blob: dfe0a1a5e5842af4a137a6b6eb04862234965645 [file] [log] [blame]
Daniel Vetter41a36b72015-07-24 13:55:11 +02001/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <drm/drmP.h>
25#include <drm/i915_drm.h>
26#include "i915_drv.h"
27
Daniel Vettera794f622015-07-24 17:40:12 +020028/**
29 * DOC: fence register handling
30 *
31 * Important to avoid confusions: "fences" in the i915 driver are not execution
32 * fences used to track command completion but hardware detiler objects which
33 * wrap a given range of the global GTT. Each platform has only a fairly limited
34 * set of these objects.
35 *
36 * Fences are used to detile GTT memory mappings. They're also connected to the
Masanari Iida34fd3e12016-01-05 12:29:17 +090037 * hardware frontbuffer render tracking and hence interact with frontbuffer
38 * compression. Furthermore on older platforms fences are required for tiled
Daniel Vettera794f622015-07-24 17:40:12 +020039 * objects used by the display engine. They can also be used by the render
40 * engine - they're required for blitter commands and are optional for render
41 * commands. But on gen4+ both display (with the exception of fbc) and rendering
42 * have their own tiling state bits and don't need fences.
43 *
44 * Also note that fences only support X and Y tiling and hence can't be used for
45 * the fancier new tiling formats like W, Ys and Yf.
46 *
47 * Finally note that because fences are such a restricted resource they're
48 * dynamically associated with objects. Furthermore fence state is committed to
Masanari Iida34fd3e12016-01-05 12:29:17 +090049 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
Daniel Vettera794f622015-07-24 17:40:12 +020051 * for cpu access. Also note that some code wants an unfenced view, for those
52 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53 *
54 * Internally these functions will synchronize with userspace access by removing
55 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56 */
57
Chris Wilson49ef5292016-08-18 17:17:00 +010058#define pipelined 0
59
60static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61 struct i915_vma *vma)
Daniel Vetter41a36b72015-07-24 13:55:11 +020062{
Ville Syrjäläf0f59a02015-11-18 15:33:26 +020063 i915_reg_t fence_reg_lo, fence_reg_hi;
Daniel Vetter41a36b72015-07-24 13:55:11 +020064 int fence_pitch_shift;
Chris Wilson49ef5292016-08-18 17:17:00 +010065 u64 val;
Daniel Vetter41a36b72015-07-24 13:55:11 +020066
Chris Wilson49ef5292016-08-18 17:17:00 +010067 if (INTEL_INFO(fence->i915)->gen >= 6) {
68 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
Ville Syrjäläeecf6132015-09-21 18:05:14 +030070 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
Chris Wilson49ef5292016-08-18 17:17:00 +010071
Daniel Vetter41a36b72015-07-24 13:55:11 +020072 } else {
Chris Wilson49ef5292016-08-18 17:17:00 +010073 fence_reg_lo = FENCE_REG_965_LO(fence->id);
74 fence_reg_hi = FENCE_REG_965_HI(fence->id);
Daniel Vetter41a36b72015-07-24 13:55:11 +020075 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76 }
77
Chris Wilson49ef5292016-08-18 17:17:00 +010078 val = 0;
79 if (vma) {
80 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
81 bool is_y_tiled = tiling == I915_TILING_Y;
82 unsigned int stride = i915_gem_object_get_stride(vma->obj);
83 u32 row_size = stride * (is_y_tiled ? 32 : 8);
84 u32 size = rounddown((u32)vma->node.size, row_size);
Daniel Vetter41a36b72015-07-24 13:55:11 +020085
Chris Wilsona83718b2016-08-15 10:48:52 +010086 val = ((vma->node.start + size - 4096) & 0xfffff000) << 32;
87 val |= vma->node.start & 0xfffff000;
88 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
Chris Wilson49ef5292016-08-18 17:17:00 +010089 if (is_y_tiled)
90 val |= BIT(I965_FENCE_TILING_Y_SHIFT);
Daniel Vetter41a36b72015-07-24 13:55:11 +020091 val |= I965_FENCE_REG_VALID;
Chris Wilson49ef5292016-08-18 17:17:00 +010092 }
Daniel Vetter41a36b72015-07-24 13:55:11 +020093
Chris Wilson49ef5292016-08-18 17:17:00 +010094 if (!pipelined) {
95 struct drm_i915_private *dev_priv = fence->i915;
Daniel Vetter41a36b72015-07-24 13:55:11 +020096
Chris Wilson49ef5292016-08-18 17:17:00 +010097 /* To w/a incoherency with non-atomic 64-bit register updates,
98 * we split the 64-bit update into two 32-bit writes. In order
99 * for a partial fence not to be evaluated between writes, we
100 * precede the update with write to turn off the fence register,
101 * and only enable the fence as the last step.
