receive buffers. jumbo pages |
| 490 | * require at least 8K contiguous and 8K aligned buffers. |
| 491 | */ |
| 492 | static cas_page_t *cas_page_alloc(struct cas *cp, const int flags) |
| 493 | { |
| 494 | cas_page_t *page; |
| 495 | |
| 496 | page = kmalloc(sizeof(cas_page_t), flags); |
| 497 | if (!page) |
| 498 | return NULL; |
| 499 | |
| 500 | INIT_LIST_HEAD(&page->list); |
| 501 | RX_USED_SET(page, 0); |
| 502 | page->buffer = alloc_pages(flags, cp->page_order); |
| 503 | if (!page->buffer) |
| 504 | goto page_err; |
| 505 | page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, |
| 506 | cp->page_size, PCI_DMA_FROMDEVICE); |
| 507 | return page; |
| 508 | |
| 509 | page_err: |
| 510 | kfree(page); |
| 511 | return NULL; |
| 512 | } |
| 513 | |
| 514 | /* initialize spare pool of rx buffers, but allocate during the open */ |
| 515 | static void cas_spare_init(struct cas *cp) |
| 516 | { |
| 517 | spin_lock(&cp->rx_inuse_lock); |
| 518 | INIT_LIST_HEAD(&cp->rx_inuse_list); |
| 519 | spin_unlock(&cp->rx_inuse_lock); |
| 520 | |
| 521 | spin_lock(&cp->rx_spare_lock); |
| 522 | INIT_LIST_HEAD(&cp->rx_spare_list); |
| 523 | cp->rx_spares_needed = RX_SPARE_COUNT; |
| 524 | spin_unlock(&cp->rx_spare_lock); |
| 525 | } |
| 526 | |
| 527 | /* used on close. free all the spare buffers. */ |
| 528 | static void cas_spare_free(struct cas *cp) |
| 529 | { |
| 530 | struct list_head list, *elem, *tmp; |
| 531 | |
| 532 | /* free spare buffers */ |
| 533 | INIT_LIST_HEAD(&list); |
| 534 | spin_lock(&cp->rx_spare_lock); |
| 535 | list_splice(&cp->rx_spare_list, &list); |
| 536 | INIT_LIST_HEAD(&cp->rx_spare_list); |
| 537 | spin_unlock(&cp->rx_spare_lock); |
| 538 | list_for_each_safe(elem, tmp, &list) { |
| 539 | cas_page_free(cp, list_entry(elem, cas_page_t, list)); |
| 540 | } |
| 541 | |
| 542 | INIT_LIST_HEAD(&list); |
| 543 | #if 1 |
| 544 | /* |
| 545 | * Looks like Adrian had protected this with a different |
| 546 | * lock than used everywhere else to manipulate this list. |
| 547 | */ |
| 548 | spin_lock(&cp->rx_inuse_lock); |
| 549 | list_splice(&cp->rx_inuse_list, &list); |
| 550 | INIT_LIST_HEAD(&cp->rx_inuse_list); |
| 551 | spin_unlock(&cp->rx_inuse_lock); |
| 552 | #else |
| 553 | spin_lock(&cp->rx_spare_lock); |
| 554 | list_splice(&cp->rx_inuse_list, &list); |
| 555 | INIT_LIST_HEAD(&cp->rx_inuse_list); |
| 556 | spin_unlock(&cp->rx_spare_lock); |
| 557 | #endif |
| 558 | list_for_each_safe(elem, tmp, &list) { |
| 559 | cas_page_free(cp, list_entry(elem, cas_page_t, list)); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | /* replenish spares if needed */ |
| 564 | static void cas_spare_recover(struct cas *cp, const int flags) |
| 565 | { |
| 566 | struct list_head list, *elem, *tmp; |
| 567 | int needed, i; |
| 568 | |
| 569 | /* check inuse list. if we don't need any more free buffers, |
| 570 | * just free it |
| 571 | */ |
| 572 | |
| 573 | /* make a local copy of the list */ |
| 574 | INIT_LIST_HEAD(&list); |
| 575 | spin_lock(&cp->rx_inuse_lock); |
| 576 | list_splice(&cp->rx_inuse_list, &list); |
| 577 | INIT_LIST_HEAD(&cp->rx_inuse_list); |
| 578 | spin_unlock(&cp->rx_inuse_lock); |
| 579 | |
| 580 | list_for_each_safe(elem, tmp, &list) { |
| 581 | cas_page_t *page = list_entry(elem, cas_page_t, list); |
| 582 | |
| 583 | if (page_count(page->buffer) > 1) |
| 584 | continue; |
| 585 | |
| 586 | list_del(elem); |
| 587 | spin_lock(&cp->rx_spare_lock); |
| 588 | if (cp->rx_spares_needed > 0) { |
| 589 | list_add(elem, &cp->rx_spare_list); |
| 590 | cp->rx_spares_needed--; |
| 591 | spin_unlock(&cp->rx_spare_lock); |
| 592 | } else { |
| 593 | spin_unlock(&cp->rx_spare_lock); |
| 594 | cas_page_free(cp, page); |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | /* put any inuse buffers back on the list */ |
| 599 | if (!list_empty(&list)) { |
| 600 | spin_lock(&cp->rx_inuse_lock); |
| 601 | list_splice(&list, &cp->rx_inuse_list); |
| 602 | spin_unlock(&cp->rx_inuse_lock); |
| 603 | } |
| 604 | |
| 605 | spin_lock(&cp->rx_spare_lock); |
| 606 | needed = cp->rx_spares_needed; |
| 607 | spin_unlock(&cp->rx_spare_lock); |
| 608 | if (!needed) |
| 609 | return; |
| 610 | |
| 611 | /* we still need spares, so try to allocate some */ |
| 612 | INIT_LIST_HEAD(&list); |
| 613 | i = 0; |
| 614 | while (i < needed) { |
| 615 | cas_page_t *spare = cas_page_alloc(cp, flags); |
| 616 | if (!spare) |
| 617 | break; |
| 618 | list_add(&spare->list, &list); |
| 619 | i++; |
| 620 | } |
| 621 | |
| 622 | spin_lock(&cp->rx_spare_lock); |
| 623 | list_splice(&list, &cp->rx_spare_list); |
| 624 | cp->rx_spares_needed -= i; |
| 625 | spin_unlock(&cp->rx_spare_lock); |
| 626 | } |
| 627 | |
| 628 | /* pull a page from the list. */ |
| 629 | static cas_page_t *cas_page_dequeue(struct cas *cp) |
| 630 | { |
| 631 | struct list_head *entry; |
| 632 | int recover; |
| 633 | |
| 634 | spin_lock(&cp->rx_spare_lock); |
| 635 | if (list_empty(&cp->rx_spare_list)) { |
| 636 | /* try to do a quick recovery */ |
| 637 | spin_unlock(&cp->rx_spare_lock); |
| 638 | cas_spare_recover(cp, GFP_ATOMIC); |
| 639 | spin_lock(&cp->rx_spare_lock); |
| 640 | if (list_empty(&cp->rx_spare_list)) { |
| 641 | if (netif_msg_rx_err(cp)) |
| 642 | printk(KERN_ERR "%s: no spare buffers " |
| 643 | "available.\n", cp->dev->name); |
| 644 | spin_unlock(&cp->rx_spare_lock); |
| 645 | return NULL; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | entry = cp->rx_spare_list.next; |
| 650 | list_del(entry); |
| 651 | recover = ++cp->rx_spares_needed; |
| 652 | spin_unlock(&cp->rx_spare_lock); |
| 653 | |
| 654 | /* trigger the timer to do the recovery */ |
| 655 | if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { |
| 656 | #if 1 |
| 657 | atomic_inc(&cp->reset_task_pending); |
| 658 | atomic_inc(&cp->reset_task_pending_spare); |
| 659 | schedule_work(&cp->reset_task); |
| 660 | #else |
| 661 | atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); |
| 662 | schedule_work(&cp->reset_task); |
| 663 | #endif |
| 664 | } |
| 665 | return list_entry(entry, cas_page_t, list); |
| 666 | } |
| 667 | |
| 668 | |
| 669 | static void cas_mif_poll(struct cas *cp, const int enable) |
| 670 | { |
| 671 | u32 cfg; |
| 672 | |
| 673 | cfg = readl(cp->regs + REG_MIF_CFG); |
| 674 | cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); |
| 675 | |
| 676 | if (cp->phy_type & CAS_PHY_MII_MDIO1) |
| 677 | cfg |= MIF_CFG_PHY_SELECT; |
| 678 | |
| 679 | /* poll and interrupt on link status change. */ |
| 680 | if (enable) { |
| 681 | cfg |= MIF_CFG_POLL_EN; |
| 682 | cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); |
| 683 | cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); |
| 684 | } |
| 685 | writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, |
| 686 | cp->regs + REG_MIF_MASK); |
| 687 | writel(cfg, cp->regs + REG_MIF_CFG); |
| 688 | } |
| 689 | |
| 690 | /* Must be invoked under cp->lock */ |
| 691 | static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) |
| 692 | { |
| 693 | u16 ctl; |
| 694 | #if 1 |
| 695 | int lcntl; |
| 696 | int changed = 0; |
| 697 | int oldstate = cp->lstate; |
| 698 | int link_was_not_down = !(oldstate == link_down); |
| 699 | #endif |
| 700 | /* Setup link parameters */ |
| 701 | if (!ep) |
| 702 | goto start_aneg; |
| 703 | lcntl = cp->link_cntl; |
| 704 | if (ep->autoneg == AUTONEG_ENABLE) |
| 705 | cp->link_cntl = BMCR_ANENABLE; |
| 706 | else { |
| 707 | cp->link_cntl = 0; |
| 708 | if (ep->speed == SPEED_100) |
| 709 | cp->link_cntl |= BMCR_SPEED100; |
| 710 | else if (ep->speed == SPEED_1000) |
| 711 | cp->link_cntl |= CAS_BMCR_SPEED1000; |
| 712 | if (ep->duplex == DUPLEX_FULL) |
| 713 | cp->link_cntl |= BMCR_FULLDPLX; |
| 714 | } |
| 715 | #if 1 |
| 716 | changed = (lcntl != cp->link_cntl); |
| 717 | #endif |
| 718 | start_aneg: |
| 719 | if (cp->lstate == link_up) { |
| 720 | printk(KERN_INFO "%s: PCS link down.\n", |
| 721 | cp->dev->name); |
| 722 | } else { |
| 723 | if (changed) { |
| 724 | printk(KERN_INFO "%s: link configuration changed\n", |
| 725 | cp->dev->name); |
| 726 | } |
| 727 | } |
| 728 | cp->lstate = link_down; |
| 729 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| 730 | if (!cp->hw_running) |
| 731 | return; |
| 732 | #if 1 |
| 733 | /* |
| 734 | * WTZ: If the old state was link_up, we turn off the carrier |
| 735 | * to replicate everything we do elsewhere on a link-down |
| 736 | * event when we were already in a link-up state.. |
| 737 | */ |
| 738 | if (oldstate == link_up) |
| 739 | netif_carrier_off(cp->dev); |
| 740 | if (changed && link_was_not_down) { |
| 741 | /* |
| 742 | * WTZ: This branch will simply schedule a full reset after |
| 743 | * we explicitly changed link modes in an ioctl. See if this |
| 744 | * fixes the link-problems we were having for forced mode. |
| 745 | */ |
| 746 | atomic_inc(&cp->reset_task_pending); |
| 747 | atomic_inc(&cp->reset_task_pending_all); |
| 748 | schedule_work(&cp->reset_task); |
| 749 | cp->timer_ticks = 0; |
| 750 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| 751 | return; |
| 752 | } |
| 753 | #endif |
| 754 | if (cp->phy_type & CAS_PHY_SERDES) { |
| 755 | u32 val = readl(cp->regs + REG_PCS_MII_CTRL); |
| 756 | |
| 757 | if (cp->link_cntl & BMCR_ANENABLE) { |
| 758 | val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); |
| 759 | cp->lstate = link_aneg; |
| 760 | } else { |
| 761 | if (cp->link_cntl & BMCR_FULLDPLX) |
| 762 | val |= PCS_MII_CTRL_DUPLEX; |
| 763 | val &= ~PCS_MII_AUTONEG_EN; |
| 764 | cp->lstate = link_force_ok; |
| 765 | } |
| 766 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| 767 | writel(val, cp->regs + REG_PCS_MII_CTRL); |
| 768 | |
| 769 | } else { |
| 770 | cas_mif_poll(cp, 0); |
| 771 | ctl = cas_phy_read(cp, MII_BMCR); |
| 772 | ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | |
| 773 | CAS_BMCR_SPEED1000 | BMCR_ANENABLE); |
| 774 | ctl |= cp->link_cntl; |
| 775 | if (ctl & BMCR_ANENABLE) { |
| 776 | ctl |= BMCR_ANRESTART; |
| 777 | cp->lstate = link_aneg; |
| 778 | } else { |
| 779 | cp->lstate = link_force_ok; |
| 780 | } |
| 781 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| 782 | cas_phy_write(cp, MII_BMCR, ctl); |
| 783 | cas_mif_poll(cp, 1); |
| 784 | } |
| 785 | |
| 786 | cp->timer_ticks = 0; |
| 787 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| 788 | } |
| 789 | |
| 790 | /* Must be invoked under cp->lock. */ |
| 791 | static int cas_reset_mii_phy(struct cas *cp) |
| 792 | { |
| 793 | int limit = STOP_TRIES_PHY; |
| 794 | u16 val; |
| 795 | |
| 796 | cas_phy_write(cp, MII_BMCR, BMCR_RESET); |
| 797 | udelay(100); |
| 798 | while (limit--) { |
| 799 | val = cas_phy_read(cp, MII_BMCR); |
| 800 | if ((val & BMCR_RESET) == 0) |
| 801 | break; |
| 802 | udelay(10); |
| 803 | } |
| 804 | return (limit <= 0); |
| 805 | } |
| 806 | |
| 807 | static void cas_saturn_firmware_load(struct cas *cp) |
| 808 | { |
| 809 | cas_saturn_patch_t *patch = cas_saturn_patch; |
| 810 | |
| 811 | cas_phy_powerdown(cp); |
| 812 | |
| 813 | /* expanded memory access mode */ |
| 814 | cas_phy_write(cp, DP83065_MII_MEM, 0x0); |
| 815 | |
| 816 | /* pointer configuration for new firmware */ |
| 817 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); |
| 818 | cas_phy_write(cp, DP83065_MII_REGD, 0xbd); |
| 819 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); |
| 820 | cas_phy_write(cp, DP83065_MII_REGD, 0x82); |
| 821 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); |
| 822 | cas_phy_write(cp, DP83065_MII_REGD, 0x0); |
| 823 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); |
| 824 | cas_phy_write(cp, DP83065_MII_REGD, 0x39); |
| 825 | |
| 826 | /* download new firmware */ |
| 827 | cas_phy_write(cp, DP83065_MII_MEM, 0x1); |
| 828 | cas_phy_write(cp, DP83065_MII_REGE, patch->addr); |
| 829 | while (patch->addr) { |
| 830 | cas_phy_write(cp, DP83065_MII_REGD, patch->val); |
| 831 | patch++; |
| 832 | } |
| 833 | |
| 834 | /* enable firmware */ |
| 835 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); |
| 836 | cas_phy_write(cp, DP83065_MII_REGD, 0x1); |
| 837 | } |
| 838 | |
| 839 | |
| 840 | /* phy initialization */ |
| 841 | static void cas_phy_init(struct cas *cp) |
| 842 | { |
| 843 | u16 val; |
| 844 | |
| 845 | /* if we're in MII/GMII mode, set up phy */ |
| 846 | if (CAS_PHY_MII(cp->phy_type)) { |
| 847 | writel(PCS_DATAPATH_MODE_MII, |
| 848 | cp->regs + REG_PCS_DATAPATH_MODE); |
| 849 | |
| 850 | cas_mif_poll(cp, 0); |
| 851 | cas_reset_mii_phy(cp); /* take out of isolate mode */ |
| 852 | |
| 853 | if (PHY_LUCENT_B0 == cp->phy_id) { |
| 854 | /* workaround link up/down issue with lucent */ |
| 855 | cas_phy_write(cp, LUCENT_MII_REG, 0x8000); |
| 856 | cas_phy_write(cp, MII_BMCR, 0x00f1); |
| 857 | cas_phy_write(cp, LUCENT_MII_REG, 0x0); |
| 858 | |
| 859 | } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { |
| 860 | /* workarounds for broadcom phy */ |
| 861 | cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); |
| 862 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); |
| 863 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); |
| 864 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); |
| 865 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); |
| 866 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); |
| 867 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); |
| 868 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); |
| 869 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); |
| 870 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); |
| 871 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); |
| 872 | |
| 873 | } else if (PHY_BROADCOM_5411 == cp->phy_id) { |
| 874 | val = cas_phy_read(cp, BROADCOM_MII_REG4); |
| 875 | val = cas_phy_read(cp, BROADCOM_MII_REG4); |
| 876 | if (val & 0x0080) { |
| 877 | /* link workaround */ |
| 878 | cas_phy_write(cp, BROADCOM_MII_REG4, |
| 879 | val & ~0x0080); |
| 880 | } |
| 881 | |
| 882 | } else if (cp->cas_flags & CAS_FLAG_SATURN) { |
| 883 | writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? |
| 884 | SATURN_PCFG_FSI : 0x0, |
| 885 | cp->regs + REG_SATURN_PCFG); |
| 886 | |
| 887 | /* load firmware to address 10Mbps auto-negotiation |
| 888 | * issue. NOTE: this will need to be changed if the |
| 889 | * default firmware gets fixed. |
| 890 | */ |
| 891 | if (PHY_NS_DP83065 == cp->phy_id) { |
| 892 | cas_saturn_firmware_load(cp); |
| 893 | } |
| 894 | cas_phy_powerup(cp); |
| 895 | } |
| 896 | |
| 897 | /* advertise capabilities */ |
| 898 | val = cas_phy_read(cp, MII_BMCR); |
| 899 | val &= ~BMCR_ANENABLE; |
| 900 | cas_phy_write(cp, MII_BMCR, val); |
| 901 | udelay(10); |
| 902 | |
| 903 | cas_phy_write(cp, MII_ADVERTISE, |
| 904 | cas_phy_read(cp, MII_ADVERTISE) | |
| 905 | (ADVERTISE_10HALF | ADVERTISE_10FULL | |
| 906 | ADVERTISE_100HALF | ADVERTISE_100FULL | |
| 907 | CAS_ADVERTISE_PAUSE | |
| 908 | CAS_ADVERTISE_ASYM_PAUSE)); |
| 909 | |
| 910 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
| 911 | /* make sure that we don't advertise half |
| 912 | * duplex to avoid a chip issue |
| 913 | */ |
| 914 | val = cas_phy_read(cp, CAS_MII_1000_CTRL); |
| 915 | val &= ~CAS_ADVERTISE_1000HALF; |
| 916 | val |= CAS_ADVERTISE_1000FULL; |
| 917 | cas_phy_write(cp, CAS_MII_1000_CTRL, val); |
| 918 | } |
| 919 | |
| 920 | } else { |
| 921 | /* reset pcs for serdes */ |
| 922 | u32 val; |
| 923 | int limit; |
| 924 | |
| 925 | writel(PCS_DATAPATH_MODE_SERDES, |
| 926 | cp->regs + REG_PCS_DATAPATH_MODE); |
| 927 | |
| 928 | /* enable serdes pins on saturn */ |
| 929 | if (cp->cas_flags & CAS_FLAG_SATURN) |
| 930 | writel(0, cp->regs + REG_SATURN_PCFG); |
| 931 | |
| 932 | /* Reset PCS unit. */ |
| 933 | val = readl(cp->regs + REG_PCS_MII_CTRL); |
| 934 | val |= PCS_MII_RESET; |
| 935 | writel(val, cp->regs + REG_PCS_MII_CTRL); |
| 936 | |
| 937 | limit = STOP_TRIES; |
| 938 | while (limit-- > 0) { |
| 939 | udelay(10); |
| 940 | if ((readl(cp->regs + REG_PCS_MII_CTRL) & |
| 941 | PCS_MII_RESET) == 0) |
| 942 | break; |
| 943 | } |
| 944 | if (limit <= 0) |
| 945 | printk(KERN_WARNING "%s: PCS reset bit would not " |
| 946 | "clear [%08x].\n", cp->dev->name, |
| 947 | readl(cp->regs + REG_PCS_STATE_MACHINE)); |
| 948 | |
| 949 | /* Make sure PCS is disabled while changing advertisement |
| 950 | * configuration. |
| 951 | */ |
| 952 | writel(0x0, cp->regs + REG_PCS_CFG); |
| 953 | |
| 954 | /* Advertise all capabilities except half-duplex. */ |
| 955 | val = readl(cp->regs + REG_PCS_MII_ADVERT); |
| 956 | val &= ~PCS_MII_ADVERT_HD; |
| 957 | val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | |
| 958 | PCS_MII_ADVERT_ASYM_PAUSE); |
| 959 | writel(val, cp->regs + REG_PCS_MII_ADVERT); |
| 960 | |
| 961 | /* enable PCS */ |
| 962 | writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); |
| 963 | |
| 964 | /* pcs workaround: enable sync detect */ |
| 965 | writel(PCS_SERDES_CTRL_SYNCD_EN, |
| 966 | cp->regs + REG_PCS_SERDES_CTRL); |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | |
| 971 | static int cas_pcs_link_check(struct cas *cp) |
| 972 | { |
| 973 | u32 stat, state_machine; |
| 974 | int retval = 0; |
| 975 | |
| 976 | /* The link status bit latches on zero, so you must |
| 977 | * read it twice in such a case to see a transition |
| 978 | * to the link being up. |
| 979 | */ |
| 980 | stat = readl(cp->regs + REG_PCS_MII_STATUS); |
| 981 | if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) |
| 982 | stat = readl(cp->regs + REG_PCS_MII_STATUS); |
| 983 | |
| 984 | /* The remote-fault indication is only valid |
| 985 | * when autoneg has completed. |
| 986 | */ |
| 987 | if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | |
| 988 | PCS_MII_STATUS_REMOTE_FAULT)) == |
| 989 | (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) { |
| 990 | if (netif_msg_link(cp)) |
| 991 | printk(KERN_INFO "%s: PCS RemoteFault\n", |
| 992 | cp->dev->name); |
| 993 | } |
| 994 | |
| 995 | /* work around link detection issue by querying the PCS state |
| 996 | * machine directly. |
| 997 | */ |
| 998 | state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); |
| 999 | if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { |
| 1000 | stat &= ~PCS_MII_STATUS_LINK_STATUS; |
| 1001 | } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { |
| 1002 | stat |= PCS_MII_STATUS_LINK_STATUS; |
| 1003 | } |
| 1004 | |
| 1005 | if (stat & PCS_MII_STATUS_LINK_STATUS) { |
| 1006 | if (cp->lstate != link_up) { |
| 1007 | if (cp->opened) { |
| 1008 | cp->lstate = link_up; |
| 1009 | cp->link_transition = LINK_TRANSITION_LINK_UP; |
| 1010 | |
| 1011 | cas_set_link_modes(cp); |
| 1012 | netif_carrier_on(cp->dev); |
| 1013 | } |
| 1014 | } |
| 1015 | } else if (cp->lstate == link_up) { |
| 1016 | cp->lstate = link_down; |
| 1017 | if (link_transition_timeout != 0 && |
| 1018 | cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && |
| 1019 | !cp->link_transition_jiffies_valid) { |
| 1020 | /* |
| 1021 | * force a reset, as a workaround for the |
| 1022 | * link-failure problem. May want to move this to a |
| 1023 | * point a bit earlier in the sequence. If we had |
| 1024 | * generated a reset a short time ago, we'll wait for |
| 1025 | * the link timer to check the status until a |
| 1026 | * timer expires (link_transistion_jiffies_valid is |
| 1027 | * true when the timer is running.) Instead of using |
| 1028 | * a system timer, we just do a check whenever the |
| 1029 | * link timer is running - this clears the flag after |
| 1030 | * a suitable delay. |
| 1031 | */ |
| 1032 | retval = 1; |
| 1033 | cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; |
| 1034 | cp->link_transition_jiffies = jiffies; |
| 1035 | cp->link_transition_jiffies_valid = 1; |
| 1036 | } else { |
| 1037 | cp->link_transition = LINK_TRANSITION_ON_FAILURE; |
| 1038 | } |
| 1039 | netif_carrier_off(cp->dev); |
| 1040 | if (cp->opened && netif_msg_link(cp)) { |
| 1041 | printk(KERN_INFO "%s: PCS link down.\n", |
| 1042 | cp->dev->name); |
| 1043 | } |
| 1044 | |
| 1045 | /* Cassini only: if you force a mode, there can be |
| 1046 | * sync problems on link down. to fix that, the following |
| 1047 | * things need to be checked: |
| 1048 | * 1) read serialink state register |
| 1049 | * 2) read pcs status register to verify link down. |
| 1050 | * 3) if link down and serial link == 0x03, then you need |
| 1051 | * to global reset the chip. |
| 1052 | */ |
| 1053 | if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { |
| 1054 | /* should check to see if we're in a forced mode */ |
| 1055 | stat = readl(cp->regs + REG_PCS_SERDES_STATE); |
| 1056 | if (stat == 0x03) |
| 1057 | return 1; |
| 1058 | } |
| 1059 | } else if (cp->lstate == link_down) { |
| 1060 | if (link_transition_timeout != 0 && |
| 1061 | cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && |
| 1062 | !cp->link_transition_jiffies_valid) { |
| 1063 | /* force a reset, as a workaround for the |
| 1064 | * link-failure problem. May want to move |
| 1065 | * this to a point a bit earlier in the |
| 1066 | * sequence. |
| 1067 | */ |
| 1068 | retval = 1; |
| 1069 | cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; |
| 1070 | cp->link_transition_jiffies = jiffies; |
| 1071 | cp->link_transition_jiffies_valid = 1; |
| 1072 | } else { |
| 1073 | cp->link_transition = LINK_TRANSITION_STILL_FAILED; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | return retval; |
| 1078 | } |
| 1079 | |
| 1080 | static int cas_pcs_interrupt(struct net_device *dev, |
| 1081 | struct cas *cp, u32 status) |
| 1082 | { |
| 1083 | u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); |
