Jacob Keller | 3a6a4ed | 2012-05-01 05:24:58 +0000 | [diff] [blame^] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel 10 Gigabit PCI Express Linux driver |
| 4 | Copyright(c) 1999 - 2012 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 25 | |
| 26 | *******************************************************************************/ |
| 27 | #include "ixgbe.h" |
| 28 | #include <linux/export.h> |
| 29 | |
| 30 | /* |
| 31 | * The 82599 and the X540 do not have true 64bit nanosecond scale |
| 32 | * counter registers. Instead, SYSTIME is defined by a fixed point |
| 33 | * system which allows the user to define the scale counter increment |
| 34 | * value at every level change of the oscillator driving the SYSTIME |
| 35 | * value. For both devices the TIMINCA:IV field defines this |
| 36 | * increment. On the X540 device, 31 bits are provided. However on the |
| 37 | * 82599 only provides 24 bits. The time unit is determined by the |
| 38 | * clock frequency of the oscillator in combination with the TIMINCA |
| 39 | * register. When these devices link at 10Gb the oscillator has a |
| 40 | * period of 6.4ns. In order to convert the scale counter into |
| 41 | * nanoseconds the cyclecounter and timecounter structures are |
| 42 | * used. The SYSTIME registers need to be converted to ns values by use |
| 43 | * of only a right shift (division by power of 2). The following math |
| 44 | * determines the largest incvalue that will fit into the available |
| 45 | * bits in the TIMINCA register. |
| 46 | * |
| 47 | * PeriodWidth: Number of bits to store the clock period |
| 48 | * MaxWidth: The maximum width value of the TIMINCA register |
| 49 | * Period: The clock period for the oscillator |
| 50 | * round(): discard the fractional portion of the calculation |
| 51 | * |
| 52 | * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] |
| 53 | * |
| 54 | * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns |
| 55 | * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns |
| 56 | * |
| 57 | * The period also changes based on the link speed: |
| 58 | * At 10Gb link or no link, the period remains the same. |
| 59 | * At 1Gb link, the period is multiplied by 10. (64ns) |
| 60 | * At 100Mb link, the period is multiplied by 100. (640ns) |
| 61 | * |
| 62 | * The calculated value allows us to right shift the SYSTIME register |
| 63 | * value in order to quickly convert it into a nanosecond clock, |
| 64 | * while allowing for the maximum possible adjustment value. |
| 65 | * |
| 66 | * These diagrams are only for the 10Gb link period |
| 67 | * |
| 68 | * SYSTIMEH SYSTIMEL |
| 69 | * +--------------+ +--------------+ |
| 70 | * X540 | 32 | | 1 | 3 | 28 | |
| 71 | * *--------------+ +--------------+ |
| 72 | * \________ 36 bits ______/ fract |
| 73 | * |
| 74 | * +--------------+ +--------------+ |
| 75 | * 82599 | 32 | | 8 | 3 | 21 | |
| 76 | * *--------------+ +--------------+ |
| 77 | * \________ 43 bits ______/ fract |
| 78 | * |
| 79 | * The 36 bit X540 SYSTIME overflows every |
| 80 | * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds |
| 81 | * |
| 82 | * The 43 bit 82599 SYSTIME overflows every |
| 83 | * 2^43 * 10^-9 / 3600 = 2.4 hours |
| 84 | */ |
| 85 | #define IXGBE_INCVAL_10GB 0x66666666 |
| 86 | #define IXGBE_INCVAL_1GB 0x40000000 |
| 87 | #define IXGBE_INCVAL_100 0x50000000 |
| 88 | |
| 89 | #define IXGBE_INCVAL_SHIFT_10GB 28 |
| 90 | #define IXGBE_INCVAL_SHIFT_1GB 24 |
| 91 | #define IXGBE_INCVAL_SHIFT_100 21 |
| 92 | |
| 93 | #define IXGBE_INCVAL_SHIFT_82599 7 |
| 94 | #define IXGBE_INCPER_SHIFT_82599 24 |
| 95 | #define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL |
| 96 | |
| 97 | #define IXGBE_OVERFLOW_PERIOD (HZ * 30) |
| 98 | |
| 99 | /** |
| 100 | * ixgbe_ptp_read - read raw cycle counter (to be used by time counter) |
| 101 | * @cc - the cyclecounter structure |
| 102 | * |
| 103 | * this function reads the cyclecounter registers and is called by the |
| 104 | * cyclecounter structure used to construct a ns counter from the |
