blob: c07bdd10b8911733ce4c3fd7ebb3816db36951f6 [file] [log] [blame]
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -07001/*
2 * Copyright (C) 2004-2006 Atmel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8#ifndef __ASM_AVR32_PGTABLE_H
9#define __ASM_AVR32_PGTABLE_H
10
11#include <asm/addrspace.h>
12
13#ifndef __ASSEMBLY__
14#include <linux/sched.h>
15
16#endif /* !__ASSEMBLY__ */
17
18/*
19 * Use two-level page tables just as the i386 (without PAE)
20 */
21#include <asm/pgtable-2level.h>
22
23/*
24 * The following code might need some cleanup when the values are
25 * final...
26 */
27#define PMD_SIZE (1UL << PMD_SHIFT)
28#define PMD_MASK (~(PMD_SIZE-1))
29#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
30#define PGDIR_MASK (~(PGDIR_SIZE-1))
31
32#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
33#define FIRST_USER_ADDRESS 0
34
35#define PTE_PHYS_MASK 0x1ffff000
36
37#ifndef __ASSEMBLY__
38extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
39extern void paging_init(void);
40
41/*
42 * ZERO_PAGE is a global shared page that is always zero: used for
43 * zero-mapped memory areas etc.
44 */
45extern struct page *empty_zero_page;
46#define ZERO_PAGE(vaddr) (empty_zero_page)
47
48/*
49 * Just any arbitrary offset to the start of the vmalloc VM area: the
50 * current 8 MiB value just means that there will be a 8 MiB "hole"
51 * after the uncached physical memory (P2 segment) until the vmalloc
52 * area starts. That means that any out-of-bounds memory accesses will
53 * hopefully be caught; we don't know if the end of the P1/P2 segments
54 * are actually used for anything, but it is anyway safer to let the
55 * MMU catch these kinds of errors than to rely on the memory bus.
56 *
57 * A "hole" of the same size is added to the end of the P3 segment as
58 * well. It might seem wasteful to use 16 MiB of virtual address space
59 * on this, but we do have 512 MiB of it...
60 *
61 * The vmalloc() routines leave a hole of 4 KiB between each vmalloced
62 * area for the same reason.
63 */
64#define VMALLOC_OFFSET (8 * 1024 * 1024)
65#define VMALLOC_START (P3SEG + VMALLOC_OFFSET)
66#define VMALLOC_END (P4SEG - VMALLOC_OFFSET)
67#endif /* !__ASSEMBLY__ */
68
69/*
70 * Page flags. Some of these flags are not directly supported by
71 * hardware, so we have to emulate them.
72 */
73#define _TLBEHI_BIT_VALID 9
74#define _TLBEHI_VALID (1 << _TLBEHI_BIT_VALID)
75
76#define _PAGE_BIT_WT 0 /* W-bit : write-through */
77#define _PAGE_BIT_DIRTY 1 /* D-bit : page changed */
78#define _PAGE_BIT_SZ0 2 /* SZ0-bit : Size of page */
79#define _PAGE_BIT_SZ1 3 /* SZ1-bit : Size of page */
80#define _PAGE_BIT_EXECUTE 4 /* X-bit : execute access allowed */
81#define _PAGE_BIT_RW 5 /* AP0-bit : write access allowed */
82#define _PAGE_BIT_USER 6 /* AP1-bit : user space access allowed */
83#define _PAGE_BIT_BUFFER 7 /* B-bit : bufferable */
84#define _PAGE_BIT_GLOBAL 8 /* G-bit : global (ignore ASID) */
85#define _PAGE_BIT_CACHABLE 9 /* C-bit : cachable */
86
87/* If we drop support for 1K pages, we get two extra bits */
88#define _PAGE_BIT_PRESENT 10
89#define _PAGE_BIT_ACCESSED 11 /* software: page was accessed */
90
91/* The following flags are only valid when !PRESENT */
92#define _PAGE_BIT_FILE 0 /* software: pagecache or swap? */
93
94#define _PAGE_WT (1 << _PAGE_BIT_WT)
95#define _PAGE_DIRTY (1 << _PAGE_BIT_DIRTY)
96#define _PAGE_EXECUTE (1 << _PAGE_BIT_EXECUTE)
97#define _PAGE_RW (1 << _PAGE_BIT_RW)
98#define _PAGE_USER (1 << _PAGE_BIT_USER)
99#define _PAGE_BUFFER (1 << _PAGE_BIT_BUFFER)
100#define _PAGE_GLOBAL (1 << _PAGE_BIT_GLOBAL)
101#define _PAGE_CACHABLE (1 << _PAGE_BIT_CACHABLE)
102
103/* Software flags */
104#define _PAGE_ACCESSED (1 << _PAGE_BIT_ACCESSED)
105#define _PAGE_PRESENT (1 << _PAGE_BIT_PRESENT)
106#define _PAGE_FILE (1 << _PAGE_BIT_FILE)
107
108/*
109 * Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is
110 * usually called _PAGE_PROTNONE on other architectures.
