blob: e1e6b5b03c96cdd38137002afb0516d394195fd3 [file] [log] [blame]
Bart Van Asschea42d9852011-10-14 01:30:46 +00001/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_tcq.h>
45#include <target/configfs_macros.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric_configfs.h>
48#include <target/target_core_fabric.h>
49#include <target/target_core_configfs.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME "ib_srpt"
54#define DRV_VERSION "2.0.0"
55#define DRV_RELDATE "2011-02-14"
56
57#define SRPT_ID_STRING "Linux SRP target"
58
59#undef pr_fmt
60#define pr_fmt(fmt) DRV_NAME " " fmt
61
62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65MODULE_LICENSE("Dual BSD/GPL");
66
67/*
68 * Global Variables
69 */
70
71static u64 srpt_service_guid;
Roland Dreier486d8b92012-02-02 12:55:58 -080072static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
Bart Van Asschea42d9852011-10-14 01:30:46 +000074
75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76module_param(srp_max_req_size, int, 0444);
77MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81module_param(srpt_srq_size, int, 0444);
82MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86{
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88}
89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96static struct target_fabric_configfs *srpt_target;
97static void srpt_release_channel(struct srpt_rdma_ch *ch);
98static int srpt_queue_status(struct se_cmd *cmd);
99
100/**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103static inline
104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105{
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111}
112
113/**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119{
120 return sdev->device->name;
121}
122
123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124{
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132}
133
134static enum rdma_ch_state
135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136{
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145}
146
147/**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152static bool
153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155{
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165}
166
167/**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177{
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213}
214
215/**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218static void srpt_srq_event(struct ib_event *event, void *ctx)
219{
220 printk(KERN_INFO "SRQ event %d\n", event->event);
221}
222
223/**
224 * srpt_qp_event() - QP event callback function.
225 */
226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227{
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
247 }
248}
249
250/**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260{
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272}
273
274/**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281{
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291}
292
293/**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299static void srpt_get_iou(struct ib_dm_mad *mad)
300{
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315}
316
317/**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326{
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366}
367
368/**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376{
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403}
404
405/**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413{
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443}
444
445/**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450{
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453}
454
455/**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460{
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512err_rsp:
513 ib_destroy_ah(ah);
514err:
515 ib_free_recv_mad(mad_wc);
516}
517
518/**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527static int srpt_refresh_port(struct srpt_port *sport)
528{
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582err_mod_port:
583
584 return ret;
585}
586
587/**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593{
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610}
611
612/**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618{
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635err_free_buf:
636 kfree(ioctx->buf);
637err_free_ioctx:
638 kfree(ioctx);
639err:
640 return NULL;
641}
642
643/**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648{
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655}
656
657/**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668{
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
Jesper Juhl715252d2012-02-04 23:49:40 +0100690 ring = NULL;
Bart Van Asschea42d9852011-10-14 01:30:46 +0000691out:
692 return ring;
693}
694
695/**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701{
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707}
708
709/**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713{
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723}
724
725/**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733{
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746}
747
748/**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756{
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770}
771
772/**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777{
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793}
794
795/**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802{
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838}
839
840/**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857{
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 printk(KERN_ERR "received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941out:
942 return ret;
943}
944
945/**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952{
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972}
973
974/**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986{
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000out:
1001 return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031 return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050{
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080{
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1095
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1101
1102 transport_do_task_sg_chain(cmd);
1103 ioctx->sg = sg = sg_orig = cmd->t_tasks_sg_chained;
1104 ioctx->sg_cnt = sg_cnt = cmd->t_tasks_sg_chained_no;
1105
1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107 opposite_dma_dir(dir));
1108 if (unlikely(!count))
1109 return -EAGAIN;
1110
1111 ioctx->mapped_sg_count = count;
1112
1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114 nrdma = ioctx->n_rdma_ius;
1115 else {
1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117 + ioctx->n_rbuf;
1118
1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120 if (!ioctx->rdma_ius)
1121 goto free_mem;
1122
1123 ioctx->n_rdma_ius = nrdma;
1124 }
1125
1126 db = ioctx->rbufs;
1127 tsize = cmd->data_length;
1128 dma_len = sg_dma_len(&sg[0]);
1129 riu = ioctx->rdma_ius;
1130
1131 /*
1132 * For each remote desc - calculate the #ib_sge.
