Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /** |
| 2 | * @file buffer_sync.c |
| 3 | * |
| 4 | * @remark Copyright 2002 OProfile authors |
| 5 | * @remark Read the file COPYING |
| 6 | * |
| 7 | * @author John Levon <levon@movementarian.org> |
| 8 | * |
| 9 | * This is the core of the buffer management. Each |
| 10 | * CPU buffer is processed and entered into the |
| 11 | * global event buffer. Such processing is necessary |
| 12 | * in several circumstances, mentioned below. |
| 13 | * |
| 14 | * The processing does the job of converting the |
| 15 | * transitory EIP value into a persistent dentry/offset |
| 16 | * value that the profiler can record at its leisure. |
| 17 | * |
| 18 | * See fs/dcookies.c for a description of the dentry/offset |
| 19 | * objects. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/mm.h> |
| 23 | #include <linux/workqueue.h> |
| 24 | #include <linux/notifier.h> |
| 25 | #include <linux/dcookies.h> |
| 26 | #include <linux/profile.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/fs.h> |
| 29 | |
| 30 | #include "oprofile_stats.h" |
| 31 | #include "event_buffer.h" |
| 32 | #include "cpu_buffer.h" |
| 33 | #include "buffer_sync.h" |
| 34 | |
| 35 | static LIST_HEAD(dying_tasks); |
| 36 | static LIST_HEAD(dead_tasks); |
| 37 | static cpumask_t marked_cpus = CPU_MASK_NONE; |
| 38 | static DEFINE_SPINLOCK(task_mortuary); |
| 39 | static void process_task_mortuary(void); |
| 40 | |
| 41 | |
| 42 | /* Take ownership of the task struct and place it on the |
| 43 | * list for processing. Only after two full buffer syncs |
| 44 | * does the task eventually get freed, because by then |
| 45 | * we are sure we will not reference it again. |
| 46 | */ |
| 47 | static int task_free_notify(struct notifier_block * self, unsigned long val, void * data) |
| 48 | { |
| 49 | struct task_struct * task = data; |
| 50 | spin_lock(&task_mortuary); |
| 51 | list_add(&task->tasks, &dying_tasks); |
| 52 | spin_unlock(&task_mortuary); |
| 53 | return NOTIFY_OK; |
| 54 | } |
| 55 | |
| 56 | |
| 57 | /* The task is on its way out. A sync of the buffer means we can catch |
| 58 | * any remaining samples for this task. |
| 59 | */ |
| 60 | static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data) |
| 61 | { |
| 62 | /* To avoid latency problems, we only process the current CPU, |
| 63 | * hoping that most samples for the task are on this CPU |
| 64 | */ |
Ingo Molnar | 39c715b | 2005-06-21 17:14:34 -0700 | [diff] [blame] | 65 | sync_buffer(raw_smp_processor_id()); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | return 0; |
| 67 | } |
| 68 | |
| 69 | |
| 70 | /* The task is about to try a do_munmap(). We peek at what it's going to |
| 71 | * do, and if it's an executable region, process the samples first, so |
| 72 | * we don't lose any. This does not have to be exact, it's a QoI issue |
| 73 | * only. |
| 74 | */ |
| 75 | static int munmap_notify(struct notifier_block * self, unsigned long val, void * data) |
| 76 | { |
| 77 | unsigned long addr = (unsigned long)data; |
| 78 | struct mm_struct * mm = current->mm; |
| 79 | struct vm_area_struct * mpnt; |
| 80 | |
| 81 | down_read(&mm->mmap_sem); |
| 82 | |
| 83 | mpnt = find_vma(mm, addr); |
| 84 | if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { |
| 85 | up_read(&mm->mmap_sem); |
| 86 | /* To avoid latency problems, we only process the current CPU, |
| 87 | * hoping that most samples for the task are on this CPU |
| 88 | */ |
Ingo Molnar | 39c715b | 2005-06-21 17:14:34 -0700 | [diff] [blame] | 89 | sync_buffer(raw_smp_processor_id()); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 90 | return 0; |
| 91 | } |
| 92 | |
| 93 | up_read(&mm->mmap_sem); |
| 94 | return 0; |
| 95 | } |
| 96 | |