| 105 | * arbitrary fixed point registers |
| 106 | */ |
| 107 | static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc) |
| 108 | { |
| 109 | struct ixgbe_adapter *adapter = |
| 110 | container_of(cc, struct ixgbe_adapter, cc); |
| 111 | struct ixgbe_hw *hw = &adapter->hw; |
| 112 | u64 stamp = 0; |
| 113 | |
| 114 | stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); |
| 115 | stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; |
| 116 | |
| 117 | return stamp; |
| 118 | } |
| 119 | |
| 120 | /** |
| 121 | * ixgbe_ptp_adjfreq |
| 122 | * @ptp - the ptp clock structure |
| 123 | * @ppb - parts per billion adjustment from base |
| 124 | * |
| 125 | * adjust the frequency of the ptp cycle counter by the |
| 126 | * indicated ppb from the base frequency. |
| 127 | */ |
| 128 | static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) |
| 129 | { |
| 130 | struct ixgbe_adapter *adapter = |
| 131 | container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| 132 | struct ixgbe_hw *hw = &adapter->hw; |
| 133 | u64 freq; |
| 134 | u32 diff, incval; |
| 135 | int neg_adj = 0; |
| 136 | |
| 137 | if (ppb < 0) { |
| 138 | neg_adj = 1; |
| 139 | ppb = -ppb; |
| 140 | } |
| 141 | |
| 142 | smp_mb(); |
| 143 | incval = ACCESS_ONCE(adapter->base_incval); |
| 144 | |
| 145 | freq = incval; |
| 146 | freq *= ppb; |
| 147 | diff = div_u64(freq, 1000000000ULL); |
| 148 | |
| 149 | incval = neg_adj ? (incval - diff) : (incval + diff); |
| 150 | |
| 151 | switch (hw->mac.type) { |
| 152 | case ixgbe_mac_X540: |
| 153 | IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); |
| 154 | break; |
| 155 | case ixgbe_mac_82599EB: |
| 156 | IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, |
| 157 | (1 << IXGBE_INCPER_SHIFT_82599) | |
| 158 | incval); |
| 159 | break; |
| 160 | default: |
| 161 | break; |
| 162 | } |
| 163 | |
| 164 | return 0; |
| 165 | } |
| 166 | |
| 167 | /** |
| 168 | * ixgbe_ptp_adjtime |
| 169 | * @ptp - the ptp clock structure |
| 170 | * @delta - offset to adjust the cycle counter by |
| 171 | * |
| 172 | * adjust the timer by resetting the timecounter structure. |
| 173 | */ |
| 174 | static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| 175 | { |
| 176 | struct ixgbe_adapter *adapter = |
| 177 | container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| 178 | unsigned long flags; |
| 179 | u64 now; |
| 180 | |
| 181 | spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| 182 | |
| 183 | now = timecounter_read(&adapter->tc); |
| 184 | now += delta; |
| 185 | |
| 186 | /* reset the timecounter */ |
| 187 | timecounter_init(&adapter->tc, |
| 188 | &adapter->cc, |
| 189 | now); |
| 190 | |
| 191 | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| 192 | return 0; |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * ixgbe_ptp_gettime |
| 197 | * @ptp - the ptp clock structure |
| 198 | * @ts - timespec structure to hold the current time value |
| 199 | * |
| 200 | * read the timecounter and return the correct value on ns, |
| 201 | * after converting it into a struct timespec. |
| 202 | */ |
| 203 | static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) |
| 204 | { |
| 205 | struct ixgbe_adapter *adapter = |
| 206 | container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| 207 | u64 ns; |
| 208 | u32 remainder; |
| 209 | unsigned long flags; |
| 210 | |
| 211 | spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| 212 | ns = timecounter_read(&adapter->tc); |
| 213 | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| 214 | |
| 215 | ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder); |
| 216 | ts->tv_nsec = remainder; |
| 217 | |
| 218 | return 0; |
| 219 | } |
| 220 | |
| 221 | /** |
| 222 | * ixgbe_ptp_settime |
| 223 | * @ptp - the ptp clock structure |
| 224 | * @ts - the timespec containing the new time for the cycle counter |
| 225 | * |
| 226 | * reset the timecounter to use a new base value instead of the kernel |
| 227 | * wall timer value. |
| 228 | */ |