1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 * each remote desc rdma_iu is required a rdma wr;
1135 * else
1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1137 * another rdma wr
1138 */
1139 for (i = 0, j = 0;
1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141 rsize = be32_to_cpu(db->len);
1142 raddr = be64_to_cpu(db->va);
1143 riu->raddr = raddr;
1144 riu->rkey = be32_to_cpu(db->key);
1145 riu->sge_cnt = 0;
1146
1147 /* calculate how many sge required for this remote_buf */
1148 while (rsize > 0 && tsize > 0) {
1149
1150 if (rsize >= dma_len) {
1151 tsize -= dma_len;
1152 rsize -= dma_len;
1153 raddr += dma_len;
1154
1155 if (tsize > 0) {
1156 ++j;
1157 if (j < count) {
1158 sg = sg_next(sg);
1159 dma_len = sg_dma_len(sg);
1160 }
1161 }
1162 } else {
1163 tsize -= rsize;
1164 dma_len -= rsize;
1165 rsize = 0;
1166 }
1167
1168 ++riu->sge_cnt;
1169
1170 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1171 ++ioctx->n_rdma;
1172 riu->sge =
1173 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1174 GFP_KERNEL);
1175 if (!riu->sge)
1176 goto free_mem;
1177
1178 ++riu;
1179 riu->sge_cnt = 0;
1180 riu->raddr = raddr;
1181 riu->rkey = be32_to_cpu(db->key);
1182 }
1183 }
1184
1185 ++ioctx->n_rdma;
1186 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1187 GFP_KERNEL);
1188 if (!riu->sge)
1189 goto free_mem;
1190 }
1191
1192 db = ioctx->rbufs;
1193 tsize = cmd->data_length;
1194 riu = ioctx->rdma_ius;
1195 sg = sg_orig;
1196 dma_len = sg_dma_len(&sg[0]);
1197 dma_addr = sg_dma_address(&sg[0]);
1198
1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1200 for (i = 0, j = 0;
1201 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1202 rsize = be32_to_cpu(db->len);
1203 sge = riu->sge;
1204 k = 0;
1205
1206 while (rsize > 0 && tsize > 0) {
1207 sge->addr = dma_addr;
1208 sge->lkey = ch->sport->sdev->mr->lkey;
1209
1210 if (rsize >= dma_len) {
1211 sge->length =
1212 (tsize < dma_len) ? tsize : dma_len;
1213 tsize -= dma_len;
1214 rsize -= dma_len;
1215
1216 if (tsize > 0) {
1217 ++j;
1218 if (j < count) {
1219 sg = sg_next(sg);
1220 dma_len = sg_dma_len(sg);
1221 dma_addr = sg_dma_address(sg);
1222 }
1223 }
1224 } else {
1225 sge->length = (tsize < rsize) ? tsize : rsize;
1226 tsize -= rsize;
1227 dma_len -= rsize;
1228 dma_addr += rsize;
1229 rsize = 0;
1230 }
1231
1232 ++k;
1233 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1234 ++riu;
1235 sge = riu->sge;
1236 k = 0;
1237 } else if (rsize > 0 && tsize > 0)
1238 ++sge;
1239 }
1240 }
1241
1242 return 0;
1243
1244free_mem:
1245 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1246
1247 return -ENOMEM;
1248}
1249
1250/**
1251 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1252 */
1253static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1254{
1255 struct srpt_send_ioctx *ioctx;
1256 unsigned long flags;
1257
1258 BUG_ON(!ch);
1259
1260 ioctx = NULL;
1261 spin_lock_irqsave(&ch->spinlock, flags);
1262 if (!list_empty(&ch->free_list)) {
1263 ioctx = list_first_entry(&ch->free_list,
1264 struct srpt_send_ioctx, free_list);
1265 list_del(&ioctx->free_list);
1266 }
1267 spin_unlock_irqrestore(&ch->spinlock, flags);
1268
1269 if (!ioctx)
1270 return ioctx;
1271
1272 BUG_ON(ioctx->ch != ch);
1273 kref_init(&ioctx->kref);
1274 spin_lock_init(&ioctx->spinlock);
1275 ioctx->state = SRPT_STATE_NEW;
1276 ioctx->n_rbuf = 0;
1277 ioctx->rbufs = NULL;
1278 ioctx->n_rdma = 0;
1279 ioctx->n_rdma_ius = 0;
1280 ioctx->rdma_ius = NULL;
1281 ioctx->mapped_sg_count = 0;
1282 init_completion(&ioctx->tx_done);
1283 ioctx->queue_status_only = false;
1284 /*
1285 * transport_init_se_cmd() does not initialize all fields, so do it
1286 * here.
1287 */
1288 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1289 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1290
1291 return ioctx;
1292}
1293
1294/**
1295 * srpt_put_send_ioctx() - Free up resources.
1296 */
1297static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
1298{
1299 struct srpt_rdma_ch *ch;
1300 unsigned long flags;
1301
1302 BUG_ON(!ioctx);
1303 ch = ioctx->ch;
1304 BUG_ON(!ch);
1305
1306 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
1307
1308 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1309 transport_generic_free_cmd(&ioctx->cmd, 0);
1310
1311 if (ioctx->n_rbuf > 1) {
1312 kfree(ioctx->rbufs);
1313 ioctx->rbufs = NULL;
1314 ioctx->n_rbuf = 0;
1315 }
1316
1317 spin_lock_irqsave(&ch->spinlock, flags);
1318 list_add(&ioctx->free_list, &ch->free_list);
1319 spin_unlock_irqrestore(&ch->spinlock, flags);
1320}
1321
1322static void srpt_put_send_ioctx_kref(struct kref *kref)
1323{
1324 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
1325}
1326
1327/**
1328 * srpt_abort_cmd() - Abort a SCSI command.