| 1084 | |
| 1085 | if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) |
| 1086 | return 0; |
| 1087 | return cas_pcs_link_check(cp); |
| 1088 | } |
| 1089 | |
| 1090 | static int cas_txmac_interrupt(struct net_device *dev, |
| 1091 | struct cas *cp, u32 status) |
| 1092 | { |
| 1093 | u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); |
| 1094 | |
| 1095 | if (!txmac_stat) |
| 1096 | return 0; |
| 1097 | |
| 1098 | if (netif_msg_intr(cp)) |
| 1099 | printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", |
| 1100 | cp->dev->name, txmac_stat); |
| 1101 | |
| 1102 | /* Defer timer expiration is quite normal, |
| 1103 | * don't even log the event. |
| 1104 | */ |
| 1105 | if ((txmac_stat & MAC_TX_DEFER_TIMER) && |
| 1106 | !(txmac_stat & ~MAC_TX_DEFER_TIMER)) |
| 1107 | return 0; |
| 1108 | |
| 1109 | spin_lock(&cp->stat_lock[0]); |
| 1110 | if (txmac_stat & MAC_TX_UNDERRUN) { |
| 1111 | printk(KERN_ERR "%s: TX MAC xmit underrun.\n", |
| 1112 | dev->name); |
| 1113 | cp->net_stats[0].tx_fifo_errors++; |
| 1114 | } |
| 1115 | |
| 1116 | if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { |
| 1117 | printk(KERN_ERR "%s: TX MAC max packet size error.\n", |
| 1118 | dev->name); |
| 1119 | cp->net_stats[0].tx_errors++; |
| 1120 | } |
| 1121 | |
| 1122 | /* The rest are all cases of one of the 16-bit TX |
| 1123 | * counters expiring. |
| 1124 | */ |
| 1125 | if (txmac_stat & MAC_TX_COLL_NORMAL) |
| 1126 | cp->net_stats[0].collisions += 0x10000; |
| 1127 | |
| 1128 | if (txmac_stat & MAC_TX_COLL_EXCESS) { |
| 1129 | cp->net_stats[0].tx_aborted_errors += 0x10000; |
| 1130 | cp->net_stats[0].collisions += 0x10000; |
| 1131 | } |
| 1132 | |
| 1133 | if (txmac_stat & MAC_TX_COLL_LATE) { |
| 1134 | cp->net_stats[0].tx_aborted_errors += 0x10000; |
| 1135 | cp->net_stats[0].collisions += 0x10000; |
| 1136 | } |
| 1137 | spin_unlock(&cp->stat_lock[0]); |
| 1138 | |
| 1139 | /* We do not keep track of MAC_TX_COLL_FIRST and |
| 1140 | * MAC_TX_PEAK_ATTEMPTS events. |
| 1141 | */ |
| 1142 | return 0; |
| 1143 | } |
| 1144 | |
| 1145 | static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) |
| 1146 | { |
| 1147 | cas_hp_inst_t *inst; |
| 1148 | u32 val; |
| 1149 | int i; |
| 1150 | |
| 1151 | i = 0; |
| 1152 | while ((inst = firmware) && inst->note) { |
| 1153 | writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); |
| 1154 | |
| 1155 | val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); |
| 1156 | val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); |
| 1157 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); |
| 1158 | |
| 1159 | val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); |
| 1160 | val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); |
| 1161 | val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); |
| 1162 | val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); |
| 1163 | val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); |
| 1164 | val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); |
| 1165 | val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); |
| 1166 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); |
| 1167 | |
| 1168 | val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); |
| 1169 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); |
| 1170 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); |
| 1171 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); |
| 1172 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); |
| 1173 | ++firmware; |
| 1174 | ++i; |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | static void cas_init_rx_dma(struct cas *cp) |
| 1179 | { |
| 1180 | u64 desc_dma = cp->block_dvma; |
| 1181 | u32 val; |
| 1182 | int i, size; |
| 1183 | |
| 1184 | /* rx free descriptors */ |
| 1185 | val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); |
| 1186 | val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); |
| 1187 | val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); |
| 1188 | if ((N_RX_DESC_RINGS > 1) && |
| 1189 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ |
| 1190 | val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); |
| 1191 | writel(val, cp->regs + REG_RX_CFG); |
| 1192 | |
| 1193 | val = (unsigned long) cp->init_rxds[0] - |
| 1194 | (unsigned long) cp->init_block; |
| 1195 | writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); |
| 1196 | writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); |
| 1197 | writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); |
| 1198 | |
| 1199 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| 1200 | /* rx desc 2 is for IPSEC packets. however, |
| 1201 | * we don't it that for that purpose. |
| 1202 | */ |
| 1203 | val = (unsigned long) cp->init_rxds[1] - |
| 1204 | (unsigned long) cp->init_block; |
| 1205 | writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); |
| 1206 | writel((desc_dma + val) & 0xffffffff, cp->regs + |
| 1207 | REG_PLUS_RX_DB1_LOW); |
| 1208 | writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + |
| 1209 | REG_PLUS_RX_KICK1); |
| 1210 | } |
| 1211 | |
| 1212 | /* rx completion registers */ |
| 1213 | val = (unsigned long) cp->init_rxcs[0] - |
| 1214 | (unsigned long) cp->init_block; |
| 1215 | writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); |
| 1216 | writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); |
| 1217 | |
| 1218 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| 1219 | /* rx comp 2-4 */ |
| 1220 | for (i = 1; i < MAX_RX_COMP_RINGS; i++) { |
| 1221 | val = (unsigned long) cp->init_rxcs[i] - |
| 1222 | (unsigned long) cp->init_block; |
| 1223 | writel((desc_dma + val) >> 32, cp->regs + |
| 1224 | REG_PLUS_RX_CBN_HI(i)); |
| 1225 | writel((desc_dma + val) & 0xffffffff, cp->regs + |
| 1226 | REG_PLUS_RX_CBN_LOW(i)); |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | /* read selective clear regs to prevent spurious interrupts |
| 1231 | * on reset because complete == kick. |
| 1232 | * selective clear set up to prevent interrupts on resets |
| 1233 | */ |
| 1234 | readl(cp->regs + REG_INTR_STATUS_ALIAS); |
| 1235 | writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); |
| 1236 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| 1237 | for (i = 1; i < N_RX_COMP_RINGS; i++) |
| 1238 | readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); |
| 1239 | |
| 1240 | /* 2 is different from 3 and 4 */ |
| 1241 | if (N_RX_COMP_RINGS > 1) |
| 1242 | writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, |
| 1243 | cp->regs + REG_PLUS_ALIASN_CLEAR(1)); |
| 1244 | |
| 1245 | for (i = 2; i < N_RX_COMP_RINGS; i++) |
| 1246 | writel(INTR_RX_DONE_ALT, |
| 1247 | cp->regs + REG_PLUS_ALIASN_CLEAR(i)); |
| 1248 | } |
| 1249 | |
| 1250 | /* set up pause thresholds */ |
| 1251 | val = CAS_BASE(RX_PAUSE_THRESH_OFF, |
| 1252 | cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); |
| 1253 | val |= CAS_BASE(RX_PAUSE_THRESH_ON, |
| 1254 | cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); |
| 1255 | writel(val, cp->regs + REG_RX_PAUSE_THRESH); |
| 1256 | |
| 1257 | /* zero out dma reassembly buffers */ |
| 1258 | for (i = 0; i < 64; i++) { |
| 1259 | writel(i, cp->regs + REG_RX_TABLE_ADDR); |
| 1260 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); |
| 1261 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); |
| 1262 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); |
| 1263 | } |
| 1264 | |
| 1265 | /* make sure address register is 0 for normal operation */ |
| 1266 | writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); |
| 1267 | writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); |
| 1268 | |
| 1269 | /* interrupt mitigation */ |
| 1270 | #ifdef USE_RX_BLANK |
| 1271 | val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); |
| 1272 | val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); |
| 1273 | writel(val, cp->regs + REG_RX_BLANK); |
| 1274 | #else |
| 1275 | writel(0x0, cp->regs + REG_RX_BLANK); |
| 1276 | #endif |
| 1277 | |
| 1278 | /* interrupt generation as a function of low water marks for |
| 1279 | * free desc and completion entries. these are used to trigger |
| 1280 | * housekeeping for rx descs. we don't use the free interrupt |
| 1281 | * as it's not very useful |
| 1282 | */ |
| 1283 | /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ |
| 1284 | val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); |
| 1285 | writel(val, cp->regs + REG_RX_AE_THRESH); |
| 1286 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| 1287 | val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); |
| 1288 | writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); |
| 1289 | } |
| 1290 | |
| 1291 | /* Random early detect registers. useful for congestion avoidance. |
| 1292 | * this should be tunable. |
| 1293 | */ |
| 1294 | writel(0x0, cp->regs + REG_RX_RED); |
| 1295 | |
| 1296 | /* receive page sizes. default == 2K (0x800) */ |
| 1297 | val = 0; |
| 1298 | if (cp->page_size == 0x1000) |
| 1299 | val = 0x1; |
| 1300 | else if (cp->page_size == 0x2000) |
| 1301 | val = 0x2; |
| 1302 | else if (cp->page_size == 0x4000) |
| 1303 | val = 0x3; |
| 1304 | |
| 1305 | /* round mtu + offset. constrain to page size. */ |
| 1306 | size = cp->dev->mtu + 64; |
| 1307 | if (size > cp->page_size) |
| 1308 | size = cp->page_size; |
| 1309 | |
| 1310 | if (size <= 0x400) |
| 1311 | i = 0x0; |
| 1312 | else if (size <= 0x800) |
| 1313 | i = 0x1; |
| 1314 | else if (size <= 0x1000) |
| 1315 | i = 0x2; |
| 1316 | else |
| 1317 | i = 0x3; |
| 1318 | |
| 1319 | cp->mtu_stride = 1 << (i + 10); |
| 1320 | val = CAS_BASE(RX_PAGE_SIZE, val); |
| 1321 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); |
| 1322 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); |
| 1323 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); |
| 1324 | writel(val, cp->regs + REG_RX_PAGE_SIZE); |
| 1325 | |
| 1326 | /* enable the header parser if desired */ |
| 1327 | if (CAS_HP_FIRMWARE == cas_prog_null) |
| 1328 | return; |
| 1329 | |
| 1330 | val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); |
| 1331 | val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; |
| 1332 | val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); |
| 1333 | writel(val, cp->regs + REG_HP_CFG); |
| 1334 | } |
| 1335 | |
| 1336 | static inline void cas_rxc_init(struct cas_rx_comp *rxc) |
| 1337 | { |
| 1338 | memset(rxc, 0, sizeof(*rxc)); |
| 1339 | rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); |
| 1340 | } |
| 1341 | |
| 1342 | /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] |
| 1343 | * flipping is protected by the fact that the chip will not |
| 1344 | * hand back the same page index while it's being processed. |
| 1345 | */ |
| 1346 | static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) |
| 1347 | { |
| 1348 | cas_page_t *page = cp->rx_pages[1][index]; |
| 1349 | cas_page_t *new; |
| 1350 | |
| 1351 | if (page_count(page->buffer) == 1) |
| 1352 | return page; |
| 1353 | |
| 1354 | new = cas_page_dequeue(cp); |
| 1355 | if (new) { |
| 1356 | spin_lock(&cp->rx_inuse_lock); |
| 1357 | list_add(&page->list, &cp->rx_inuse_list); |
| 1358 | spin_unlock(&cp->rx_inuse_lock); |
| 1359 | } |
| 1360 | return new; |
| 1361 | } |
| 1362 | |
| 1363 | /* this needs to be changed if we actually use the ENC RX DESC ring */ |
| 1364 | static cas_page_t *cas_page_swap(struct cas *cp, const int ring, |
| 1365 | const int index) |
| 1366 | { |
| 1367 | cas_page_t **page0 = cp->rx_pages[0]; |
| 1368 | cas_page_t **page1 = cp->rx_pages[1]; |
| 1369 | |
| 1370 | /* swap if buffer is in use */ |
| 1371 | if (page_count(page0[index]->buffer) > 1) { |
| 1372 | cas_page_t *new = cas_page_spare(cp, index); |
| 1373 | if (new) { |
| 1374 | page1[index] = page0[index]; |
| 1375 | page0[index] = new; |
| 1376 | } |
| 1377 | } |
| 1378 | RX_USED_SET(page0[index], 0); |
| 1379 | return page0[index]; |
| 1380 | } |
| 1381 | |
| 1382 | static void cas_clean_rxds(struct cas *cp) |
| 1383 | { |
| 1384 | /* only clean ring 0 as ring 1 is used for spare buffers */ |
| 1385 | struct cas_rx_desc *rxd = cp->init_rxds[0]; |
| 1386 | int i, size; |
| 1387 | |
| 1388 | /* release all rx flows */ |
| 1389 | for (i = 0; i < N_RX_FLOWS; i++) { |
| 1390 | struct sk_buff *skb; |
| 1391 | while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { |
| 1392 | cas_skb_release(skb); |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | /* initialize descriptors */ |
| 1397 | size = RX_DESC_RINGN_SIZE(0); |
| 1398 | for (i = 0; i < size; i++) { |
| 1399 | cas_page_t *page = cas_page_swap(cp, 0, i); |
| 1400 | rxd[i].buffer = cpu_to_le64(page->dma_addr); |
| 1401 | rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | |
| 1402 | CAS_BASE(RX_INDEX_RING, 0)); |
| 1403 | } |
| 1404 | |
| 1405 | cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; |
| 1406 | cp->rx_last[0] = 0; |
| 1407 | cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); |
| 1408 | } |
| 1409 | |
| 1410 | static void cas_clean_rxcs(struct cas *cp) |
| 1411 | { |
| 1412 | int i, j; |
| 1413 | |
| 1414 | /* take ownership of rx comp descriptors */ |
| 1415 | memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); |
| 1416 | memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); |
| 1417 | for (i = 0; i < N_RX_COMP_RINGS; i++) { |
| 1418 | struct cas_rx_comp *rxc = cp->init_rxcs[i]; |
| 1419 | for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { |
| 1420 | cas_rxc_init(rxc + j); |
| 1421 | } |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | #if 0 |
| 1426 | /* When we get a RX fifo overflow, the RX unit is probably hung |
| 1427 | * so we do the following. |
| 1428 | * |
| 1429 | * If any part of the reset goes wrong, we return 1 and that causes the |
| 1430 | * whole chip to be reset. |
| 1431 | */ |
| 1432 | static int cas_rxmac_reset(struct cas *cp) |
| 1433 | { |
| 1434 | struct net_device *dev = cp->dev; |
| 1435 | int limit; |
| 1436 | u32 val; |
| 1437 | |
| 1438 | /* First, reset MAC RX. */ |
| 1439 | writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| 1440 | for (limit = 0; limit < STOP_TRIES; limit++) { |
| 1441 | if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) |
| 1442 | break; |
| 1443 | udelay(10); |
| 1444 | } |
| 1445 | if (limit == STOP_TRIES) { |
| 1446 | printk(KERN_ERR "%s: RX MAC will not disable, resetting whole " |
| 1447 | "chip.\n", dev->name); |
| 1448 | return 1; |
| 1449 | } |
| 1450 | |
| 1451 | /* Second, disable RX DMA. */ |
| 1452 | writel(0, cp->regs + REG_RX_CFG); |
| 1453 | for (limit = 0; limit < STOP_TRIES; limit++) { |
| 1454 | if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) |
| 1455 | break; |
| 1456 | udelay(10); |
| 1457 | } |
| 1458 | if (limit == STOP_TRIES) { |
| 1459 | printk(KERN_ERR "%s: RX DMA will not disable, resetting whole " |
| 1460 | "chip.\n", dev->name); |
| 1461 | return 1; |
| 1462 | } |
| 1463 | |
| 1464 | mdelay(5); |
| 1465 | |
| 1466 | /* Execute RX reset command. */ |
| 1467 | writel(SW_RESET_RX, cp->regs + REG_SW_RESET); |
| 1468 | for (limit = 0; limit < STOP_TRIES; limit++) { |
| 1469 | if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) |
| 1470 | break; |
| 1471 | udelay(10); |
| 1472 | } |
| 1473 | if (limit == STOP_TRIES) { |
| 1474 | printk(KERN_ERR "%s: RX reset command will not execute, " |
| 1475 | "resetting whole chip.\n", dev->name); |
| 1476 | return 1; |
| 1477 | } |
| 1478 | |
| 1479 | /* reset driver rx state */ |
| 1480 | cas_clean_rxds(cp); |
| 1481 | cas_clean_rxcs(cp); |
| 1482 | |
| 1483 | /* Now, reprogram the rest of RX unit. */ |
| 1484 | cas_init_rx_dma(cp); |
| 1485 | |
| 1486 | /* re-enable */ |
| 1487 | val = readl(cp->regs + REG_RX_CFG); |
| 1488 | writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); |
| 1489 | writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); |
| 1490 | val = readl(cp->regs + REG_MAC_RX_CFG); |
| 1491 | writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| 1492 | return 0; |
| 1493 | } |
| 1494 | #endif |
| 1495 | |
| 1496 | static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, |
| 1497 | u32 status) |
| 1498 | { |
| 1499 | u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); |
| 1500 | |
| 1501 | if (!stat) |
| 1502 | return 0; |
| 1503 | |
| 1504 | if (netif_msg_intr(cp)) |
| 1505 | printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n", |
| 1506 | cp->dev->name, stat); |
| 1507 | |
| 1508 | /* these are all rollovers */ |
| 1509 | spin_lock(&cp->stat_lock[0]); |
| 1510 | if (stat & MAC_RX_ALIGN_ERR) |
| 1511 | cp->net_stats[0].rx_frame_errors += 0x10000; |
| 1512 | |
| 1513 | if (stat & MAC_RX_CRC_ERR) |
| 1514 | cp->net_stats[0].rx_crc_errors += 0x10000; |
| 1515 | |
| 1516 | if (stat & MAC_RX_LEN_ERR) |
| 1517 | cp->net_stats[0].rx_length_errors += 0x10000; |
| 1518 | |
| 1519 | if (stat & MAC_RX_OVERFLOW) { |
| 1520 | cp->net_stats[0].rx_over_errors++; |
| 1521 | cp->net_stats[0].rx_fifo_errors++; |
| 1522 | } |
| 1523 | |
| 1524 | /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR |
| 1525 | * events. |
| 1526 | */ |
| 1527 | spin_unlock(&cp->stat_lock[0]); |
| 1528 | return 0; |
| 1529 | } |
| 1530 | |
| 1531 | static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, |
| 1532 | u32 status) |
| 1533 | { |
| 1534 | u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); |
| 1535 | |
| 1536 | if (!stat) |
| 1537 | return 0; |
| 1538 | |
| 1539 | if (netif_msg_intr(cp)) |
| 1540 | printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n", |
| 1541 | cp->dev->name, stat); |
| 1542 | |
| 1543 | /* This interrupt is just for pause frame and pause |
| 1544 | * tracking. It is useful for diagnostics and debug |
| 1545 | * but probably by default we will mask these events. |
| 1546 | */ |
| 1547 | if (stat & MAC_CTRL_PAUSE_STATE) |
| 1548 | cp->pause_entered++; |
| 1549 | |
| 1550 | if (stat & MAC_CTRL_PAUSE_RECEIVED) |
| 1551 | cp->pause_last_time_recvd = (stat >> 16); |
| 1552 | |
| 1553 | return 0; |
| 1554 | } |
| 1555 | |
| 1556 | |
| 1557 | /* Must be invoked under cp->lock. */ |
| 1558 | static inline int cas_mdio_link_not_up(struct cas *cp) |
| 1559 | { |
| 1560 | u16 val; |
| 1561 | |
| 1562 | switch (cp->lstate) { |
| 1563 | case link_force_ret: |
| 1564 | if (netif_msg_link(cp)) |
| 1565 | printk(KERN_INFO "%s: Autoneg failed again, keeping" |
| 1566 | " forced mode\n", cp->dev->name); |
| 1567 | cas_phy_write(cp, MII_BMCR, cp->link_fcntl); |
| 1568 | cp->timer_ticks = 5; |
| 1569 | cp->lstate = link_force_ok; |
| 1570 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| 1571 | break; |
| 1572 | |
| 1573 | case link_aneg: |
| 1574 | val = cas_phy_read(cp, MII_BMCR); |
| 1575 | |
| 1576 | /* Try forced modes. we try things in the following order: |
| 1577 | * 1000 full -> 100 full/half -> 10 half |
| 1578 | */ |
| 1579 | val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); |
| 1580 | val |= BMCR_FULLDPLX; |
| 1581 | val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? |
| 1582 | CAS_BMCR_SPEED1000 : BMCR_SPEED100; |
| 1583 | cas_phy_write(cp, MII_BMCR, val); |
| 1584 | cp->timer_ticks = 5; |
| 1585 | cp->lstate = link_force_try; |
| 1586 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| 1587 | break; |
| 1588 | |
| 1589 | case link_force_try: |
| 1590 | /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ |
| 1591 | val = cas_phy_read(cp, MII_BMCR); |
| 1592 | cp->timer_ticks = 5; |
| 1593 | if (val & CAS_BMCR_SPEED1000) { /* gigabit */ |
| 1594 | val &= ~CAS_BMCR_SPEED1000; |
| 1595 | val |= (BMCR_SPEED100 | BMCR_FULLDPLX); |
| 1596 | cas_phy_write(cp, MII_BMCR, val); |
| 1597 | break; |
| 1598 | } |
| 1599 | |
| 1600 | if (val & BMCR_SPEED100) { |
| 1601 | if (val & BMCR_FULLDPLX) /* fd failed */ |
| 1602 | val &= ~BMCR_FULLDPLX; |
| 1603 | else { /* 100Mbps failed */ |
| 1604 | val &= ~BMCR_SPEED100; |
| 1605 | } |
| 1606 | cas_phy_write(cp, MII_BMCR, val); |
| 1607 | break; |
| 1608 | } |
| 1609 | default: |
| 1610 | break; |
| 1611 | } |
| 1612 | return 0; |
| 1613 | } |
| 1614 | |
| 1615 | |
| 1616 | /* must be invoked with cp->lock held */ |
| 1617 | static int cas_mii_link_check(struct cas *cp, const u16 bmsr) |
| 1618 | { |
| 1619 | int restart; |
| 1620 | |
| 1621 | if (bmsr & BMSR_LSTATUS) { |
| 1622 | /* Ok, here we got a link. If we had it due to a forced |
| 1623 | * fallback, and we were configured for autoneg, we |
| 1624 | * retry a short autoneg pass. If you know your hub is |
| 1625 | * broken, use ethtool ;) |
| 1626 | */ |
| 1627 | if ((cp->lstate == link_force_try) && |
| 1628 | (cp->link_cntl & BMCR_ANENABLE)) { |
| 1629 | cp->lstate = link_force_ret; |
| 1630 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| 1631 | cas_mif_poll(cp, 0); |
| 1632 | cp->link_fcntl = cas_phy_read(cp, MII_BMCR); |
| 1633 | cp->timer_ticks = 5; |
| 1634 | if (cp->opened && netif_msg_link(cp)) |
| 1635 | printk(KERN_INFO "%s: Got link after fallback, retrying" |
| 1636 | " autoneg once...\n", cp->dev->name); |
| 1637 | cas_phy_write(cp, MII_BMCR, |
| 1638 | cp->link_fcntl | BMCR_ANENABLE | |
| 1639 | BMCR_ANRESTART); |
| 1640 | cas_mif_poll(cp, 1); |
| 1641 | |
| 1642 | } else if (cp->lstate != link_up) { |
| 1643 | cp->lstate = link_up; |
| 1644 | cp->link_transition = LINK_TRANSITION_LINK_UP; |
| 1645 | |
| 1646 | if (cp->opened) { |
| 1647 | cas_set_link_modes(cp); |
| 1648 | netif_carrier_on(cp->dev); |
| 1649 | } |
| 1650 | } |
| 1651 | return 0; |
| 1652 | } |
| 1653 | |
| 1654 | /* link not up. if the link was previously up, we restart the |
| 1655 | * whole process |
| 1656 | */ |
