blob: a2b0b6fc002c0a58471beec97ff870d862e79966 [file] [log] [blame]
Dave Jiangc0d12172007-07-19 01:49:46 -07001/*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
Hitoshi Mitakec3c52bc2008-04-29 01:03:18 -07006 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
Dave Jiangc0d12172007-07-19 01:49:46 -07007 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12#ifndef _LINUX_EDAC_H_
13#define _LINUX_EDAC_H_
14
Arun Sharma600634972011-07-26 16:09:06 -070015#include <linux/atomic.h>
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -030016#include <linux/device.h>
Paul Gortmaker313162d2012-01-30 11:46:54 -050017#include <linux/kobject.h>
18#include <linux/completion.h>
19#include <linux/workqueue.h>
20
21struct device;
Dave Jiangc0d12172007-07-19 01:49:46 -070022
23#define EDAC_OPSTATE_INVAL -1
24#define EDAC_OPSTATE_POLL 0
25#define EDAC_OPSTATE_NMI 1
26#define EDAC_OPSTATE_INT 2
27
28extern int edac_op_state;
Dave Jiang66ee2f92007-07-19 01:49:54 -070029extern int edac_err_assert;
Dave Jiangc0d12172007-07-19 01:49:46 -070030extern atomic_t edac_handlers;
Kay Sieversfe5ff8b2011-12-14 15:21:07 -080031extern struct bus_type edac_subsys;
Dave Jiangc0d12172007-07-19 01:49:46 -070032
33extern int edac_handler_set(void);
34extern void edac_atomic_assert_error(void);
Kay Sieversfe5ff8b2011-12-14 15:21:07 -080035extern struct bus_type *edac_get_sysfs_subsys(void);
36extern void edac_put_sysfs_subsys(void);
Dave Jiangc0d12172007-07-19 01:49:46 -070037
Hitoshi Mitakec3c52bc2008-04-29 01:03:18 -070038static inline void opstate_init(void)
39{
40 switch (edac_op_state) {
41 case EDAC_OPSTATE_POLL:
42 case EDAC_OPSTATE_NMI:
43 break;
44 default:
45 edac_op_state = EDAC_OPSTATE_POLL;
46 }
47 return;
48}
49
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -030050#define EDAC_MC_LABEL_LEN 31
51#define MC_PROC_NAME_MAX_LEN 7
52
Mauro Carvalho Chehabb0610bb82012-03-21 16:21:07 -030053/**
54 * enum dev_type - describe the type of memory DRAM chips used at the stick
55 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
56 * @DEV_X1: 1 bit for data
57 * @DEV_X2: 2 bits for data
58 * @DEV_X4: 4 bits for data
59 * @DEV_X8: 8 bits for data
60 * @DEV_X16: 16 bits for data
61 * @DEV_X32: 32 bits for data
62 * @DEV_X64: 64 bits for data
63 *
64 * Typical values are x4 and x8.
65 */
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -030066enum dev_type {
67 DEV_UNKNOWN = 0,
68 DEV_X1,
69 DEV_X2,
70 DEV_X4,
71 DEV_X8,
72 DEV_X16,
73 DEV_X32, /* Do these parts exist? */
74 DEV_X64 /* Do these parts exist? */
75};
76
77#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
78#define DEV_FLAG_X1 BIT(DEV_X1)
79#define DEV_FLAG_X2 BIT(DEV_X2)
80#define DEV_FLAG_X4 BIT(DEV_X4)
81#define DEV_FLAG_X8 BIT(DEV_X8)
82#define DEV_FLAG_X16 BIT(DEV_X16)
83#define DEV_FLAG_X32 BIT(DEV_X32)
84#define DEV_FLAG_X64 BIT(DEV_X64)
85
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -030086/**
Mauro Carvalho Chehab982216a2012-04-16 13:04:46 -030087 * enum hw_event_mc_err_type - type of the detected error
88 *
89 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
90 * corrected error was detected
91 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
92 * can't be corrected by ECC, but it is not
93 * fatal (maybe it is on an unused memory area,
94 * or the memory controller could recover from
95 * it for example, by re-trying the operation).
96 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
97 * be recovered.