1329 * @ioctx: I/O context associated with the SCSI command.
1330 * @context: Preferred execution context.
1331 */
1332static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1333{
1334 enum srpt_command_state state;
1335 unsigned long flags;
1336
1337 BUG_ON(!ioctx);
1338
1339 /*
1340 * If the command is in a state where the target core is waiting for
1341 * the ib_srpt driver, change the state to the next state. Changing
1342 * the state of the command from SRPT_STATE_NEED_DATA to
1343 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1344 * function a second time.
1345 */
1346
1347 spin_lock_irqsave(&ioctx->spinlock, flags);
1348 state = ioctx->state;
1349 switch (state) {
1350 case SRPT_STATE_NEED_DATA:
1351 ioctx->state = SRPT_STATE_DATA_IN;
1352 break;
1353 case SRPT_STATE_DATA_IN:
1354 case SRPT_STATE_CMD_RSP_SENT:
1355 case SRPT_STATE_MGMT_RSP_SENT:
1356 ioctx->state = SRPT_STATE_DONE;
1357 break;
1358 default:
1359 break;
1360 }
1361 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1362
1363 if (state == SRPT_STATE_DONE)
1364 goto out;
1365
1366 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1367 ioctx->tag);
1368
1369 switch (state) {
1370 case SRPT_STATE_NEW:
1371 case SRPT_STATE_DATA_IN:
1372 case SRPT_STATE_MGMT:
1373 /*
1374 * Do nothing - defer abort processing until
1375 * srpt_queue_response() is invoked.
1376 */
1377 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1378 break;
1379 case SRPT_STATE_NEED_DATA:
1380 /* DMA_TO_DEVICE (write) - RDMA read error. */
Christoph Hellwig7d680f3b2011-12-21 14:13:47 -05001381 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1382 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1383 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001384 transport_generic_handle_data(&ioctx->cmd);
1385 break;
1386 case SRPT_STATE_CMD_RSP_SENT:
1387 /*
1388 * SRP_RSP sending failed or the SRP_RSP send completion has
1389 * not been received in time.
1390 */
1391 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
Christoph Hellwig7d680f3b2011-12-21 14:13:47 -05001392 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1393 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1394 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001395 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1396 break;
1397 case SRPT_STATE_MGMT_RSP_SENT:
1398 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1399 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1400 break;
1401 default:
1402 WARN_ON("ERROR: unexpected command state");
1403 break;
1404 }
1405
1406out:
1407 return state;
1408}
1409
1410/**
1411 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1412 */
1413static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1414{
1415 struct srpt_send_ioctx *ioctx;
1416 enum srpt_command_state state;
1417 struct se_cmd *cmd;
1418 u32 index;
1419
1420 atomic_inc(&ch->sq_wr_avail);
1421
1422 index = idx_from_wr_id(wr_id);
1423 ioctx = ch->ioctx_ring[index];
1424 state = srpt_get_cmd_state(ioctx);
1425 cmd = &ioctx->cmd;
1426
1427 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1428 && state != SRPT_STATE_MGMT_RSP_SENT
1429 && state != SRPT_STATE_NEED_DATA
1430 && state != SRPT_STATE_DONE);
1431
1432 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1433 if (state == SRPT_STATE_CMD_RSP_SENT
1434 || state == SRPT_STATE_MGMT_RSP_SENT)
1435 atomic_dec(&ch->req_lim);
1436
1437 srpt_abort_cmd(ioctx);
1438}
1439
1440/**
1441 * srpt_handle_send_comp() - Process an IB send completion notification.
1442 */
1443static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1444 struct srpt_send_ioctx *ioctx)
1445{
1446 enum srpt_command_state state;
1447
1448 atomic_inc(&ch->sq_wr_avail);
1449
1450 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1451
1452 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1453 && state != SRPT_STATE_MGMT_RSP_SENT
1454 && state != SRPT_STATE_DONE))
1455 pr_debug("state = %d\n", state);
1456
1457 if (state != SRPT_STATE_DONE)
1458 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1459 else
1460 printk(KERN_ERR "IB completion has been received too late for"
1461 " wr_id = %u.\n", ioctx->ioctx.index);
1462}
1463
1464/**
1465 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1466 *
1467 * Note: transport_generic_handle_data() is asynchronous so unmapping the
1468 * data that has been transferred via IB RDMA must be postponed until the
1469 * check_stop_free() callback.