102 *
103 * For extra levels of paranoia, we make sure each step lands
104 * before applying the next step.
105 */
106 I915_WRITE(fence_reg_lo, 0);
Ville Syrjäläeecf6132015-09-21 18:05:14 +0300107 POSTING_READ(fence_reg_lo);
Chris Wilson49ef5292016-08-18 17:17:00 +0100108
109 I915_WRITE(fence_reg_hi, upper_32_bits(val));
110 I915_WRITE(fence_reg_lo, lower_32_bits(val));
111 POSTING_READ(fence_reg_lo);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200112 }
113}
114
Chris Wilson49ef5292016-08-18 17:17:00 +0100115static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
116 struct i915_vma *vma)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200117{
Daniel Vetter41a36b72015-07-24 13:55:11 +0200118 u32 val;
119
Chris Wilson49ef5292016-08-18 17:17:00 +0100120 val = 0;
121 if (vma) {
122 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
123 bool is_y_tiled = tiling == I915_TILING_Y;
124 unsigned int stride = i915_gem_object_get_stride(vma->obj);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200125 int pitch_val;
126 int tile_width;
127
Chris Wilsona83718b2016-08-15 10:48:52 +0100128 WARN((vma->node.start & ~I915_FENCE_START_MASK) ||
129 !is_power_of_2(vma->node.size) ||
130 (vma->node.start & (vma->node.size - 1)),
131 "object 0x%08llx [fenceable? %d] not 1M or pot-size (0x%08llx) aligned\n",
Chris Wilson05a20d02016-08-18 17:16:55 +0100132 vma->node.start,
133 i915_vma_is_map_and_fenceable(vma),
134 vma->node.size);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200135
Chris Wilson49ef5292016-08-18 17:17:00 +0100136 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
Daniel Vetter41a36b72015-07-24 13:55:11 +0200137 tile_width = 128;
138 else
139 tile_width = 512;
140
141 /* Note: pitch better be a power of two tile widths */
Chris Wilson3e510a82016-08-05 10:14:23 +0100142 pitch_val = stride / tile_width;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200143 pitch_val = ffs(pitch_val) - 1;
144
Chris Wilsona83718b2016-08-15 10:48:52 +0100145 val = vma->node.start;
Chris Wilson49ef5292016-08-18 17:17:00 +0100146 if (is_y_tiled)
147 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
Chris Wilsona83718b2016-08-15 10:48:52 +0100148 val |= I915_FENCE_SIZE_BITS(vma->node.size);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200149 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
150 val |= I830_FENCE_REG_VALID;
Chris Wilson49ef5292016-08-18 17:17:00 +0100151 }
Daniel Vetter41a36b72015-07-24 13:55:11 +0200152
Chris Wilson49ef5292016-08-18 17:17:00 +0100153 if (!pipelined) {
154 struct drm_i915_private *dev_priv = fence->i915;
155 i915_reg_t reg = FENCE_REG(fence->id);
156
157 I915_WRITE(reg, val);
158 POSTING_READ(reg);
159 }
Daniel Vetter41a36b72015-07-24 13:55:11 +0200160}
161
Chris Wilson49ef5292016-08-18 17:17:00 +0100162static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
163 struct i915_vma *vma)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200164{
Chris Wilsona83718b2016-08-15 10:48:52 +0100165 u32 val;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200166
Chris Wilson49ef5292016-08-18 17:17:00 +0100167 val = 0;
168 if (vma) {
169 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
170 bool is_y_tiled = tiling == I915_TILING_Y;
171 unsigned int stride = i915_gem_object_get_stride(vma->obj);