| 97 | |
| 98 | /* We need to be told about new modules so we don't attribute to a previously |
| 99 | * loaded module, or drop the samples on the floor. |
| 100 | */ |
| 101 | static int module_load_notify(struct notifier_block * self, unsigned long val, void * data) |
| 102 | { |
| 103 | #ifdef CONFIG_MODULES |
| 104 | if (val != MODULE_STATE_COMING) |
| 105 | return 0; |
| 106 | |
| 107 | /* FIXME: should we process all CPU buffers ? */ |
| 108 | down(&buffer_sem); |
| 109 | add_event_entry(ESCAPE_CODE); |
| 110 | add_event_entry(MODULE_LOADED_CODE); |
| 111 | up(&buffer_sem); |
| 112 | #endif |
| 113 | return 0; |
| 114 | } |
| 115 | |
| 116 | |
| 117 | static struct notifier_block task_free_nb = { |
| 118 | .notifier_call = task_free_notify, |
| 119 | }; |
| 120 | |
| 121 | static struct notifier_block task_exit_nb = { |
| 122 | .notifier_call = task_exit_notify, |
| 123 | }; |
| 124 | |
| 125 | static struct notifier_block munmap_nb = { |
| 126 | .notifier_call = munmap_notify, |
| 127 | }; |
| 128 | |
| 129 | static struct notifier_block module_load_nb = { |
| 130 | .notifier_call = module_load_notify, |
| 131 | }; |
| 132 | |
| 133 | |
| 134 | static void end_sync(void) |
| 135 | { |
| 136 | end_cpu_work(); |
| 137 | /* make sure we don't leak task structs */ |
| 138 | process_task_mortuary(); |
| 139 | process_task_mortuary(); |
| 140 | } |
| 141 | |
| 142 | |
| 143 | int sync_start(void) |
| 144 | { |
| 145 | int err; |
| 146 | |
| 147 | start_cpu_work(); |
| 148 | |
| 149 | err = task_handoff_register(&task_free_nb); |
| 150 | if (err) |
| 151 | goto out1; |
| 152 | err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); |
| 153 | if (err) |
| 154 | goto out2; |
| 155 | err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); |
| 156 | if (err) |
| 157 | goto out3; |
| 158 | err = register_module_notifier(&module_load_nb); |
| 159 | if (err) |
| 160 | goto out4; |
| 161 | |
| 162 | out: |
| 163 | return err; |
| 164 | out4: |
| 165 | profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); |
| 166 | out3: |
| 167 | profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); |
| 168 | out2: |
| 169 | task_handoff_unregister(&task_free_nb); |
| 170 | out1: |
| 171 | end_sync(); |
| 172 | goto out; |
| 173 | } |
| 174 | |
| 175 | |
| 176 | void sync_stop(void) |
| 177 | { |
| 178 | unregister_module_notifier(&module_load_nb); |
| 179 | profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); |
| 180 | profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); |
| 181 | task_handoff_unregister(&task_free_nb); |
| 182 | end_sync(); |
| 183 | } |
| 184 | |
| 185 | |
| 186 | /* Optimisation. We can manage without taking the dcookie sem |
| 187 | * because we cannot reach this code without at least one |
| 188 | * dcookie user still being registered (namely, the reader |
| 189 | * of the event buffer). */ |
| 190 | static inline unsigned long fast_get_dcookie(struct dentry * dentry, |
| 191 | struct vfsmount * vfsmnt) |
| 192 | { |
| 193 | unsigned long cookie; |
| 194 | |
| 195 | if (dentry->d_cookie) |
| 196 | return (unsigned long)dentry; |
| 197 | get_dcookie(dentry, vfsmnt, &cookie); |
| 198 | return cookie; |
| 199 | } |
| 200 | |
| 201 | |
| 202 | /* Look up the dcookie for the task's first VM_EXECUTABLE mapping, |
| 203 | * which corresponds loosely to "application name". This is |
| 204 | * not strictly necessary but allows oprofile to associate |
| 205 | * shared-library samples with particular applications |
| 206 | */ |
| 207 | static unsigned long get_exec_dcookie(struct mm_struct * mm) |
| 208 | { |
John Levon | 0c0a400 | 2005-06-23 22:02:47 -0700 | [diff] [blame] | 209 | unsigned long cookie = NO_COOKIE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 210 | struct vm_area_struct * vma; |