1470 */
1471static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1472 struct srpt_send_ioctx *ioctx,
1473 enum srpt_opcode opcode)
1474{
1475 WARN_ON(ioctx->n_rdma <= 0);
1476 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1477
1478 if (opcode == SRPT_RDMA_READ_LAST) {
1479 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1480 SRPT_STATE_DATA_IN))
1481 transport_generic_handle_data(&ioctx->cmd);
1482 else
1483 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1484 __LINE__, srpt_get_cmd_state(ioctx));
1485 } else if (opcode == SRPT_RDMA_ABORT) {
1486 ioctx->rdma_aborted = true;
1487 } else {
1488 WARN(true, "unexpected opcode %d\n", opcode);
1489 }
1490}
1491
1492/**
1493 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1494 */
1495static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1496 struct srpt_send_ioctx *ioctx,
1497 enum srpt_opcode opcode)
1498{
1499 struct se_cmd *cmd;
1500 enum srpt_command_state state;
Christoph Hellwig7d680f3b2011-12-21 14:13:47 -05001501 unsigned long flags;
Bart Van Asschea42d9852011-10-14 01:30:46 +00001502
1503 cmd = &ioctx->cmd;
1504 state = srpt_get_cmd_state(ioctx);
1505 switch (opcode) {
1506 case SRPT_RDMA_READ_LAST:
1507 if (ioctx->n_rdma <= 0) {
1508 printk(KERN_ERR "Received invalid RDMA read"
1509 " error completion with idx %d\n",
1510 ioctx->ioctx.index);
1511 break;
1512 }
1513 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1514 if (state == SRPT_STATE_NEED_DATA)
1515 srpt_abort_cmd(ioctx);
1516 else
1517 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1518 __func__, __LINE__, state);
1519 break;
1520 case SRPT_RDMA_WRITE_LAST:
Christoph Hellwig7d680f3b2011-12-21 14:13:47 -05001521 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1522 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1523 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
Bart Van Asschea42d9852011-10-14 01:30:46 +00001524 break;
1525 default:
1526 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1527 __LINE__, opcode);
1528 break;
1529 }
1530}
1531
1532/**
1533 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1534 * @ch: RDMA channel through which the request has been received.
1535 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1536 * be built in the buffer ioctx->buf points at and hence this function will
1537 * overwrite the request data.
1538 * @tag: tag of the request for which this response is being generated.
1539 * @status: value for the STATUS field of the SRP_RSP information unit.
1540 *
1541 * Returns the size in bytes of the SRP_RSP response.
1542 *
1543 * An SRP_RSP response contains a SCSI status or service response. See also
1544 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1545 * response. See also SPC-2 for more information about sense data.
1546 */
1547static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1548 struct srpt_send_ioctx *ioctx, u64 tag,
1549 int status)
1550{
1551 struct srp_rsp *srp_rsp;
1552 const u8 *sense_data;
1553 int sense_data_len, max_sense_len;
1554
1555 /*
1556 * The lowest bit of all SAM-3 status codes is zero (see also
1557 * paragraph 5.3 in SAM-3).
1558 */
1559 WARN_ON(status & 1);
1560
1561 srp_rsp = ioctx->ioctx.buf;
1562 BUG_ON(!srp_rsp);
1563
1564 sense_data = ioctx->sense_data;
1565 sense_data_len = ioctx->cmd.scsi_sense_length;
1566 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1567
1568 memset(srp_rsp, 0, sizeof *srp_rsp);
1569 srp_rsp->opcode = SRP_RSP;
1570 srp_rsp->req_lim_delta =
1571 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1572 srp_rsp->tag = tag;
1573 srp_rsp->status = status;
1574
1575 if (sense_data_len) {
1576 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1577 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1578 if (sense_data_len > max_sense_len) {
1579 printk(KERN_WARNING "truncated sense data from %d to %d"
1580 " bytes\n", sense_data_len, max_sense_len);
1581 sense_data_len = max_sense_len;
1582 }
1583
1584 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1585 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1586 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1587 }
1588
1589 return sizeof(*srp_rsp) + sense_data_len;
1590}
1591
1592/**
1593 * srpt_build_tskmgmt_rsp() - Build a task management response.
1594 * @ch: RDMA channel through which the request has been received.
1595 * @ioctx: I/O context in which the SRP_RSP response will be built.
1596 * @rsp_code: RSP_CODE that will be stored in the response.
1597 * @tag: Tag of the request for which this response is being generated.
1598 *
1599 * Returns the size in bytes of the SRP_RSP response.
1600 *
1601 * An SRP_RSP response contains a SCSI status or service response. See also
1602 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1603 * response.
1604 */
1605static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1606 struct srpt_send_ioctx *ioctx,
1607 u8 rsp_code, u64 tag)
1608{
1609 struct srp_rsp *srp_rsp;
1610 int resp_data_len;
1611 int resp_len;
1612
1613 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
1614 resp_len = sizeof(*srp_rsp) + resp_data_len;
1615
1616 srp_rsp = ioctx->ioctx.buf;
1617 BUG_ON(!srp_rsp);
1618 memset(srp_rsp, 0, sizeof *srp_rsp);
1619
1620 srp_rsp->opcode = SRP_RSP;
1621 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1622 + atomic_xchg(&ch->req_lim_delta, 0));
1623 srp_rsp->tag = tag;
1624
1625 if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
1626 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1627 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1628 srp_rsp->data[3] = rsp_code;
1629 }
1630
1631 return resp_len;
1632}
1633
1634#define NO_SUCH_LUN ((uint64_t)-1LL)
1635
1636/*
1637 * SCSI LUN addressing method. See also SAM-2 and the section about
1638 * eight byte LUNs.