98 */
99enum hw_event_mc_err_type {
100 HW_EVENT_ERR_CORRECTED,
101 HW_EVENT_ERR_UNCORRECTED,
102 HW_EVENT_ERR_FATAL,
103};
104
105/**
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300106 * enum mem_type - memory types. For a more detailed reference, please see
107 * http://en.wikipedia.org/wiki/DRAM
108 *
109 * @MEM_EMPTY Empty csrow
110 * @MEM_RESERVED: Reserved csrow type
111 * @MEM_UNKNOWN: Unknown csrow type
112 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
113 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
114 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
115 * @MEM_SDR: SDR - Single data rate SDRAM
116 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
117 * They use 3 pins for chip select: Pins 0 and 2 are
118 * for rank 0; pins 1 and 3 are for rank 1, if the memory
119 * is dual-rank.
120 * @MEM_RDR: Registered SDR SDRAM
121 * @MEM_DDR: Double data rate SDRAM
122 * http://en.wikipedia.org/wiki/DDR_SDRAM
123 * @MEM_RDDR: Registered Double data rate SDRAM
124 * This is a variant of the DDR memories.
125 * A registered memory has a buffer inside it, hiding
126 * part of the memory details to the memory controller.
127 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
128 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
129 * Those memories are labed as "PC2-" instead of "PC" to
130 * differenciate from DDR.
131 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
132 * and JESD206.
133 * Those memories are accessed per DIMM slot, and not by
134 * a chip select signal.
135 * @MEM_RDDR2: Registered DDR2 RAM
136 * This is a variant of the DDR2 memories.
137 * @MEM_XDR: Rambus XDR
138 * It is an evolution of the original RAMBUS memories,
139 * created to compete with DDR2. Weren't used on any
140 * x86 arch, but cell_edac PPC memory controller uses it.
141 * @MEM_DDR3: DDR3 RAM
142 * @MEM_RDDR3: Registered DDR3 RAM
143 * This is a variant of the DDR3 memories.
144 */
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300145enum mem_type {
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300146 MEM_EMPTY = 0,
147 MEM_RESERVED,
148 MEM_UNKNOWN,
149 MEM_FPM,
150 MEM_EDO,
151 MEM_BEDO,
152 MEM_SDR,
153 MEM_RDR,
154 MEM_DDR,
155 MEM_RDDR,
156 MEM_RMBS,
157 MEM_DDR2,
158 MEM_FB_DDR2,
159 MEM_RDDR2,
160 MEM_XDR,
161 MEM_DDR3,
162 MEM_RDDR3,
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300163};
164
165#define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
166#define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
167#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
168#define MEM_FLAG_FPM BIT(MEM_FPM)
169#define MEM_FLAG_EDO BIT(MEM_EDO)
170#define MEM_FLAG_BEDO BIT(MEM_BEDO)
171#define MEM_FLAG_SDR BIT(MEM_SDR)
172#define MEM_FLAG_RDR BIT(MEM_RDR)
173#define MEM_FLAG_DDR BIT(MEM_DDR)
174#define MEM_FLAG_RDDR BIT(MEM_RDDR)
175#define MEM_FLAG_RMBS BIT(MEM_RMBS)
176#define MEM_FLAG_DDR2 BIT(MEM_DDR2)
177#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
178#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
179#define MEM_FLAG_XDR BIT(MEM_XDR)
180#define MEM_FLAG_DDR3 BIT(MEM_DDR3)
181#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
182
Mauro Carvalho Chehabb0610bb82012-03-21 16:21:07 -0300183/**
184 * enum edac-type - Error Detection and Correction capabilities and mode
185 * @EDAC_UNKNOWN: Unknown if ECC is available
186 * @EDAC_NONE: Doesn't support ECC
187 * @EDAC_RESERVED: Reserved ECC type
188 * @EDAC_PARITY: Detects parity errors
189 * @EDAC_EC: Error Checking - no correction
190 * @EDAC_SECDED: Single bit error correction, Double detection
191 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
192 * @EDAC_S4ECD4ED: Chipkill x4 devices
193 * @EDAC_S8ECD8ED: Chipkill x8 devices
194 * @EDAC_S16ECD16ED: Chipkill x16 devices
195 */
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300196enum edac_type {
Mauro Carvalho Chehabb0610bb82012-03-21 16:21:07 -0300197 EDAC_UNKNOWN = 0,
198 EDAC_NONE,
199 EDAC_RESERVED,
200 EDAC_PARITY,
201 EDAC_EC,
202 EDAC_SECDED,
203 EDAC_S2ECD2ED,
204 EDAC_S4ECD4ED,
205 EDAC_S8ECD8ED,
206 EDAC_S16ECD16ED,
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300207};
208
209#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
210#define EDAC_FLAG_NONE BIT(EDAC_NONE)
211#define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
212#define EDAC_FLAG_EC BIT(EDAC_EC)
213#define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
214#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
215#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
216#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
217#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
218
Mauro Carvalho Chehabb0610bb82012-03-21 16:21:07 -0300219/**
220 * enum scrub_type - scrubbing capabilities
221 * @SCRUB_UNKNOWN Unknown if scrubber is available
222 * @SCRUB_NONE: No scrubber
223 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
224 * @SCRUB_SW_SRC: Software scrub only errors
225 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
226 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
227 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
228 * @SCRUB_HW_SRC: Hardware scrub only errors