| 1657 | restart = 0; |
| 1658 | if (cp->lstate == link_up) { |
| 1659 | cp->lstate = link_down; |
| 1660 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| 1661 | |
| 1662 | netif_carrier_off(cp->dev); |
| 1663 | if (cp->opened && netif_msg_link(cp)) |
| 1664 | printk(KERN_INFO "%s: Link down\n", |
| 1665 | cp->dev->name); |
| 1666 | restart = 1; |
| 1667 | |
| 1668 | } else if (++cp->timer_ticks > 10) |
| 1669 | cas_mdio_link_not_up(cp); |
| 1670 | |
| 1671 | return restart; |
| 1672 | } |
| 1673 | |
| 1674 | static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, |
| 1675 | u32 status) |
| 1676 | { |
| 1677 | u32 stat = readl(cp->regs + REG_MIF_STATUS); |
| 1678 | u16 bmsr; |
| 1679 | |
| 1680 | /* check for a link change */ |
| 1681 | if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) |
| 1682 | return 0; |
| 1683 | |
| 1684 | bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); |
| 1685 | return cas_mii_link_check(cp, bmsr); |
| 1686 | } |
| 1687 | |
| 1688 | static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, |
| 1689 | u32 status) |
| 1690 | { |
| 1691 | u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); |
| 1692 | |
| 1693 | if (!stat) |
| 1694 | return 0; |
| 1695 | |
| 1696 | printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat, |
| 1697 | readl(cp->regs + REG_BIM_DIAG)); |
| 1698 | |
| 1699 | /* cassini+ has this reserved */ |
| 1700 | if ((stat & PCI_ERR_BADACK) && |
| 1701 | ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) |
| 1702 | printk("<No ACK64# during ABS64 cycle> "); |
| 1703 | |
| 1704 | if (stat & PCI_ERR_DTRTO) |
| 1705 | printk("<Delayed transaction timeout> "); |
| 1706 | if (stat & PCI_ERR_OTHER) |
| 1707 | printk("<other> "); |
| 1708 | if (stat & PCI_ERR_BIM_DMA_WRITE) |
| 1709 | printk("<BIM DMA 0 write req> "); |
| 1710 | if (stat & PCI_ERR_BIM_DMA_READ) |
| 1711 | printk("<BIM DMA 0 read req> "); |
| 1712 | printk("\n"); |
| 1713 | |
| 1714 | if (stat & PCI_ERR_OTHER) { |
| 1715 | u16 cfg; |
| 1716 | |
| 1717 | /* Interrogate PCI config space for the |
| 1718 | * true cause. |
| 1719 | */ |
| 1720 | pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); |
| 1721 | printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n", |
| 1722 | dev->name, cfg); |
| 1723 | if (cfg & PCI_STATUS_PARITY) |
| 1724 | printk(KERN_ERR "%s: PCI parity error detected.\n", |
| 1725 | dev->name); |
| 1726 | if (cfg & PCI_STATUS_SIG_TARGET_ABORT) |
| 1727 | printk(KERN_ERR "%s: PCI target abort.\n", |
| 1728 | dev->name); |
| 1729 | if (cfg & PCI_STATUS_REC_TARGET_ABORT) |
| 1730 | printk(KERN_ERR "%s: PCI master acks target abort.\n", |
| 1731 | dev->name); |
| 1732 | if (cfg & PCI_STATUS_REC_MASTER_ABORT) |
| 1733 | printk(KERN_ERR "%s: PCI master abort.\n", dev->name); |
| 1734 | if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) |
| 1735 | printk(KERN_ERR "%s: PCI system error SERR#.\n", |
| 1736 | dev->name); |
| 1737 | if (cfg & PCI_STATUS_DETECTED_PARITY) |
| 1738 | printk(KERN_ERR "%s: PCI parity error.\n", |
| 1739 | dev->name); |
| 1740 | |
| 1741 | /* Write the error bits back to clear them. */ |
| 1742 | cfg &= (PCI_STATUS_PARITY | |
| 1743 | PCI_STATUS_SIG_TARGET_ABORT | |
| 1744 | PCI_STATUS_REC_TARGET_ABORT | |
| 1745 | PCI_STATUS_REC_MASTER_ABORT | |
| 1746 | PCI_STATUS_SIG_SYSTEM_ERROR | |
| 1747 | PCI_STATUS_DETECTED_PARITY); |
| 1748 | pci_write_config_word(cp->pdev, PCI_STATUS, cfg); |
| 1749 | } |
| 1750 | |
| 1751 | /* For all PCI errors, we should reset the chip. */ |
| 1752 | return 1; |
| 1753 | } |
| 1754 | |
| 1755 | /* All non-normal interrupt conditions get serviced here. |
| 1756 | * Returns non-zero if we should just exit the interrupt |
| 1757 | * handler right now (ie. if we reset the card which invalidates |
| 1758 | * all of the other original irq status bits). |
| 1759 | */ |
| 1760 | static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, |
| 1761 | u32 status) |
| 1762 | { |
| 1763 | if (status & INTR_RX_TAG_ERROR) { |
| 1764 | /* corrupt RX tag framing */ |
| 1765 | if (netif_msg_rx_err(cp)) |
| 1766 | printk(KERN_DEBUG "%s: corrupt rx tag framing\n", |
| 1767 | cp->dev->name); |
| 1768 | spin_lock(&cp->stat_lock[0]); |
| 1769 | cp->net_stats[0].rx_errors++; |
| 1770 | spin_unlock(&cp->stat_lock[0]); |
| 1771 | goto do_reset; |
| 1772 | } |
| 1773 | |
| 1774 | if (status & INTR_RX_LEN_MISMATCH) { |
| 1775 | /* length mismatch. */ |
| 1776 | if (netif_msg_rx_err(cp)) |
| 1777 | printk(KERN_DEBUG "%s: length mismatch for rx frame\n", |
| 1778 | cp->dev->name); |
| 1779 | spin_lock(&cp->stat_lock[0]); |
| 1780 | cp->net_stats[0].rx_errors++; |
| 1781 | spin_unlock(&cp->stat_lock[0]); |
| 1782 | goto do_reset; |
| 1783 | } |
| 1784 | |
| 1785 | if (status & INTR_PCS_STATUS) { |
| 1786 | if (cas_pcs_interrupt(dev, cp, status)) |
| 1787 | goto do_reset; |
| 1788 | } |
| 1789 | |
| 1790 | if (status & INTR_TX_MAC_STATUS) { |
| 1791 | if (cas_txmac_interrupt(dev, cp, status)) |
| 1792 | goto do_reset; |
| 1793 | } |
| 1794 | |
| 1795 | if (status & INTR_RX_MAC_STATUS) { |
| 1796 | if (cas_rxmac_interrupt(dev, cp, status)) |
| 1797 | goto do_reset; |
| 1798 | } |
| 1799 | |
| 1800 | if (status & INTR_MAC_CTRL_STATUS) { |
| 1801 | if (cas_mac_interrupt(dev, cp, status)) |
| 1802 | goto do_reset; |
| 1803 | } |
| 1804 | |
| 1805 | if (status & INTR_MIF_STATUS) { |
| 1806 | if (cas_mif_interrupt(dev, cp, status)) |
| 1807 | goto do_reset; |
| 1808 | } |
| 1809 | |
| 1810 | if (status & INTR_PCI_ERROR_STATUS) { |
| 1811 | if (cas_pci_interrupt(dev, cp, status)) |
| 1812 | goto do_reset; |
| 1813 | } |
| 1814 | return 0; |
| 1815 | |
| 1816 | do_reset: |
| 1817 | #if 1 |
| 1818 | atomic_inc(&cp->reset_task_pending); |
| 1819 | atomic_inc(&cp->reset_task_pending_all); |
| 1820 | printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n", |
| 1821 | dev->name, status); |
| 1822 | schedule_work(&cp->reset_task); |
| 1823 | #else |
| 1824 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| 1825 | printk(KERN_ERR "reset called in cas_abnormal_irq\n"); |
| 1826 | schedule_work(&cp->reset_task); |
| 1827 | #endif |
| 1828 | return 1; |
| 1829 | } |
| 1830 | |
| 1831 | /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when |
| 1832 | * determining whether to do a netif_stop/wakeup |
| 1833 | */ |
| 1834 | #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) |
| 1835 | #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) |
| 1836 | static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, |
| 1837 | const int len) |
| 1838 | { |
| 1839 | unsigned long off = addr + len; |
| 1840 | |
| 1841 | if (CAS_TABORT(cp) == 1) |
| 1842 | return 0; |
| 1843 | if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) |
| 1844 | return 0; |
| 1845 | return TX_TARGET_ABORT_LEN; |
| 1846 | } |
| 1847 | |
| 1848 | static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) |
| 1849 | { |
| 1850 | struct cas_tx_desc *txds; |
| 1851 | struct sk_buff **skbs; |
| 1852 | struct net_device *dev = cp->dev; |
| 1853 | int entry, count; |
| 1854 | |
| 1855 | spin_lock(&cp->tx_lock[ring]); |
| 1856 | txds = cp->init_txds[ring]; |
| 1857 | skbs = cp->tx_skbs[ring]; |
| 1858 | entry = cp->tx_old[ring]; |
| 1859 | |
| 1860 | count = TX_BUFF_COUNT(ring, entry, limit); |
| 1861 | while (entry != limit) { |
| 1862 | struct sk_buff *skb = skbs[entry]; |
| 1863 | dma_addr_t daddr; |
| 1864 | u32 dlen; |
| 1865 | int frag; |
| 1866 | |
| 1867 | if (!skb) { |
| 1868 | /* this should never occur */ |
| 1869 | entry = TX_DESC_NEXT(ring, entry); |
| 1870 | continue; |
| 1871 | } |
| 1872 | |
| 1873 | /* however, we might get only a partial skb release. */ |
| 1874 | count -= skb_shinfo(skb)->nr_frags + |
| 1875 | + cp->tx_tiny_use[ring][entry].nbufs + 1; |
| 1876 | if (count < 0) |
| 1877 | break; |
| 1878 | |
| 1879 | if (netif_msg_tx_done(cp)) |
| 1880 | printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n", |
| 1881 | cp->dev->name, ring, entry); |
| 1882 | |
| 1883 | skbs[entry] = NULL; |
| 1884 | cp->tx_tiny_use[ring][entry].nbufs = 0; |
| 1885 | |
| 1886 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| 1887 | struct cas_tx_desc *txd = txds + entry; |
| 1888 | |
| 1889 | daddr = le64_to_cpu(txd->buffer); |
| 1890 | dlen = CAS_VAL(TX_DESC_BUFLEN, |
| 1891 | le64_to_cpu(txd->control)); |
| 1892 | pci_unmap_page(cp->pdev, daddr, dlen, |
| 1893 | PCI_DMA_TODEVICE); |
| 1894 | entry = TX_DESC_NEXT(ring, entry); |
| 1895 | |
| 1896 | /* tiny buffer may follow */ |
| 1897 | if (cp->tx_tiny_use[ring][entry].used) { |
| 1898 | cp->tx_tiny_use[ring][entry].used = 0; |
| 1899 | entry = TX_DESC_NEXT(ring, entry); |
| 1900 | } |
| 1901 | } |
| 1902 | |
| 1903 | spin_lock(&cp->stat_lock[ring]); |
| 1904 | cp->net_stats[ring].tx_packets++; |
| 1905 | cp->net_stats[ring].tx_bytes += skb->len; |
| 1906 | spin_unlock(&cp->stat_lock[ring]); |
| 1907 | dev_kfree_skb_irq(skb); |
| 1908 | } |
| 1909 | cp->tx_old[ring] = entry; |
| 1910 | |
| 1911 | /* this is wrong for multiple tx rings. the net device needs |
| 1912 | * multiple queues for this to do the right thing. we wait |
| 1913 | * for 2*packets to be available when using tiny buffers |
| 1914 | */ |
| 1915 | if (netif_queue_stopped(dev) && |
| 1916 | (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) |
| 1917 | netif_wake_queue(dev); |
| 1918 | spin_unlock(&cp->tx_lock[ring]); |
| 1919 | } |
| 1920 | |
| 1921 | static void cas_tx(struct net_device *dev, struct cas *cp, |
| 1922 | u32 status) |
| 1923 | { |
| 1924 | int limit, ring; |
| 1925 | #ifdef USE_TX_COMPWB |
| 1926 | u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); |
| 1927 | #endif |
| 1928 | if (netif_msg_intr(cp)) |
| 1929 | printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %lx\n", |
| 1930 | cp->dev->name, status, compwb); |
| 1931 | /* process all the rings */ |
| 1932 | for (ring = 0; ring < N_TX_RINGS; ring++) { |
| 1933 | #ifdef USE_TX_COMPWB |
| 1934 | /* use the completion writeback registers */ |
| 1935 | limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | |
| 1936 | CAS_VAL(TX_COMPWB_LSB, compwb); |
| 1937 | compwb = TX_COMPWB_NEXT(compwb); |
| 1938 | #else |
| 1939 | limit = readl(cp->regs + REG_TX_COMPN(ring)); |
| 1940 | #endif |
| 1941 | if (cp->tx_old[ring] != limit) |
| 1942 | cas_tx_ringN(cp, ring, limit); |
| 1943 | } |
| 1944 | } |
| 1945 | |
| 1946 | |
| 1947 | static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, |
| 1948 | int entry, const u64 *words, |
| 1949 | struct sk_buff **skbref) |
| 1950 | { |
| 1951 | int dlen, hlen, len, i, alloclen; |
| 1952 | int off, swivel = RX_SWIVEL_OFF_VAL; |
| 1953 | struct cas_page *page; |
| 1954 | struct sk_buff *skb; |
| 1955 | void *addr, *crcaddr; |
| 1956 | char *p; |
| 1957 | |
| 1958 | hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); |
| 1959 | dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); |
| 1960 | len = hlen + dlen; |
| 1961 | |
| 1962 | if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) |
| 1963 | alloclen = len; |
| 1964 | else |
| 1965 | alloclen = max(hlen, RX_COPY_MIN); |
| 1966 | |
| 1967 | skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); |
| 1968 | if (skb == NULL) |
| 1969 | return -1; |
| 1970 | |
| 1971 | *skbref = skb; |
| 1972 | skb->dev = cp->dev; |
| 1973 | skb_reserve(skb, swivel); |
| 1974 | |
| 1975 | p = skb->data; |
| 1976 | addr = crcaddr = NULL; |
| 1977 | if (hlen) { /* always copy header pages */ |
| 1978 | i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); |
| 1979 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| 1980 | off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + |
| 1981 | swivel; |
| 1982 | |
| 1983 | i = hlen; |
| 1984 | if (!dlen) /* attach FCS */ |
| 1985 | i += cp->crc_size; |
| 1986 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| 1987 | PCI_DMA_FROMDEVICE); |
| 1988 | addr = cas_page_map(page->buffer); |
| 1989 | memcpy(p, addr + off, i); |
| 1990 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| 1991 | PCI_DMA_FROMDEVICE); |
| 1992 | cas_page_unmap(addr); |
| 1993 | RX_USED_ADD(page, 0x100); |
| 1994 | p += hlen; |
| 1995 | swivel = 0; |
| 1996 | } |
| 1997 | |
| 1998 | |
| 1999 | if (alloclen < (hlen + dlen)) { |
| 2000 | skb_frag_t *frag = skb_shinfo(skb)->frags; |
| 2001 | |
| 2002 | /* normal or jumbo packets. we use frags */ |
| 2003 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| 2004 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| 2005 | off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; |
| 2006 | |
| 2007 | hlen = min(cp->page_size - off, dlen); |
| 2008 | if (hlen < 0) { |
| 2009 | if (netif_msg_rx_err(cp)) { |
| 2010 | printk(KERN_DEBUG "%s: rx page overflow: " |
| 2011 | "%d\n", cp->dev->name, hlen); |
| 2012 | } |
| 2013 | dev_kfree_skb_irq(skb); |
| 2014 | return -1; |
| 2015 | } |
| 2016 | i = hlen; |
| 2017 | if (i == dlen) /* attach FCS */ |
| 2018 | i += cp->crc_size; |
| 2019 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| 2020 | PCI_DMA_FROMDEVICE); |
| 2021 | |
| 2022 | /* make sure we always copy a header */ |
| 2023 | swivel = 0; |
| 2024 | if (p == (char *) skb->data) { /* not split */ |
| 2025 | addr = cas_page_map(page->buffer); |
| 2026 | memcpy(p, addr + off, RX_COPY_MIN); |
| 2027 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| 2028 | PCI_DMA_FROMDEVICE); |
| 2029 | cas_page_unmap(addr); |
| 2030 | off += RX_COPY_MIN; |
| 2031 | swivel = RX_COPY_MIN; |
| 2032 | RX_USED_ADD(page, cp->mtu_stride); |
| 2033 | } else { |
| 2034 | RX_USED_ADD(page, hlen); |
| 2035 | } |
| 2036 | skb_put(skb, alloclen); |
| 2037 | |
| 2038 | skb_shinfo(skb)->nr_frags++; |
| 2039 | skb->data_len += hlen - swivel; |
| 2040 | skb->len += hlen - swivel; |
| 2041 | |
| 2042 | get_page(page->buffer); |
| 2043 | frag->page = page->buffer; |
| 2044 | frag->page_offset = off; |
| 2045 | frag->size = hlen - swivel; |
| 2046 | |
| 2047 | /* any more data? */ |
| 2048 | if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { |
| 2049 | hlen = dlen; |
| 2050 | off = 0; |
| 2051 | |
| 2052 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| 2053 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| 2054 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
| 2055 | hlen + cp->crc_size, |
| 2056 | PCI_DMA_FROMDEVICE); |
| 2057 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, |
| 2058 | hlen + cp->crc_size, |
| 2059 | PCI_DMA_FROMDEVICE); |
| 2060 | |
| 2061 | skb_shinfo(skb)->nr_frags++; |
| 2062 | skb->data_len += hlen; |
| 2063 | skb->len += hlen; |
| 2064 | frag++; |
| 2065 | |
| 2066 | get_page(page->buffer); |
| 2067 | frag->page = page->buffer; |
| 2068 | frag->page_offset = 0; |
| 2069 | frag->size = hlen; |
| 2070 | RX_USED_ADD(page, hlen + cp->crc_size); |
| 2071 | } |
| 2072 | |
| 2073 | if (cp->crc_size) { |
| 2074 | addr = cas_page_map(page->buffer); |
| 2075 | crcaddr = addr + off + hlen; |
| 2076 | } |
| 2077 | |
| 2078 | } else { |
| 2079 | /* copying packet */ |
| 2080 | if (!dlen) |
| 2081 | goto end_copy_pkt; |
| 2082 | |
| 2083 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| 2084 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| 2085 | off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; |
| 2086 | hlen = min(cp->page_size - off, dlen); |
| 2087 | if (hlen < 0) { |
| 2088 | if (netif_msg_rx_err(cp)) { |
| 2089 | printk(KERN_DEBUG "%s: rx page overflow: " |
| 2090 | "%d\n", cp->dev->name, hlen); |
| 2091 | } |
| 2092 | dev_kfree_skb_irq(skb); |
| 2093 | return -1; |
| 2094 | } |
| 2095 | i = hlen; |
| 2096 | if (i == dlen) /* attach FCS */ |
| 2097 | i += cp->crc_size; |
| 2098 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| 2099 | PCI_DMA_FROMDEVICE); |
| 2100 | addr = cas_page_map(page->buffer); |
| 2101 | memcpy(p, addr + off, i); |
| 2102 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| 2103 | PCI_DMA_FROMDEVICE); |
| 2104 | cas_page_unmap(addr); |
| 2105 | if (p == (char *) skb->data) /* not split */ |
| 2106 | RX_USED_ADD(page, cp->mtu_stride); |
| 2107 | else |
| 2108 | RX_USED_ADD(page, i); |
| 2109 | |
| 2110 | /* any more data? */ |
| 2111 | if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { |
| 2112 | p += hlen; |
| 2113 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| 2114 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| 2115 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
| 2116 | dlen + cp->crc_size, |
| 2117 | PCI_DMA_FROMDEVICE); |
| 2118 | addr = cas_page_map(page->buffer); |
| 2119 | memcpy(p, addr, dlen + cp->crc_size); |
| 2120 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, |
| 2121 | dlen + cp->crc_size, |
| 2122 | PCI_DMA_FROMDEVICE); |
| 2123 | cas_page_unmap(addr); |
| 2124 | RX_USED_ADD(page, dlen + cp->crc_size); |
| 2125 | } |
| 2126 | end_copy_pkt: |
| 2127 | if (cp->crc_size) { |
| 2128 | addr = NULL; |
| 2129 | crcaddr = skb->data + alloclen; |
| 2130 | } |
| 2131 | skb_put(skb, alloclen); |
| 2132 | } |
| 2133 | |
| 2134 | i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]); |
| 2135 | if (cp->crc_size) { |
| 2136 | /* checksum includes FCS. strip it out. */ |
| 2137 | i = csum_fold(csum_partial(crcaddr, cp->crc_size, i)); |
| 2138 | if (addr) |
| 2139 | cas_page_unmap(addr); |
| 2140 | } |
| 2141 | skb->csum = ntohs(i ^ 0xffff); |
| 2142 | skb->ip_summed = CHECKSUM_HW; |
| 2143 | skb->protocol = eth_type_trans(skb, cp->dev); |
| 2144 | return len; |
| 2145 | } |
| 2146 | |
| 2147 | |
| 2148 | /* we can handle up to 64 rx flows at a time. we do the same thing |
| 2149 | * as nonreassm except that we batch up the buffers. |
| 2150 | * NOTE: we currently just treat each flow as a bunch of packets that |
| 2151 | * we pass up. a better way would be to coalesce the packets |
| 2152 | * into a jumbo packet. to do that, we need to do the following: |
| 2153 | * 1) the first packet will have a clean split between header and |
| 2154 | * data. save both. |
| 2155 | * 2) each time the next flow packet comes in, extend the |
| 2156 | * data length and merge the checksums. |
| 2157 | * 3) on flow release, fix up the header. |
| 2158 | * 4) make sure the higher layer doesn't care. |
| 2159 | * because packets get coalesced, we shouldn't run into fragment count |
| 2160 | * issues. |
| 2161 | */ |
| 2162 | static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, |
| 2163 | struct sk_buff *skb) |
| 2164 | { |
| 2165 | int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); |
| 2166 | struct sk_buff_head *flow = &cp->rx_flows[flowid]; |
| 2167 | |
| 2168 | /* this is protected at a higher layer, so no need to |
| 2169 | * do any additional locking here. stick the buffer |
| 2170 | * at the end. |
| 2171 | */ |
| 2172 | __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow); |
| 2173 | if (words[0] & RX_COMP1_RELEASE_FLOW) { |
| 2174 | while ((skb = __skb_dequeue(flow))) { |
| 2175 | cas_skb_release(skb); |
| 2176 | } |
| 2177 | } |
| 2178 | } |
| 2179 | |
| 2180 | /* put rx descriptor back on ring. if a buffer is in use by a higher |
| 2181 | * layer, this will need to put in a replacement. |
| 2182 | */ |
| 2183 | static void cas_post_page(struct cas *cp, const int ring, const int index) |
| 2184 | { |
| 2185 | cas_page_t *new; |
| 2186 | int entry; |
| 2187 | |
| 2188 | entry = cp->rx_old[ring]; |
| 2189 | |
| 2190 | new = cas_page_swap(cp, ring, index); |
| 2191 | cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); |
| 2192 | cp->init_rxds[ring][entry].index = |
| 2193 | cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | |
| 2194 | CAS_BASE(RX_INDEX_RING, ring)); |
| 2195 | |
| 2196 | entry = RX_DESC_ENTRY(ring, entry + 1); |
| 2197 | cp->rx_old[ring] = entry; |
| 2198 | |
| 2199 | if (entry % 4) |
| 2200 | return; |
| 2201 | |
| 2202 | if (ring == 0) |
| 2203 | writel(entry, cp->regs + REG_RX_KICK); |
| 2204 | else if ((N_RX_DESC_RINGS > 1) && |
| 2205 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
| 2206 | writel(entry, cp->regs + REG_PLUS_RX_KICK1); |
| 2207 | } |
| 2208 | |
| 2209 | |
| 2210 | /* only when things are bad */ |
| 2211 | static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) |
| 2212 | { |
| 2213 | unsigned int entry, last, count, released; |
| 2214 | int cluster; |
| 2215 | cas_page_t **page = cp->rx_pages[ring]; |
| 2216 | |
| 2217 | entry = cp->rx_old[ring]; |
| 2218 | |
| 2219 | if (netif_msg_intr(cp)) |
| 2220 | printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n", |
| 2221 | cp->dev->name, ring, entry); |
| 2222 | |
| 2223 | cluster = -1; |
| 2224 | count = entry & 0x3; |
| 2225 | last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); |
| 2226 | released = 0; |
| 2227 | while (entry != last) { |
| 2228 | /* make a new buffer if it's still in use */ |
| 2229 | if (page_count(page[entry]->buffer) > 1) { |
| 2230 | cas_page_t *new = cas_page_dequeue(cp); |
| 2231 | if (!new) { |
| 2232 | /* let the timer know that we need to |
| 2233 | * do this again |
| 2234 | */ |
| 2235 | cp->cas_flags |= CAS_FLAG_RXD_POST(ring); |
| 2236 | if (!timer_pending(&cp->link_timer)) |
| 2237 | mod_timer(&cp->link_timer, jiffies + |
| 2238 | CAS_LINK_FAST_TIMEOUT); |
| 2239 | cp->rx_old[ring] = entry; |
| 2240 | cp->rx_last[ring] = num ? num - released : 0; |
| 2241 | return -ENOMEM; |
| 2242 | } |
| 2243 | spin_lock(&cp->rx_inuse_lock); |
| 2244 | list_add(&page[entry]->list, &cp->rx_inuse_list); |
| 2245 | spin_unlock(&cp->rx_inuse_lock); |
| 2246 | cp->init_rxds[ring][entry].buffer = |
| 2247 | cpu_to_le64(new->dma_addr); |
| 2248 | page[entry] = new; |
| 2249 | |
| 2250 | } |
| 2251 | |
| 2252 | if (++count == 4) { |