1639 */
1640enum scsi_lun_addr_method {
1641 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1642 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1643 SCSI_LUN_ADDR_METHOD_LUN = 2,
1644 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1645};
1646
1647/*
1648 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1649 *
1650 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1651 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1652 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1653 */
1654static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1655{
1656 uint64_t res = NO_SUCH_LUN;
1657 int addressing_method;
1658
1659 if (unlikely(len < 2)) {
1660 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1661 "more", len);
1662 goto out;
1663 }
1664
1665 switch (len) {
1666 case 8:
1667 if ((*((__be64 *)lun) &
1668 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1669 goto out_err;
1670 break;
1671 case 4:
1672 if (*((__be16 *)&lun[2]) != 0)
1673 goto out_err;
1674 break;
1675 case 6:
1676 if (*((__be32 *)&lun[2]) != 0)
1677 goto out_err;
1678 break;
1679 case 2:
1680 break;
1681 default:
1682 goto out_err;
1683 }
1684
1685 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1686 switch (addressing_method) {
1687 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1688 case SCSI_LUN_ADDR_METHOD_FLAT:
1689 case SCSI_LUN_ADDR_METHOD_LUN:
1690 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1691 break;
1692
1693 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1694 default:
1695 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1696 addressing_method);
1697 break;
1698 }
1699
1700out:
1701 return res;
1702
1703out_err:
1704 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1705 " implemented");
1706 goto out;
1707}
1708
1709static int srpt_check_stop_free(struct se_cmd *cmd)
1710{
1711 struct srpt_send_ioctx *ioctx;
1712
1713 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
1714 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1715}
1716
1717/**
1718 * srpt_handle_cmd() - Process SRP_CMD.
1719 */
1720static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1721 struct srpt_recv_ioctx *recv_ioctx,
1722 struct srpt_send_ioctx *send_ioctx)
1723{
1724 struct se_cmd *cmd;
1725 struct srp_cmd *srp_cmd;
1726 uint64_t unpacked_lun;
1727 u64 data_len;
1728 enum dma_data_direction dir;
1729 int ret;
1730
1731 BUG_ON(!send_ioctx);
1732
1733 srp_cmd = recv_ioctx->ioctx.buf;
1734 kref_get(&send_ioctx->kref);
1735 cmd = &send_ioctx->cmd;
1736 send_ioctx->tag = srp_cmd->tag;
1737
1738 switch (srp_cmd->task_attr) {
1739 case SRP_CMD_SIMPLE_Q:
1740 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1741 break;
1742 case SRP_CMD_ORDERED_Q:
1743 default:
1744 cmd->sam_task_attr = MSG_ORDERED_TAG;
1745 break;
1746 case SRP_CMD_HEAD_OF_Q:
1747 cmd->sam_task_attr = MSG_HEAD_TAG;
1748 break;
1749 case SRP_CMD_ACA:
1750 cmd->sam_task_attr = MSG_ACA_TAG;
1751 break;
1752 }
1753
1754 ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len);
1755 if (ret) {
1756 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1757 srp_cmd->tag);
1758 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1759 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1760 goto send_sense;
1761 }
1762
1763 cmd->data_length = data_len;
1764 cmd->data_direction = dir;
1765 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1766 sizeof(srp_cmd->lun));
1767 if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0)
1768 goto send_sense;
1769 ret = transport_generic_allocate_tasks(cmd, srp_cmd->cdb);
1770 if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT)
1771 srpt_queue_status(cmd);
1772 else if (cmd->se_cmd_flags & SCF_SCSI_CDB_EXCEPTION)
1773 goto send_sense;
1774 else
1775 WARN_ON_ONCE(ret);
1776
1777 transport_handle_cdb_direct(cmd);
1778 return 0;
1779
1780send_sense:
1781 transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason,
1782 0);
1783 return -1;
1784}
1785
1786/**
1787 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1788 * @ch: RDMA channel of the task management request.
1789 * @fn: Task management function to perform.
1790 * @req_tag: Tag of the SRP task management request.
1791 * @mgmt_ioctx: I/O context of the task management request.
1792 *
1793 * Returns zero if the target core will process the task management
1794 * request asynchronously.
1795 *
1796 * Note: It is assumed that the initiator serializes tag-based task management
1797 * requests.