229 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
230 * SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
231 */
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300232enum scrub_type {
Mauro Carvalho Chehabb0610bb82012-03-21 16:21:07 -0300233 SCRUB_UNKNOWN = 0,
234 SCRUB_NONE,
235 SCRUB_SW_PROG,
236 SCRUB_SW_SRC,
237 SCRUB_SW_PROG_SRC,
238 SCRUB_SW_TUNABLE,
239 SCRUB_HW_PROG,
240 SCRUB_HW_SRC,
241 SCRUB_HW_PROG_SRC,
242 SCRUB_HW_TUNABLE
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300243};
244
245#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
246#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
247#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
248#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
249#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
250#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
251#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
252#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
253
254/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
255
256/* EDAC internal operation states */
257#define OP_ALLOC 0x100
258#define OP_RUNNING_POLL 0x201
259#define OP_RUNNING_INTERRUPT 0x202
260#define OP_RUNNING_POLL_INTR 0x203
261#define OP_OFFLINE 0x300
262
263/*
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300264 * Concepts used at the EDAC subsystem
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300265 *
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300266 * There are several things to be aware of that aren't at all obvious:
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300267 *
268 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
269 *
270 * These are some of the many terms that are thrown about that don't always
271 * mean what people think they mean (Inconceivable!). In the interest of
272 * creating a common ground for discussion, terms and their definitions
273 * will be established.
274 *
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300275 * Memory devices: The individual DRAM chips on a memory stick. These
276 * devices commonly output 4 and 8 bits each (x4, x8).
277 * Grouping several of these in parallel provides the
278 * number of bits that the memory controller expects:
279 * typically 72 bits, in order to provide 64 bits +
280 * 8 bits of ECC data.
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300281 *
282 * Memory Stick: A printed circuit board that aggregates multiple
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300283 * memory devices in parallel. In general, this is the
284 * Field Replaceable Unit (FRU) which gets replaced, in
285 * the case of excessive errors. Most often it is also
286 * called DIMM (Dual Inline Memory Module).
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300287 *
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300288 * Memory Socket: A physical connector on the motherboard that accepts
289 * a single memory stick. Also called as "slot" on several
290 * datasheets.
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300291 *
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300292 * Channel: A memory controller channel, responsible to communicate
293 * with a group of DIMMs. Each channel has its own
294 * independent control (command) and data bus, and can
295 * be used independently or grouped with other channels.
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300296 *
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300297 * Branch: It is typically the highest hierarchy on a
298 * Fully-Buffered DIMM memory controller.
299 * Typically, it contains two channels.
300 * Two channels at the same branch can be used in single
301 * mode or in lockstep mode.
302 * When lockstep is enabled, the cacheline is doubled,
303 * but it generally brings some performance penalty.
304 * Also, it is generally not possible to point to just one
305 * memory stick when an error occurs, as the error
306 * correction code is calculated using two DIMMs instead
307 * of one. Due to that, it is capable of correcting more
308 * errors than on single mode.
309 *
310 * Single-channel: The data accessed by the memory controller is contained
311 * into one dimm only. E. g. if the data is 64 bits-wide,
312 * the data flows to the CPU using one 64 bits parallel
313 * access.
314 * Typically used with SDR, DDR, DDR2 and DDR3 memories.
315 * FB-DIMM and RAMBUS use a different concept for channel,
316 * so this concept doesn't apply there.
317 *
318 * Double-channel: The data size accessed by the memory controller is
319 * interlaced into two dimms, accessed at the same time.
320 * E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
321 * the data flows to the CPU using a 128 bits parallel
322 * access.
323 *
324 * Chip-select row: This is the name of the DRAM signal used to select the
325 * DRAM ranks to be accessed. Common chip-select rows for
326 * single channel are 64 bits, for dual channel 128 bits.
327 * It may not be visible by the memory controller, as some
328 * DIMM types have a memory buffer that can hide direct
329 * access to it from the Memory Controller.