Chris Wilsona83718b2016-08-15 10:48:52 +0100172 u32 pitch_val;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200173
Chris Wilsona83718b2016-08-15 10:48:52 +0100174 WARN((vma->node.start & ~I830_FENCE_START_MASK) ||
175 !is_power_of_2(vma->node.size) ||
176 (vma->node.start & (vma->node.size - 1)),
177 "object 0x%08llx not 512K or pot-size 0x%08llx aligned\n",
178 vma->node.start, vma->node.size);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200179
Chris Wilson3e510a82016-08-05 10:14:23 +0100180 pitch_val = stride / 128;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200181 pitch_val = ffs(pitch_val) - 1;
182
Chris Wilsona83718b2016-08-15 10:48:52 +0100183 val = vma->node.start;
Chris Wilson49ef5292016-08-18 17:17:00 +0100184 if (is_y_tiled)
185 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
Chris Wilsona83718b2016-08-15 10:48:52 +0100186 val |= I830_FENCE_SIZE_BITS(vma->node.size);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200187 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
188 val |= I830_FENCE_REG_VALID;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200189 }
Chris Wilson49ef5292016-08-18 17:17:00 +0100190
191 if (!pipelined) {
192 struct drm_i915_private *dev_priv = fence->i915;
193 i915_reg_t reg = FENCE_REG(fence->id);
194
195 I915_WRITE(reg, val);
196 POSTING_READ(reg);
197 }
Daniel Vetter41a36b72015-07-24 13:55:11 +0200198}
199
Chris Wilson49ef5292016-08-18 17:17:00 +0100200static void fence_write(struct drm_i915_fence_reg *fence,
201 struct i915_vma *vma)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200202{
Chris Wilson49ef5292016-08-18 17:17:00 +0100203 /* Previous access through the fence register is marshalled by
204 * the mb() inside the fault handlers (i915_gem_release_mmaps)
205 * and explicitly managed for internal users.
Daniel Vetter41a36b72015-07-24 13:55:11 +0200206 */
Chris Wilson49ef5292016-08-18 17:17:00 +0100207
208 if (IS_GEN2(fence->i915))
209 i830_write_fence_reg(fence, vma);
210 else if (IS_GEN3(fence->i915))
211 i915_write_fence_reg(fence, vma);
212 else
213 i965_write_fence_reg(fence, vma);
214
215 /* Access through the fenced region afterwards is
216 * ordered by the posting reads whilst writing the registers.
217 */
218
219 fence->dirty = false;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200220}
221
Chris Wilson49ef5292016-08-18 17:17:00 +0100222static int fence_update(struct drm_i915_fence_reg *fence,
223 struct i915_vma *vma)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200224{
Chris Wilson49ef5292016-08-18 17:17:00 +0100225 int ret;
226
227 if (vma) {
228 if (!i915_vma_is_map_and_fenceable(vma))
229 return -EINVAL;
230
231 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
232 !i915_gem_object_get_tiling(vma->obj),
233 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
234 i915_gem_object_get_stride(vma->obj),
235 i915_gem_object_get_tiling(vma->obj)))
236 return -EINVAL;
237
238 ret = i915_gem_active_retire(&vma->last_fence,
239 &vma->obj->base.dev->struct_mutex);
240 if (ret)
241 return ret;
242 }
243
244 if (fence->vma) {
245 ret = i915_gem_active_retire(&fence->vma->last_fence,
246 &fence->vma->obj->base.dev->struct_mutex);
247 if (ret)
248 return ret;
249 }
250
251 if (fence->vma && fence->vma != vma) {
252 /* Ensure that all userspace CPU access is completed before
253 * stealing the fence.