| 229 | static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, |
| 230 | const struct timespec *ts) |
| 231 | { |
| 232 | struct ixgbe_adapter *adapter = |
| 233 | container_of(ptp, struct ixgbe_adapter, ptp_caps); |
| 234 | u64 ns; |
| 235 | unsigned long flags; |
| 236 | |
| 237 | ns = ts->tv_sec * 1000000000ULL; |
| 238 | ns += ts->tv_nsec; |
| 239 | |
| 240 | /* reset the timecounter */ |
| 241 | spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| 242 | timecounter_init(&adapter->tc, &adapter->cc, ns); |
| 243 | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| 244 | |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | /** |
| 249 | * ixgbe_ptp_enable |
| 250 | * @ptp - the ptp clock structure |
| 251 | * @rq - the requested feature to change |
| 252 | * @on - whether to enable or disable the feature |
| 253 | * |
| 254 | * enable (or disable) ancillary features of the phc subsystem. |
| 255 | * our driver does not support any of these features |
| 256 | */ |
| 257 | static int ixgbe_ptp_enable(struct ptp_clock_info *ptp, |
| 258 | struct ptp_clock_request *rq, int on) |
| 259 | { |
| 260 | return -ENOTSUPP; |
| 261 | } |
| 262 | |
| 263 | /** |
| 264 | * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow |
| 265 | * @work: structure containing information about this work task |
| 266 | * |
| 267 | * this work function is scheduled to continue reading the timecounter |
| 268 | * in order to prevent missing when the system time registers wrap |
| 269 | * around. This needs to be run approximately twice a minute when no |
| 270 | * PTP activity is occurring. |
| 271 | */ |
| 272 | void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) |
| 273 | { |
| 274 | unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies; |
| 275 | struct timespec ts; |
| 276 | |
| 277 | if ((adapter->flags2 & IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED) && |
| 278 | (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) { |
| 279 | ixgbe_ptp_gettime(&adapter->ptp_caps, &ts); |
| 280 | adapter->last_overflow_check = jiffies; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | /** |
| 285 | * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp |
| 286 | * @q_vector: structure containing interrupt and ring information |
| 287 | * @skb: particular skb to send timestamp with |
| 288 | * |
| 289 | * if the timestamp is valid, we convert it into the timecounter ns |
| 290 | * value, then store that result into the shhwtstamps structure which |
| 291 | * is passed up the network stack |
| 292 | */ |
| 293 | void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector, |
| 294 | struct sk_buff *skb) |
| 295 | { |
| 296 | struct ixgbe_adapter *adapter; |
| 297 | struct ixgbe_hw *hw; |
| 298 | struct skb_shared_hwtstamps shhwtstamps; |
| 299 | u64 regval = 0, ns; |
| 300 | u32 tsynctxctl; |
| 301 | unsigned long flags; |
| 302 | |
| 303 | /* we cannot process timestamps on a ring without a q_vector */ |
| 304 | if (!q_vector || !q_vector->adapter) |
| 305 | return; |
| 306 | |
| 307 | adapter = q_vector->adapter; |
| 308 | hw = &adapter->hw; |
| 309 | |
| 310 | tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); |
| 311 | regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); |
| 312 | regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; |
| 313 | |
| 314 | /* |
| 315 | * if TX timestamp is not valid, exit after clearing the |
| 316 | * timestamp registers |
| 317 | */ |
| 318 | if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID)) |
| 319 | return; |
| 320 | |
| 321 | spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| 322 | ns = timecounter_cyc2time(&adapter->tc, regval); |
| 323 | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| 324 | |
| 325 | memset(&shhwtstamps, 0, sizeof(shhwtstamps)); |
| 326 | shhwtstamps.hwtstamp = ns_to_ktime(ns); |
| 327 | skb_tstamp_tx(skb, &shhwtstamps); |
| 328 | } |
| 329 | |
| 330 | /** |
| 331 | * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp |