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300330 *
331 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
332 * Motherboards commonly drive two chip-select pins to
333 * a memory stick. A single-ranked stick, will occupy
334 * only one of those rows. The other will be unused.
335 *
336 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
337 * access different sets of memory devices. The two
338 * rows cannot be accessed concurrently.
339 *
340 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
341 * A double-sided stick has two chip-select rows which
Mauro Carvalho Chehab01a6e282012-02-03 13:17:48 -0300342 * access different sets of memory devices. The two
343 * rows cannot be accessed concurrently. "Double-sided"
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300344 * is irrespective of the memory devices being mounted
345 * on both sides of the memory stick.
346 *
347 * Socket set: All of the memory sticks that are required for
348 * a single memory access or all of the memory sticks
349 * spanned by a chip-select row. A single socket set
350 * has two chip-select rows and if double-sided sticks
351 * are used these will occupy those chip-select rows.
352 *
353 * Bank: This term is avoided because it is unclear when
354 * needing to distinguish between chip-select rows and
355 * socket sets.
356 *
357 * Controller pages:
358 *
359 * Physical pages:
360 *
361 * Virtual pages:
362 *
363 *
364 * STRUCTURE ORGANIZATION AND CHOICES
365 *
366 *
367 *
368 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
369 */
370
Mauro Carvalho Chehab982216a2012-04-16 13:04:46 -0300371/**
372 * enum edac_mc_layer - memory controller hierarchy layer
373 *
374 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
375 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
376 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
377 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
378 *
379 * This enum is used by the drivers to tell edac_mc_sysfs what name should
380 * be used when describing a memory stick location.
381 */
382enum edac_mc_layer_type {
383 EDAC_MC_LAYER_BRANCH,
384 EDAC_MC_LAYER_CHANNEL,
385 EDAC_MC_LAYER_SLOT,
386 EDAC_MC_LAYER_CHIP_SELECT,
387};
388
389/**
390 * struct edac_mc_layer - describes the memory controller hierarchy
391 * @layer: layer type
392 * @size: number of components per layer. For example,
393 * if the channel layer has two channels, size = 2
394 * @is_virt_csrow: This layer is part of the "csrow" when old API
395 * compatibility mode is enabled. Otherwise, it is
396 * a channel
397 */
398struct edac_mc_layer {
399 enum edac_mc_layer_type type;
400 unsigned size;
401 bool is_virt_csrow;
402};
403
404/*
405 * Maximum number of layers used by the memory controller to uniquely
406 * identify a single memory stick.
407 * NOTE: Changing this constant requires not only to change the constant
408 * below, but also to change the existing code at the core, as there are
409 * some code there that are optimized for 3 layers.
410 */
411#define EDAC_MAX_LAYERS 3
412
413/**
414 * EDAC_DIMM_PTR - Macro responsible to find a pointer inside a pointer array
415 * for the element given by [layer0,layer1,layer2] position
416 *
417 * @layers: a struct edac_mc_layer array, describing how many elements
418 * were allocated for each layer
419 * @var: name of the var where we want to get the pointer
420 * (like mci->dimms)
421 * @n_layers: Number of layers at the @layers array
422 * @layer0: layer0 position
423 * @layer1: layer1 position. Unused if n_layers < 2
424 * @layer2: layer2 position. Unused if n_layers < 3
425 *
426 * For 1 layer, this macro returns &var[layer0]
427 * For 2 layers, this macro is similar to allocate a bi-dimensional array
428 * and to return "&var[layer0][layer1]"
429 * For 3 layers, this macro is similar to allocate a tri-dimensional array
430 * and to return "&var[layer0][layer1][layer2]"
431 *
432 * A loop could be used here to make it more generic, but, as we only have
433 * 3 layers, this is a little faster.
434 * By design, layers can never be 0 or more than 3. If that ever happens,
435 * a NULL is returned, causing an OOPS during the memory allocation routine,
436 * with would point to the developer that he's doing something wrong.