254 */
255 i915_gem_release_mmap(fence->vma->obj);
256
257 fence->vma->fence = NULL;
258 fence->vma = NULL;
259
260 list_move(&fence->link, &fence->i915->mm.fence_list);
261 }
262
263 fence_write(fence, vma);
264
265 if (vma) {
266 if (fence->vma != vma) {
267 vma->fence = fence;
268 fence->vma = vma;
269 }
270
271 list_move_tail(&fence->link, &fence->i915->mm.fence_list);
272 }
273
274 return 0;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200275}
276
Daniel Vettera794f622015-07-24 17:40:12 +0200277/**
Chris Wilson49ef5292016-08-18 17:17:00 +0100278 * i915_vma_put_fence - force-remove fence for a VMA
279 * @vma: vma to map linearly (not through a fence reg)
Daniel Vettera794f622015-07-24 17:40:12 +0200280 *
281 * This function force-removes any fence from the given object, which is useful
282 * if the kernel wants to do untiled GTT access.
283 *
284 * Returns:
285 *
286 * 0 on success, negative error code on failure.
287 */
Daniel Vetter41a36b72015-07-24 13:55:11 +0200288int
Chris Wilson49ef5292016-08-18 17:17:00 +0100289i915_vma_put_fence(struct i915_vma *vma)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200290{
Chris Wilson49ef5292016-08-18 17:17:00 +0100291 struct drm_i915_fence_reg *fence = vma->fence;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200292
Chris Wilson49ef5292016-08-18 17:17:00 +0100293 if (!fence)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200294 return 0;
295
Chris Wilson18034582016-08-18 17:16:45 +0100296 if (fence->pin_count)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200297 return -EBUSY;
298
Chris Wilson49ef5292016-08-18 17:17:00 +0100299 return fence_update(fence, NULL);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200300}
301
Chris Wilson49ef5292016-08-18 17:17:00 +0100302static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200303{
Chris Wilson49ef5292016-08-18 17:17:00 +0100304 struct drm_i915_fence_reg *fence;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200305
Chris Wilson49ef5292016-08-18 17:17:00 +0100306 list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
307 if (fence->pin_count)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200308 continue;
309
Chris Wilson49ef5292016-08-18 17:17:00 +0100310 return fence;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200311 }
312
Daniel Vetter41a36b72015-07-24 13:55:11 +0200313 /* Wait for completion of pending flips which consume fences */
Chris Wilson49ef5292016-08-18 17:17:00 +0100314 if (intel_has_pending_fb_unpin(&dev_priv->drm))
Daniel Vetter41a36b72015-07-24 13:55:11 +0200315 return ERR_PTR(-EAGAIN);
316
317 return ERR_PTR(-EDEADLK);
318}
319
320/**
Chris Wilson49ef5292016-08-18 17:17:00 +0100321 * i915_vma_get_fence - set up fencing for a vma
322 * @vma: vma to map through a fence reg
Daniel Vetter41a36b72015-07-24 13:55:11 +0200323 *
324 * When mapping objects through the GTT, userspace wants to be able to write
325 * to them without having to worry about swizzling if the object is tiled.
326 * This function walks the fence regs looking for a free one for @obj,
327 * stealing one if it can't find any.
328 *
329 * It then sets up the reg based on the object's properties: address, pitch
330 * and tiling format.
331 *
332 * For an untiled surface, this removes any existing fence.
Daniel Vettera794f622015-07-24 17:40:12 +0200333 *
334 * Returns:
335 *
336 * 0 on success, negative error code on failure.
Daniel Vetter41a36b72015-07-24 13:55:11 +0200337 */
338int
Chris Wilson49ef5292016-08-18 17:17:00 +0100339i915_vma_get_fence(struct i915_vma *vma)
Daniel Vetter41a36b72015-07-24 13:55:11 +0200340{
Chris Wilson49ef5292016-08-18 17:17:00 +0100341 struct drm_i915_fence_reg *fence;
342 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
Daniel Vetter41a36b72015-07-24 13:55:11 +0200343
344 /* Just update our place in the LRU if our fence is getting reused. */
Chris Wilson49ef5292016-08-18 17:17:00 +0100345 if (vma->fence) {
346 fence = vma->fence;
347 if (!fence->dirty) {
348 list_move_tail(&fence->link,
349 &fence->i915->mm.fence_list);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200350 return 0;
351 }
Chris Wilson49ef5292016-08-18 17:17:00 +0100352 } else if (set) {
353 fence = fence_find(to_i915(vma->vm->dev));
354 if (IS_ERR(fence))
355 return PTR_ERR(fence);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200356 } else
357 return 0;
358
Chris Wilson49ef5292016-08-18 17:17:00 +0100359 return fence_update(fence, set);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200360}
361
Daniel Vettera794f622015-07-24 17:40:12 +0200362/**
363 * i915_gem_restore_fences - restore fence state
364 * @dev: DRM device
365 *
366 * Restore the hw fence state to match the software tracking again, to be called
367 * after a gpu reset and on resume.