| 332 | * @q_vector: structure containing interrupt and ring information |
| 333 | * @skb: particular skb to send timestamp with |
| 334 | * |
| 335 | * if the timestamp is valid, we convert it into the timecounter ns |
| 336 | * value, then store that result into the shhwtstamps structure which |
| 337 | * is passed up the network stack |
| 338 | */ |
| 339 | void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector, |
| 340 | struct sk_buff *skb) |
| 341 | { |
| 342 | struct ixgbe_adapter *adapter; |
| 343 | struct ixgbe_hw *hw; |
| 344 | struct skb_shared_hwtstamps *shhwtstamps; |
| 345 | u64 regval = 0, ns; |
| 346 | u32 tsyncrxctl; |
| 347 | unsigned long flags; |
| 348 | |
| 349 | /* we cannot process timestamps on a ring without a q_vector */ |
| 350 | if (!q_vector || !q_vector->adapter) |
| 351 | return; |
| 352 | |
| 353 | adapter = q_vector->adapter; |
| 354 | hw = &adapter->hw; |
| 355 | |
| 356 | tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); |
| 357 | regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); |
| 358 | regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; |
| 359 | |
| 360 | /* |
| 361 | * If this bit is set, then the RX registers contain the time stamp. No |
| 362 | * other packet will be time stamped until we read these registers, so |
| 363 | * read the registers to make them available again. Because only one |
| 364 | * packet can be time stamped at a time, we know that the register |
| 365 | * values must belong to this one here and therefore we don't need to |
| 366 | * compare any of the additional attributes stored for it. |
| 367 | * |
| 368 | * If nothing went wrong, then it should have a skb_shared_tx that we |
| 369 | * can turn into a skb_shared_hwtstamps. |
| 370 | */ |
| 371 | if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) |
| 372 | return; |
| 373 | |
| 374 | spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| 375 | ns = timecounter_cyc2time(&adapter->tc, regval); |
| 376 | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| 377 | |
| 378 | shhwtstamps = skb_hwtstamps(skb); |
| 379 | shhwtstamps->hwtstamp = ns_to_ktime(ns); |
| 380 | } |
| 381 | |
| 382 | /** |
| 383 | * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping |
| 384 | * @adapter: pointer to adapter struct |
| 385 | * @ifreq: ioctl data |
| 386 | * @cmd: particular ioctl requested |
| 387 | * |
| 388 | * Outgoing time stamping can be enabled and disabled. Play nice and |
| 389 | * disable it when requested, although it shouldn't case any overhead |
| 390 | * when no packet needs it. At most one packet in the queue may be |
| 391 | * marked for time stamping, otherwise it would be impossible to tell |
| 392 | * for sure to which packet the hardware time stamp belongs. |
| 393 | * |
| 394 | * Incoming time stamping has to be configured via the hardware |
| 395 | * filters. Not all combinations are supported, in particular event |
| 396 | * type has to be specified. Matching the kind of event packet is |
| 397 | * not supported, with the exception of "all V2 events regardless of |
| 398 | * level 2 or 4". |
| 399 | */ |
| 400 | int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter, |
| 401 | struct ifreq *ifr, int cmd) |
| 402 | { |
| 403 | struct ixgbe_hw *hw = &adapter->hw; |
| 404 | struct hwtstamp_config config; |
| 405 | u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; |
| 406 | u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; |
| 407 | u32 tsync_rx_mtrl = 0; |
| 408 | bool is_l4 = false; |
| 409 | bool is_l2 = false; |
| 410 | u32 regval; |
| 411 | |
| 412 | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| 413 | return -EFAULT; |
| 414 | |
| 415 | /* reserved for future extensions */ |
| 416 | if (config.flags) |
| 417 | return -EINVAL; |
| 418 | |
| 419 | switch (config.tx_type) { |
| 420 | case HWTSTAMP_TX_OFF: |
| 421 | tsync_tx_ctl = 0; |
| 422 | case HWTSTAMP_TX_ON: |
| 423 | break; |
| 424 | default: |
| 425 | return -ERANGE; |
| 426 | } |
| 427 | |
| 428 | switch (config.rx_filter) { |