| 2253 | cluster = entry; |
| 2254 | count = 0; |
| 2255 | } |
| 2256 | released++; |
| 2257 | entry = RX_DESC_ENTRY(ring, entry + 1); |
| 2258 | } |
| 2259 | cp->rx_old[ring] = entry; |
| 2260 | |
| 2261 | if (cluster < 0) |
| 2262 | return 0; |
| 2263 | |
| 2264 | if (ring == 0) |
| 2265 | writel(cluster, cp->regs + REG_RX_KICK); |
| 2266 | else if ((N_RX_DESC_RINGS > 1) && |
| 2267 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
| 2268 | writel(cluster, cp->regs + REG_PLUS_RX_KICK1); |
| 2269 | return 0; |
| 2270 | } |
| 2271 | |
| 2272 | |
| 2273 | /* process a completion ring. packets are set up in three basic ways: |
| 2274 | * small packets: should be copied header + data in single buffer. |
| 2275 | * large packets: header and data in a single buffer. |
| 2276 | * split packets: header in a separate buffer from data. |
| 2277 | * data may be in multiple pages. data may be > 256 |
| 2278 | * bytes but in a single page. |
| 2279 | * |
| 2280 | * NOTE: RX page posting is done in this routine as well. while there's |
| 2281 | * the capability of using multiple RX completion rings, it isn't |
| 2282 | * really worthwhile due to the fact that the page posting will |
| 2283 | * force serialization on the single descriptor ring. |
| 2284 | */ |
| 2285 | static int cas_rx_ringN(struct cas *cp, int ring, int budget) |
| 2286 | { |
| 2287 | struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; |
| 2288 | int entry, drops; |
| 2289 | int npackets = 0; |
| 2290 | |
| 2291 | if (netif_msg_intr(cp)) |
| 2292 | printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n", |
| 2293 | cp->dev->name, ring, |
| 2294 | readl(cp->regs + REG_RX_COMP_HEAD), |
| 2295 | cp->rx_new[ring]); |
| 2296 | |
| 2297 | entry = cp->rx_new[ring]; |
| 2298 | drops = 0; |
| 2299 | while (1) { |
| 2300 | struct cas_rx_comp *rxc = rxcs + entry; |
| 2301 | struct sk_buff *skb; |
| 2302 | int type, len; |
| 2303 | u64 words[4]; |
| 2304 | int i, dring; |
| 2305 | |
| 2306 | words[0] = le64_to_cpu(rxc->word1); |
| 2307 | words[1] = le64_to_cpu(rxc->word2); |
| 2308 | words[2] = le64_to_cpu(rxc->word3); |
| 2309 | words[3] = le64_to_cpu(rxc->word4); |
| 2310 | |
| 2311 | /* don't touch if still owned by hw */ |
| 2312 | type = CAS_VAL(RX_COMP1_TYPE, words[0]); |
| 2313 | if (type == 0) |
| 2314 | break; |
| 2315 | |
| 2316 | /* hw hasn't cleared the zero bit yet */ |
| 2317 | if (words[3] & RX_COMP4_ZERO) { |
| 2318 | break; |
| 2319 | } |
| 2320 | |
| 2321 | /* get info on the packet */ |
| 2322 | if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { |
| 2323 | spin_lock(&cp->stat_lock[ring]); |
| 2324 | cp->net_stats[ring].rx_errors++; |
| 2325 | if (words[3] & RX_COMP4_LEN_MISMATCH) |
| 2326 | cp->net_stats[ring].rx_length_errors++; |
| 2327 | if (words[3] & RX_COMP4_BAD) |
| 2328 | cp->net_stats[ring].rx_crc_errors++; |
| 2329 | spin_unlock(&cp->stat_lock[ring]); |
| 2330 | |
| 2331 | /* We'll just return it to Cassini. */ |
| 2332 | drop_it: |
| 2333 | spin_lock(&cp->stat_lock[ring]); |
| 2334 | ++cp->net_stats[ring].rx_dropped; |
| 2335 | spin_unlock(&cp->stat_lock[ring]); |
| 2336 | goto next; |
| 2337 | } |
| 2338 | |
| 2339 | len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); |
| 2340 | if (len < 0) { |
| 2341 | ++drops; |
| 2342 | goto drop_it; |
| 2343 | } |
| 2344 | |
| 2345 | /* see if it's a flow re-assembly or not. the driver |
| 2346 | * itself handles release back up. |
| 2347 | */ |
| 2348 | if (RX_DONT_BATCH || (type == 0x2)) { |
| 2349 | /* non-reassm: these always get released */ |
| 2350 | cas_skb_release(skb); |
| 2351 | } else { |
| 2352 | cas_rx_flow_pkt(cp, words, skb); |
| 2353 | } |
| 2354 | |
| 2355 | spin_lock(&cp->stat_lock[ring]); |
| 2356 | cp->net_stats[ring].rx_packets++; |
| 2357 | cp->net_stats[ring].rx_bytes += len; |
| 2358 | spin_unlock(&cp->stat_lock[ring]); |
| 2359 | cp->dev->last_rx = jiffies; |
| 2360 | |
| 2361 | next: |
| 2362 | npackets++; |
| 2363 | |
| 2364 | /* should it be released? */ |
| 2365 | if (words[0] & RX_COMP1_RELEASE_HDR) { |
| 2366 | i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); |
| 2367 | dring = CAS_VAL(RX_INDEX_RING, i); |
| 2368 | i = CAS_VAL(RX_INDEX_NUM, i); |
| 2369 | cas_post_page(cp, dring, i); |
| 2370 | } |
| 2371 | |
| 2372 | if (words[0] & RX_COMP1_RELEASE_DATA) { |
| 2373 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| 2374 | dring = CAS_VAL(RX_INDEX_RING, i); |
| 2375 | i = CAS_VAL(RX_INDEX_NUM, i); |
| 2376 | cas_post_page(cp, dring, i); |
| 2377 | } |
| 2378 | |
| 2379 | if (words[0] & RX_COMP1_RELEASE_NEXT) { |
| 2380 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| 2381 | dring = CAS_VAL(RX_INDEX_RING, i); |
| 2382 | i = CAS_VAL(RX_INDEX_NUM, i); |
| 2383 | cas_post_page(cp, dring, i); |
| 2384 | } |
| 2385 | |
| 2386 | /* skip to the next entry */ |
| 2387 | entry = RX_COMP_ENTRY(ring, entry + 1 + |
| 2388 | CAS_VAL(RX_COMP1_SKIP, words[0])); |
| 2389 | #ifdef USE_NAPI |
| 2390 | if (budget && (npackets >= budget)) |
| 2391 | break; |
| 2392 | #endif |
| 2393 | } |
| 2394 | cp->rx_new[ring] = entry; |
| 2395 | |
| 2396 | if (drops) |
| 2397 | printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", |
| 2398 | cp->dev->name); |
| 2399 | return npackets; |
| 2400 | } |
| 2401 | |
| 2402 | |
| 2403 | /* put completion entries back on the ring */ |
| 2404 | static void cas_post_rxcs_ringN(struct net_device *dev, |
| 2405 | struct cas *cp, int ring) |
| 2406 | { |
| 2407 | struct cas_rx_comp *rxc = cp->init_rxcs[ring]; |
| 2408 | int last, entry; |
| 2409 | |
| 2410 | last = cp->rx_cur[ring]; |
| 2411 | entry = cp->rx_new[ring]; |
| 2412 | if (netif_msg_intr(cp)) |
| 2413 | printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n", |
| 2414 | dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD), |
| 2415 | entry); |
| 2416 | |
| 2417 | /* zero and re-mark descriptors */ |
| 2418 | while (last != entry) { |
| 2419 | cas_rxc_init(rxc + last); |
| 2420 | last = RX_COMP_ENTRY(ring, last + 1); |
| 2421 | } |
| 2422 | cp->rx_cur[ring] = last; |
| 2423 | |
| 2424 | if (ring == 0) |
| 2425 | writel(last, cp->regs + REG_RX_COMP_TAIL); |
| 2426 | else if (cp->cas_flags & CAS_FLAG_REG_PLUS) |
| 2427 | writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); |
| 2428 | } |
| 2429 | |
| 2430 | |
| 2431 | |
| 2432 | /* cassini can use all four PCI interrupts for the completion ring. |
| 2433 | * rings 3 and 4 are identical |
| 2434 | */ |
| 2435 | #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| 2436 | static inline void cas_handle_irqN(struct net_device *dev, |
| 2437 | struct cas *cp, const u32 status, |
| 2438 | const int ring) |
| 2439 | { |
| 2440 | if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) |
| 2441 | cas_post_rxcs_ringN(dev, cp, ring); |
| 2442 | } |
| 2443 | |
| 2444 | static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs) |
| 2445 | { |
| 2446 | struct net_device *dev = dev_id; |
| 2447 | struct cas *cp = netdev_priv(dev); |
| 2448 | unsigned long flags; |
| 2449 | int ring; |
| 2450 | u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); |
| 2451 | |
| 2452 | /* check for shared irq */ |
| 2453 | if (status == 0) |
| 2454 | return IRQ_NONE; |
| 2455 | |
| 2456 | ring = (irq == cp->pci_irq_INTC) ? 2 : 3; |
| 2457 | spin_lock_irqsave(&cp->lock, flags); |
| 2458 | if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ |
| 2459 | #ifdef USE_NAPI |
| 2460 | cas_mask_intr(cp); |
| 2461 | netif_rx_schedule(dev); |
| 2462 | #else |
| 2463 | cas_rx_ringN(cp, ring, 0); |
| 2464 | #endif |
| 2465 | status &= ~INTR_RX_DONE_ALT; |
| 2466 | } |
| 2467 | |
| 2468 | if (status) |
| 2469 | cas_handle_irqN(dev, cp, status, ring); |
| 2470 | spin_unlock_irqrestore(&cp->lock, flags); |
| 2471 | return IRQ_HANDLED; |
| 2472 | } |
| 2473 | #endif |
| 2474 | |
| 2475 | #ifdef USE_PCI_INTB |
| 2476 | /* everything but rx packets */ |
| 2477 | static inline void cas_handle_irq1(struct cas *cp, const u32 status) |
| 2478 | { |
| 2479 | if (status & INTR_RX_BUF_UNAVAIL_1) { |
| 2480 | /* Frame arrived, no free RX buffers available. |
| 2481 | * NOTE: we can get this on a link transition. */ |
| 2482 | cas_post_rxds_ringN(cp, 1, 0); |
| 2483 | spin_lock(&cp->stat_lock[1]); |
| 2484 | cp->net_stats[1].rx_dropped++; |
| 2485 | spin_unlock(&cp->stat_lock[1]); |
| 2486 | } |
| 2487 | |
| 2488 | if (status & INTR_RX_BUF_AE_1) |
| 2489 | cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - |
| 2490 | RX_AE_FREEN_VAL(1)); |
| 2491 | |
| 2492 | if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) |
| 2493 | cas_post_rxcs_ringN(cp, 1); |
| 2494 | } |
| 2495 | |
| 2496 | /* ring 2 handles a few more events than 3 and 4 */ |
| 2497 | static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs) |
| 2498 | { |
| 2499 | struct net_device *dev = dev_id; |
| 2500 | struct cas *cp = netdev_priv(dev); |
| 2501 | unsigned long flags; |
| 2502 | u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); |
| 2503 | |
| 2504 | /* check for shared interrupt */ |
| 2505 | if (status == 0) |
| 2506 | return IRQ_NONE; |
| 2507 | |
| 2508 | spin_lock_irqsave(&cp->lock, flags); |
| 2509 | if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ |
| 2510 | #ifdef USE_NAPI |
| 2511 | cas_mask_intr(cp); |
| 2512 | netif_rx_schedule(dev); |
| 2513 | #else |
| 2514 | cas_rx_ringN(cp, 1, 0); |
| 2515 | #endif |
| 2516 | status &= ~INTR_RX_DONE_ALT; |
| 2517 | } |
| 2518 | if (status) |
| 2519 | cas_handle_irq1(cp, status); |
| 2520 | spin_unlock_irqrestore(&cp->lock, flags); |
| 2521 | return IRQ_HANDLED; |
| 2522 | } |
| 2523 | #endif |
| 2524 | |
| 2525 | static inline void cas_handle_irq(struct net_device *dev, |
| 2526 | struct cas *cp, const u32 status) |
| 2527 | { |
| 2528 | /* housekeeping interrupts */ |
| 2529 | if (status & INTR_ERROR_MASK) |
| 2530 | cas_abnormal_irq(dev, cp, status); |
| 2531 | |
| 2532 | if (status & INTR_RX_BUF_UNAVAIL) { |
| 2533 | /* Frame arrived, no free RX buffers available. |
| 2534 | * NOTE: we can get this on a link transition. |
| 2535 | */ |
| 2536 | cas_post_rxds_ringN(cp, 0, 0); |
| 2537 | spin_lock(&cp->stat_lock[0]); |
| 2538 | cp->net_stats[0].rx_dropped++; |
| 2539 | spin_unlock(&cp->stat_lock[0]); |
| 2540 | } else if (status & INTR_RX_BUF_AE) { |
| 2541 | cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - |
| 2542 | RX_AE_FREEN_VAL(0)); |
| 2543 | } |
| 2544 | |
| 2545 | if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) |
| 2546 | cas_post_rxcs_ringN(dev, cp, 0); |
| 2547 | } |
| 2548 | |
| 2549 | static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 2550 | { |
| 2551 | struct net_device *dev = dev_id; |
| 2552 | struct cas *cp = netdev_priv(dev); |
| 2553 | unsigned long flags; |
| 2554 | u32 status = readl(cp->regs + REG_INTR_STATUS); |
| 2555 | |
| 2556 | if (status == 0) |
| 2557 | return IRQ_NONE; |
| 2558 | |
| 2559 | spin_lock_irqsave(&cp->lock, flags); |
| 2560 | if (status & (INTR_TX_ALL | INTR_TX_INTME)) { |
| 2561 | cas_tx(dev, cp, status); |
| 2562 | status &= ~(INTR_TX_ALL | INTR_TX_INTME); |
| 2563 | } |
| 2564 | |
| 2565 | if (status & INTR_RX_DONE) { |
| 2566 | #ifdef USE_NAPI |
| 2567 | cas_mask_intr(cp); |
| 2568 | netif_rx_schedule(dev); |
| 2569 | #else |
| 2570 | cas_rx_ringN(cp, 0, 0); |
| 2571 | #endif |
| 2572 | status &= ~INTR_RX_DONE; |
| 2573 | } |
| 2574 | |
| 2575 | if (status) |
| 2576 | cas_handle_irq(dev, cp, status); |
| 2577 | spin_unlock_irqrestore(&cp->lock, flags); |
| 2578 | return IRQ_HANDLED; |
| 2579 | } |
| 2580 | |
| 2581 | |
| 2582 | #ifdef USE_NAPI |
| 2583 | static int cas_poll(struct net_device *dev, int *budget) |
| 2584 | { |
| 2585 | struct cas *cp = netdev_priv(dev); |
| 2586 | int i, enable_intr, todo, credits; |
| 2587 | u32 status = readl(cp->regs + REG_INTR_STATUS); |
| 2588 | unsigned long flags; |
| 2589 | |
| 2590 | spin_lock_irqsave(&cp->lock, flags); |
| 2591 | cas_tx(dev, cp, status); |
| 2592 | spin_unlock_irqrestore(&cp->lock, flags); |
| 2593 | |
| 2594 | /* NAPI rx packets. we spread the credits across all of the |
| 2595 | * rxc rings |
| 2596 | */ |
| 2597 | todo = min(*budget, dev->quota); |
| 2598 | |
| 2599 | /* to make sure we're fair with the work we loop through each |
| 2600 | * ring N_RX_COMP_RING times with a request of |
| 2601 | * todo / N_RX_COMP_RINGS |
| 2602 | */ |
| 2603 | enable_intr = 1; |
| 2604 | credits = 0; |
| 2605 | for (i = 0; i < N_RX_COMP_RINGS; i++) { |
| 2606 | int j; |
| 2607 | for (j = 0; j < N_RX_COMP_RINGS; j++) { |
| 2608 | credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS); |
| 2609 | if (credits >= todo) { |
| 2610 | enable_intr = 0; |
| 2611 | goto rx_comp; |
| 2612 | } |
| 2613 | } |
| 2614 | } |
| 2615 | |
| 2616 | rx_comp: |
| 2617 | *budget -= credits; |
| 2618 | dev->quota -= credits; |
| 2619 | |
| 2620 | /* final rx completion */ |
| 2621 | spin_lock_irqsave(&cp->lock, flags); |
| 2622 | if (status) |
| 2623 | cas_handle_irq(dev, cp, status); |
| 2624 | |
| 2625 | #ifdef USE_PCI_INTB |
| 2626 | if (N_RX_COMP_RINGS > 1) { |
| 2627 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); |
| 2628 | if (status) |
| 2629 | cas_handle_irq1(dev, cp, status); |
| 2630 | } |
| 2631 | #endif |
| 2632 | |
| 2633 | #ifdef USE_PCI_INTC |
| 2634 | if (N_RX_COMP_RINGS > 2) { |
| 2635 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); |
| 2636 | if (status) |
| 2637 | cas_handle_irqN(dev, cp, status, 2); |
| 2638 | } |
| 2639 | #endif |
| 2640 | |
| 2641 | #ifdef USE_PCI_INTD |
| 2642 | if (N_RX_COMP_RINGS > 3) { |
| 2643 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); |
| 2644 | if (status) |
| 2645 | cas_handle_irqN(dev, cp, status, 3); |
| 2646 | } |
| 2647 | #endif |
| 2648 | spin_unlock_irqrestore(&cp->lock, flags); |
| 2649 | if (enable_intr) { |
| 2650 | netif_rx_complete(dev); |
| 2651 | cas_unmask_intr(cp); |
| 2652 | return 0; |
| 2653 | } |
| 2654 | return 1; |
| 2655 | } |
| 2656 | #endif |
| 2657 | |
| 2658 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 2659 | static void cas_netpoll(struct net_device *dev) |
| 2660 | { |
| 2661 | struct cas *cp = netdev_priv(dev); |
| 2662 | |
| 2663 | cas_disable_irq(cp, 0); |
| 2664 | cas_interrupt(cp->pdev->irq, dev, NULL); |
| 2665 | cas_enable_irq(cp, 0); |
| 2666 | |
| 2667 | #ifdef USE_PCI_INTB |
| 2668 | if (N_RX_COMP_RINGS > 1) { |
| 2669 | /* cas_interrupt1(); */ |
| 2670 | } |
| 2671 | #endif |
| 2672 | #ifdef USE_PCI_INTC |
| 2673 | if (N_RX_COMP_RINGS > 2) { |
| 2674 | /* cas_interruptN(); */ |
| 2675 | } |
| 2676 | #endif |
| 2677 | #ifdef USE_PCI_INTD |
| 2678 | if (N_RX_COMP_RINGS > 3) { |
| 2679 | /* cas_interruptN(); */ |
| 2680 | } |
| 2681 | #endif |
| 2682 | } |
| 2683 | #endif |
| 2684 | |
| 2685 | static void cas_tx_timeout(struct net_device *dev) |
| 2686 | { |
| 2687 | struct cas *cp = netdev_priv(dev); |
| 2688 | |
| 2689 | printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); |
| 2690 | if (!cp->hw_running) { |
| 2691 | printk("%s: hrm.. hw not running!\n", dev->name); |
| 2692 | return; |
| 2693 | } |
| 2694 | |
| 2695 | printk(KERN_ERR "%s: MIF_STATE[%08x]\n", |
| 2696 | dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE)); |
| 2697 | |
| 2698 | printk(KERN_ERR "%s: MAC_STATE[%08x]\n", |
| 2699 | dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| 2700 | |
| 2701 | printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] " |
| 2702 | "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", |
| 2703 | dev->name, |
| 2704 | readl(cp->regs + REG_TX_CFG), |
| 2705 | readl(cp->regs + REG_MAC_TX_STATUS), |
| 2706 | readl(cp->regs + REG_MAC_TX_CFG), |
| 2707 | readl(cp->regs + REG_TX_FIFO_PKT_CNT), |
| 2708 | readl(cp->regs + REG_TX_FIFO_WRITE_PTR), |
| 2709 | readl(cp->regs + REG_TX_FIFO_READ_PTR), |
| 2710 | readl(cp->regs + REG_TX_SM_1), |
| 2711 | readl(cp->regs + REG_TX_SM_2)); |
| 2712 | |
| 2713 | printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n", |
| 2714 | dev->name, |
| 2715 | readl(cp->regs + REG_RX_CFG), |
| 2716 | readl(cp->regs + REG_MAC_RX_STATUS), |
| 2717 | readl(cp->regs + REG_MAC_RX_CFG)); |
| 2718 | |
| 2719 | printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n", |
| 2720 | dev->name, |
| 2721 | readl(cp->regs + REG_HP_STATE_MACHINE), |
| 2722 | readl(cp->regs + REG_HP_STATUS0), |
| 2723 | readl(cp->regs + REG_HP_STATUS1), |
| 2724 | readl(cp->regs + REG_HP_STATUS2)); |
| 2725 | |
| 2726 | #if 1 |
| 2727 | atomic_inc(&cp->reset_task_pending); |
| 2728 | atomic_inc(&cp->reset_task_pending_all); |
| 2729 | schedule_work(&cp->reset_task); |
| 2730 | #else |
| 2731 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| 2732 | schedule_work(&cp->reset_task); |
| 2733 | #endif |
| 2734 | } |
| 2735 | |
| 2736 | static inline int cas_intme(int ring, int entry) |
| 2737 | { |
| 2738 | /* Algorithm: IRQ every 1/2 of descriptors. */ |
| 2739 | if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) |
| 2740 | return 1; |
| 2741 | return 0; |
| 2742 | } |
| 2743 | |
| 2744 | |
| 2745 | static void cas_write_txd(struct cas *cp, int ring, int entry, |
| 2746 | dma_addr_t mapping, int len, u64 ctrl, int last) |
| 2747 | { |
| 2748 | struct cas_tx_desc *txd = cp->init_txds[ring] + entry; |
| 2749 | |
| 2750 | ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); |
| 2751 | if (cas_intme(ring, entry)) |
| 2752 | ctrl |= TX_DESC_INTME; |
| 2753 | if (last) |
| 2754 | ctrl |= TX_DESC_EOF; |
| 2755 | txd->control = cpu_to_le64(ctrl); |
| 2756 | txd->buffer = cpu_to_le64(mapping); |
| 2757 | } |
| 2758 | |
| 2759 | static inline void *tx_tiny_buf(struct cas *cp, const int ring, |
| 2760 | const int entry) |
| 2761 | { |
| 2762 | return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; |
| 2763 | } |
| 2764 | |
| 2765 | static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, |
| 2766 | const int entry, const int tentry) |
| 2767 | { |
| 2768 | cp->tx_tiny_use[ring][tentry].nbufs++; |
| 2769 | cp->tx_tiny_use[ring][entry].used = 1; |
| 2770 | return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; |
| 2771 | } |
| 2772 | |
| 2773 | static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, |
| 2774 | struct sk_buff *skb) |
| 2775 | { |
| 2776 | struct net_device *dev = cp->dev; |
| 2777 | int entry, nr_frags, frag, tabort, tentry; |
| 2778 | dma_addr_t mapping; |
| 2779 | unsigned long flags; |
| 2780 | u64 ctrl; |
| 2781 | u32 len; |
| 2782 | |
| 2783 | spin_lock_irqsave(&cp->tx_lock[ring], flags); |
| 2784 | |
| 2785 | /* This is a hard error, log it. */ |
| 2786 | if (TX_BUFFS_AVAIL(cp, ring) <= |
| 2787 | CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { |
| 2788 | netif_stop_queue(dev); |
| 2789 | spin_unlock_irqrestore(&cp->tx_lock[ring], flags); |
| 2790 | printk(KERN_ERR PFX "%s: BUG! Tx Ring full when " |
| 2791 | "queue awake!\n", dev->name); |
| 2792 | return 1; |
| 2793 | } |
| 2794 | |
| 2795 | ctrl = 0; |
| 2796 | if (skb->ip_summed == CHECKSUM_HW) { |
| 2797 | u64 csum_start_off, csum_stuff_off; |
| 2798 | |
| 2799 | csum_start_off = (u64) (skb->h.raw - skb->data); |
| 2800 | csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data); |
| 2801 | |
| 2802 | ctrl = TX_DESC_CSUM_EN | |
| 2803 | CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | |
| 2804 | CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); |
| 2805 | } |
| 2806 | |
| 2807 | entry = cp->tx_new[ring]; |
| 2808 | cp->tx_skbs[ring][entry] = skb; |
| 2809 | |
| 2810 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 2811 | len = skb_headlen(skb); |
| 2812 | mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), |
| 2813 | offset_in_page(skb->data), len, |
| 2814 | PCI_DMA_TODEVICE); |
| 2815 | |
| 2816 | tentry = entry; |
| 2817 | tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); |
| 2818 | if (unlikely(tabort)) { |
| 2819 | /* NOTE: len is always > tabort */ |
| 2820 | cas_write_txd(cp, ring, entry, mapping, len - tabort, |
| 2821 | ctrl | TX_DESC_SOF, 0); |
| 2822 | entry = TX_DESC_NEXT(ring, entry); |
| 2823 | |
| 2824 | memcpy(tx_tiny_buf(cp, ring, entry), skb->data + |
| 2825 | len - tabort, tabort); |
| 2826 | mapping = tx_tiny_map(cp, ring, entry, tentry); |
| 2827 | cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, |
| 2828 | (nr_frags == 0)); |
| 2829 | } else { |
| 2830 | cas_write_txd(cp, ring, entry, mapping, len, ctrl | |
| 2831 | TX_DESC_SOF, (nr_frags == 0)); |
| 2832 | } |
| 2833 | entry = TX_DESC_NEXT(ring, entry); |
| 2834 | |
| 2835 | for (frag = 0; frag < nr_frags; frag++) { |
| 2836 | skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; |
| 2837 | |
| 2838 | len = fragp->size; |
| 2839 | mapping = pci_map_page(cp->pdev, fragp->page, |
| 2840 | fragp->page_offset, len, |
| 2841 | PCI_DMA_TODEVICE); |
| 2842 | |
| 2843 | tabort = cas_calc_tabort(cp, fragp->page_offset, len); |
| 2844 | if (unlikely(tabort)) { |
| 2845 | void *addr; |
| 2846 | |
| 2847 | /* NOTE: len is always > tabort */ |
| 2848 | cas_write_txd(cp, ring, entry, mapping, len - tabort, |
| 2849 | ctrl, 0); |
| 2850 | entry = TX_DESC_NEXT(ring, entry); |
| 2851 | |
| 2852 | addr = cas_page_map(fragp->page); |
| 2853 | memcpy(tx_tiny_buf(cp, ring, entry), |
| 2854 | addr + fragp->page_offset + len - tabort, |
| 2855 | tabort); |
| 2856 | cas_page_unmap(addr); |
| 2857 | mapping = tx_tiny_map(cp, ring, entry, tentry); |
| 2858 | len = tabort; |
| 2859 | } |
| 2860 | |
| 2861 | cas_write_txd(cp, ring, entry, mapping, len, ctrl, |
| 2862 | (frag + 1 == nr_frags)); |
| 2863 | entry = TX_DESC_NEXT(ring, entry); |
| 2864 | } |
| 2865 | |
| 2866 | cp->tx_new[ring] = entry; |
| 2867 | if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) |