| 211 | |
| 212 | if (!mm) |
| 213 | goto out; |
| 214 | |
| 215 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| 216 | if (!vma->vm_file) |
| 217 | continue; |
| 218 | if (!(vma->vm_flags & VM_EXECUTABLE)) |
| 219 | continue; |
| 220 | cookie = fast_get_dcookie(vma->vm_file->f_dentry, |
| 221 | vma->vm_file->f_vfsmnt); |
| 222 | break; |
| 223 | } |
| 224 | |
| 225 | out: |
| 226 | return cookie; |
| 227 | } |
| 228 | |
| 229 | |
| 230 | /* Convert the EIP value of a sample into a persistent dentry/offset |
| 231 | * pair that can then be added to the global event buffer. We make |
| 232 | * sure to do this lookup before a mm->mmap modification happens so |
| 233 | * we don't lose track. |
| 234 | */ |
| 235 | static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset) |
| 236 | { |
John Levon | 0c0a400 | 2005-06-23 22:02:47 -0700 | [diff] [blame] | 237 | unsigned long cookie = NO_COOKIE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 238 | struct vm_area_struct * vma; |
| 239 | |
| 240 | for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { |
| 241 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 242 | if (addr < vma->vm_start || addr >= vma->vm_end) |
| 243 | continue; |
| 244 | |
John Levon | 0c0a400 | 2005-06-23 22:02:47 -0700 | [diff] [blame] | 245 | if (vma->vm_file) { |
| 246 | cookie = fast_get_dcookie(vma->vm_file->f_dentry, |
| 247 | vma->vm_file->f_vfsmnt); |
| 248 | *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - |
| 249 | vma->vm_start; |
| 250 | } else { |
| 251 | /* must be an anonymous map */ |
| 252 | *offset = addr; |
| 253 | } |
| 254 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 255 | break; |
| 256 | } |
| 257 | |
John Levon | 0c0a400 | 2005-06-23 22:02:47 -0700 | [diff] [blame] | 258 | if (!vma) |
| 259 | cookie = INVALID_COOKIE; |
| 260 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 261 | return cookie; |
| 262 | } |
| 263 | |
| 264 | |
John Levon | 0c0a400 | 2005-06-23 22:02:47 -0700 | [diff] [blame] | 265 | static unsigned long last_cookie = INVALID_COOKIE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 266 | |
| 267 | static void add_cpu_switch(int i) |
| 268 | { |
| 269 | add_event_entry(ESCAPE_CODE); |
| 270 | add_event_entry(CPU_SWITCH_CODE); |
| 271 | add_event_entry(i); |
John Levon | 0c0a400 | 2005-06-23 22:02:47 -0700 | [diff] [blame] | 272 | last_cookie = INVALID_COOKIE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 273 | } |
| 274 | |
| 275 | static void add_kernel_ctx_switch(unsigned int in_kernel) |
| 276 | { |
| 277 | add_event_entry(ESCAPE_CODE); |
| 278 | if (in_kernel) |
| 279 | add_event_entry(KERNEL_ENTER_SWITCH_CODE); |
| 280 | else |
| 281 | add_event_entry(KERNEL_EXIT_SWITCH_CODE); |
| 282 | } |
| 283 | |
| 284 | static void |
| 285 | add_user_ctx_switch(struct task_struct const * task, unsigned long cookie) |
| 286 | { |
| 287 | add_event_entry(ESCAPE_CODE); |
| 288 | add_event_entry(CTX_SWITCH_CODE); |
| 289 | add_event_entry(task->pid); |
| 290 | add_event_entry(cookie); |
| 291 | /* Another code for daemon back-compat */ |
| 292 | add_event_entry(ESCAPE_CODE); |
| 293 | add_event_entry(CTX_TGID_CODE); |
| 294 | add_event_entry(task->tgid); |
| 295 | } |
| 296 | |
| 297 | |
| 298 | static void add_cookie_switch(unsigned long cookie) |
| 299 | { |
| 300 | add_event_entry(ESCAPE_CODE); |
| 301 | add_event_entry(COOKIE_SWITCH_CODE); |
| 302 | add_event_entry(cookie); |
| 303 | } |
| 304 | |
| 305 | |
| 306 | static void add_trace_begin(void) |
| 307 | { |
| 308 | add_event_entry(ESCAPE_CODE); |
| 309 | add_event_entry(TRACE_BEGIN_CODE); |
| 310 | } |
| 311 | |
| 312 | |
| 313 | static void add_sample_entry(unsigned long offset, unsigned long event) |