| 429 | case HWTSTAMP_FILTER_NONE: |
| 430 | tsync_rx_ctl = 0; |
| 431 | break; |
| 432 | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| 433 | tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; |
| 434 | tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG; |
| 435 | is_l4 = true; |
| 436 | break; |
| 437 | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| 438 | tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; |
| 439 | tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG; |
| 440 | is_l4 = true; |
| 441 | break; |
| 442 | case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| 443 | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| 444 | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| 445 | tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L2_L4_V2; |
| 446 | tsync_rx_mtrl = IXGBE_RXMTRL_V2_SYNC_MSG; |
| 447 | is_l2 = true; |
| 448 | is_l4 = true; |
| 449 | config.rx_filter = HWTSTAMP_FILTER_SOME; |
| 450 | break; |
| 451 | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| 452 | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| 453 | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| 454 | tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L2_L4_V2; |
| 455 | tsync_rx_mtrl = IXGBE_RXMTRL_V2_DELAY_REQ_MSG; |
| 456 | is_l2 = true; |
| 457 | is_l4 = true; |
| 458 | config.rx_filter = HWTSTAMP_FILTER_SOME; |
| 459 | break; |
| 460 | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| 461 | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| 462 | case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| 463 | tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; |
| 464 | config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| 465 | is_l2 = true; |
| 466 | is_l4 = true; |
| 467 | break; |
| 468 | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| 469 | case HWTSTAMP_FILTER_ALL: |
| 470 | default: |
| 471 | /* |
| 472 | * register RXMTRL must be set, therefore it is not |
| 473 | * possible to time stamp both V1 Sync and Delay_Req messages |
| 474 | * and hardware does not support timestamping all packets |
| 475 | * => return error |
| 476 | */ |
| 477 | return -ERANGE; |
| 478 | } |
| 479 | |
| 480 | if (hw->mac.type == ixgbe_mac_82598EB) { |
| 481 | if (tsync_rx_ctl | tsync_tx_ctl) |
| 482 | return -ERANGE; |
| 483 | return 0; |
| 484 | } |
| 485 | |
| 486 | /* define ethertype filter for timestamped packets */ |
| 487 | if (is_l2) |
| 488 | IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), |
| 489 | (IXGBE_ETQF_FILTER_EN | /* enable filter */ |
| 490 | IXGBE_ETQF_1588 | /* enable timestamping */ |
| 491 | ETH_P_1588)); /* 1588 eth protocol type */ |
| 492 | else |
| 493 | IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0); |
| 494 | |
| 495 | #define PTP_PORT 319 |
| 496 | /* L4 Queue Filter[3]: filter by destination port and protocol */ |
| 497 | if (is_l4) { |
| 498 | u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */ |
| 499 | | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */ |
| 500 | | IXGBE_FTQF_QUEUE_ENABLE); |
| 501 | |
| 502 | ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */ |
| 503 | & IXGBE_FTQF_DEST_PORT_MASK /* dest check */ |
| 504 | & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */ |
| 505 | << IXGBE_FTQF_5TUPLE_MASK_SHIFT); |
| 506 | |
| 507 | IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3), |
| 508 | (3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 | |
| 509 | IXGBE_IMIR_SIZE_BP_82599)); |
| 510 | |
| 511 | /* enable port check */ |
| 512 | IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3), |
| 513 | (htons(PTP_PORT) | |
| 514 | htons(PTP_PORT) << 16)); |
| 515 | |
| 516 | IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf); |
| 517 | |
| 518 | tsync_rx_mtrl |= PTP_PORT << 16; |
| 519 | } else { |
| 520 | IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0); |
| 521 | } |
| 522 | |
| 523 | /* enable/disable TX */ |
| 524 | regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); |