368 */
Daniel Vetter41a36b72015-07-24 13:55:11 +0200369void i915_gem_restore_fences(struct drm_device *dev)
370{
Chris Wilsonfac5e232016-07-04 11:34:36 +0100371 struct drm_i915_private *dev_priv = to_i915(dev);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200372 int i;
373
374 for (i = 0; i < dev_priv->num_fence_regs; i++) {
375 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
376
377 /*
378 * Commit delayed tiling changes if we have an object still
379 * attached to the fence, otherwise just clear the fence.
380 */
Chris Wilson49ef5292016-08-18 17:17:00 +0100381 fence_write(reg, reg->vma);
Daniel Vetter41a36b72015-07-24 13:55:11 +0200382 }
383}
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200384
385/**
Daniel Vetter3271dca2015-07-24 17:40:15 +0200386 * DOC: tiling swizzling details
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200387 *
388 * The idea behind tiling is to increase cache hit rates by rearranging
389 * pixel data so that a group of pixel accesses are in the same cacheline.
390 * Performance improvement from doing this on the back/depth buffer are on
391 * the order of 30%.
392 *
393 * Intel architectures make this somewhat more complicated, though, by
394 * adjustments made to addressing of data when the memory is in interleaved
395 * mode (matched pairs of DIMMS) to improve memory bandwidth.
396 * For interleaved memory, the CPU sends every sequential 64 bytes
397 * to an alternate memory channel so it can get the bandwidth from both.
398 *
399 * The GPU also rearranges its accesses for increased bandwidth to interleaved
400 * memory, and it matches what the CPU does for non-tiled. However, when tiled
401 * it does it a little differently, since one walks addresses not just in the
402 * X direction but also Y. So, along with alternating channels when bit
403 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
404 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
405 * are common to both the 915 and 965-class hardware.
406 *
407 * The CPU also sometimes XORs in higher bits as well, to improve
408 * bandwidth doing strided access like we do so frequently in graphics. This
409 * is called "Channel XOR Randomization" in the MCH documentation. The result
410 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
411 * decode.
412 *
413 * All of this bit 6 XORing has an effect on our memory management,
414 * as we need to make sure that the 3d driver can correctly address object
415 * contents.
416 *
417 * If we don't have interleaved memory, all tiling is safe and no swizzling is
418 * required.
419 *
420 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
Masanari Iida34fd3e12016-01-05 12:29:17 +0900421 * 17 is not just a page offset, so as we page an object out and back in,
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200422 * individual pages in it will have different bit 17 addresses, resulting in
423 * each 64 bytes being swapped with its neighbor!
424 *
425 * Otherwise, if interleaved, we have to tell the 3d driver what the address
426 * swizzling it needs to do is, since it's writing with the CPU to the pages
427 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
428 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
429 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
430 * to match what the GPU expects.
431 */
432
433/**
Daniel Vetter3271dca2015-07-24 17:40:15 +0200434 * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
435 * @dev: DRM device
436 *
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200437 * Detects bit 6 swizzling of address lookup between IGD access and CPU
438 * access through main memory.
439 */
440void
441i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
442{
Chris Wilsonfac5e232016-07-04 11:34:36 +0100443 struct drm_i915_private *dev_priv = to_i915(dev);
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200444 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
445 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
446
447 if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
448 /*
449 * On BDW+, swizzling is not used. We leave the CPU memory
450 * controller in charge of optimizing memory accesses without
451 * the extra address manipulation GPU side.