| 2868 | netif_stop_queue(dev); |
| 2869 | |
| 2870 | if (netif_msg_tx_queued(cp)) |
| 2871 | printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, " |
| 2872 | "avail %d\n", |
| 2873 | dev->name, ring, entry, skb->len, |
| 2874 | TX_BUFFS_AVAIL(cp, ring)); |
| 2875 | writel(entry, cp->regs + REG_TX_KICKN(ring)); |
| 2876 | spin_unlock_irqrestore(&cp->tx_lock[ring], flags); |
| 2877 | return 0; |
| 2878 | } |
| 2879 | |
| 2880 | static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 2881 | { |
| 2882 | struct cas *cp = netdev_priv(dev); |
| 2883 | |
| 2884 | /* this is only used as a load-balancing hint, so it doesn't |
| 2885 | * need to be SMP safe |
| 2886 | */ |
| 2887 | static int ring; |
| 2888 | |
| 2889 | skb = skb_padto(skb, cp->min_frame_size); |
| 2890 | if (!skb) |
| 2891 | return 0; |
| 2892 | |
| 2893 | /* XXX: we need some higher-level QoS hooks to steer packets to |
| 2894 | * individual queues. |
| 2895 | */ |
| 2896 | if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) |
| 2897 | return 1; |
| 2898 | dev->trans_start = jiffies; |
| 2899 | return 0; |
| 2900 | } |
| 2901 | |
| 2902 | static void cas_init_tx_dma(struct cas *cp) |
| 2903 | { |
| 2904 | u64 desc_dma = cp->block_dvma; |
| 2905 | unsigned long off; |
| 2906 | u32 val; |
| 2907 | int i; |
| 2908 | |
| 2909 | /* set up tx completion writeback registers. must be 8-byte aligned */ |
| 2910 | #ifdef USE_TX_COMPWB |
| 2911 | off = offsetof(struct cas_init_block, tx_compwb); |
| 2912 | writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); |
| 2913 | writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); |
| 2914 | #endif |
| 2915 | |
| 2916 | /* enable completion writebacks, enable paced mode, |
| 2917 | * disable read pipe, and disable pre-interrupt compwbs |
| 2918 | */ |
| 2919 | val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | |
| 2920 | TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | |
| 2921 | TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | |
| 2922 | TX_CFG_INTR_COMPWB_DIS; |
| 2923 | |
| 2924 | /* write out tx ring info and tx desc bases */ |
| 2925 | for (i = 0; i < MAX_TX_RINGS; i++) { |
| 2926 | off = (unsigned long) cp->init_txds[i] - |
| 2927 | (unsigned long) cp->init_block; |
| 2928 | |
| 2929 | val |= CAS_TX_RINGN_BASE(i); |
| 2930 | writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); |
| 2931 | writel((desc_dma + off) & 0xffffffff, cp->regs + |
| 2932 | REG_TX_DBN_LOW(i)); |
| 2933 | /* don't zero out the kick register here as the system |
| 2934 | * will wedge |
| 2935 | */ |
| 2936 | } |
| 2937 | writel(val, cp->regs + REG_TX_CFG); |
| 2938 | |
| 2939 | /* program max burst sizes. these numbers should be different |
| 2940 | * if doing QoS. |
| 2941 | */ |
| 2942 | #ifdef USE_QOS |
| 2943 | writel(0x800, cp->regs + REG_TX_MAXBURST_0); |
| 2944 | writel(0x1600, cp->regs + REG_TX_MAXBURST_1); |
| 2945 | writel(0x2400, cp->regs + REG_TX_MAXBURST_2); |
| 2946 | writel(0x4800, cp->regs + REG_TX_MAXBURST_3); |
| 2947 | #else |
| 2948 | writel(0x800, cp->regs + REG_TX_MAXBURST_0); |
| 2949 | writel(0x800, cp->regs + REG_TX_MAXBURST_1); |
| 2950 | writel(0x800, cp->regs + REG_TX_MAXBURST_2); |
| 2951 | writel(0x800, cp->regs + REG_TX_MAXBURST_3); |
| 2952 | #endif |
| 2953 | } |
| 2954 | |
| 2955 | /* Must be invoked under cp->lock. */ |
| 2956 | static inline void cas_init_dma(struct cas *cp) |
| 2957 | { |
| 2958 | cas_init_tx_dma(cp); |
| 2959 | cas_init_rx_dma(cp); |
| 2960 | } |
| 2961 | |
| 2962 | /* Must be invoked under cp->lock. */ |
| 2963 | static u32 cas_setup_multicast(struct cas *cp) |
| 2964 | { |
| 2965 | u32 rxcfg = 0; |
| 2966 | int i; |
| 2967 | |
| 2968 | if (cp->dev->flags & IFF_PROMISC) { |
| 2969 | rxcfg |= MAC_RX_CFG_PROMISC_EN; |
| 2970 | |
| 2971 | } else if (cp->dev->flags & IFF_ALLMULTI) { |
| 2972 | for (i=0; i < 16; i++) |
| 2973 | writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); |
| 2974 | rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; |
| 2975 | |
| 2976 | } else { |
| 2977 | u16 hash_table[16]; |
| 2978 | u32 crc; |
| 2979 | struct dev_mc_list *dmi = cp->dev->mc_list; |
| 2980 | int i; |
| 2981 | |
| 2982 | /* use the alternate mac address registers for the |
| 2983 | * first 15 multicast addresses |
| 2984 | */ |
| 2985 | for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) { |
| 2986 | if (!dmi) { |
| 2987 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0)); |
| 2988 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1)); |
| 2989 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2)); |
| 2990 | continue; |
| 2991 | } |
| 2992 | writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], |
| 2993 | cp->regs + REG_MAC_ADDRN(i*3 + 0)); |
| 2994 | writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], |
| 2995 | cp->regs + REG_MAC_ADDRN(i*3 + 1)); |
| 2996 | writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], |
| 2997 | cp->regs + REG_MAC_ADDRN(i*3 + 2)); |
| 2998 | dmi = dmi->next; |
| 2999 | } |
| 3000 | |
| 3001 | /* use hw hash table for the next series of |
| 3002 | * multicast addresses |
| 3003 | */ |
| 3004 | memset(hash_table, 0, sizeof(hash_table)); |
| 3005 | while (dmi) { |
| 3006 | crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr); |
| 3007 | crc >>= 24; |
| 3008 | hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); |
| 3009 | dmi = dmi->next; |
| 3010 | } |
| 3011 | for (i=0; i < 16; i++) |
| 3012 | writel(hash_table[i], cp->regs + |
| 3013 | REG_MAC_HASH_TABLEN(i)); |
| 3014 | rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; |
| 3015 | } |
| 3016 | |
| 3017 | return rxcfg; |
| 3018 | } |
| 3019 | |
| 3020 | /* must be invoked under cp->stat_lock[N_TX_RINGS] */ |
| 3021 | static void cas_clear_mac_err(struct cas *cp) |
| 3022 | { |
| 3023 | writel(0, cp->regs + REG_MAC_COLL_NORMAL); |
| 3024 | writel(0, cp->regs + REG_MAC_COLL_FIRST); |
| 3025 | writel(0, cp->regs + REG_MAC_COLL_EXCESS); |
| 3026 | writel(0, cp->regs + REG_MAC_COLL_LATE); |
| 3027 | writel(0, cp->regs + REG_MAC_TIMER_DEFER); |
| 3028 | writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); |
| 3029 | writel(0, cp->regs + REG_MAC_RECV_FRAME); |
| 3030 | writel(0, cp->regs + REG_MAC_LEN_ERR); |
| 3031 | writel(0, cp->regs + REG_MAC_ALIGN_ERR); |
| 3032 | writel(0, cp->regs + REG_MAC_FCS_ERR); |
| 3033 | writel(0, cp->regs + REG_MAC_RX_CODE_ERR); |
| 3034 | } |
| 3035 | |
| 3036 | |
| 3037 | static void cas_mac_reset(struct cas *cp) |
| 3038 | { |
| 3039 | int i; |
| 3040 | |
| 3041 | /* do both TX and RX reset */ |
| 3042 | writel(0x1, cp->regs + REG_MAC_TX_RESET); |
| 3043 | writel(0x1, cp->regs + REG_MAC_RX_RESET); |
| 3044 | |
| 3045 | /* wait for TX */ |
| 3046 | i = STOP_TRIES; |
| 3047 | while (i-- > 0) { |
| 3048 | if (readl(cp->regs + REG_MAC_TX_RESET) == 0) |
| 3049 | break; |
| 3050 | udelay(10); |
| 3051 | } |
| 3052 | |
| 3053 | /* wait for RX */ |
| 3054 | i = STOP_TRIES; |
| 3055 | while (i-- > 0) { |
| 3056 | if (readl(cp->regs + REG_MAC_RX_RESET) == 0) |
| 3057 | break; |
| 3058 | udelay(10); |
| 3059 | } |
| 3060 | |
| 3061 | if (readl(cp->regs + REG_MAC_TX_RESET) | |
| 3062 | readl(cp->regs + REG_MAC_RX_RESET)) |
| 3063 | printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n", |
| 3064 | cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET), |
| 3065 | readl(cp->regs + REG_MAC_RX_RESET), |
| 3066 | readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| 3067 | } |
| 3068 | |
| 3069 | |
| 3070 | /* Must be invoked under cp->lock. */ |
| 3071 | static void cas_init_mac(struct cas *cp) |
| 3072 | { |
| 3073 | unsigned char *e = &cp->dev->dev_addr[0]; |
| 3074 | int i; |
| 3075 | #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE |
| 3076 | u32 rxcfg; |
| 3077 | #endif |
| 3078 | cas_mac_reset(cp); |
| 3079 | |
| 3080 | /* setup core arbitration weight register */ |
| 3081 | writel(CAWR_RR_DIS, cp->regs + REG_CAWR); |
| 3082 | |
| 3083 | /* XXX Use pci_dma_burst_advice() */ |
| 3084 | #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) |
| 3085 | /* set the infinite burst register for chips that don't have |
| 3086 | * pci issues. |
| 3087 | */ |
| 3088 | if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) |
| 3089 | writel(INF_BURST_EN, cp->regs + REG_INF_BURST); |
| 3090 | #endif |
| 3091 | |
| 3092 | writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); |
| 3093 | |
| 3094 | writel(0x00, cp->regs + REG_MAC_IPG0); |
| 3095 | writel(0x08, cp->regs + REG_MAC_IPG1); |
| 3096 | writel(0x04, cp->regs + REG_MAC_IPG2); |
| 3097 | |
| 3098 | /* change later for 802.3z */ |
| 3099 | writel(0x40, cp->regs + REG_MAC_SLOT_TIME); |
| 3100 | |
| 3101 | /* min frame + FCS */ |
| 3102 | writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); |
| 3103 | |
| 3104 | /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we |
| 3105 | * specify the maximum frame size to prevent RX tag errors on |
| 3106 | * oversized frames. |
| 3107 | */ |
| 3108 | writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | |
| 3109 | CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, |
| 3110 | (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), |
| 3111 | cp->regs + REG_MAC_FRAMESIZE_MAX); |
| 3112 | |
| 3113 | /* NOTE: crc_size is used as a surrogate for half-duplex. |
| 3114 | * workaround saturn half-duplex issue by increasing preamble |
| 3115 | * size to 65 bytes. |
| 3116 | */ |
| 3117 | if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) |
| 3118 | writel(0x41, cp->regs + REG_MAC_PA_SIZE); |
| 3119 | else |
| 3120 | writel(0x07, cp->regs + REG_MAC_PA_SIZE); |
| 3121 | writel(0x04, cp->regs + REG_MAC_JAM_SIZE); |
| 3122 | writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); |
| 3123 | writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); |
| 3124 | |
| 3125 | writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); |
| 3126 | |
| 3127 | writel(0, cp->regs + REG_MAC_ADDR_FILTER0); |
| 3128 | writel(0, cp->regs + REG_MAC_ADDR_FILTER1); |
| 3129 | writel(0, cp->regs + REG_MAC_ADDR_FILTER2); |
| 3130 | writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); |
| 3131 | writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); |
| 3132 | |
| 3133 | /* setup mac address in perfect filter array */ |
| 3134 | for (i = 0; i < 45; i++) |
| 3135 | writel(0x0, cp->regs + REG_MAC_ADDRN(i)); |
| 3136 | |
| 3137 | writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); |
| 3138 | writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); |
| 3139 | writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); |
| 3140 | |
| 3141 | writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); |
| 3142 | writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); |
| 3143 | writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); |
| 3144 | |
| 3145 | #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE |
| 3146 | cp->mac_rx_cfg = cas_setup_multicast(cp); |
| 3147 | #else |
| 3148 | /* WTZ: Do what Adrian did in cas_set_multicast. Doing |
| 3149 | * a writel does not seem to be necessary because Cassini |
| 3150 | * seems to preserve the configuration when we do the reset. |
| 3151 | * If the chip is in trouble, though, it is not clear if we |
| 3152 | * can really count on this behavior. cas_set_multicast uses |
| 3153 | * spin_lock_irqsave, but we are called only in cas_init_hw and |
| 3154 | * cas_init_hw is protected by cas_lock_all, which calls |
| 3155 | * spin_lock_irq (so it doesn't need to save the flags, and |
| 3156 | * we should be OK for the writel, as that is the only |
| 3157 | * difference). |
| 3158 | */ |
| 3159 | cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp); |
| 3160 | writel(rxcfg, cp->regs + REG_MAC_RX_CFG); |
| 3161 | #endif |
| 3162 | spin_lock(&cp->stat_lock[N_TX_RINGS]); |
| 3163 | cas_clear_mac_err(cp); |
| 3164 | spin_unlock(&cp->stat_lock[N_TX_RINGS]); |
| 3165 | |
| 3166 | /* Setup MAC interrupts. We want to get all of the interesting |
| 3167 | * counter expiration events, but we do not want to hear about |
| 3168 | * normal rx/tx as the DMA engine tells us that. |
| 3169 | */ |
| 3170 | writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); |
| 3171 | writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); |
| 3172 | |
| 3173 | /* Don't enable even the PAUSE interrupts for now, we |
| 3174 | * make no use of those events other than to record them. |
| 3175 | */ |
| 3176 | writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); |
| 3177 | } |
| 3178 | |
| 3179 | /* Must be invoked under cp->lock. */ |
| 3180 | static void cas_init_pause_thresholds(struct cas *cp) |
| 3181 | { |
| 3182 | /* Calculate pause thresholds. Setting the OFF threshold to the |
| 3183 | * full RX fifo size effectively disables PAUSE generation |
| 3184 | */ |
| 3185 | if (cp->rx_fifo_size <= (2 * 1024)) { |
| 3186 | cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; |
| 3187 | } else { |
| 3188 | int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; |
| 3189 | if (max_frame * 3 > cp->rx_fifo_size) { |
| 3190 | cp->rx_pause_off = 7104; |
| 3191 | cp->rx_pause_on = 960; |
| 3192 | } else { |
| 3193 | int off = (cp->rx_fifo_size - (max_frame * 2)); |
| 3194 | int on = off - max_frame; |
| 3195 | cp->rx_pause_off = off; |
| 3196 | cp->rx_pause_on = on; |
| 3197 | } |
| 3198 | } |
| 3199 | } |
| 3200 | |
| 3201 | static int cas_vpd_match(const void __iomem *p, const char *str) |
| 3202 | { |
| 3203 | int len = strlen(str) + 1; |
| 3204 | int i; |
| 3205 | |
| 3206 | for (i = 0; i < len; i++) { |
| 3207 | if (readb(p + i) != str[i]) |
| 3208 | return 0; |
| 3209 | } |
| 3210 | return 1; |
| 3211 | } |
| 3212 | |
| 3213 | |
| 3214 | /* get the mac address by reading the vpd information in the rom. |
| 3215 | * also get the phy type and determine if there's an entropy generator. |
| 3216 | * NOTE: this is a bit convoluted for the following reasons: |
| 3217 | * 1) vpd info has order-dependent mac addresses for multinic cards |
| 3218 | * 2) the only way to determine the nic order is to use the slot |
| 3219 | * number. |
| 3220 | * 3) fiber cards don't have bridges, so their slot numbers don't |
| 3221 | * mean anything. |
| 3222 | * 4) we don't actually know we have a fiber card until after |
| 3223 | * the mac addresses are parsed. |
| 3224 | */ |
| 3225 | static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, |
| 3226 | const int offset) |
| 3227 | { |
| 3228 | void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; |
| 3229 | void __iomem *base, *kstart; |
| 3230 | int i, len; |
| 3231 | int found = 0; |
| 3232 | #define VPD_FOUND_MAC 0x01 |
| 3233 | #define VPD_FOUND_PHY 0x02 |
| 3234 | |
| 3235 | int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ |
| 3236 | int mac_off = 0; |
| 3237 | |
| 3238 | /* give us access to the PROM */ |
| 3239 | writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, |
| 3240 | cp->regs + REG_BIM_LOCAL_DEV_EN); |
| 3241 | |
| 3242 | /* check for an expansion rom */ |
| 3243 | if (readb(p) != 0x55 || readb(p + 1) != 0xaa) |
| 3244 | goto use_random_mac_addr; |
| 3245 | |
| 3246 | /* search for beginning of vpd */ |
| 3247 | base = 0; |
| 3248 | for (i = 2; i < EXPANSION_ROM_SIZE; i++) { |
| 3249 | /* check for PCIR */ |
| 3250 | if ((readb(p + i + 0) == 0x50) && |
| 3251 | (readb(p + i + 1) == 0x43) && |
| 3252 | (readb(p + i + 2) == 0x49) && |
| 3253 | (readb(p + i + 3) == 0x52)) { |
| 3254 | base = p + (readb(p + i + 8) | |
| 3255 | (readb(p + i + 9) << 8)); |
| 3256 | break; |
| 3257 | } |
| 3258 | } |
| 3259 | |
| 3260 | if (!base || (readb(base) != 0x82)) |
| 3261 | goto use_random_mac_addr; |
| 3262 | |
| 3263 | i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; |
| 3264 | while (i < EXPANSION_ROM_SIZE) { |
| 3265 | if (readb(base + i) != 0x90) /* no vpd found */ |
| 3266 | goto use_random_mac_addr; |
| 3267 | |
| 3268 | /* found a vpd field */ |
| 3269 | len = readb(base + i + 1) | (readb(base + i + 2) << 8); |
| 3270 | |
| 3271 | /* extract keywords */ |
| 3272 | kstart = base + i + 3; |
| 3273 | p = kstart; |
| 3274 | while ((p - kstart) < len) { |
| 3275 | int klen = readb(p + 2); |
| 3276 | int j; |
| 3277 | char type; |
| 3278 | |
| 3279 | p += 3; |
| 3280 | |
| 3281 | /* look for the following things: |
| 3282 | * -- correct length == 29 |
| 3283 | * 3 (type) + 2 (size) + |
| 3284 | * 18 (strlen("local-mac-address") + 1) + |
| 3285 | * 6 (mac addr) |
| 3286 | * -- VPD Instance 'I' |
| 3287 | * -- VPD Type Bytes 'B' |
| 3288 | * -- VPD data length == 6 |
| 3289 | * -- property string == local-mac-address |
| 3290 | * |
| 3291 | * -- correct length == 24 |
| 3292 | * 3 (type) + 2 (size) + |
| 3293 | * 12 (strlen("entropy-dev") + 1) + |
| 3294 | * 7 (strlen("vms110") + 1) |
| 3295 | * -- VPD Instance 'I' |
| 3296 | * -- VPD Type String 'B' |
| 3297 | * -- VPD data length == 7 |
| 3298 | * -- property string == entropy-dev |
| 3299 | * |
| 3300 | * -- correct length == 18 |
| 3301 | * 3 (type) + 2 (size) + |
| 3302 | * 9 (strlen("phy-type") + 1) + |
| 3303 | * 4 (strlen("pcs") + 1) |
| 3304 | * -- VPD Instance 'I' |
| 3305 | * -- VPD Type String 'S' |
| 3306 | * -- VPD data length == 4 |
| 3307 | * -- property string == phy-type |
| 3308 | * |
| 3309 | * -- correct length == 23 |
| 3310 | * 3 (type) + 2 (size) + |
| 3311 | * 14 (strlen("phy-interface") + 1) + |
| 3312 | * 4 (strlen("pcs") + 1) |
| 3313 | * -- VPD Instance 'I' |
| 3314 | * -- VPD Type String 'S' |
| 3315 | * -- VPD data length == 4 |
| 3316 | * -- property string == phy-interface |
| 3317 | */ |
| 3318 | if (readb(p) != 'I') |
| 3319 | goto next; |
| 3320 | |
| 3321 | /* finally, check string and length */ |
| 3322 | type = readb(p + 3); |
| 3323 | if (type == 'B') { |
| 3324 | if ((klen == 29) && readb(p + 4) == 6 && |
| 3325 | cas_vpd_match(p + 5, |
| 3326 | "local-mac-address")) { |
| 3327 | if (mac_off++ > offset) |
| 3328 | goto next; |
| 3329 | |
| 3330 | /* set mac address */ |
| 3331 | for (j = 0; j < 6; j++) |
| 3332 | dev_addr[j] = |
| 3333 | readb(p + 23 + j); |
| 3334 | goto found_mac; |
| 3335 | } |
| 3336 | } |
| 3337 | |
| 3338 | if (type != 'S') |
| 3339 | goto next; |
| 3340 | |
| 3341 | #ifdef USE_ENTROPY_DEV |
| 3342 | if ((klen == 24) && |
| 3343 | cas_vpd_match(p + 5, "entropy-dev") && |
| 3344 | cas_vpd_match(p + 17, "vms110")) { |
| 3345 | cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; |
| 3346 | goto next; |
| 3347 | } |
| 3348 | #endif |
| 3349 | |
| 3350 | if (found & VPD_FOUND_PHY) |
| 3351 | goto next; |
| 3352 | |
| 3353 | if ((klen == 18) && readb(p + 4) == 4 && |
| 3354 | cas_vpd_match(p + 5, "phy-type")) { |
| 3355 | if (cas_vpd_match(p + 14, "pcs")) { |
| 3356 | phy_type = CAS_PHY_SERDES; |
| 3357 | goto found_phy; |
| 3358 | } |
| 3359 | } |
| 3360 | |
| 3361 | if ((klen == 23) && readb(p + 4) == 4 && |
| 3362 | cas_vpd_match(p + 5, "phy-interface")) { |
| 3363 | if (cas_vpd_match(p + 19, "pcs")) { |
| 3364 | phy_type = CAS_PHY_SERDES; |
| 3365 | goto found_phy; |
| 3366 | } |
| 3367 | } |
| 3368 | found_mac: |
| 3369 | found |= VPD_FOUND_MAC; |
| 3370 | goto next; |
| 3371 | |
| 3372 | found_phy: |
| 3373 | found |= VPD_FOUND_PHY; |
| 3374 | |
| 3375 | next: |
| 3376 | p += klen; |
| 3377 | } |
| 3378 | i += len + 3; |
| 3379 | } |
| 3380 | |
| 3381 | use_random_mac_addr: |
| 3382 | if (found & VPD_FOUND_MAC) |
| 3383 | goto done; |
| 3384 | |
| 3385 | /* Sun MAC prefix then 3 random bytes. */ |
| 3386 | printk(PFX "MAC address not found in ROM VPD\n"); |
| 3387 | dev_addr[0] = 0x08; |
| 3388 | dev_addr[1] = 0x00; |
| 3389 | dev_addr[2] = 0x20; |
| 3390 | get_random_bytes(dev_addr + 3, 3); |
| 3391 | |
| 3392 | done: |
| 3393 | writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); |
| 3394 | return phy_type; |
| 3395 | } |
| 3396 | |
| 3397 | /* check pci invariants */ |
| 3398 | static void cas_check_pci_invariants(struct cas *cp) |
| 3399 | { |
| 3400 | struct pci_dev *pdev = cp->pdev; |
| 3401 | u8 rev; |
| 3402 | |
| 3403 | cp->cas_flags = 0; |
| 3404 | pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); |
| 3405 | if ((pdev->vendor == PCI_VENDOR_ID_SUN) && |
| 3406 | (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { |
| 3407 | if (rev >= CAS_ID_REVPLUS) |
| 3408 | cp->cas_flags |= CAS_FLAG_REG_PLUS; |
| 3409 | if (rev < CAS_ID_REVPLUS02u) |
| 3410 | cp->cas_flags |= CAS_FLAG_TARGET_ABORT; |
| 3411 | |
| 3412 | /* Original Cassini supports HW CSUM, but it's not |
| 3413 | * enabled by default as it can trigger TX hangs. |
| 3414 | */ |
| 3415 | if (rev < CAS_ID_REV2) |
| 3416 | cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; |
| 3417 | } else { |
| 3418 | /* Only sun has original cassini chips. */ |
| 3419 | cp->cas_flags |= CAS_FLAG_REG_PLUS; |
| 3420 | |
| 3421 | /* We use a flag because the same phy might be externally |
| 3422 | * connected. |
| 3423 | */ |
| 3424 | if ((pdev->vendor == PCI_VENDOR_ID_NS) && |
| 3425 | (pdev->device == PCI_DEVICE_ID_NS_SATURN)) |
| 3426 | cp->cas_flags |= CAS_FLAG_SATURN; |
| 3427 | } |
| 3428 | } |
| 3429 | |
| 3430 | |
| 3431 | static int cas_check_invariants(struct cas *cp) |
| 3432 | { |
| 3433 | struct pci_dev *pdev = cp->pdev; |
| 3434 | u32 cfg; |
| 3435 | int i; |
| 3436 | |
| 3437 | /* get page size for rx buffers. */ |
| 3438 | cp->page_order = 0; |
| 3439 | #ifdef USE_PAGE_ORDER |
| 3440 | if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { |
| 3441 | /* see if we can allocate larger pages */ |
| 3442 | struct page *page = alloc_pages(GFP_ATOMIC, |
| 3443 | CAS_JUMBO_PAGE_SHIFT - |
| 3444 | PAGE_SHIFT); |