| 525 | regval &= ~IXGBE_TSYNCTXCTL_ENABLED; |
| 526 | regval |= tsync_tx_ctl; |
| 527 | IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); |
| 528 | |
| 529 | /* enable/disable RX */ |
| 530 | regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); |
| 531 | regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); |
| 532 | regval |= tsync_rx_ctl; |
| 533 | IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); |
| 534 | |
| 535 | /* define which PTP packets are time stamped */ |
| 536 | IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); |
| 537 | |
| 538 | IXGBE_WRITE_FLUSH(hw); |
| 539 | |
| 540 | /* clear TX/RX time stamp registers, just to be sure */ |
| 541 | regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH); |
| 542 | regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH); |
| 543 | |
| 544 | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| 545 | -EFAULT : 0; |
| 546 | } |
| 547 | |
| 548 | /** |
| 549 | * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw |
| 550 | * @adapter - pointer to the adapter structure |
| 551 | * |
| 552 | * this function initializes the timecounter and cyclecounter |
| 553 | * structures for use in generated a ns counter from the arbitrary |
| 554 | * fixed point cycles registers in the hardware. |
| 555 | * |
| 556 | * A change in link speed impacts the frequency of the DMA clock on |
| 557 | * the device, which is used to generate the cycle counter |
| 558 | * registers. Therefor this function is called whenever the link speed |
| 559 | * changes. |
| 560 | */ |
| 561 | void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) |
| 562 | { |
| 563 | struct ixgbe_hw *hw = &adapter->hw; |
| 564 | u32 incval = 0; |
| 565 | u32 shift = 0; |
| 566 | u32 cycle_speed; |
| 567 | unsigned long flags; |
| 568 | |
| 569 | /** |
| 570 | * Determine what speed we need to set the cyclecounter |
| 571 | * for. It should be different for 100Mb, 1Gb, and 10Gb. Treat |
| 572 | * unknown speeds as 10Gb. (Hence why we can't just copy the |
| 573 | * link_speed. |
| 574 | */ |
| 575 | switch (adapter->link_speed) { |
| 576 | case IXGBE_LINK_SPEED_100_FULL: |
| 577 | case IXGBE_LINK_SPEED_1GB_FULL: |
| 578 | case IXGBE_LINK_SPEED_10GB_FULL: |
| 579 | cycle_speed = adapter->link_speed; |
| 580 | break; |
| 581 | default: |
| 582 | /* cycle speed should be 10Gb when there is no link */ |
| 583 | cycle_speed = IXGBE_LINK_SPEED_10GB_FULL; |
| 584 | break; |
| 585 | } |
| 586 | |
| 587 | /* Bail if the cycle speed didn't change */ |
| 588 | if (adapter->cycle_speed == cycle_speed) |
| 589 | return; |
| 590 | |
| 591 | /** |
| 592 | * Scale the NIC cycle counter by a large factor so that |
| 593 | * relatively small corrections to the frequency can be added |
| 594 | * or subtracted. The drawbacks of a large factor include |
| 595 | * (a) the clock register overflows more quickly, (b) the cycle |
| 596 | * counter structure must be able to convert the systime value |
| 597 | * to nanoseconds using only a multiplier and a right-shift, |
| 598 | * and (c) the value must fit within the timinca register space |
| 599 | * => math based on internal DMA clock rate and available bits |
| 600 | */ |
| 601 | switch (cycle_speed) { |
| 602 | case IXGBE_LINK_SPEED_100_FULL: |
| 603 | incval = IXGBE_INCVAL_100; |
| 604 | shift = IXGBE_INCVAL_SHIFT_100; |
| 605 | break; |
| 606 | case IXGBE_LINK_SPEED_1GB_FULL: |
| 607 | incval = IXGBE_INCVAL_1GB; |
| 608 | shift = IXGBE_INCVAL_SHIFT_1GB; |
| 609 | break; |
| 610 | case IXGBE_LINK_SPEED_10GB_FULL: |
| 611 | incval = IXGBE_INCVAL_10GB; |
| 612 | shift = IXGBE_INCVAL_SHIFT_10GB; |
| 613 | break; |
| 614 | } |
| 615 | |
| 616 | /** |
| 617 | * Modify the calculated values to fit within the correct |
| 618 | * number of bits specified by the hardware. The 82599 doesn't |
| 619 | * have the same space as the X540, so bitshift the calculated |
| 620 | * values to fit. |
| 621 | */ |
| 622 | switch (hw->mac.type) { |
| 623 | case ixgbe_mac_X540: |