| 314 | { |
| 315 | add_event_entry(offset); |
| 316 | add_event_entry(event); |
| 317 | } |
| 318 | |
| 319 | |
| 320 | static int add_us_sample(struct mm_struct * mm, struct op_sample * s) |
| 321 | { |
| 322 | unsigned long cookie; |
| 323 | off_t offset; |
| 324 | |
| 325 | cookie = lookup_dcookie(mm, s->eip, &offset); |
| 326 | |
John Levon | 0c0a400 | 2005-06-23 22:02:47 -0700 | [diff] [blame] | 327 | if (cookie == INVALID_COOKIE) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 328 | atomic_inc(&oprofile_stats.sample_lost_no_mapping); |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | if (cookie != last_cookie) { |
| 333 | add_cookie_switch(cookie); |
| 334 | last_cookie = cookie; |
| 335 | } |
| 336 | |
| 337 | add_sample_entry(offset, s->event); |
| 338 | |
| 339 | return 1; |
| 340 | } |
| 341 | |
| 342 | |
| 343 | /* Add a sample to the global event buffer. If possible the |
| 344 | * sample is converted into a persistent dentry/offset pair |
| 345 | * for later lookup from userspace. |
| 346 | */ |
| 347 | static int |
| 348 | add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel) |
| 349 | { |
| 350 | if (in_kernel) { |
| 351 | add_sample_entry(s->eip, s->event); |
| 352 | return 1; |
| 353 | } else if (mm) { |
| 354 | return add_us_sample(mm, s); |
| 355 | } else { |
| 356 | atomic_inc(&oprofile_stats.sample_lost_no_mm); |
| 357 | } |
| 358 | return 0; |
| 359 | } |
| 360 | |
| 361 | |
| 362 | static void release_mm(struct mm_struct * mm) |
| 363 | { |
| 364 | if (!mm) |
| 365 | return; |
| 366 | up_read(&mm->mmap_sem); |
| 367 | mmput(mm); |
| 368 | } |
| 369 | |
| 370 | |
| 371 | static struct mm_struct * take_tasks_mm(struct task_struct * task) |
| 372 | { |
| 373 | struct mm_struct * mm = get_task_mm(task); |
| 374 | if (mm) |
| 375 | down_read(&mm->mmap_sem); |
| 376 | return mm; |
| 377 | } |
| 378 | |
| 379 | |
| 380 | static inline int is_code(unsigned long val) |
| 381 | { |
| 382 | return val == ESCAPE_CODE; |
| 383 | } |
| 384 | |
| 385 | |
| 386 | /* "acquire" as many cpu buffer slots as we can */ |
| 387 | static unsigned long get_slots(struct oprofile_cpu_buffer * b) |
| 388 | { |
| 389 | unsigned long head = b->head_pos; |
| 390 | unsigned long tail = b->tail_pos; |
| 391 | |
| 392 | /* |
| 393 | * Subtle. This resets the persistent last_task |
| 394 | * and in_kernel values used for switching notes. |
| 395 | * BUT, there is a small window between reading |
| 396 | * head_pos, and this call, that means samples |
| 397 | * can appear at the new head position, but not |
| 398 | * be prefixed with the notes for switching |
| 399 | * kernel mode or a task switch. This small hole |
| 400 | * can lead to mis-attribution or samples where |
| 401 | * we don't know if it's in the kernel or not, |
| 402 | * at the start of an event buffer. |
| 403 | */ |
| 404 | cpu_buffer_reset(b); |
| 405 | |
| 406 | if (head >= tail) |
| 407 | return head - tail; |
| 408 | |
| 409 | return head + (b->buffer_size - tail); |
| 410 | } |
| 411 | |
| 412 | |
| 413 | static void increment_tail(struct oprofile_cpu_buffer * b) |
| 414 | { |
| 415 | unsigned long new_tail = b->tail_pos + 1; |
| 416 | |
| 417 | rmb(); |
| 418 | |
| 419 | if (new_tail < b->buffer_size) |
| 420 | b->tail_pos = new_tail; |
| 421 | else |
| 422 | b->tail_pos = 0; |
| 423 | } |
| 424 | |
| 425 | |
| 426 | /* Move tasks along towards death. Any tasks on dead_tasks |
| 427 | * will definitely have no remaining references in any |
| 428 | * CPU buffers at this point, because we use two lists, |
| 429 | * and to have reached the list, it must have gone through |
| 430 | * one full sync already. |
| 431 | */ |
| 432 | static void process_task_mortuary(void) |
| 433 | { |