| 3445 | if (page) { |
| 3446 | __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); |
| 3447 | cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; |
| 3448 | } else { |
| 3449 | printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU); |
| 3450 | } |
| 3451 | } |
| 3452 | #endif |
| 3453 | cp->page_size = (PAGE_SIZE << cp->page_order); |
| 3454 | |
| 3455 | /* Fetch the FIFO configurations. */ |
| 3456 | cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; |
| 3457 | cp->rx_fifo_size = RX_FIFO_SIZE; |
| 3458 | |
| 3459 | /* finish phy determination. MDIO1 takes precedence over MDIO0 if |
| 3460 | * they're both connected. |
| 3461 | */ |
| 3462 | cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, |
| 3463 | PCI_SLOT(pdev->devfn)); |
| 3464 | if (cp->phy_type & CAS_PHY_SERDES) { |
| 3465 | cp->cas_flags |= CAS_FLAG_1000MB_CAP; |
| 3466 | return 0; /* no more checking needed */ |
| 3467 | } |
| 3468 | |
| 3469 | /* MII */ |
| 3470 | cfg = readl(cp->regs + REG_MIF_CFG); |
| 3471 | if (cfg & MIF_CFG_MDIO_1) { |
| 3472 | cp->phy_type = CAS_PHY_MII_MDIO1; |
| 3473 | } else if (cfg & MIF_CFG_MDIO_0) { |
| 3474 | cp->phy_type = CAS_PHY_MII_MDIO0; |
| 3475 | } |
| 3476 | |
| 3477 | cas_mif_poll(cp, 0); |
| 3478 | writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); |
| 3479 | |
| 3480 | for (i = 0; i < 32; i++) { |
| 3481 | u32 phy_id; |
| 3482 | int j; |
| 3483 | |
| 3484 | for (j = 0; j < 3; j++) { |
| 3485 | cp->phy_addr = i; |
| 3486 | phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; |
| 3487 | phy_id |= cas_phy_read(cp, MII_PHYSID2); |
| 3488 | if (phy_id && (phy_id != 0xFFFFFFFF)) { |
| 3489 | cp->phy_id = phy_id; |
| 3490 | goto done; |
| 3491 | } |
| 3492 | } |
| 3493 | } |
| 3494 | printk(KERN_ERR PFX "MII phy did not respond [%08x]\n", |
| 3495 | readl(cp->regs + REG_MIF_STATE_MACHINE)); |
| 3496 | return -1; |
| 3497 | |
| 3498 | done: |
| 3499 | /* see if we can do gigabit */ |
| 3500 | cfg = cas_phy_read(cp, MII_BMSR); |
| 3501 | if ((cfg & CAS_BMSR_1000_EXTEND) && |
| 3502 | cas_phy_read(cp, CAS_MII_1000_EXTEND)) |
| 3503 | cp->cas_flags |= CAS_FLAG_1000MB_CAP; |
| 3504 | return 0; |
| 3505 | } |
| 3506 | |
| 3507 | /* Must be invoked under cp->lock. */ |
| 3508 | static inline void cas_start_dma(struct cas *cp) |
| 3509 | { |
| 3510 | int i; |
| 3511 | u32 val; |
| 3512 | int txfailed = 0; |
| 3513 | |
| 3514 | /* enable dma */ |
| 3515 | val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; |
| 3516 | writel(val, cp->regs + REG_TX_CFG); |
| 3517 | val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; |
| 3518 | writel(val, cp->regs + REG_RX_CFG); |
| 3519 | |
| 3520 | /* enable the mac */ |
| 3521 | val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; |
| 3522 | writel(val, cp->regs + REG_MAC_TX_CFG); |
| 3523 | val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; |
| 3524 | writel(val, cp->regs + REG_MAC_RX_CFG); |
| 3525 | |
| 3526 | i = STOP_TRIES; |
| 3527 | while (i-- > 0) { |
| 3528 | val = readl(cp->regs + REG_MAC_TX_CFG); |
| 3529 | if ((val & MAC_TX_CFG_EN)) |
| 3530 | break; |
| 3531 | udelay(10); |
| 3532 | } |
| 3533 | if (i < 0) txfailed = 1; |
| 3534 | i = STOP_TRIES; |
| 3535 | while (i-- > 0) { |
| 3536 | val = readl(cp->regs + REG_MAC_RX_CFG); |
| 3537 | if ((val & MAC_RX_CFG_EN)) { |
| 3538 | if (txfailed) { |
| 3539 | printk(KERN_ERR |
| 3540 | "%s: enabling mac failed [tx:%08x:%08x].\n", |
| 3541 | cp->dev->name, |
| 3542 | readl(cp->regs + REG_MIF_STATE_MACHINE), |
| 3543 | readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| 3544 | } |
| 3545 | goto enable_rx_done; |
| 3546 | } |
| 3547 | udelay(10); |
| 3548 | } |
| 3549 | printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", |
| 3550 | cp->dev->name, |
| 3551 | (txfailed? "tx,rx":"rx"), |
| 3552 | readl(cp->regs + REG_MIF_STATE_MACHINE), |
| 3553 | readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| 3554 | |
| 3555 | enable_rx_done: |
| 3556 | cas_unmask_intr(cp); /* enable interrupts */ |
| 3557 | writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); |
| 3558 | writel(0, cp->regs + REG_RX_COMP_TAIL); |
| 3559 | |
| 3560 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| 3561 | if (N_RX_DESC_RINGS > 1) |
| 3562 | writel(RX_DESC_RINGN_SIZE(1) - 4, |
| 3563 | cp->regs + REG_PLUS_RX_KICK1); |
| 3564 | |
| 3565 | for (i = 1; i < N_RX_COMP_RINGS; i++) |
| 3566 | writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); |
| 3567 | } |
| 3568 | } |
| 3569 | |
| 3570 | /* Must be invoked under cp->lock. */ |
| 3571 | static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, |
| 3572 | int *pause) |
| 3573 | { |
| 3574 | u32 val = readl(cp->regs + REG_PCS_MII_LPA); |
| 3575 | *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; |
| 3576 | *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; |
| 3577 | if (val & PCS_MII_LPA_ASYM_PAUSE) |
| 3578 | *pause |= 0x10; |
| 3579 | *spd = 1000; |
| 3580 | } |
| 3581 | |
| 3582 | /* Must be invoked under cp->lock. */ |
| 3583 | static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, |
| 3584 | int *pause) |
| 3585 | { |
| 3586 | u32 val; |
| 3587 | |
| 3588 | *fd = 0; |
| 3589 | *spd = 10; |
| 3590 | *pause = 0; |
| 3591 | |
| 3592 | /* use GMII registers */ |
| 3593 | val = cas_phy_read(cp, MII_LPA); |
| 3594 | if (val & CAS_LPA_PAUSE) |
| 3595 | *pause = 0x01; |
| 3596 | |
| 3597 | if (val & CAS_LPA_ASYM_PAUSE) |
| 3598 | *pause |= 0x10; |
| 3599 | |
| 3600 | if (val & LPA_DUPLEX) |
| 3601 | *fd = 1; |
| 3602 | if (val & LPA_100) |
| 3603 | *spd = 100; |
| 3604 | |
| 3605 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
| 3606 | val = cas_phy_read(cp, CAS_MII_1000_STATUS); |
| 3607 | if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) |
| 3608 | *spd = 1000; |
| 3609 | if (val & CAS_LPA_1000FULL) |
| 3610 | *fd = 1; |
| 3611 | } |
| 3612 | } |
| 3613 | |
| 3614 | /* A link-up condition has occurred, initialize and enable the |
| 3615 | * rest of the chip. |
| 3616 | * |
| 3617 | * Must be invoked under cp->lock. |
| 3618 | */ |
| 3619 | static void cas_set_link_modes(struct cas *cp) |
| 3620 | { |
| 3621 | u32 val; |
| 3622 | int full_duplex, speed, pause; |
| 3623 | |
| 3624 | full_duplex = 0; |
| 3625 | speed = 10; |
| 3626 | pause = 0; |
| 3627 | |
| 3628 | if (CAS_PHY_MII(cp->phy_type)) { |
| 3629 | cas_mif_poll(cp, 0); |
| 3630 | val = cas_phy_read(cp, MII_BMCR); |
| 3631 | if (val & BMCR_ANENABLE) { |
| 3632 | cas_read_mii_link_mode(cp, &full_duplex, &speed, |
| 3633 | &pause); |
| 3634 | } else { |
| 3635 | if (val & BMCR_FULLDPLX) |
| 3636 | full_duplex = 1; |
| 3637 | |
| 3638 | if (val & BMCR_SPEED100) |
| 3639 | speed = 100; |
| 3640 | else if (val & CAS_BMCR_SPEED1000) |
| 3641 | speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? |
| 3642 | 1000 : 100; |
| 3643 | } |
| 3644 | cas_mif_poll(cp, 1); |
| 3645 | |
| 3646 | } else { |
| 3647 | val = readl(cp->regs + REG_PCS_MII_CTRL); |
| 3648 | cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); |
| 3649 | if ((val & PCS_MII_AUTONEG_EN) == 0) { |
| 3650 | if (val & PCS_MII_CTRL_DUPLEX) |
| 3651 | full_duplex = 1; |
| 3652 | } |
| 3653 | } |
| 3654 | |
| 3655 | if (netif_msg_link(cp)) |
| 3656 | printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n", |
| 3657 | cp->dev->name, speed, (full_duplex ? "full" : "half")); |
| 3658 | |
| 3659 | val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; |
| 3660 | if (CAS_PHY_MII(cp->phy_type)) { |
| 3661 | val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; |
| 3662 | if (!full_duplex) |
| 3663 | val |= MAC_XIF_DISABLE_ECHO; |
| 3664 | } |
| 3665 | if (full_duplex) |
| 3666 | val |= MAC_XIF_FDPLX_LED; |
| 3667 | if (speed == 1000) |
| 3668 | val |= MAC_XIF_GMII_MODE; |
| 3669 | writel(val, cp->regs + REG_MAC_XIF_CFG); |
| 3670 | |
| 3671 | /* deal with carrier and collision detect. */ |
| 3672 | val = MAC_TX_CFG_IPG_EN; |
| 3673 | if (full_duplex) { |
| 3674 | val |= MAC_TX_CFG_IGNORE_CARRIER; |
| 3675 | val |= MAC_TX_CFG_IGNORE_COLL; |
| 3676 | } else { |
| 3677 | #ifndef USE_CSMA_CD_PROTO |
| 3678 | val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; |
| 3679 | val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; |
| 3680 | #endif |
| 3681 | } |
| 3682 | /* val now set up for REG_MAC_TX_CFG */ |
| 3683 | |
| 3684 | /* If gigabit and half-duplex, enable carrier extension |
| 3685 | * mode. increase slot time to 512 bytes as well. |
| 3686 | * else, disable it and make sure slot time is 64 bytes. |
| 3687 | * also activate checksum bug workaround |
| 3688 | */ |
| 3689 | if ((speed == 1000) && !full_duplex) { |
| 3690 | writel(val | MAC_TX_CFG_CARRIER_EXTEND, |
| 3691 | cp->regs + REG_MAC_TX_CFG); |
| 3692 | |
| 3693 | val = readl(cp->regs + REG_MAC_RX_CFG); |
| 3694 | val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ |
| 3695 | writel(val | MAC_RX_CFG_CARRIER_EXTEND, |
| 3696 | cp->regs + REG_MAC_RX_CFG); |
| 3697 | |
| 3698 | writel(0x200, cp->regs + REG_MAC_SLOT_TIME); |
| 3699 | |
| 3700 | cp->crc_size = 4; |
| 3701 | /* minimum size gigabit frame at half duplex */ |
| 3702 | cp->min_frame_size = CAS_1000MB_MIN_FRAME; |
| 3703 | |
| 3704 | } else { |
| 3705 | writel(val, cp->regs + REG_MAC_TX_CFG); |
| 3706 | |
| 3707 | /* checksum bug workaround. don't strip FCS when in |
| 3708 | * half-duplex mode |
| 3709 | */ |
| 3710 | val = readl(cp->regs + REG_MAC_RX_CFG); |
| 3711 | if (full_duplex) { |
| 3712 | val |= MAC_RX_CFG_STRIP_FCS; |
| 3713 | cp->crc_size = 0; |
| 3714 | cp->min_frame_size = CAS_MIN_MTU; |
| 3715 | } else { |
| 3716 | val &= ~MAC_RX_CFG_STRIP_FCS; |
| 3717 | cp->crc_size = 4; |
| 3718 | cp->min_frame_size = CAS_MIN_FRAME; |
| 3719 | } |
| 3720 | writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, |
| 3721 | cp->regs + REG_MAC_RX_CFG); |
| 3722 | writel(0x40, cp->regs + REG_MAC_SLOT_TIME); |
| 3723 | } |
| 3724 | |
| 3725 | if (netif_msg_link(cp)) { |
| 3726 | if (pause & 0x01) { |
| 3727 | printk(KERN_INFO "%s: Pause is enabled " |
| 3728 | "(rxfifo: %d off: %d on: %d)\n", |
| 3729 | cp->dev->name, |
| 3730 | cp->rx_fifo_size, |
| 3731 | cp->rx_pause_off, |
| 3732 | cp->rx_pause_on); |
| 3733 | } else if (pause & 0x10) { |
| 3734 | printk(KERN_INFO "%s: TX pause enabled\n", |
| 3735 | cp->dev->name); |
| 3736 | } else { |
| 3737 | printk(KERN_INFO "%s: Pause is disabled\n", |
| 3738 | cp->dev->name); |
| 3739 | } |
| 3740 | } |
| 3741 | |
| 3742 | val = readl(cp->regs + REG_MAC_CTRL_CFG); |
| 3743 | val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); |
| 3744 | if (pause) { /* symmetric or asymmetric pause */ |
| 3745 | val |= MAC_CTRL_CFG_SEND_PAUSE_EN; |
| 3746 | if (pause & 0x01) { /* symmetric pause */ |
| 3747 | val |= MAC_CTRL_CFG_RECV_PAUSE_EN; |
| 3748 | } |
| 3749 | } |
| 3750 | writel(val, cp->regs + REG_MAC_CTRL_CFG); |
| 3751 | cas_start_dma(cp); |
| 3752 | } |
| 3753 | |
| 3754 | /* Must be invoked under cp->lock. */ |
| 3755 | static void cas_init_hw(struct cas *cp, int restart_link) |
| 3756 | { |
| 3757 | if (restart_link) |
| 3758 | cas_phy_init(cp); |
| 3759 | |
| 3760 | cas_init_pause_thresholds(cp); |
| 3761 | cas_init_mac(cp); |
| 3762 | cas_init_dma(cp); |
| 3763 | |
| 3764 | if (restart_link) { |
| 3765 | /* Default aneg parameters */ |
| 3766 | cp->timer_ticks = 0; |
| 3767 | cas_begin_auto_negotiation(cp, NULL); |
| 3768 | } else if (cp->lstate == link_up) { |
| 3769 | cas_set_link_modes(cp); |
| 3770 | netif_carrier_on(cp->dev); |
| 3771 | } |
| 3772 | } |
| 3773 | |
| 3774 | /* Must be invoked under cp->lock. on earlier cassini boards, |
| 3775 | * SOFT_0 is tied to PCI reset. we use this to force a pci reset, |
| 3776 | * let it settle out, and then restore pci state. |
| 3777 | */ |
| 3778 | static void cas_hard_reset(struct cas *cp) |
| 3779 | { |
| 3780 | writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); |
| 3781 | udelay(20); |
| 3782 | pci_restore_state(cp->pdev); |
| 3783 | } |
| 3784 | |
| 3785 | |
| 3786 | static void cas_global_reset(struct cas *cp, int blkflag) |
| 3787 | { |
| 3788 | int limit; |
| 3789 | |
| 3790 | /* issue a global reset. don't use RSTOUT. */ |
| 3791 | if (blkflag && !CAS_PHY_MII(cp->phy_type)) { |
| 3792 | /* For PCS, when the blkflag is set, we should set the |
| 3793 | * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of |
| 3794 | * the last autonegotiation from being cleared. We'll |
| 3795 | * need some special handling if the chip is set into a |
| 3796 | * loopback mode. |
| 3797 | */ |
| 3798 | writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), |
| 3799 | cp->regs + REG_SW_RESET); |
| 3800 | } else { |
| 3801 | writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); |
| 3802 | } |
| 3803 | |
| 3804 | /* need to wait at least 3ms before polling register */ |
| 3805 | mdelay(3); |
| 3806 | |
| 3807 | limit = STOP_TRIES; |
| 3808 | while (limit-- > 0) { |
| 3809 | u32 val = readl(cp->regs + REG_SW_RESET); |
| 3810 | if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) |
| 3811 | goto done; |
| 3812 | udelay(10); |
| 3813 | } |
| 3814 | printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name); |
| 3815 | |
| 3816 | done: |
| 3817 | /* enable various BIM interrupts */ |
| 3818 | writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | |
| 3819 | BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); |
| 3820 | |
| 3821 | /* clear out pci error status mask for handled errors. |
| 3822 | * we don't deal with DMA counter overflows as they happen |
| 3823 | * all the time. |
| 3824 | */ |
| 3825 | writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | |
| 3826 | PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | |
| 3827 | PCI_ERR_BIM_DMA_READ), cp->regs + |
| 3828 | REG_PCI_ERR_STATUS_MASK); |
| 3829 | |
| 3830 | /* set up for MII by default to address mac rx reset timeout |
| 3831 | * issue |
| 3832 | */ |
| 3833 | writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); |
| 3834 | } |
| 3835 | |
| 3836 | static void cas_reset(struct cas *cp, int blkflag) |
| 3837 | { |
| 3838 | u32 val; |
| 3839 | |
| 3840 | cas_mask_intr(cp); |
| 3841 | cas_global_reset(cp, blkflag); |
| 3842 | cas_mac_reset(cp); |
| 3843 | cas_entropy_reset(cp); |
| 3844 | |
| 3845 | /* disable dma engines. */ |
| 3846 | val = readl(cp->regs + REG_TX_CFG); |
| 3847 | val &= ~TX_CFG_DMA_EN; |
| 3848 | writel(val, cp->regs + REG_TX_CFG); |
| 3849 | |
| 3850 | val = readl(cp->regs + REG_RX_CFG); |
| 3851 | val &= ~RX_CFG_DMA_EN; |
| 3852 | writel(val, cp->regs + REG_RX_CFG); |
| 3853 | |
| 3854 | /* program header parser */ |
| 3855 | if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || |
| 3856 | (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { |
| 3857 | cas_load_firmware(cp, CAS_HP_FIRMWARE); |
| 3858 | } else { |
| 3859 | cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); |
| 3860 | } |
| 3861 | |
| 3862 | /* clear out error registers */ |
| 3863 | spin_lock(&cp->stat_lock[N_TX_RINGS]); |
| 3864 | cas_clear_mac_err(cp); |
| 3865 | spin_unlock(&cp->stat_lock[N_TX_RINGS]); |
| 3866 | } |
| 3867 | |
| 3868 | /* Shut down the chip, must be called with pm_sem held. */ |
| 3869 | static void cas_shutdown(struct cas *cp) |
| 3870 | { |
| 3871 | unsigned long flags; |
| 3872 | |
| 3873 | /* Make us not-running to avoid timers respawning */ |
| 3874 | cp->hw_running = 0; |
| 3875 | |
| 3876 | del_timer_sync(&cp->link_timer); |
| 3877 | |
| 3878 | /* Stop the reset task */ |
| 3879 | #if 0 |
| 3880 | while (atomic_read(&cp->reset_task_pending_mtu) || |
| 3881 | atomic_read(&cp->reset_task_pending_spare) || |
| 3882 | atomic_read(&cp->reset_task_pending_all)) |
| 3883 | schedule(); |
| 3884 | |
| 3885 | #else |
| 3886 | while (atomic_read(&cp->reset_task_pending)) |
| 3887 | schedule(); |
| 3888 | #endif |
| 3889 | /* Actually stop the chip */ |
| 3890 | cas_lock_all_save(cp, flags); |
| 3891 | cas_reset(cp, 0); |
| 3892 | if (cp->cas_flags & CAS_FLAG_SATURN) |
| 3893 | cas_phy_powerdown(cp); |
| 3894 | cas_unlock_all_restore(cp, flags); |
| 3895 | } |
| 3896 | |
| 3897 | static int cas_change_mtu(struct net_device *dev, int new_mtu) |
| 3898 | { |
| 3899 | struct cas *cp = netdev_priv(dev); |
| 3900 | |
| 3901 | if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) |
| 3902 | return -EINVAL; |
| 3903 | |
| 3904 | dev->mtu = new_mtu; |
| 3905 | if (!netif_running(dev) || !netif_device_present(dev)) |
| 3906 | return 0; |
| 3907 | |
| 3908 | /* let the reset task handle it */ |
| 3909 | #if 1 |
| 3910 | atomic_inc(&cp->reset_task_pending); |
| 3911 | if ((cp->phy_type & CAS_PHY_SERDES)) { |
| 3912 | atomic_inc(&cp->reset_task_pending_all); |
| 3913 | } else { |
| 3914 | atomic_inc(&cp->reset_task_pending_mtu); |
| 3915 | } |
| 3916 | schedule_work(&cp->reset_task); |
| 3917 | #else |
| 3918 | atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? |
| 3919 | CAS_RESET_ALL : CAS_RESET_MTU); |
| 3920 | printk(KERN_ERR "reset called in cas_change_mtu\n"); |
| 3921 | schedule_work(&cp->reset_task); |
| 3922 | #endif |
| 3923 | |
| 3924 | flush_scheduled_work(); |
| 3925 | return 0; |
| 3926 | } |
| 3927 | |
| 3928 | static void cas_clean_txd(struct cas *cp, int ring) |
| 3929 | { |
| 3930 | struct cas_tx_desc *txd = cp->init_txds[ring]; |
| 3931 | struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; |
| 3932 | u64 daddr, dlen; |
| 3933 | int i, size; |
| 3934 | |
| 3935 | size = TX_DESC_RINGN_SIZE(ring); |
| 3936 | for (i = 0; i < size; i++) { |
| 3937 | int frag; |
| 3938 | |
| 3939 | if (skbs[i] == NULL) |
| 3940 | continue; |
| 3941 | |
| 3942 | skb = skbs[i]; |
| 3943 | skbs[i] = NULL; |
| 3944 | |
| 3945 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| 3946 | int ent = i & (size - 1); |
| 3947 | |
| 3948 | /* first buffer is never a tiny buffer and so |
| 3949 | * needs to be unmapped. |
| 3950 | */ |
| 3951 | daddr = le64_to_cpu(txd[ent].buffer); |
| 3952 | dlen = CAS_VAL(TX_DESC_BUFLEN, |
| 3953 | le64_to_cpu(txd[ent].control)); |
| 3954 | pci_unmap_page(cp->pdev, daddr, dlen, |
| 3955 | PCI_DMA_TODEVICE); |
| 3956 | |
| 3957 | if (frag != skb_shinfo(skb)->nr_frags) { |
| 3958 | i++; |
| 3959 | |
| 3960 | /* next buffer might by a tiny buffer. |
| 3961 | * skip past it. |
| 3962 | */ |
| 3963 | ent = i & (size - 1); |
| 3964 | if (cp->tx_tiny_use[ring][ent].used) |
| 3965 | i++; |
| 3966 | } |
| 3967 | } |
| 3968 | dev_kfree_skb_any(skb); |
| 3969 | } |
| 3970 | |
| 3971 | /* zero out tiny buf usage */ |
| 3972 | memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); |
| 3973 | } |
| 3974 | |
| 3975 | /* freed on close */ |
| 3976 | static inline void cas_free_rx_desc(struct cas *cp, int ring) |
| 3977 | { |
| 3978 | cas_page_t **page = cp->rx_pages[ring]; |
| 3979 | int i, size; |
| 3980 | |
| 3981 | size = RX_DESC_RINGN_SIZE(ring); |
| 3982 | for (i = 0; i < size; i++) { |
| 3983 | if (page[i]) { |
| 3984 | cas_page_free(cp, page[i]); |
| 3985 | page[i] = NULL; |
| 3986 | } |
| 3987 | } |
| 3988 | } |
| 3989 | |
| 3990 | static void cas_free_rxds(struct cas *cp) |
| 3991 | { |
| 3992 | int i; |
| 3993 | |
| 3994 | for (i = 0; i < N_RX_DESC_RINGS; i++) |
| 3995 | cas_free_rx_desc(cp, i); |
| 3996 | } |
| 3997 | |
| 3998 | /* Must be invoked under cp->lock. */ |
| 3999 | static void cas_clean_rings(struct cas *cp) |
| 4000 | { |
| 4001 | int i; |
| 4002 | |
| 4003 | /* need to clean all tx rings */ |
| 4004 | memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); |
| 4005 | memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); |
| 4006 | for (i = 0; i < N_TX_RINGS; i++) |
| 4007 | cas_clean_txd(cp, i); |
| 4008 | |
| 4009 | /* zero out init block */ |
| 4010 | memset(cp->init_block, 0, sizeof(struct cas_init_block)); |
| 4011 | cas_clean_rxds(cp); |
| 4012 | cas_clean_rxcs(cp); |
| 4013 | } |
| 4014 | |
| 4015 | /* allocated on open */ |
| 4016 | static inline int cas_alloc_rx_desc(struct cas *cp, int ring) |
| 4017 | { |
| 4018 | cas_page_t **page = cp->rx_pages[ring]; |
| 4019 | int size, i = 0; |
| 4020 | |
| 4021 | size = RX_DESC_RINGN_SIZE(ring); |
| 4022 | for (i = 0; i < size; i++) { |
| 4023 | if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) |
| 4024 | return -1; |
| 4025 | } |
| 4026 | return 0; |
| 4027 | } |
| 4028 | |
| 4029 | static int cas_alloc_rxds(struct cas *cp) |
| 4030 | { |
| 4031 | int i; |
| 4032 | |
| 4033 | for (i = 0; i < N_RX_DESC_RINGS; i++) { |
| 4034 | if (cas_alloc_rx_desc(cp, i) < 0) { |
| 4035 | cas_free_rxds(cp); |
| 4036 | return -1; |
| 4037 | } |
| 4038 | } |
| 4039 | return 0; |
| 4040 | } |
| 4041 | |
| 4042 | static void cas_reset_task(void *data) |
| 4043 | { |
| 4044 | struct cas *cp = (struct cas *) data; |
| 4045 | #if 0 |
| 4046 | int pending = atomic_read(&cp->reset_task_pending); |
| 4047 | #else |
| 4048 | int pending_all = atomic_read(&cp->reset_task_pending_all); |
| 4049 | int pending_spare = atomic_read(&cp->reset_task_pending_spare); |
| 4050 | int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); |
| 4051 | |
| 4052 | if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { |
| 4053 | /* We can have more tasks scheduled than actually |
| 4054 | * needed. |
| 4055 | */ |
| 4056 | atomic_dec(&cp->reset_task_pending); |
| 4057 | return; |
| 4058 | } |
| 4059 | #endif |
| 4060 | /* The link went down, we reset the ring, but keep |
| 4061 | * DMA stopped. Use this function for reset |
| 4062 | * on error as well. |
| 4063 | */ |
| 4064 | if (cp->hw_running) { |
| 4065 | unsigned long flags; |
| 4066 | |
| 4067 | /* Make sure we don't get interrupts or tx packets */ |
| 4068 | netif_device_detach(cp->dev); |