1798 */
1799static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1800{
1801 struct srpt_device *sdev;
1802 struct srpt_rdma_ch *ch;
1803 struct srpt_send_ioctx *target;
1804 int ret, i;
1805
1806 ret = -EINVAL;
1807 ch = ioctx->ch;
1808 BUG_ON(!ch);
1809 BUG_ON(!ch->sport);
1810 sdev = ch->sport->sdev;
1811 BUG_ON(!sdev);
1812 spin_lock_irq(&sdev->spinlock);
1813 for (i = 0; i < ch->rq_size; ++i) {
1814 target = ch->ioctx_ring[i];
1815 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1816 target->tag == tag &&
1817 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1818 ret = 0;
1819 /* now let the target core abort &target->cmd; */
1820 break;
1821 }
1822 }
1823 spin_unlock_irq(&sdev->spinlock);
1824 return ret;
1825}
1826
1827static int srp_tmr_to_tcm(int fn)
1828{
1829 switch (fn) {
1830 case SRP_TSK_ABORT_TASK:
1831 return TMR_ABORT_TASK;
1832 case SRP_TSK_ABORT_TASK_SET:
1833 return TMR_ABORT_TASK_SET;
1834 case SRP_TSK_CLEAR_TASK_SET:
1835 return TMR_CLEAR_TASK_SET;
1836 case SRP_TSK_LUN_RESET:
1837 return TMR_LUN_RESET;
1838 case SRP_TSK_CLEAR_ACA:
1839 return TMR_CLEAR_ACA;
1840 default:
1841 return -1;
1842 }
1843}
1844
1845/**
1846 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1847 *
1848 * Returns 0 if and only if the request will be processed by the target core.
1849 *
1850 * For more information about SRP_TSK_MGMT information units, see also section
1851 * 6.7 in the SRP r16a document.
1852 */
1853static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1854 struct srpt_recv_ioctx *recv_ioctx,
1855 struct srpt_send_ioctx *send_ioctx)
1856{
1857 struct srp_tsk_mgmt *srp_tsk;
1858 struct se_cmd *cmd;
1859 uint64_t unpacked_lun;
1860 int tcm_tmr;
1861 int res;
1862
1863 BUG_ON(!send_ioctx);
1864
1865 srp_tsk = recv_ioctx->ioctx.buf;
1866 cmd = &send_ioctx->cmd;
1867
1868 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1869 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1870 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1871
1872 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1873 send_ioctx->tag = srp_tsk->tag;
1874 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1875 if (tcm_tmr < 0) {
1876 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1877 send_ioctx->cmd.se_tmr_req->response =
1878 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1879 goto process_tmr;
1880 }
1881 cmd->se_tmr_req = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
1882 if (!cmd->se_tmr_req) {
1883 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1884 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1885 goto process_tmr;
1886 }
1887
1888 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1889 sizeof(srp_tsk->lun));
1890 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
1891 if (res) {
1892 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
1893 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1894 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1895 goto process_tmr;
1896 }
1897
1898 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
1899 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1900
1901process_tmr:
1902 kref_get(&send_ioctx->kref);
1903 if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION))
1904 transport_generic_handle_tmr(&send_ioctx->cmd);
1905 else
1906 transport_send_check_condition_and_sense(cmd,
1907 cmd->scsi_sense_reason, 0);
1908
1909}
1910
1911/**
1912 * srpt_handle_new_iu() - Process a newly received information unit.
1913 * @ch: RDMA channel through which the information unit has been received.
1914 * @ioctx: SRPT I/O context associated with the information unit.
1915 */
1916static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1917 struct srpt_recv_ioctx *recv_ioctx,
1918 struct srpt_send_ioctx *send_ioctx)
1919{
1920 struct srp_cmd *srp_cmd;
1921 enum rdma_ch_state ch_state;
1922
1923 BUG_ON(!ch);
1924 BUG_ON(!recv_ioctx);
1925
1926 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1927 recv_ioctx->ioctx.dma, srp_max_req_size,
1928 DMA_FROM_DEVICE);
1929
1930 ch_state = srpt_get_ch_state(ch);
1931 if (unlikely(ch_state == CH_CONNECTING)) {
1932 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1933 goto out;
1934 }
1935
1936 if (unlikely(ch_state != CH_LIVE))
1937 goto out;
1938
1939 srp_cmd = recv_ioctx->ioctx.buf;
1940 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1941 if (!send_ioctx)
1942 send_ioctx = srpt_get_send_ioctx(ch);
1943 if (unlikely(!send_ioctx)) {
1944 list_add_tail(&recv_ioctx->wait_list,
1945 &ch->cmd_wait_list);
1946 goto out;
1947 }
1948 }
1949
1950 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
1951 0, DMA_NONE, MSG_SIMPLE_TAG,
1952 send_ioctx->sense_data);
1953
1954 switch (srp_cmd->opcode) {
1955 case SRP_CMD:
1956 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1957 break;
1958 case SRP_TSK_MGMT:
1959 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1960 break;
1961 case SRP_I_LOGOUT:
1962 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1963 break;
1964 case SRP_CRED_RSP:
1965 pr_debug("received SRP_CRED_RSP\n");
1966 break;
1967 case SRP_AER_RSP:
1968 pr_debug("received SRP_AER_RSP\n");
1969 break;
1970 case SRP_RSP:
1971 printk(KERN_ERR "Received SRP_RSP\n");
1972 break;
1973 default:
1974 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1975 srp_cmd->opcode);
1976 break;
1977 }
1978
1979 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1980out:
1981 return;
1982}
1983
1984static void srpt_process_rcv_completion(struct ib_cq *cq,
1985 struct srpt_rdma_ch *ch,
1986 struct ib_wc *wc)
1987{
1988 struct srpt_device *sdev = ch->sport->sdev;
1989 struct srpt_recv_ioctx *ioctx;
1990 u32 index;
1991
1992 index = idx_from_wr_id(wc->wr_id);
1993 if (wc->status == IB_WC_SUCCESS) {
1994 int req_lim;
1995
1996 req_lim = atomic_dec_return(&ch->req_lim);
1997 if (unlikely(req_lim < 0))
1998 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1999 ioctx = sdev->ioctx_ring[index];
2000 srpt_handle_new_iu(ch, ioctx, NULL);
2001 } else {
2002 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
2003 index, wc->status);
2004 }
2005}
2006
2007/**
2008 * srpt_process_send_completion() - Process an IB send completion.