111 *
112 * XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If
113 * so, we can encode all possible page sizes (although we can't really
114 * support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED
115 * bits)
116 *
117 */
118#define _PAGE_TYPE_MASK ((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1))
119#define _PAGE_TYPE_NONE (0 << _PAGE_BIT_SZ0)
120#define _PAGE_TYPE_SMALL (1 << _PAGE_BIT_SZ0)
121#define _PAGE_TYPE_MEDIUM (2 << _PAGE_BIT_SZ0)
122#define _PAGE_TYPE_LARGE (3 << _PAGE_BIT_SZ0)
123
124/*
125 * Mask which drop software flags. We currently can't handle more than
126 * 512 MiB of physical memory, so we can use bits 29-31 for other
127 * stuff. With a fixed 4K page size, we can use bits 10-11 as well as
128 * bits 2-3 (SZ)
129 */
130#define _PAGE_FLAGS_HARDWARE_MASK 0xfffff3ff
131
132#define _PAGE_FLAGS_CACHE_MASK (_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT)
133
134/* TODO: Check for saneness */
135/* User-mode page table flags (to be set in a pgd or pmd entry) */
136#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \
137 | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
138/* Kernel-mode page table flags */
139#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \
140 | _PAGE_ACCESSED | _PAGE_DIRTY)
141/* Flags that may be modified by software */
142#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \
143 | _PAGE_FLAGS_CACHE_MASK)
144
145#define _PAGE_FLAGS_READ (_PAGE_CACHABLE | _PAGE_BUFFER)
146#define _PAGE_FLAGS_WRITE (_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY)
147
148#define _PAGE_NORMAL(x) __pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL \
149 | _PAGE_ACCESSED)
150
151#define PAGE_NONE (_PAGE_ACCESSED | _PAGE_TYPE_NONE)
152#define PAGE_READ (_PAGE_FLAGS_READ | _PAGE_USER)
153#define PAGE_EXEC (_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER)
154#define PAGE_WRITE (_PAGE_FLAGS_WRITE | _PAGE_USER)
155#define PAGE_KERNEL _PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL)
156#define PAGE_KERNEL_RO _PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL)
157
158#define _PAGE_P(x) _PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY))
159#define _PAGE_S(x) _PAGE_NORMAL(x)
160
161#define PAGE_COPY _PAGE_P(PAGE_WRITE | PAGE_READ)
162
163#ifndef __ASSEMBLY__
164/*
165 * The hardware supports flags for write- and execute access. Read is
166 * always allowed if the page is loaded into the TLB, so the "-w-",
167 * "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx",
168 * respectively.
169 *
170 * The "---" case is handled by software; the page will simply not be
171 * loaded into the TLB if the page type is _PAGE_TYPE_NONE.
172 */
173
174#define __P000 __pgprot(PAGE_NONE)
175#define __P001 _PAGE_P(PAGE_READ)
176#define __P010 _PAGE_P(PAGE_WRITE)
177#define __P011 _PAGE_P(PAGE_WRITE | PAGE_READ)
178#define __P100 _PAGE_P(PAGE_EXEC)
179#define __P101 _PAGE_P(PAGE_EXEC | PAGE_READ)
180#define __P110 _PAGE_P(PAGE_EXEC | PAGE_WRITE)
181#define __P111 _PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
182
183#define __S000 __pgprot(PAGE_NONE)
184#define __S001 _PAGE_S(PAGE_READ)
185#define __S010 _PAGE_S(PAGE_WRITE)
186#define __S011 _PAGE_S(PAGE_WRITE | PAGE_READ)
187#define __S100 _PAGE_S(PAGE_EXEC)
188#define __S101 _PAGE_S(PAGE_EXEC | PAGE_READ)
189#define __S110 _PAGE_S(PAGE_EXEC | PAGE_WRITE)
190#define __S111 _PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
191
192#define pte_none(x) (!pte_val(x))
193#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
194
195#define pte_clear(mm,addr,xp) \
196 do { \
197 set_pte_at(mm, addr, xp, __pte(0)); \
198 } while (0)
199
200/*
201 * The following only work if pte_present() is true.
202 * Undefined behaviour if not..
203 */
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -0700204static inline int pte_write(pte_t pte)
205{
206 return pte_val(pte) & _PAGE_RW;
207}
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -0700208static inline int pte_dirty(pte_t pte)
209{
210 return pte_val(pte) & _PAGE_DIRTY;
211}
212static inline int pte_young(pte_t pte)
213{
214 return pte_val(pte) & _PAGE_ACCESSED;
215}
216
217/*
218 * The following only work if pte_present() is not true.