| 4069 | cas_lock_all_save(cp, flags); |
| 4070 | |
| 4071 | if (cp->opened) { |
| 4072 | /* We call cas_spare_recover when we call cas_open. |
| 4073 | * but we do not initialize the lists cas_spare_recover |
| 4074 | * uses until cas_open is called. |
| 4075 | */ |
| 4076 | cas_spare_recover(cp, GFP_ATOMIC); |
| 4077 | } |
| 4078 | #if 1 |
| 4079 | /* test => only pending_spare set */ |
| 4080 | if (!pending_all && !pending_mtu) |
| 4081 | goto done; |
| 4082 | #else |
| 4083 | if (pending == CAS_RESET_SPARE) |
| 4084 | goto done; |
| 4085 | #endif |
| 4086 | /* when pending == CAS_RESET_ALL, the following |
| 4087 | * call to cas_init_hw will restart auto negotiation. |
| 4088 | * Setting the second argument of cas_reset to |
| 4089 | * !(pending == CAS_RESET_ALL) will set this argument |
| 4090 | * to 1 (avoiding reinitializing the PHY for the normal |
| 4091 | * PCS case) when auto negotiation is not restarted. |
| 4092 | */ |
| 4093 | #if 1 |
| 4094 | cas_reset(cp, !(pending_all > 0)); |
| 4095 | if (cp->opened) |
| 4096 | cas_clean_rings(cp); |
| 4097 | cas_init_hw(cp, (pending_all > 0)); |
| 4098 | #else |
| 4099 | cas_reset(cp, !(pending == CAS_RESET_ALL)); |
| 4100 | if (cp->opened) |
| 4101 | cas_clean_rings(cp); |
| 4102 | cas_init_hw(cp, pending == CAS_RESET_ALL); |
| 4103 | #endif |
| 4104 | |
| 4105 | done: |
| 4106 | cas_unlock_all_restore(cp, flags); |
| 4107 | netif_device_attach(cp->dev); |
| 4108 | } |
| 4109 | #if 1 |
| 4110 | atomic_sub(pending_all, &cp->reset_task_pending_all); |
| 4111 | atomic_sub(pending_spare, &cp->reset_task_pending_spare); |
| 4112 | atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); |
| 4113 | atomic_dec(&cp->reset_task_pending); |
| 4114 | #else |
| 4115 | atomic_set(&cp->reset_task_pending, 0); |
| 4116 | #endif |
| 4117 | } |
| 4118 | |
| 4119 | static void cas_link_timer(unsigned long data) |
| 4120 | { |
| 4121 | struct cas *cp = (struct cas *) data; |
| 4122 | int mask, pending = 0, reset = 0; |
| 4123 | unsigned long flags; |
| 4124 | |
| 4125 | if (link_transition_timeout != 0 && |
| 4126 | cp->link_transition_jiffies_valid && |
| 4127 | ((jiffies - cp->link_transition_jiffies) > |
| 4128 | (link_transition_timeout))) { |
| 4129 | /* One-second counter so link-down workaround doesn't |
| 4130 | * cause resets to occur so fast as to fool the switch |
| 4131 | * into thinking the link is down. |
| 4132 | */ |
| 4133 | cp->link_transition_jiffies_valid = 0; |
| 4134 | } |
| 4135 | |
| 4136 | if (!cp->hw_running) |
| 4137 | return; |
| 4138 | |
| 4139 | spin_lock_irqsave(&cp->lock, flags); |
| 4140 | cas_lock_tx(cp); |
| 4141 | cas_entropy_gather(cp); |
| 4142 | |
| 4143 | /* If the link task is still pending, we just |
| 4144 | * reschedule the link timer |
| 4145 | */ |
| 4146 | #if 1 |
| 4147 | if (atomic_read(&cp->reset_task_pending_all) || |
| 4148 | atomic_read(&cp->reset_task_pending_spare) || |
| 4149 | atomic_read(&cp->reset_task_pending_mtu)) |
| 4150 | goto done; |
| 4151 | #else |
| 4152 | if (atomic_read(&cp->reset_task_pending)) |
| 4153 | goto done; |
| 4154 | #endif |
| 4155 | |
| 4156 | /* check for rx cleaning */ |
| 4157 | if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { |
| 4158 | int i, rmask; |
| 4159 | |
| 4160 | for (i = 0; i < MAX_RX_DESC_RINGS; i++) { |
| 4161 | rmask = CAS_FLAG_RXD_POST(i); |
| 4162 | if ((mask & rmask) == 0) |
| 4163 | continue; |
| 4164 | |
| 4165 | /* post_rxds will do a mod_timer */ |
| 4166 | if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { |
| 4167 | pending = 1; |
| 4168 | continue; |
| 4169 | } |
| 4170 | cp->cas_flags &= ~rmask; |
| 4171 | } |
| 4172 | } |
| 4173 | |
| 4174 | if (CAS_PHY_MII(cp->phy_type)) { |
| 4175 | u16 bmsr; |
| 4176 | cas_mif_poll(cp, 0); |
| 4177 | bmsr = cas_phy_read(cp, MII_BMSR); |
| 4178 | /* WTZ: Solaris driver reads this twice, but that |
| 4179 | * may be due to the PCS case and the use of a |
| 4180 | * common implementation. Read it twice here to be |
| 4181 | * safe. |
| 4182 | */ |
| 4183 | bmsr = cas_phy_read(cp, MII_BMSR); |
| 4184 | cas_mif_poll(cp, 1); |
| 4185 | readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ |
| 4186 | reset = cas_mii_link_check(cp, bmsr); |
| 4187 | } else { |
| 4188 | reset = cas_pcs_link_check(cp); |
| 4189 | } |
| 4190 | |
| 4191 | if (reset) |
| 4192 | goto done; |
| 4193 | |
| 4194 | /* check for tx state machine confusion */ |
| 4195 | if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { |
| 4196 | u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); |
| 4197 | u32 wptr, rptr; |
| 4198 | int tlm = CAS_VAL(MAC_SM_TLM, val); |
| 4199 | |
| 4200 | if (((tlm == 0x5) || (tlm == 0x3)) && |
| 4201 | (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { |
| 4202 | if (netif_msg_tx_err(cp)) |
| 4203 | printk(KERN_DEBUG "%s: tx err: " |
| 4204 | "MAC_STATE[%08x]\n", |
| 4205 | cp->dev->name, val); |
| 4206 | reset = 1; |
| 4207 | goto done; |
| 4208 | } |
| 4209 | |
| 4210 | val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); |
| 4211 | wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); |
| 4212 | rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); |
| 4213 | if ((val == 0) && (wptr != rptr)) { |
| 4214 | if (netif_msg_tx_err(cp)) |
| 4215 | printk(KERN_DEBUG "%s: tx err: " |
| 4216 | "TX_FIFO[%08x:%08x:%08x]\n", |
| 4217 | cp->dev->name, val, wptr, rptr); |
| 4218 | reset = 1; |
| 4219 | } |
| 4220 | |
| 4221 | if (reset) |
| 4222 | cas_hard_reset(cp); |
| 4223 | } |
| 4224 | |
| 4225 | done: |
| 4226 | if (reset) { |
| 4227 | #if 1 |
| 4228 | atomic_inc(&cp->reset_task_pending); |
| 4229 | atomic_inc(&cp->reset_task_pending_all); |
| 4230 | schedule_work(&cp->reset_task); |
| 4231 | #else |
| 4232 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| 4233 | printk(KERN_ERR "reset called in cas_link_timer\n"); |
| 4234 | schedule_work(&cp->reset_task); |
| 4235 | #endif |
| 4236 | } |
| 4237 | |
| 4238 | if (!pending) |
| 4239 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| 4240 | cas_unlock_tx(cp); |
| 4241 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4242 | } |
| 4243 | |
| 4244 | /* tiny buffers are used to avoid target abort issues with |
| 4245 | * older cassini's |
| 4246 | */ |
| 4247 | static void cas_tx_tiny_free(struct cas *cp) |
| 4248 | { |
| 4249 | struct pci_dev *pdev = cp->pdev; |
| 4250 | int i; |
| 4251 | |
| 4252 | for (i = 0; i < N_TX_RINGS; i++) { |
| 4253 | if (!cp->tx_tiny_bufs[i]) |
| 4254 | continue; |
| 4255 | |
| 4256 | pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, |
| 4257 | cp->tx_tiny_bufs[i], |
| 4258 | cp->tx_tiny_dvma[i]); |
| 4259 | cp->tx_tiny_bufs[i] = NULL; |
| 4260 | } |
| 4261 | } |
| 4262 | |
| 4263 | static int cas_tx_tiny_alloc(struct cas *cp) |
| 4264 | { |
| 4265 | struct pci_dev *pdev = cp->pdev; |
| 4266 | int i; |
| 4267 | |
| 4268 | for (i = 0; i < N_TX_RINGS; i++) { |
| 4269 | cp->tx_tiny_bufs[i] = |
| 4270 | pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, |
| 4271 | &cp->tx_tiny_dvma[i]); |
| 4272 | if (!cp->tx_tiny_bufs[i]) { |
| 4273 | cas_tx_tiny_free(cp); |
| 4274 | return -1; |
| 4275 | } |
| 4276 | } |
| 4277 | return 0; |
| 4278 | } |
| 4279 | |
| 4280 | |
| 4281 | static int cas_open(struct net_device *dev) |
| 4282 | { |
| 4283 | struct cas *cp = netdev_priv(dev); |
| 4284 | int hw_was_up, err; |
| 4285 | unsigned long flags; |
| 4286 | |
| 4287 | down(&cp->pm_sem); |
| 4288 | |
| 4289 | hw_was_up = cp->hw_running; |
| 4290 | |
| 4291 | /* The power-management semaphore protects the hw_running |
| 4292 | * etc. state so it is safe to do this bit without cp->lock |
| 4293 | */ |
| 4294 | if (!cp->hw_running) { |
| 4295 | /* Reset the chip */ |
| 4296 | cas_lock_all_save(cp, flags); |
| 4297 | /* We set the second arg to cas_reset to zero |
| 4298 | * because cas_init_hw below will have its second |
| 4299 | * argument set to non-zero, which will force |
| 4300 | * autonegotiation to start. |
| 4301 | */ |
| 4302 | cas_reset(cp, 0); |
| 4303 | cp->hw_running = 1; |
| 4304 | cas_unlock_all_restore(cp, flags); |
| 4305 | } |
| 4306 | |
| 4307 | if (cas_tx_tiny_alloc(cp) < 0) |
| 4308 | return -ENOMEM; |
| 4309 | |
| 4310 | /* alloc rx descriptors */ |
| 4311 | err = -ENOMEM; |
| 4312 | if (cas_alloc_rxds(cp) < 0) |
| 4313 | goto err_tx_tiny; |
| 4314 | |
| 4315 | /* allocate spares */ |
| 4316 | cas_spare_init(cp); |
| 4317 | cas_spare_recover(cp, GFP_KERNEL); |
| 4318 | |
| 4319 | /* We can now request the interrupt as we know it's masked |
| 4320 | * on the controller. cassini+ has up to 4 interrupts |
| 4321 | * that can be used, but you need to do explicit pci interrupt |
| 4322 | * mapping to expose them |
| 4323 | */ |
| 4324 | if (request_irq(cp->pdev->irq, cas_interrupt, |
| 4325 | SA_SHIRQ, dev->name, (void *) dev)) { |
| 4326 | printk(KERN_ERR "%s: failed to request irq !\n", |
| 4327 | cp->dev->name); |
| 4328 | err = -EAGAIN; |
| 4329 | goto err_spare; |
| 4330 | } |
| 4331 | |
| 4332 | /* init hw */ |
| 4333 | cas_lock_all_save(cp, flags); |
| 4334 | cas_clean_rings(cp); |
| 4335 | cas_init_hw(cp, !hw_was_up); |
| 4336 | cp->opened = 1; |
| 4337 | cas_unlock_all_restore(cp, flags); |
| 4338 | |
| 4339 | netif_start_queue(dev); |
| 4340 | up(&cp->pm_sem); |
| 4341 | return 0; |
| 4342 | |
| 4343 | err_spare: |
| 4344 | cas_spare_free(cp); |
| 4345 | cas_free_rxds(cp); |
| 4346 | err_tx_tiny: |
| 4347 | cas_tx_tiny_free(cp); |
| 4348 | up(&cp->pm_sem); |
| 4349 | return err; |
| 4350 | } |
| 4351 | |
| 4352 | static int cas_close(struct net_device *dev) |
| 4353 | { |
| 4354 | unsigned long flags; |
| 4355 | struct cas *cp = netdev_priv(dev); |
| 4356 | |
| 4357 | /* Make sure we don't get distracted by suspend/resume */ |
| 4358 | down(&cp->pm_sem); |
| 4359 | |
| 4360 | netif_stop_queue(dev); |
| 4361 | |
| 4362 | /* Stop traffic, mark us closed */ |
| 4363 | cas_lock_all_save(cp, flags); |
| 4364 | cp->opened = 0; |
| 4365 | cas_reset(cp, 0); |
| 4366 | cas_phy_init(cp); |
| 4367 | cas_begin_auto_negotiation(cp, NULL); |
| 4368 | cas_clean_rings(cp); |
| 4369 | cas_unlock_all_restore(cp, flags); |
| 4370 | |
| 4371 | free_irq(cp->pdev->irq, (void *) dev); |
| 4372 | cas_spare_free(cp); |
| 4373 | cas_free_rxds(cp); |
| 4374 | cas_tx_tiny_free(cp); |
| 4375 | up(&cp->pm_sem); |
| 4376 | return 0; |
| 4377 | } |
| 4378 | |
| 4379 | static struct { |
| 4380 | const char name[ETH_GSTRING_LEN]; |
| 4381 | } ethtool_cassini_statnames[] = { |
| 4382 | {"collisions"}, |
| 4383 | {"rx_bytes"}, |
| 4384 | {"rx_crc_errors"}, |
| 4385 | {"rx_dropped"}, |
| 4386 | {"rx_errors"}, |
| 4387 | {"rx_fifo_errors"}, |
| 4388 | {"rx_frame_errors"}, |
| 4389 | {"rx_length_errors"}, |
| 4390 | {"rx_over_errors"}, |
| 4391 | {"rx_packets"}, |
| 4392 | {"tx_aborted_errors"}, |
| 4393 | {"tx_bytes"}, |
| 4394 | {"tx_dropped"}, |
| 4395 | {"tx_errors"}, |
| 4396 | {"tx_fifo_errors"}, |
| 4397 | {"tx_packets"} |
| 4398 | }; |
| 4399 | #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN) |
| 4400 | |
| 4401 | static struct { |
| 4402 | const int offsets; /* neg. values for 2nd arg to cas_read_phy */ |
| 4403 | } ethtool_register_table[] = { |
| 4404 | {-MII_BMSR}, |
| 4405 | {-MII_BMCR}, |
| 4406 | {REG_CAWR}, |
| 4407 | {REG_INF_BURST}, |
| 4408 | {REG_BIM_CFG}, |
| 4409 | {REG_RX_CFG}, |
| 4410 | {REG_HP_CFG}, |
| 4411 | {REG_MAC_TX_CFG}, |
| 4412 | {REG_MAC_RX_CFG}, |
| 4413 | {REG_MAC_CTRL_CFG}, |
| 4414 | {REG_MAC_XIF_CFG}, |
| 4415 | {REG_MIF_CFG}, |
| 4416 | {REG_PCS_CFG}, |
| 4417 | {REG_SATURN_PCFG}, |
| 4418 | {REG_PCS_MII_STATUS}, |
| 4419 | {REG_PCS_STATE_MACHINE}, |
| 4420 | {REG_MAC_COLL_EXCESS}, |
| 4421 | {REG_MAC_COLL_LATE} |
| 4422 | }; |
| 4423 | #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int)) |
| 4424 | #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) |
| 4425 | |
| 4426 | static u8 *cas_get_regs(struct cas *cp) |
| 4427 | { |
| 4428 | u8 *ptr = kmalloc(CAS_MAX_REGS, GFP_KERNEL); |
| 4429 | u8 *p; |
| 4430 | int i; |
| 4431 | unsigned long flags; |
| 4432 | |
| 4433 | if (!ptr) |
| 4434 | return NULL; |
| 4435 | |
| 4436 | spin_lock_irqsave(&cp->lock, flags); |
| 4437 | for (i = 0, p = ptr; i < CAS_REG_LEN ; i ++, p += sizeof(u32)) { |
| 4438 | u16 hval; |
| 4439 | u32 val; |
| 4440 | if (ethtool_register_table[i].offsets < 0) { |
| 4441 | hval = cas_phy_read(cp, |
| 4442 | -ethtool_register_table[i].offsets); |
| 4443 | val = hval; |
| 4444 | } else { |
| 4445 | val= readl(cp->regs+ethtool_register_table[i].offsets); |
| 4446 | } |
| 4447 | memcpy(p, (u8 *)&val, sizeof(u32)); |
| 4448 | } |
| 4449 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4450 | |
| 4451 | return ptr; |
| 4452 | } |
| 4453 | |
| 4454 | static struct net_device_stats *cas_get_stats(struct net_device *dev) |
| 4455 | { |
| 4456 | struct cas *cp = netdev_priv(dev); |
| 4457 | struct net_device_stats *stats = cp->net_stats; |
| 4458 | unsigned long flags; |
| 4459 | int i; |
| 4460 | unsigned long tmp; |
| 4461 | |
| 4462 | /* we collate all of the stats into net_stats[N_TX_RING] */ |
| 4463 | if (!cp->hw_running) |
| 4464 | return stats + N_TX_RINGS; |
| 4465 | |
| 4466 | /* collect outstanding stats */ |
| 4467 | /* WTZ: the Cassini spec gives these as 16 bit counters but |
| 4468 | * stored in 32-bit words. Added a mask of 0xffff to be safe, |
| 4469 | * in case the chip somehow puts any garbage in the other bits. |
| 4470 | * Also, counter usage didn't seem to mach what Adrian did |
| 4471 | * in the parts of the code that set these quantities. Made |
| 4472 | * that consistent. |
| 4473 | */ |
| 4474 | spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); |
| 4475 | stats[N_TX_RINGS].rx_crc_errors += |
| 4476 | readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; |
| 4477 | stats[N_TX_RINGS].rx_frame_errors += |
| 4478 | readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; |
| 4479 | stats[N_TX_RINGS].rx_length_errors += |
| 4480 | readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; |
| 4481 | #if 1 |
| 4482 | tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + |
| 4483 | (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); |
| 4484 | stats[N_TX_RINGS].tx_aborted_errors += tmp; |
| 4485 | stats[N_TX_RINGS].collisions += |
| 4486 | tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); |
| 4487 | #else |
| 4488 | stats[N_TX_RINGS].tx_aborted_errors += |
| 4489 | readl(cp->regs + REG_MAC_COLL_EXCESS); |
| 4490 | stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + |
| 4491 | readl(cp->regs + REG_MAC_COLL_LATE); |
| 4492 | #endif |
| 4493 | cas_clear_mac_err(cp); |
| 4494 | |
| 4495 | /* saved bits that are unique to ring 0 */ |
| 4496 | spin_lock(&cp->stat_lock[0]); |
| 4497 | stats[N_TX_RINGS].collisions += stats[0].collisions; |
| 4498 | stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; |
| 4499 | stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; |
| 4500 | stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; |
| 4501 | stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; |
| 4502 | stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; |
| 4503 | spin_unlock(&cp->stat_lock[0]); |
| 4504 | |
| 4505 | for (i = 0; i < N_TX_RINGS; i++) { |
| 4506 | spin_lock(&cp->stat_lock[i]); |
| 4507 | stats[N_TX_RINGS].rx_length_errors += |
| 4508 | stats[i].rx_length_errors; |
| 4509 | stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; |
| 4510 | stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; |
| 4511 | stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; |
| 4512 | stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; |
| 4513 | stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; |
| 4514 | stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; |
| 4515 | stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; |
| 4516 | stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; |
| 4517 | stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; |
| 4518 | memset(stats + i, 0, sizeof(struct net_device_stats)); |
| 4519 | spin_unlock(&cp->stat_lock[i]); |
| 4520 | } |
| 4521 | spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); |
| 4522 | return stats + N_TX_RINGS; |
| 4523 | } |
| 4524 | |
| 4525 | |
| 4526 | static void cas_set_multicast(struct net_device *dev) |
| 4527 | { |
| 4528 | struct cas *cp = netdev_priv(dev); |
| 4529 | u32 rxcfg, rxcfg_new; |
| 4530 | unsigned long flags; |
| 4531 | int limit = STOP_TRIES; |
| 4532 | |
| 4533 | if (!cp->hw_running) |
| 4534 | return; |
| 4535 | |
| 4536 | spin_lock_irqsave(&cp->lock, flags); |
| 4537 | rxcfg = readl(cp->regs + REG_MAC_RX_CFG); |
| 4538 | |
| 4539 | /* disable RX MAC and wait for completion */ |
| 4540 | writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| 4541 | while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { |
| 4542 | if (!limit--) |
| 4543 | break; |
| 4544 | udelay(10); |
| 4545 | } |
| 4546 | |
| 4547 | /* disable hash filter and wait for completion */ |
| 4548 | limit = STOP_TRIES; |
| 4549 | rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); |
| 4550 | writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| 4551 | while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { |
| 4552 | if (!limit--) |
| 4553 | break; |
| 4554 | udelay(10); |
| 4555 | } |
| 4556 | |
| 4557 | /* program hash filters */ |
| 4558 | cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); |
| 4559 | rxcfg |= rxcfg_new; |
| 4560 | writel(rxcfg, cp->regs + REG_MAC_RX_CFG); |
| 4561 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4562 | } |
| 4563 | |
| 4564 | /* Eventually add support for changing the advertisement |
| 4565 | * on autoneg. |
| 4566 | */ |
| 4567 | static int cas_ethtool_ioctl(struct net_device *dev, void *ep_user) |
| 4568 | { |
| 4569 | struct cas *cp = netdev_priv(dev); |
| 4570 | u16 bmcr; |
| 4571 | int full_duplex, speed, pause; |
| 4572 | struct ethtool_cmd ecmd; |
| 4573 | unsigned long flags; |
| 4574 | enum link_state linkstate = link_up; |
| 4575 | |
| 4576 | if (copy_from_user(&ecmd, ep_user, sizeof(ecmd))) |
| 4577 | return -EFAULT; |
| 4578 | |
| 4579 | switch(ecmd.cmd) { |
| 4580 | case ETHTOOL_GDRVINFO: { |
| 4581 | struct ethtool_drvinfo info = { cmd: ETHTOOL_GDRVINFO }; |
| 4582 | |
| 4583 | strncpy(info.driver, DRV_MODULE_NAME, |
| 4584 | ETHTOOL_BUSINFO_LEN); |
| 4585 | strncpy(info.version, DRV_MODULE_VERSION, |
| 4586 | ETHTOOL_BUSINFO_LEN); |
| 4587 | info.fw_version[0] = '\0'; |
| 4588 | strncpy(info.bus_info, pci_name(cp->pdev), |
| 4589 | ETHTOOL_BUSINFO_LEN); |
| 4590 | info.regdump_len = cp->casreg_len < CAS_MAX_REGS ? |
| 4591 | cp->casreg_len : CAS_MAX_REGS; |
| 4592 | info.n_stats = CAS_NUM_STAT_KEYS; |
| 4593 | if (copy_to_user(ep_user, &info, sizeof(info))) |
| 4594 | return -EFAULT; |
| 4595 | |
| 4596 | return 0; |
| 4597 | } |
| 4598 | |
| 4599 | case ETHTOOL_GSET: |
| 4600 | ecmd.advertising = 0; |
| 4601 | ecmd.supported = SUPPORTED_Autoneg; |
| 4602 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
| 4603 | ecmd.supported |= SUPPORTED_1000baseT_Full; |
| 4604 | ecmd.advertising |= ADVERTISED_1000baseT_Full; |
| 4605 | } |
| 4606 | |
| 4607 | /* Record PHY settings if HW is on. */ |
| 4608 | spin_lock_irqsave(&cp->lock, flags); |
| 4609 | bmcr = 0; |
| 4610 | linkstate = cp->lstate; |
| 4611 | if (CAS_PHY_MII(cp->phy_type)) { |
| 4612 | ecmd.port = PORT_MII; |
| 4613 | ecmd.transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? |
| 4614 | XCVR_INTERNAL : XCVR_EXTERNAL; |
| 4615 | ecmd.phy_address = cp->phy_addr; |
| 4616 | ecmd.advertising |= ADVERTISED_TP | ADVERTISED_MII | |
| 4617 | ADVERTISED_10baseT_Half | |
| 4618 | ADVERTISED_10baseT_Full | |
| 4619 | ADVERTISED_100baseT_Half | |
| 4620 | ADVERTISED_100baseT_Full; |
| 4621 | |
| 4622 | ecmd.supported |= |
| 4623 | (SUPPORTED_10baseT_Half | |
| 4624 | SUPPORTED_10baseT_Full | |
| 4625 | SUPPORTED_100baseT_Half | |
| 4626 | SUPPORTED_100baseT_Full | |
| 4627 | SUPPORTED_TP | SUPPORTED_MII); |
| 4628 | |
| 4629 | if (cp->hw_running) { |
| 4630 | cas_mif_poll(cp, 0); |
| 4631 | bmcr = cas_phy_read(cp, MII_BMCR); |
| 4632 | cas_read_mii_link_mode(cp, &full_duplex, |
| 4633 | &speed, &pause); |
| 4634 | cas_mif_poll(cp, 1); |
| 4635 | } |
| 4636 | |
| 4637 | } else { |
| 4638 | ecmd.port = PORT_FIBRE; |
| 4639 | ecmd.transceiver = XCVR_INTERNAL; |
| 4640 | ecmd.phy_address = 0; |
| 4641 | ecmd.supported |= SUPPORTED_FIBRE; |
| 4642 | ecmd.advertising |= ADVERTISED_FIBRE; |
| 4643 | |
| 4644 | if (cp->hw_running) { |
| 4645 | /* pcs uses the same bits as mii */ |
| 4646 | bmcr = readl(cp->regs + REG_PCS_MII_CTRL); |
| 4647 | cas_read_pcs_link_mode(cp, &full_duplex, |
| 4648 | &speed, &pause); |
| 4649 | } |
| 4650 | } |
| 4651 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4652 | |
| 4653 | if (bmcr & BMCR_ANENABLE) { |
| 4654 | ecmd.advertising |= ADVERTISED_Autoneg; |
| 4655 | ecmd.autoneg = AUTONEG_ENABLE; |
| 4656 | ecmd.speed = ((speed == 10) ? |
| 4657 | SPEED_10 : |
| 4658 | ((speed == 1000) ? |
| 4659 | SPEED_1000 : SPEED_100)); |
| 4660 | ecmd.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; |
| 4661 | } else { |
| 4662 | ecmd.autoneg = AUTONEG_DISABLE; |
| 4663 | ecmd.speed = |
| 4664 | (bmcr & CAS_BMCR_SPEED1000) ? |
| 4665 | SPEED_1000 : |
| 4666 | ((bmcr & BMCR_SPEED100) ? SPEED_100: |
| 4667 | SPEED_10); |
| 4668 | ecmd.duplex = |
| 4669 | (bmcr & BMCR_FULLDPLX) ? |
| 4670 | DUPLEX_FULL : DUPLEX_HALF; |
| 4671 | } |
| 4672 | if (linkstate != link_up) { |
| 4673 | /* Force these to "unknown" if the link is not up and |
| 4674 | * autonogotiation in enabled. We can set the link |