2009 *
2010 * Note: Although this has not yet been observed during tests, at least in
2011 * theory it is possible that the srpt_get_send_ioctx() call invoked by
2012 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
2013 * value in each response is set to one, and it is possible that this response
2014 * makes the initiator send a new request before the send completion for that
2015 * response has been processed. This could e.g. happen if the call to
2016 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
2017 * if IB retransmission causes generation of the send completion to be
2018 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
2019 * are queued on cmd_wait_list. The code below processes these delayed
2020 * requests one at a time.
2021 */
2022static void srpt_process_send_completion(struct ib_cq *cq,
2023 struct srpt_rdma_ch *ch,
2024 struct ib_wc *wc)
2025{
2026 struct srpt_send_ioctx *send_ioctx;
2027 uint32_t index;
2028 enum srpt_opcode opcode;
2029
2030 index = idx_from_wr_id(wc->wr_id);
2031 opcode = opcode_from_wr_id(wc->wr_id);
2032 send_ioctx = ch->ioctx_ring[index];
2033 if (wc->status == IB_WC_SUCCESS) {
2034 if (opcode == SRPT_SEND)
2035 srpt_handle_send_comp(ch, send_ioctx);
2036 else {
2037 WARN_ON(opcode != SRPT_RDMA_ABORT &&
2038 wc->opcode != IB_WC_RDMA_READ);
2039 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2040 }
2041 } else {
2042 if (opcode == SRPT_SEND) {
2043 printk(KERN_INFO "sending response for idx %u failed"
2044 " with status %d\n", index, wc->status);
2045 srpt_handle_send_err_comp(ch, wc->wr_id);
2046 } else if (opcode != SRPT_RDMA_MID) {
2047 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2048 " status %d", opcode, index, wc->status);
2049 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2050 }
2051 }
2052
2053 while (unlikely(opcode == SRPT_SEND
2054 && !list_empty(&ch->cmd_wait_list)
2055 && srpt_get_ch_state(ch) == CH_LIVE
2056 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2057 struct srpt_recv_ioctx *recv_ioctx;
2058
2059 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2060 struct srpt_recv_ioctx,
2061 wait_list);
2062 list_del(&recv_ioctx->wait_list);
2063 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2064 }
2065}
2066
2067static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2068{
2069 struct ib_wc *const wc = ch->wc;
2070 int i, n;
2071
2072 WARN_ON(cq != ch->cq);
2073
2074 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2075 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2076 for (i = 0; i < n; i++) {
2077 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2078 srpt_process_rcv_completion(cq, ch, &wc[i]);
2079 else
2080 srpt_process_send_completion(cq, ch, &wc[i]);
2081 }
2082 }
2083}
2084
2085/**
2086 * srpt_completion() - IB completion queue callback function.
2087 *
2088 * Notes:
2089 * - It is guaranteed that a completion handler will never be invoked
2090 * concurrently on two different CPUs for the same completion queue. See also
2091 * Documentation/infiniband/core_locking.txt and the implementation of
2092 * handle_edge_irq() in kernel/irq/chip.c.
2093 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2094 * context instead of interrupt context.
2095 */
2096static void srpt_completion(struct ib_cq *cq, void *ctx)
2097{
2098 struct srpt_rdma_ch *ch = ctx;
2099
2100 wake_up_interruptible(&ch->wait_queue);
2101}
2102
2103static int srpt_compl_thread(void *arg)
2104{
2105 struct srpt_rdma_ch *ch;
2106
2107 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2108 current->flags |= PF_NOFREEZE;
2109
2110 ch = arg;
2111 BUG_ON(!ch);
2112 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2113 ch->sess_name, ch->thread->comm, current->pid);
2114 while (!kthread_should_stop()) {
2115 wait_event_interruptible(ch->wait_queue,
2116 (srpt_process_completion(ch->cq, ch),
2117 kthread_should_stop()));
2118 }
2119 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2120 ch->sess_name, ch->thread->comm, current->pid);
2121 return 0;
2122}
2123
2124/**
2125 * srpt_create_ch_ib() - Create receive and send completion queues.