219 */
220static inline int pte_file(pte_t pte)
221{
222 return pte_val(pte) & _PAGE_FILE;
223}
224
225/* Mutator functions for PTE bits */
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -0700226static inline pte_t pte_wrprotect(pte_t pte)
227{
228 set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW));
229 return pte;
230}
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -0700231static inline pte_t pte_mkclean(pte_t pte)
232{
233 set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY));
234 return pte;
235}
236static inline pte_t pte_mkold(pte_t pte)
237{
238 set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED));
239 return pte;
240}
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -0700241static inline pte_t pte_mkwrite(pte_t pte)
242{
243 set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW));
244 return pte;
245}
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -0700246static inline pte_t pte_mkdirty(pte_t pte)
247{
248 set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY));
249 return pte;
250}
251static inline pte_t pte_mkyoung(pte_t pte)
252{
253 set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED));
254 return pte;
255}
256
257#define pmd_none(x) (!pmd_val(x))
258#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
259#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
260#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) \
261 != _KERNPG_TABLE)
262
263/*
264 * Permanent address of a page. We don't support highmem, so this is
265 * trivial.
266 */
267#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
268#define pte_page(x) phys_to_page(pte_val(x) & PTE_PHYS_MASK)
269
270/*
271 * Mark the prot value as uncacheable and unbufferable
272 */
273#define pgprot_noncached(prot) \
274 __pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE))
275
276/*
277 * Mark the prot value as uncacheable but bufferable
278 */
279#define pgprot_writecombine(prot) \
280 __pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER)
281
282/*
283 * Conversion functions: convert a page and protection to a page entry,
284 * and a page entry and page directory to the page they refer to.
285 *
286 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
287 */
288#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
289
290static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
291{
292 set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK)
293 | pgprot_val(newprot)));
294 return pte;
295}
296
297#define page_pte(page) page_pte_prot(page, __pgprot(0))
298
299#define pmd_page_vaddr(pmd) \
300 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
301
302#define pmd_page(pmd) (phys_to_page(pmd_val(pmd)))
303
304/* to find an entry in a page-table-directory. */
305#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
306#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
307#define pgd_offset_current(address) \
308 ((pgd_t *)__mfsr(SYSREG_PTBR) + pgd_index(address))
309
310/* to find an entry in a kernel page-table-directory */
311#define pgd_offset_k(address) pgd_offset(&init_mm, address)
312
313/* Find an entry in the third-level page table.. */
314#define pte_index(address) \
315 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
316#define pte_offset(dir, address) \
317 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
318#define pte_offset_kernel(dir, address) \
319 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
320#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
321#define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address)
322#define pte_unmap(pte) do { } while (0)
323#define pte_unmap_nested(pte) do { } while (0)
324
325struct vm_area_struct;
326extern void update_mmu_cache(struct vm_area_struct * vma,
327 unsigned long address, pte_t pte);
328
329/*
330 * Encode and decode a swap entry
331 *
332 * Constraints:
333 * _PAGE_FILE at bit 0
334 * _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE)
335 * _PAGE_PRESENT at bit 10
336 *
337 * We encode the type into bits 4-9 and offset into bits 11-31. This
338 * gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per
339 * device, and 64 possible types.
340 *
341 * NOTE: We should set ZEROs at the position of _PAGE_PRESENT
342 * and _PAGE_PROTNONE bits
343 */
344#define __swp_type(x) (((x).val >> 4) & 0x3f)
345#define __swp_offset(x) ((x).val >> 11)
346#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
347#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
348#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
349
350/*
351 * Encode and decode a nonlinear file mapping entry. We have to
352 * preserve _PAGE_FILE and _PAGE_PRESENT here. _PAGE_TYPE_* isn't
353 * necessary, since _PAGE_FILE implies !_PAGE_PROTNONE (?)
354 */
355#define PTE_FILE_MAX_BITS 30
356#define pte_to_pgoff(pte) (((pte_val(pte) >> 1) & 0x1ff) \
357 | ((pte_val(pte) >> 11) << 9))
358#define pgoff_to_pte(off) ((pte_t) { ((((off) & 0x1ff) << 1) \
359 | (((off) >> 9) << 11) \
360 | _PAGE_FILE) })
361
362typedef pte_t *pte_addr_t;
363
364#define kern_addr_valid(addr) (1)
365
366#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
367 remap_pfn_range(vma, vaddr, pfn, size, prot)
368
Haavard Skinnemoen5f97f7f2006-09-25 23:32:13 -0700369/* No page table caches to initialize (?) */
370#define pgtable_cache_init() do { } while(0)
371
372#include <asm-generic/pgtable.h>
373
374#endif /* !__ASSEMBLY__ */
375
376#endif /* __ASM_AVR32_PGTABLE_H */