| 4675 | * speed to 0, but not ecmd.duplex, |
| 4676 | * because its legal values are 0 and 1. Ethtool will |
| 4677 | * print the value reported in parentheses after the |
| 4678 | * word "Unknown" for unrecognized values. |
| 4679 | * |
| 4680 | * If in forced mode, we report the speed and duplex |
| 4681 | * settings that we configured. |
| 4682 | */ |
| 4683 | if (cp->link_cntl & BMCR_ANENABLE) { |
| 4684 | ecmd.speed = 0; |
| 4685 | ecmd.duplex = 0xff; |
| 4686 | } else { |
| 4687 | ecmd.speed = SPEED_10; |
| 4688 | if (cp->link_cntl & BMCR_SPEED100) { |
| 4689 | ecmd.speed = SPEED_100; |
| 4690 | } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { |
| 4691 | ecmd.speed = SPEED_1000; |
| 4692 | } |
| 4693 | ecmd.duplex = (cp->link_cntl & BMCR_FULLDPLX)? |
| 4694 | DUPLEX_FULL : DUPLEX_HALF; |
| 4695 | } |
| 4696 | } |
| 4697 | if (copy_to_user(ep_user, &ecmd, sizeof(ecmd))) |
| 4698 | return -EFAULT; |
| 4699 | return 0; |
| 4700 | |
| 4701 | case ETHTOOL_SSET: |
| 4702 | if (!capable(CAP_NET_ADMIN)) |
| 4703 | return -EPERM; |
| 4704 | |
| 4705 | /* Verify the settings we care about. */ |
| 4706 | if (ecmd.autoneg != AUTONEG_ENABLE && |
| 4707 | ecmd.autoneg != AUTONEG_DISABLE) |
| 4708 | return -EINVAL; |
| 4709 | |
| 4710 | if (ecmd.autoneg == AUTONEG_DISABLE && |
| 4711 | ((ecmd.speed != SPEED_1000 && |
| 4712 | ecmd.speed != SPEED_100 && |
| 4713 | ecmd.speed != SPEED_10) || |
| 4714 | (ecmd.duplex != DUPLEX_HALF && |
| 4715 | ecmd.duplex != DUPLEX_FULL))) |
| 4716 | return -EINVAL; |
| 4717 | |
| 4718 | /* Apply settings and restart link process. */ |
| 4719 | spin_lock_irqsave(&cp->lock, flags); |
| 4720 | cas_begin_auto_negotiation(cp, &ecmd); |
| 4721 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4722 | return 0; |
| 4723 | |
| 4724 | case ETHTOOL_NWAY_RST: |
| 4725 | if ((cp->link_cntl & BMCR_ANENABLE) == 0) |
| 4726 | return -EINVAL; |
| 4727 | |
| 4728 | /* Restart link process. */ |
| 4729 | spin_lock_irqsave(&cp->lock, flags); |
| 4730 | cas_begin_auto_negotiation(cp, NULL); |
| 4731 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4732 | |
| 4733 | return 0; |
| 4734 | |
| 4735 | case ETHTOOL_GWOL: |
| 4736 | case ETHTOOL_SWOL: |
| 4737 | break; /* doesn't exist */ |
| 4738 | |
| 4739 | /* get link status */ |
| 4740 | case ETHTOOL_GLINK: { |
| 4741 | struct ethtool_value edata = { cmd: ETHTOOL_GLINK }; |
| 4742 | |
| 4743 | edata.data = (cp->lstate == link_up); |
| 4744 | if (copy_to_user(ep_user, &edata, sizeof(edata))) |
| 4745 | return -EFAULT; |
| 4746 | return 0; |
| 4747 | } |
| 4748 | |
| 4749 | /* get message-level */ |
| 4750 | case ETHTOOL_GMSGLVL: { |
| 4751 | struct ethtool_value edata = { cmd: ETHTOOL_GMSGLVL }; |
| 4752 | |
| 4753 | edata.data = cp->msg_enable; |
| 4754 | if (copy_to_user(ep_user, &edata, sizeof(edata))) |
| 4755 | return -EFAULT; |
| 4756 | return 0; |
| 4757 | } |
| 4758 | |
| 4759 | /* set message-level */ |
| 4760 | case ETHTOOL_SMSGLVL: { |
| 4761 | struct ethtool_value edata; |
| 4762 | |
| 4763 | if (!capable(CAP_NET_ADMIN)) { |
| 4764 | return (-EPERM); |
| 4765 | } |
| 4766 | if (copy_from_user(&edata, ep_user, sizeof(edata))) |
| 4767 | return -EFAULT; |
| 4768 | cp->msg_enable = edata.data; |
| 4769 | return 0; |
| 4770 | } |
| 4771 | |
| 4772 | case ETHTOOL_GREGS: { |
| 4773 | struct ethtool_regs edata; |
| 4774 | u8 *ptr; |
| 4775 | int len = cp->casreg_len < CAS_MAX_REGS ? |
| 4776 | cp->casreg_len: CAS_MAX_REGS; |
| 4777 | |
| 4778 | if (copy_from_user(&edata, ep_user, sizeof (edata))) |
| 4779 | return -EFAULT; |
| 4780 | |
| 4781 | if (edata.len > len) |
| 4782 | edata.len = len; |
| 4783 | edata.version = 0; |
| 4784 | if (copy_to_user (ep_user, &edata, sizeof(edata))) |
| 4785 | return -EFAULT; |
| 4786 | |
| 4787 | /* cas_get_regs handles locks (cp->lock). */ |
| 4788 | ptr = cas_get_regs(cp); |
| 4789 | if (ptr == NULL) |
| 4790 | return -ENOMEM; |
| 4791 | if (copy_to_user(ep_user + sizeof (edata), ptr, edata.len)) |
| 4792 | return -EFAULT; |
| 4793 | |
| 4794 | kfree(ptr); |
| 4795 | return (0); |
| 4796 | } |
| 4797 | case ETHTOOL_GSTRINGS: { |
| 4798 | struct ethtool_gstrings edata; |
| 4799 | int len; |
| 4800 | |
| 4801 | if (copy_from_user(&edata, ep_user, sizeof(edata))) |
| 4802 | return -EFAULT; |
| 4803 | |
| 4804 | len = edata.len; |
| 4805 | switch(edata.string_set) { |
| 4806 | case ETH_SS_STATS: |
| 4807 | edata.len = (len < CAS_NUM_STAT_KEYS) ? |
| 4808 | len : CAS_NUM_STAT_KEYS; |
| 4809 | if (copy_to_user(ep_user, &edata, sizeof(edata))) |
| 4810 | return -EFAULT; |
| 4811 | |
| 4812 | if (copy_to_user(ep_user + sizeof(edata), |
| 4813 | ðtool_cassini_statnames, |
| 4814 | (edata.len * ETH_GSTRING_LEN))) |
| 4815 | return -EFAULT; |
| 4816 | return 0; |
| 4817 | default: |
| 4818 | return -EINVAL; |
| 4819 | } |
| 4820 | } |
| 4821 | case ETHTOOL_GSTATS: { |
| 4822 | int i = 0; |
| 4823 | u64 *tmp; |
| 4824 | struct ethtool_stats edata; |
| 4825 | struct net_device_stats *stats; |
| 4826 | int len; |
| 4827 | |
| 4828 | if (copy_from_user(&edata, ep_user, sizeof(edata))) |
| 4829 | return -EFAULT; |
| 4830 | |
| 4831 | len = edata.n_stats; |
| 4832 | stats = cas_get_stats(cp->dev); |
| 4833 | edata.cmd = ETHTOOL_GSTATS; |
| 4834 | edata.n_stats = (len < CAS_NUM_STAT_KEYS) ? |
| 4835 | len : CAS_NUM_STAT_KEYS; |
| 4836 | if (copy_to_user(ep_user, &edata, sizeof (edata))) |
| 4837 | return -EFAULT; |
| 4838 | |
| 4839 | tmp = kmalloc(sizeof(u64)*CAS_NUM_STAT_KEYS, GFP_KERNEL); |
| 4840 | if (tmp) { |
| 4841 | tmp[i++] = stats->collisions; |
| 4842 | tmp[i++] = stats->rx_bytes; |
| 4843 | tmp[i++] = stats->rx_crc_errors; |
| 4844 | tmp[i++] = stats->rx_dropped; |
| 4845 | tmp[i++] = stats->rx_errors; |
| 4846 | tmp[i++] = stats->rx_fifo_errors; |
| 4847 | tmp[i++] = stats->rx_frame_errors; |
| 4848 | tmp[i++] = stats->rx_length_errors; |
| 4849 | tmp[i++] = stats->rx_over_errors; |
| 4850 | tmp[i++] = stats->rx_packets; |
| 4851 | tmp[i++] = stats->tx_aborted_errors; |
| 4852 | tmp[i++] = stats->tx_bytes; |
| 4853 | tmp[i++] = stats->tx_dropped; |
| 4854 | tmp[i++] = stats->tx_errors; |
| 4855 | tmp[i++] = stats->tx_fifo_errors; |
| 4856 | tmp[i++] = stats->tx_packets; |
| 4857 | BUG_ON(i != CAS_NUM_STAT_KEYS); |
| 4858 | |
| 4859 | i = copy_to_user(ep_user + sizeof(edata), |
| 4860 | tmp, sizeof(u64)*edata.n_stats); |
| 4861 | kfree(tmp); |
| 4862 | } else { |
| 4863 | return -ENOMEM; |
| 4864 | } |
| 4865 | if (i) |
| 4866 | return -EFAULT; |
| 4867 | return 0; |
| 4868 | } |
| 4869 | } |
| 4870 | |
| 4871 | return -EOPNOTSUPP; |
| 4872 | } |
| 4873 | |
| 4874 | static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| 4875 | { |
| 4876 | struct cas *cp = netdev_priv(dev); |
| 4877 | struct mii_ioctl_data *data = (struct mii_ioctl_data *)&ifr->ifr_data; |
| 4878 | unsigned long flags; |
| 4879 | int rc = -EOPNOTSUPP; |
| 4880 | |
| 4881 | /* Hold the PM semaphore while doing ioctl's or we may collide |
| 4882 | * with open/close and power management and oops. |
| 4883 | */ |
| 4884 | down(&cp->pm_sem); |
| 4885 | switch (cmd) { |
| 4886 | case SIOCETHTOOL: |
| 4887 | rc = cas_ethtool_ioctl(dev, ifr->ifr_data); |
| 4888 | break; |
| 4889 | |
| 4890 | case SIOCGMIIPHY: /* Get address of MII PHY in use. */ |
| 4891 | data->phy_id = cp->phy_addr; |
| 4892 | /* Fallthrough... */ |
| 4893 | |
| 4894 | case SIOCGMIIREG: /* Read MII PHY register. */ |
| 4895 | spin_lock_irqsave(&cp->lock, flags); |
| 4896 | cas_mif_poll(cp, 0); |
| 4897 | data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); |
| 4898 | cas_mif_poll(cp, 1); |
| 4899 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4900 | rc = 0; |
| 4901 | break; |
| 4902 | |
| 4903 | case SIOCSMIIREG: /* Write MII PHY register. */ |
| 4904 | if (!capable(CAP_NET_ADMIN)) { |
| 4905 | rc = -EPERM; |
| 4906 | break; |
| 4907 | } |
| 4908 | spin_lock_irqsave(&cp->lock, flags); |
| 4909 | cas_mif_poll(cp, 0); |
| 4910 | rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); |
| 4911 | cas_mif_poll(cp, 1); |
| 4912 | spin_unlock_irqrestore(&cp->lock, flags); |
| 4913 | break; |
| 4914 | default: |
| 4915 | break; |
| 4916 | }; |
| 4917 | |
| 4918 | up(&cp->pm_sem); |
| 4919 | return rc; |
| 4920 | } |
| 4921 | |
| 4922 | static int __devinit cas_init_one(struct pci_dev *pdev, |
| 4923 | const struct pci_device_id *ent) |
| 4924 | { |
| 4925 | static int cas_version_printed = 0; |
| 4926 | unsigned long casreg_base, casreg_len; |
| 4927 | struct net_device *dev; |
| 4928 | struct cas *cp; |
| 4929 | int i, err, pci_using_dac; |
| 4930 | u16 pci_cmd; |
| 4931 | u8 orig_cacheline_size = 0, cas_cacheline_size = 0; |
| 4932 | |
| 4933 | if (cas_version_printed++ == 0) |
| 4934 | printk(KERN_INFO "%s", version); |
| 4935 | |
| 4936 | err = pci_enable_device(pdev); |
| 4937 | if (err) { |
| 4938 | printk(KERN_ERR PFX "Cannot enable PCI device, " |
| 4939 | "aborting.\n"); |
| 4940 | return err; |
| 4941 | } |
| 4942 | |
| 4943 | if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
| 4944 | printk(KERN_ERR PFX "Cannot find proper PCI device " |
| 4945 | "base address, aborting.\n"); |
| 4946 | err = -ENODEV; |
| 4947 | goto err_out_disable_pdev; |
| 4948 | } |
| 4949 | |
| 4950 | dev = alloc_etherdev(sizeof(*cp)); |
| 4951 | if (!dev) { |
| 4952 | printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n"); |
| 4953 | err = -ENOMEM; |
| 4954 | goto err_out_disable_pdev; |
| 4955 | } |
| 4956 | SET_MODULE_OWNER(dev); |
| 4957 | SET_NETDEV_DEV(dev, &pdev->dev); |
| 4958 | |
| 4959 | err = pci_request_regions(pdev, dev->name); |
| 4960 | if (err) { |
| 4961 | printk(KERN_ERR PFX "Cannot obtain PCI resources, " |
| 4962 | "aborting.\n"); |
| 4963 | goto err_out_free_netdev; |
| 4964 | } |
| 4965 | pci_set_master(pdev); |
| 4966 | |
| 4967 | /* we must always turn on parity response or else parity |
| 4968 | * doesn't get generated properly. disable SERR/PERR as well. |
| 4969 | * in addition, we want to turn MWI on. |
| 4970 | */ |
| 4971 | pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); |
| 4972 | pci_cmd &= ~PCI_COMMAND_SERR; |
| 4973 | pci_cmd |= PCI_COMMAND_PARITY; |
| 4974 | pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); |
| 4975 | pci_set_mwi(pdev); |
| 4976 | /* |
| 4977 | * On some architectures, the default cache line size set |
| 4978 | * by pci_set_mwi reduces perforamnce. We have to increase |
| 4979 | * it for this case. To start, we'll print some configuration |
| 4980 | * data. |
| 4981 | */ |
| 4982 | #if 1 |
| 4983 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, |
| 4984 | &orig_cacheline_size); |
| 4985 | if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { |
| 4986 | cas_cacheline_size = |
| 4987 | (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? |
| 4988 | CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; |
| 4989 | if (pci_write_config_byte(pdev, |
| 4990 | PCI_CACHE_LINE_SIZE, |
| 4991 | cas_cacheline_size)) { |
| 4992 | printk(KERN_ERR PFX "Could not set PCI cache " |
| 4993 | "line size\n"); |
| 4994 | goto err_write_cacheline; |
| 4995 | } |
| 4996 | } |
| 4997 | #endif |
| 4998 | |
| 4999 | |
| 5000 | /* Configure DMA attributes. */ |
| 5001 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| 5002 | pci_using_dac = 1; |
| 5003 | err = pci_set_consistent_dma_mask(pdev, |
| 5004 | DMA_64BIT_MASK); |
| 5005 | if (err < 0) { |
| 5006 | printk(KERN_ERR PFX "Unable to obtain 64-bit DMA " |
| 5007 | "for consistent allocations\n"); |
| 5008 | goto err_out_free_res; |
| 5009 | } |
| 5010 | |
| 5011 | } else { |
| 5012 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| 5013 | if (err) { |
| 5014 | printk(KERN_ERR PFX "No usable DMA configuration, " |
| 5015 | "aborting.\n"); |
| 5016 | goto err_out_free_res; |
| 5017 | } |
| 5018 | pci_using_dac = 0; |
| 5019 | } |
| 5020 | |
| 5021 | casreg_base = pci_resource_start(pdev, 0); |
| 5022 | casreg_len = pci_resource_len(pdev, 0); |
| 5023 | |
| 5024 | cp = netdev_priv(dev); |
| 5025 | cp->pdev = pdev; |
| 5026 | #if 1 |
| 5027 | /* A value of 0 indicates we never explicitly set it */ |
| 5028 | cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; |
| 5029 | #endif |
| 5030 | cp->dev = dev; |
| 5031 | cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : |
| 5032 | cassini_debug; |
| 5033 | |
| 5034 | cp->link_transition = LINK_TRANSITION_UNKNOWN; |
| 5035 | cp->link_transition_jiffies_valid = 0; |
| 5036 | |
| 5037 | spin_lock_init(&cp->lock); |
| 5038 | spin_lock_init(&cp->rx_inuse_lock); |
| 5039 | spin_lock_init(&cp->rx_spare_lock); |
| 5040 | for (i = 0; i < N_TX_RINGS; i++) { |
| 5041 | spin_lock_init(&cp->stat_lock[i]); |
| 5042 | spin_lock_init(&cp->tx_lock[i]); |
| 5043 | } |
| 5044 | spin_lock_init(&cp->stat_lock[N_TX_RINGS]); |
| 5045 | init_MUTEX(&cp->pm_sem); |
| 5046 | |
| 5047 | init_timer(&cp->link_timer); |
| 5048 | cp->link_timer.function = cas_link_timer; |
| 5049 | cp->link_timer.data = (unsigned long) cp; |
| 5050 | |
| 5051 | #if 1 |
| 5052 | /* Just in case the implementation of atomic operations |
| 5053 | * change so that an explicit initialization is necessary. |
| 5054 | */ |
| 5055 | atomic_set(&cp->reset_task_pending, 0); |
| 5056 | atomic_set(&cp->reset_task_pending_all, 0); |
| 5057 | atomic_set(&cp->reset_task_pending_spare, 0); |
| 5058 | atomic_set(&cp->reset_task_pending_mtu, 0); |
| 5059 | #endif |
| 5060 | INIT_WORK(&cp->reset_task, cas_reset_task, cp); |
| 5061 | |
| 5062 | /* Default link parameters */ |
| 5063 | if (link_mode >= 0 && link_mode <= 6) |
| 5064 | cp->link_cntl = link_modes[link_mode]; |
| 5065 | else |
| 5066 | cp->link_cntl = BMCR_ANENABLE; |
| 5067 | cp->lstate = link_down; |
| 5068 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| 5069 | netif_carrier_off(cp->dev); |
| 5070 | cp->timer_ticks = 0; |
| 5071 | |
| 5072 | /* give us access to cassini registers */ |
| 5073 | cp->regs = ioremap(casreg_base, casreg_len); |
| 5074 | if (cp->regs == 0UL) { |
| 5075 | printk(KERN_ERR PFX "Cannot map device registers, " |
| 5076 | "aborting.\n"); |
| 5077 | goto err_out_free_res; |
| 5078 | } |
| 5079 | cp->casreg_len = casreg_len; |
| 5080 | |
| 5081 | pci_save_state(pdev); |
| 5082 | cas_check_pci_invariants(cp); |
| 5083 | cas_hard_reset(cp); |
| 5084 | cas_reset(cp, 0); |
| 5085 | if (cas_check_invariants(cp)) |
| 5086 | goto err_out_iounmap; |
| 5087 | |
| 5088 | cp->init_block = (struct cas_init_block *) |
| 5089 | pci_alloc_consistent(pdev, sizeof(struct cas_init_block), |
| 5090 | &cp->block_dvma); |
| 5091 | if (!cp->init_block) { |
| 5092 | printk(KERN_ERR PFX "Cannot allocate init block, " |
| 5093 | "aborting.\n"); |
| 5094 | goto err_out_iounmap; |
| 5095 | } |
| 5096 | |
| 5097 | for (i = 0; i < N_TX_RINGS; i++) |
| 5098 | cp->init_txds[i] = cp->init_block->txds[i]; |
| 5099 | |
| 5100 | for (i = 0; i < N_RX_DESC_RINGS; i++) |
| 5101 | cp->init_rxds[i] = cp->init_block->rxds[i]; |
| 5102 | |
| 5103 | for (i = 0; i < N_RX_COMP_RINGS; i++) |
| 5104 | cp->init_rxcs[i] = cp->init_block->rxcs[i]; |
| 5105 | |
| 5106 | for (i = 0; i < N_RX_FLOWS; i++) |
| 5107 | skb_queue_head_init(&cp->rx_flows[i]); |
| 5108 | |
| 5109 | dev->open = cas_open; |
| 5110 | dev->stop = cas_close; |
| 5111 | dev->hard_start_xmit = cas_start_xmit; |
| 5112 | dev->get_stats = cas_get_stats; |
| 5113 | dev->set_multicast_list = cas_set_multicast; |
| 5114 | dev->do_ioctl = cas_ioctl; |
| 5115 | dev->tx_timeout = cas_tx_timeout; |
| 5116 | dev->watchdog_timeo = CAS_TX_TIMEOUT; |
| 5117 | dev->change_mtu = cas_change_mtu; |
| 5118 | #ifdef USE_NAPI |
| 5119 | dev->poll = cas_poll; |
| 5120 | dev->weight = 64; |
| 5121 | #endif |
| 5122 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 5123 | dev->poll_controller = cas_netpoll; |
| 5124 | #endif |
| 5125 | dev->irq = pdev->irq; |
| 5126 | dev->dma = 0; |
| 5127 | |
| 5128 | /* Cassini features. */ |
| 5129 | if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) |
| 5130 | dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; |
| 5131 | |
| 5132 | if (pci_using_dac) |
| 5133 | dev->features |= NETIF_F_HIGHDMA; |
| 5134 | |
| 5135 | if (register_netdev(dev)) { |
| 5136 | printk(KERN_ERR PFX "Cannot register net device, " |
| 5137 | "aborting.\n"); |
| 5138 | goto err_out_free_consistent; |
| 5139 | } |
| 5140 | |
| 5141 | i = readl(cp->regs + REG_BIM_CFG); |
| 5142 | printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) " |
| 5143 | "Ethernet[%d] ", dev->name, |
| 5144 | (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", |
| 5145 | (i & BIM_CFG_32BIT) ? "32" : "64", |
| 5146 | (i & BIM_CFG_66MHZ) ? "66" : "33", |
| 5147 | (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq); |
| 5148 | |
| 5149 | for (i = 0; i < 6; i++) |
| 5150 | printk("%2.2x%c", dev->dev_addr[i], |
| 5151 | i == 5 ? ' ' : ':'); |
| 5152 | printk("\n"); |
| 5153 | |
| 5154 | pci_set_drvdata(pdev, dev); |
| 5155 | cp->hw_running = 1; |
| 5156 | cas_entropy_reset(cp); |
| 5157 | cas_phy_init(cp); |
| 5158 | cas_begin_auto_negotiation(cp, NULL); |
| 5159 | return 0; |
| 5160 | |
| 5161 | err_out_free_consistent: |
| 5162 | pci_free_consistent(pdev, sizeof(struct cas_init_block), |
| 5163 | cp->init_block, cp->block_dvma); |
| 5164 | |
| 5165 | err_out_iounmap: |
| 5166 | down(&cp->pm_sem); |
| 5167 | if (cp->hw_running) |
| 5168 | cas_shutdown(cp); |
| 5169 | up(&cp->pm_sem); |
| 5170 | |
| 5171 | iounmap((void *) cp->regs); |
| 5172 | |
| 5173 | |
| 5174 | err_out_free_res: |
| 5175 | pci_release_regions(pdev); |
| 5176 | |
| 5177 | err_write_cacheline: |
| 5178 | /* Try to restore it in case the error occured after we |
| 5179 | * set it. |
| 5180 | */ |
| 5181 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); |
| 5182 | |
| 5183 | err_out_free_netdev: |
| 5184 | free_netdev(dev); |
| 5185 | |
| 5186 | err_out_disable_pdev: |
| 5187 | pci_disable_device(pdev); |
| 5188 | pci_set_drvdata(pdev, NULL); |
| 5189 | return -ENODEV; |
| 5190 | } |
| 5191 | |
| 5192 | static void __devexit cas_remove_one(struct pci_dev *pdev) |
| 5193 | { |
| 5194 | struct net_device *dev = pci_get_drvdata(pdev); |
| 5195 | struct cas *cp; |
| 5196 | if (!dev) |
| 5197 | return; |
| 5198 | |
| 5199 | cp = netdev_priv(dev); |
| 5200 | unregister_netdev(dev); |
| 5201 | |
| 5202 | down(&cp->pm_sem); |
| 5203 | flush_scheduled_work(); |
| 5204 | if (cp->hw_running) |
| 5205 | cas_shutdown(cp); |
| 5206 | up(&cp->pm_sem); |
| 5207 | |
| 5208 | #if 1 |
| 5209 | if (cp->orig_cacheline_size) { |
| 5210 | /* Restore the cache line size if we had modified |
| 5211 | * it. |
| 5212 | */ |
| 5213 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, |
| 5214 | cp->orig_cacheline_size); |
| 5215 | } |
| 5216 | #endif |
| 5217 | pci_free_consistent(pdev, sizeof(struct cas_init_block), |
| 5218 | cp->init_block, cp->block_dvma); |
| 5219 | iounmap((void *) cp->regs); |
| 5220 | free_netdev(dev); |
| 5221 | pci_release_regions(pdev); |
| 5222 | pci_disable_device(pdev); |
| 5223 | pci_set_drvdata(pdev, NULL); |
| 5224 | } |
| 5225 | |
| 5226 | #ifdef CONFIG_PM |
| 5227 | static int cas_suspend(struct pci_dev *pdev, u32 state) |
| 5228 | { |
| 5229 | struct net_device *dev = pci_get_drvdata(pdev); |
| 5230 | struct cas *cp = netdev_priv(dev); |
| 5231 | unsigned long flags; |
| 5232 | |
| 5233 | /* We hold the PM semaphore during entire driver |
| 5234 | * sleep time |
| 5235 | */ |
| 5236 | down(&cp->pm_sem); |
| 5237 | |
| 5238 | /* If the driver is opened, we stop the DMA */ |
| 5239 | if (cp->opened) { |
| 5240 | netif_device_detach(dev); |
| 5241 | |
| 5242 | cas_lock_all_save(cp, flags); |
| 5243 | |
| 5244 | /* We can set the second arg of cas_reset to 0 |
| 5245 | * because on resume, we'll call cas_init_hw with |
| 5246 | * its second arg set so that autonegotiation is |
| 5247 | * restarted. |
| 5248 | */ |
| 5249 | cas_reset(cp, 0); |
| 5250 | cas_clean_rings(cp); |
| 5251 | cas_unlock_all_restore(cp, flags); |
| 5252 | } |
| 5253 | |
| 5254 | if (cp->hw_running) |
| 5255 | cas_shutdown(cp); |
| 5256 | |
| 5257 | return 0; |
| 5258 | } |
| 5259 | |
| 5260 | static int cas_resume(struct pci_dev *pdev) |
| 5261 | { |
| 5262 | struct net_device *dev = pci_get_drvdata(pdev); |
| 5263 | struct cas *cp = netdev_priv(dev); |
| 5264 | |
| 5265 | printk(KERN_INFO "%s: resuming\n", dev->name); |
| 5266 | |
| 5267 | cas_hard_reset(cp); |
| 5268 | if (cp->opened) { |
| 5269 | unsigned long flags; |
| 5270 | cas_lock_all_save(cp, flags); |
| 5271 | cas_reset(cp, 0); |
| 5272 | cp->hw_running = 1; |
| 5273 | cas_clean_rings(cp); |
| 5274 | cas_init_hw(cp, 1); |
| 5275 | cas_unlock_all_restore(cp, flags); |
| 5276 | |
| 5277 | netif_device_attach(dev); |
| 5278 | } |
| 5279 | up(&cp->pm_sem); |
| 5280 | return 0; |
| 5281 | } |
| 5282 | #endif /* CONFIG_PM */ |
| 5283 | |
| 5284 | static struct pci_driver cas_driver = { |
| 5285 | .name = DRV_MODULE_NAME, |
| 5286 | .id_table = cas_pci_tbl, |
| 5287 | .probe = cas_init_one, |
| 5288 | .remove = __devexit_p(cas_remove_one), |
| 5289 | #ifdef CONFIG_PM |
| 5290 | .suspend = cas_suspend, |
| 5291 | .resume = cas_resume |
| 5292 | #endif |
| 5293 | }; |
| 5294 | |
| 5295 | static int __init cas_init(void) |
| 5296 | { |
| 5297 | if (linkdown_timeout > 0) |
| 5298 | link_transition_timeout = linkdown_timeout * HZ; |
| 5299 | else |
| 5300 | link_transition_timeout = 0; |
| 5301 | |
| 5302 | return pci_module_init(&cas_driver); |
| 5303 | } |
| 5304 | |
| 5305 | static void __exit cas_cleanup(void) |
| 5306 | { |
| 5307 | pci_unregister_driver(&cas_driver); |
| 5308 | } |
| 5309 | |
| 5310 | module_init(cas_init); |
| 5311 | module_exit(cas_cleanup); |