| 624 | IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); |
| 625 | break; |
| 626 | case ixgbe_mac_82599EB: |
| 627 | incval >>= IXGBE_INCVAL_SHIFT_82599; |
| 628 | shift -= IXGBE_INCVAL_SHIFT_82599; |
| 629 | IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, |
| 630 | (1 << IXGBE_INCPER_SHIFT_82599) | |
| 631 | incval); |
| 632 | break; |
| 633 | default: |
| 634 | /* other devices aren't supported */ |
| 635 | return; |
| 636 | } |
| 637 | |
| 638 | /* reset the system time registers */ |
| 639 | IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000); |
| 640 | IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000); |
| 641 | IXGBE_WRITE_FLUSH(hw); |
| 642 | |
| 643 | /* store the new cycle speed */ |
| 644 | adapter->cycle_speed = cycle_speed; |
| 645 | |
| 646 | ACCESS_ONCE(adapter->base_incval) = incval; |
| 647 | smp_mb(); |
| 648 | |
| 649 | /* grab the ptp lock */ |
| 650 | spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| 651 | |
| 652 | memset(&adapter->cc, 0, sizeof(adapter->cc)); |
| 653 | adapter->cc.read = ixgbe_ptp_read; |
| 654 | adapter->cc.mask = CLOCKSOURCE_MASK(64); |
| 655 | adapter->cc.shift = shift; |
| 656 | adapter->cc.mult = 1; |
| 657 | |
| 658 | /* reset the ns time counter */ |
| 659 | timecounter_init(&adapter->tc, &adapter->cc, |
| 660 | ktime_to_ns(ktime_get_real())); |
| 661 | |
| 662 | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| 663 | } |
| 664 | |
| 665 | /** |
| 666 | * ixgbe_ptp_init |
| 667 | * @adapter - the ixgbe private adapter structure |
| 668 | * |
| 669 | * This function performs the required steps for enabling ptp |
| 670 | * support. If ptp support has already been loaded it simply calls the |
| 671 | * cyclecounter init routine and exits. |
| 672 | */ |
| 673 | void ixgbe_ptp_init(struct ixgbe_adapter *adapter) |
| 674 | { |
| 675 | struct net_device *netdev = adapter->netdev; |
| 676 | |
| 677 | switch (adapter->hw.mac.type) { |
| 678 | case ixgbe_mac_X540: |
| 679 | case ixgbe_mac_82599EB: |
| 680 | snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| 681 | adapter->ptp_caps.owner = THIS_MODULE; |
| 682 | adapter->ptp_caps.max_adj = 250000000; |
| 683 | adapter->ptp_caps.n_alarm = 0; |
| 684 | adapter->ptp_caps.n_ext_ts = 0; |
| 685 | adapter->ptp_caps.n_per_out = 0; |
| 686 | adapter->ptp_caps.pps = 0; |
| 687 | adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq; |
| 688 | adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; |
| 689 | adapter->ptp_caps.gettime = ixgbe_ptp_gettime; |
| 690 | adapter->ptp_caps.settime = ixgbe_ptp_settime; |
| 691 | adapter->ptp_caps.enable = ixgbe_ptp_enable; |
| 692 | break; |
| 693 | default: |
| 694 | adapter->ptp_clock = NULL; |
| 695 | return; |
| 696 | } |
| 697 | |
| 698 | spin_lock_init(&adapter->tmreg_lock); |
| 699 | |
| 700 | ixgbe_ptp_start_cyclecounter(adapter); |
| 701 | |
| 702 | /* (Re)start the overflow check */ |
| 703 | adapter->flags2 |= IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED; |
| 704 | |
| 705 | adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps); |
| 706 | if (IS_ERR(adapter->ptp_clock)) { |
| 707 | adapter->ptp_clock = NULL; |
| 708 | e_dev_err("ptp_clock_register failed\n"); |
| 709 | } else |
| 710 | e_dev_info("registered PHC device on %s\n", netdev->name); |
| 711 | |
| 712 | return; |
| 713 | } |
| 714 | |
| 715 | /** |
| 716 | * ixgbe_ptp_stop - disable ptp device and stop the overflow check |
| 717 | * @adapter: pointer to adapter struct |
| 718 | * |
| 719 | * this function stops the ptp support, and cancels the delayed work. |
| 720 | */ |
| 721 | void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) |
| 722 | { |
| 723 | /* stop the overflow check task */ |
| 724 | adapter->flags2 &= ~IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED; |
| 725 | |
| 726 | if (adapter->ptp_clock) { |
| 727 | ptp_clock_unregister(adapter->ptp_clock); |
| 728 | adapter->ptp_clock = NULL; |
| 729 | e_dev_info("removed PHC on %s\n", |
| 730 | adapter->netdev->name); |
| 731 | } |
| 732 | } |