452 *
453 * VLV and CHV don't have GPU swizzling.
454 */
455 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
456 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
457 } else if (INTEL_INFO(dev)->gen >= 6) {
458 if (dev_priv->preserve_bios_swizzle) {
459 if (I915_READ(DISP_ARB_CTL) &
460 DISP_TILE_SURFACE_SWIZZLING) {
461 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
462 swizzle_y = I915_BIT_6_SWIZZLE_9;
463 } else {
464 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
465 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
466 }
467 } else {
468 uint32_t dimm_c0, dimm_c1;
469 dimm_c0 = I915_READ(MAD_DIMM_C0);
470 dimm_c1 = I915_READ(MAD_DIMM_C1);
471 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
472 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
473 /* Enable swizzling when the channels are populated
474 * with identically sized dimms. We don't need to check
475 * the 3rd channel because no cpu with gpu attached
476 * ships in that configuration. Also, swizzling only
477 * makes sense for 2 channels anyway. */
478 if (dimm_c0 == dimm_c1) {
479 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
480 swizzle_y = I915_BIT_6_SWIZZLE_9;
481 } else {
482 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
483 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
484 }
485 }
486 } else if (IS_GEN5(dev)) {
487 /* On Ironlake whatever DRAM config, GPU always do
488 * same swizzling setup.
489 */
490 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
491 swizzle_y = I915_BIT_6_SWIZZLE_9;
492 } else if (IS_GEN2(dev)) {
493 /* As far as we know, the 865 doesn't have these bit 6
494 * swizzling issues.
495 */
496 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
497 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
498 } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
499 uint32_t dcc;
500
501 /* On 9xx chipsets, channel interleave by the CPU is
502 * determined by DCC. For single-channel, neither the CPU
503 * nor the GPU do swizzling. For dual channel interleaved,
504 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
505 * 9 for Y tiled. The CPU's interleave is independent, and
506 * can be based on either bit 11 (haven't seen this yet) or
507 * bit 17 (common).
508 */
509 dcc = I915_READ(DCC);
510 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
511 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
512 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
513 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
514 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
515 break;
516 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
517 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
518 /* This is the base swizzling by the GPU for
519 * tiled buffers.
520 */
521 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
522 swizzle_y = I915_BIT_6_SWIZZLE_9;
523 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
524 /* Bit 11 swizzling by the CPU in addition. */
525 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
526 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
527 } else {
528 /* Bit 17 swizzling by the CPU in addition. */
529 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
530 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
531 }
532 break;
533 }
534
535 /* check for L-shaped memory aka modified enhanced addressing */
Chris Wilson0b466dc22015-11-19 09:58:05 +0000536 if (IS_GEN4(dev) &&
537 !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
538 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
539 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200540 }
541
542 if (dcc == 0xffffffff) {
543 DRM_ERROR("Couldn't read from MCHBAR. "
544 "Disabling tiling.\n");
545 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
546 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
547 }
548 } else {
549 /* The 965, G33, and newer, have a very flexible memory
550 * configuration. It will enable dual-channel mode
551 * (interleaving) on as much memory as it can, and the GPU
552 * will additionally sometimes enable different bit 6
553 * swizzling for tiled objects from the CPU.
554 *
555 * Here's what I found on the G965:
556 * slot fill memory size swizzling
557 * 0A 0B 1A 1B 1-ch 2-ch
558 * 512 0 0 0 512 0 O
559 * 512 0 512 0 16 1008 X
560 * 512 0 0 512 16 1008 X
561 * 0 512 0 512 16 1008 X
562 * 1024 1024 1024 0 2048 1024 O
563 *
564 * We could probably detect this based on either the DRB
565 * matching, which was the case for the swizzling required in
566 * the table above, or from the 1-ch value being less than
567 * the minimum size of a rank.
Chris Wilson0b466dc22015-11-19 09:58:05 +0000568 *
569 * Reports indicate that the swizzling actually
570 * varies depending upon page placement inside the
571 * channels, i.e. we see swizzled pages where the
572 * banks of memory are paired and unswizzled on the
573 * uneven portion, so leave that as unknown.