437 */
438#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
439 typeof(var) __p; \
440 if ((nlayers) == 1) \
441 __p = &var[layer0]; \
442 else if ((nlayers) == 2) \
443 __p = &var[(layer1) + ((layers[1]).size * (layer0))]; \
444 else if ((nlayers) == 3) \
445 __p = &var[(layer2) + ((layers[2]).size * ((layer1) + \
446 ((layers[1]).size * (layer0))))]; \
447 else \
448 __p = NULL; \
449 __p; \
450})
451
Mauro Carvalho Chehaba7d7d2e2012-01-27 14:12:32 -0300452struct dimm_info {
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -0300453 struct device dev;
454
Mauro Carvalho Chehaba7d7d2e2012-01-27 14:12:32 -0300455 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300456
457 /* Memory location data */
458 unsigned location[EDAC_MAX_LAYERS];
459
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -0300460 struct kobject kobj; /* sysfs kobject for this csrow */
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300461 struct mem_ctl_info *mci; /* the parent */
Mauro Carvalho Chehab084a4fc2012-01-27 18:38:08 -0300462
463 u32 grain; /* granularity of reported error in bytes */
464 enum dev_type dtype; /* memory device type */
465 enum mem_type mtype; /* memory dimm type */
466 enum edac_type edac_mode; /* EDAC mode for this dimm */
467
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300468 u32 nr_pages; /* number of pages on this dimm */
Mauro Carvalho Chehaba895bf82012-01-28 09:09:38 -0300469
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300470 unsigned csrow, cschannel; /* Points to the old API data */
Mauro Carvalho Chehaba7d7d2e2012-01-27 14:12:32 -0300471};
472
Mauro Carvalho Chehaba4b4be32012-01-27 10:26:13 -0300473/**
474 * struct rank_info - contains the information for one DIMM rank
475 *
476 * @chan_idx: channel number where the rank is (typically, 0 or 1)
477 * @ce_count: number of correctable errors for this rank
Mauro Carvalho Chehaba4b4be32012-01-27 10:26:13 -0300478 * @csrow: A pointer to the chip select row structure (the parent
479 * structure). The location of the rank is given by
480 * the (csrow->csrow_idx, chan_idx) vector.
Mauro Carvalho Chehaba7d7d2e2012-01-27 14:12:32 -0300481 * @dimm: A pointer to the DIMM structure, where the DIMM label
482 * information is stored.
483 *
484 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
485 * This is a bad assumption, but it makes this patch easier. Later
486 * patches in this series will fix this issue.
Mauro Carvalho Chehaba4b4be32012-01-27 10:26:13 -0300487 */
488struct rank_info {
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -0300489 struct device dev;
490
Mauro Carvalho Chehaba4b4be32012-01-27 10:26:13 -0300491 int chan_idx;
Mauro Carvalho Chehaba7d7d2e2012-01-27 14:12:32 -0300492 struct csrow_info *csrow;
493 struct dimm_info *dimm;
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300494
495 u32 ce_count; /* Correctable Errors for this csrow */
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300496};
497
498struct csrow_info {
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -0300499 struct device dev;
500
Mauro Carvalho Chehaba895bf82012-01-28 09:09:38 -0300501 /* Used only by edac_mc_find_csrow_by_page() */
Mauro Carvalho Chehab084a4fc2012-01-27 18:38:08 -0300502 unsigned long first_page; /* first page number in csrow */
503 unsigned long last_page; /* last page number in csrow */
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300504 unsigned long page_mask; /* used for interleaving -
Mauro Carvalho Chehaba895bf82012-01-28 09:09:38 -0300505 * 0UL for non intlv */
506
Mauro Carvalho Chehab084a4fc2012-01-27 18:38:08 -0300507 int csrow_idx; /* the chip-select row */
508
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300509 u32 ue_count; /* Uncorrectable Errors for this csrow */
510 u32 ce_count; /* Correctable Errors for this csrow */
Mauro Carvalho Chehab084a4fc2012-01-27 18:38:08 -0300511
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300512 struct mem_ctl_info *mci; /* the parent */
513
514 struct kobject kobj; /* sysfs kobject for this csrow */
515
516 /* channel information for this csrow */
517 u32 nr_channels;
Mauro Carvalho Chehaba4b4be32012-01-27 10:26:13 -0300518 struct rank_info *channels;
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300519};
520
521struct mcidev_sysfs_group {
522 const char *name; /* group name */
523 const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */
524};
525
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300526/* mcidev_sysfs_attribute structure
527 * used for driver sysfs attributes and in mem_ctl_info
528 * sysfs top level entries
529 */
530struct mcidev_sysfs_attribute {
531 /* It should use either attr or grp */
532 struct attribute attr;
533 const struct mcidev_sysfs_group *grp; /* Points to a group of attributes */
534
535 /* Ops for show/store values at the attribute - not used on group */
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -0300536 ssize_t (*show)(struct mem_ctl_info *, char *);
537 ssize_t (*store)(struct mem_ctl_info *, const char *, size_t);
538
539 void *priv;
540};
541
542/*
543 * struct errcount_attribute - used to store the several error counts
544 */
545struct errcount_attribute_data {
546 int n_layers;
547 int pos[EDAC_MAX_LAYERS];
548 int layer0, layer1, layer2;
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300549};
550
551/* MEMORY controller information structure
552 */
553struct mem_ctl_info {
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -0300554 struct device dev;
555 struct bus_type bus;
556
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300557 struct list_head link; /* for global list of mem_ctl_info structs */
558
559 struct module *owner; /* Module owner of this control struct */
560
561 unsigned long mtype_cap; /* memory types supported by mc */
562 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
563 unsigned long edac_cap; /* configuration capabilities - this is
564 * closely related to edac_ctl_cap. The
565 * difference is that the controller may be
566 * capable of s4ecd4ed which would be listed
567 * in edac_ctl_cap, but if channels aren't
568 * capable of s4ecd4ed then the edac_cap would
569 * not have that capability.