| 434 | struct list_head * pos; |
| 435 | struct list_head * pos2; |
| 436 | struct task_struct * task; |
| 437 | |
| 438 | spin_lock(&task_mortuary); |
| 439 | |
| 440 | list_for_each_safe(pos, pos2, &dead_tasks) { |
| 441 | task = list_entry(pos, struct task_struct, tasks); |
| 442 | list_del(&task->tasks); |
| 443 | free_task(task); |
| 444 | } |
| 445 | |
| 446 | list_for_each_safe(pos, pos2, &dying_tasks) { |
| 447 | task = list_entry(pos, struct task_struct, tasks); |
| 448 | list_del(&task->tasks); |
| 449 | list_add_tail(&task->tasks, &dead_tasks); |
| 450 | } |
| 451 | |
| 452 | spin_unlock(&task_mortuary); |
| 453 | } |
| 454 | |
| 455 | |
| 456 | static void mark_done(int cpu) |
| 457 | { |
| 458 | int i; |
| 459 | |
| 460 | cpu_set(cpu, marked_cpus); |
| 461 | |
| 462 | for_each_online_cpu(i) { |
| 463 | if (!cpu_isset(i, marked_cpus)) |
| 464 | return; |
| 465 | } |
| 466 | |
| 467 | /* All CPUs have been processed at least once, |
| 468 | * we can process the mortuary once |
| 469 | */ |
| 470 | process_task_mortuary(); |
| 471 | |
| 472 | cpus_clear(marked_cpus); |
| 473 | } |
| 474 | |
| 475 | |
| 476 | /* FIXME: this is not sufficient if we implement syscall barrier backtrace |
| 477 | * traversal, the code switch to sb_sample_start at first kernel enter/exit |
| 478 | * switch so we need a fifth state and some special handling in sync_buffer() |
| 479 | */ |
| 480 | typedef enum { |
| 481 | sb_bt_ignore = -2, |
| 482 | sb_buffer_start, |
| 483 | sb_bt_start, |
| 484 | sb_sample_start, |
| 485 | } sync_buffer_state; |
| 486 | |
| 487 | /* Sync one of the CPU's buffers into the global event buffer. |
| 488 | * Here we need to go through each batch of samples punctuated |
| 489 | * by context switch notes, taking the task's mmap_sem and doing |
| 490 | * lookup in task->mm->mmap to convert EIP into dcookie/offset |
| 491 | * value. |
| 492 | */ |
| 493 | void sync_buffer(int cpu) |
| 494 | { |
| 495 | struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu]; |
| 496 | struct mm_struct *mm = NULL; |
| 497 | struct task_struct * new; |
| 498 | unsigned long cookie = 0; |
| 499 | int in_kernel = 1; |
| 500 | unsigned int i; |
| 501 | sync_buffer_state state = sb_buffer_start; |
| 502 | unsigned long available; |
| 503 | |
| 504 | down(&buffer_sem); |
| 505 | |
| 506 | add_cpu_switch(cpu); |
| 507 | |
| 508 | /* Remember, only we can modify tail_pos */ |
| 509 | |
| 510 | available = get_slots(cpu_buf); |
| 511 | |
| 512 | for (i = 0; i < available; ++i) { |
| 513 | struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos]; |
| 514 | |
| 515 | if (is_code(s->eip)) { |
| 516 | if (s->event <= CPU_IS_KERNEL) { |
| 517 | /* kernel/userspace switch */ |
| 518 | in_kernel = s->event; |
| 519 | if (state == sb_buffer_start) |
| 520 | state = sb_sample_start; |
| 521 | add_kernel_ctx_switch(s->event); |
| 522 | } else if (s->event == CPU_TRACE_BEGIN) { |
| 523 | state = sb_bt_start; |
| 524 | add_trace_begin(); |
| 525 | } else { |
| 526 | struct mm_struct * oldmm = mm; |
| 527 | |
| 528 | /* userspace context switch */ |
| 529 | new = (struct task_struct *)s->event; |
| 530 | |
| 531 | release_mm(oldmm); |
| 532 | mm = take_tasks_mm(new); |
| 533 | if (mm != oldmm) |
| 534 | cookie = get_exec_dcookie(mm); |
| 535 | add_user_ctx_switch(new, cookie); |
| 536 | } |
| 537 | } else { |
| 538 | if (state >= sb_bt_start && |
| 539 | !add_sample(mm, s, in_kernel)) { |
| 540 | if (state == sb_bt_start) { |
| 541 | state = sb_bt_ignore; |
| 542 | atomic_inc(&oprofile_stats.bt_lost_no_mapping); |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | increment_tail(cpu_buf); |
| 548 | } |
| 549 | release_mm(mm); |
| 550 | |
| 551 | mark_done(cpu); |
| 552 | |
| 553 | up(&buffer_sem); |
| 554 | } |