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200574 */
Chris Wilson0b466dc22015-11-19 09:58:05 +0000575 if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200576 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
577 swizzle_y = I915_BIT_6_SWIZZLE_9;
578 }
579 }
580
Chris Wilson0b466dc22015-11-19 09:58:05 +0000581 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
582 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
583 /* Userspace likes to explode if it sees unknown swizzling,
584 * so lie. We will finish the lie when reporting through
585 * the get-tiling-ioctl by reporting the physical swizzle
586 * mode as unknown instead.
587 *
588 * As we don't strictly know what the swizzling is, it may be
589 * bit17 dependent, and so we need to also prevent the pages
590 * from being moved.
591 */
592 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
593 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
594 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
595 }
596
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200597 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
598 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
599}
600
Daniel Vetter3271dca2015-07-24 17:40:15 +0200601/*
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200602 * Swap every 64 bytes of this page around, to account for it having a new
603 * bit 17 of its physical address and therefore being interpreted differently
604 * by the GPU.
605 */
606static void
607i915_gem_swizzle_page(struct page *page)
608{
609 char temp[64];
610 char *vaddr;
611 int i;
612
613 vaddr = kmap(page);
614
615 for (i = 0; i < PAGE_SIZE; i += 128) {
616 memcpy(temp, &vaddr[i], 64);
617 memcpy(&vaddr[i], &vaddr[i + 64], 64);
618 memcpy(&vaddr[i + 64], temp, 64);
619 }
620
621 kunmap(page);
622}
623
Daniel Vetter3271dca2015-07-24 17:40:15 +0200624/**
625 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
626 * @obj: i915 GEM buffer object
627 *
628 * This function fixes up the swizzling in case any page frame number for this
629 * object has changed in bit 17 since that state has been saved with
630 * i915_gem_object_save_bit_17_swizzle().
631 *
632 * This is called when pinning backing storage again, since the kernel is free
633 * to move unpinned backing storage around (either by directly moving pages or
634 * by swapping them out and back in again).
635 */
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200636void
637i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
638{
Dave Gordon85d12252016-05-20 11:54:06 +0100639 struct sgt_iter sgt_iter;
640 struct page *page;
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200641 int i;
642
643 if (obj->bit_17 == NULL)
644 return;
645
646 i = 0;
Dave Gordon85d12252016-05-20 11:54:06 +0100647 for_each_sgt_page(page, sgt_iter, obj->pages) {
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200648 char new_bit_17 = page_to_phys(page) >> 17;
649 if ((new_bit_17 & 0x1) !=
650 (test_bit(i, obj->bit_17) != 0)) {
651 i915_gem_swizzle_page(page);
652 set_page_dirty(page);
653 }
654 i++;
655 }
656}
657
Daniel Vetter3271dca2015-07-24 17:40:15 +0200658/**
659 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
660 * @obj: i915 GEM buffer object
661 *
662 * This function saves the bit 17 of each page frame number so that swizzling
663 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
664 * be called before the backing storage can be unpinned.
665 */
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200666void
667i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
668{
Dave Gordon85d12252016-05-20 11:54:06 +0100669 struct sgt_iter sgt_iter;
670 struct page *page;
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200671 int page_count = obj->base.size >> PAGE_SHIFT;
672 int i;
673
674 if (obj->bit_17 == NULL) {
675 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
676 sizeof(long), GFP_KERNEL);
677 if (obj->bit_17 == NULL) {
678 DRM_ERROR("Failed to allocate memory for bit 17 "
679 "record\n");
680 return;
681 }
682 }
683
684 i = 0;
Dave Gordon85d12252016-05-20 11:54:06 +0100685
686 for_each_sgt_page(page, sgt_iter, obj->pages) {
687 if (page_to_phys(page) & (1 << 17))
Daniel Vetter7f96eca2015-07-24 17:40:14 +0200688 __set_bit(i, obj->bit_17);
689 else
690 __clear_bit(i, obj->bit_17);
691 i++;
692 }
693}