570 */
571 unsigned long scrub_cap; /* chipset scrub capabilities */
572 enum scrub_type scrub_mode; /* current scrub mode */
573
574 /* Translates sdram memory scrub rate given in bytes/sec to the
575 internal representation and configures whatever else needs
576 to be configured.
577 */
578 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
579
580 /* Get the current sdram memory scrub rate from the internal
581 representation and converts it to the closest matching
582 bandwidth in bytes/sec.
583 */
584 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
585
586
587 /* pointer to edac checking routine */
588 void (*edac_check) (struct mem_ctl_info * mci);
589
590 /*
591 * Remaps memory pages: controller pages to physical pages.
592 * For most MC's, this will be NULL.
593 */
594 /* FIXME - why not send the phys page to begin with? */
595 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
596 unsigned long page);
597 int mc_idx;
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300598 struct csrow_info *csrows;
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300599 unsigned nr_csrows, num_cschannel;
600
Mauro Carvalho Chehab7a623c02012-04-16 16:41:11 -0300601 /*
602 * Memory Controller hierarchy
603 *
604 * There are basically two types of memory controller: the ones that
605 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
606 * All old memory controllers enumerate memories per rank, but most
607 * of the recent drivers enumerate memories per DIMM, instead.
608 * When the memory controller is per rank, mem_is_per_rank is true.
609 */
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300610 unsigned n_layers;
611 struct edac_mc_layer *layers;
612 bool mem_is_per_rank;
Mauro Carvalho Chehaba7d7d2e2012-01-27 14:12:32 -0300613
614 /*
615 * DIMM info. Will eventually remove the entire csrows_info some day
616 */
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300617 unsigned tot_dimms;
Mauro Carvalho Chehaba7d7d2e2012-01-27 14:12:32 -0300618 struct dimm_info *dimms;
619
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300620 /*
621 * FIXME - what about controllers on other busses? - IDs must be
622 * unique. dev pointer should be sufficiently unique, but
623 * BUS:SLOT.FUNC numbers may not be unique.
624 */
Mauro Carvalho Chehabfd687502012-03-16 07:44:18 -0300625 struct device *pdev;
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300626 const char *mod_name;
627 const char *mod_ver;
628 const char *ctl_name;
629 const char *dev_name;
630 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
631 void *pvt_info;
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300632 unsigned long start_time; /* mci load start time (in jiffies) */
633
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300634 /*
635 * drivers shouldn't access those fields directly, as the core
636 * already handles that.
637 */
638 u32 ce_noinfo_count, ue_noinfo_count;
Mauro Carvalho Chehab5926ff52012-02-09 11:05:20 -0300639 u32 ue_mc, ce_mc;
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300640 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
641
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300642 struct completion complete;
643
644 /* edac sysfs device control */
645 struct kobject edac_mci_kobj;
646
647 /* list for all grp instances within a mc */
648 struct list_head grp_kobj_list;
649
650 /* Additional top controller level attributes, but specified
651 * by the low level driver.
652 *
653 * Set by the low level driver to provide attributes at the
Mauro Carvalho Chehab4275be62012-04-18 15:20:50 -0300654 * controller level.
Mauro Carvalho Chehabddeb3542011-03-04 15:11:29 -0300655 * An array of structures, NULL terminated
656 *
657 * If attributes are desired, then set to array of attributes
658 * If no attributes are desired, leave NULL
659 */
660 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
661
662 /* work struct for this MC */
663 struct delayed_work work;
664
665 /* the internal state of this controller instance */
666 int op_state;
667};
668
Dave Jiangc0d12172007-07-19 01:49:46 -0700669#endif