2126 */
2127static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2128{
2129 struct ib_qp_init_attr *qp_init;
2130 struct srpt_port *sport = ch->sport;
2131 struct srpt_device *sdev = sport->sdev;
2132 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2133 int ret;
2134
2135 WARN_ON(ch->rq_size < 1);
2136
2137 ret = -ENOMEM;
2138 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2139 if (!qp_init)
2140 goto out;
2141
2142 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2143 ch->rq_size + srp_sq_size, 0);
2144 if (IS_ERR(ch->cq)) {
2145 ret = PTR_ERR(ch->cq);
2146 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2147 ch->rq_size + srp_sq_size, ret);
2148 goto out;
2149 }
2150
2151 qp_init->qp_context = (void *)ch;
2152 qp_init->event_handler
2153 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2154 qp_init->send_cq = ch->cq;
2155 qp_init->recv_cq = ch->cq;
2156 qp_init->srq = sdev->srq;
2157 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2158 qp_init->qp_type = IB_QPT_RC;
2159 qp_init->cap.max_send_wr = srp_sq_size;
2160 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2161
2162 ch->qp = ib_create_qp(sdev->pd, qp_init);
2163 if (IS_ERR(ch->qp)) {
2164 ret = PTR_ERR(ch->qp);
2165 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2166 goto err_destroy_cq;
2167 }
2168
2169 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2170
2171 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2172 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2173 qp_init->cap.max_send_wr, ch->cm_id);
2174
2175 ret = srpt_init_ch_qp(ch, ch->qp);
2176 if (ret)
2177 goto err_destroy_qp;
2178
2179 init_waitqueue_head(&ch->wait_queue);
2180
2181 pr_debug("creating thread for session %s\n", ch->sess_name);
2182
2183 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2184 if (IS_ERR(ch->thread)) {
2185 printk(KERN_ERR "failed to create kernel thread %ld\n",
2186 PTR_ERR(ch->thread));
2187 ch->thread = NULL;
2188 goto err_destroy_qp;
2189 }
2190
2191out:
2192 kfree(qp_init);
2193 return ret;
2194
2195err_destroy_qp:
2196 ib_destroy_qp(ch->qp);
2197err_destroy_cq:
2198 ib_destroy_cq(ch->cq);
2199 goto out;
2200}
2201
2202static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2203{
2204 if (ch->thread)
2205 kthread_stop(ch->thread);
2206
2207 ib_destroy_qp(ch->qp);
2208 ib_destroy_cq(ch->cq);
2209}
2210
2211/**
2212 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2213 *
2214 * Reset the QP and make sure all resources associated with the channel will
2215 * be deallocated at an appropriate time.
2216 *
2217 * Note: The caller must hold ch->sport->sdev->spinlock.
2218 */
2219static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2220{
2221 struct srpt_device *sdev;
2222 enum rdma_ch_state prev_state;
2223 unsigned long flags;
2224
2225 sdev = ch->sport->sdev;
2226
2227 spin_lock_irqsave(&ch->spinlock, flags);
2228 prev_state = ch->state;
2229 switch (prev_state) {
2230 case CH_CONNECTING:
2231 case CH_LIVE:
2232 ch->state = CH_DISCONNECTING;
2233 break;
2234 default:
2235 break;
2236 }
2237 spin_unlock_irqrestore(&ch->spinlock, flags);
2238
2239 switch (prev_state) {
2240 case CH_CONNECTING:
2241 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2242 NULL, 0);
2243 /* fall through */
2244 case CH_LIVE:
2245 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2246 printk(KERN_ERR "sending CM DREQ failed.\n");
2247 break;
2248 case CH_DISCONNECTING:
2249 break;
2250 case CH_DRAINING:
2251 case CH_RELEASING:
2252 break;
2253 }
2254}
2255
2256/**
2257 * srpt_close_ch() - Close an RDMA channel.
2258 */
2259static void srpt_close_ch(struct srpt_rdma_ch *ch)
2260{
2261 struct srpt_device *sdev;
2262
2263 sdev = ch->sport->sdev;
2264 spin_lock_irq(&sdev->spinlock);
2265 __srpt_close_ch(ch);
2266 spin_unlock_irq(&sdev->spinlock);
2267}
2268
2269/**
2270 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2271 * @cm_id: Pointer to the CM ID of the channel to be drained.
2272 *
2273 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2274 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2275 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2276 * waits until all target sessions for the associated IB device have been
2277 * unregistered and target session registration involves a call to
2278 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2279 * this function has finished).
2280 */
2281static void srpt_drain_channel(struct ib_cm_id *cm_id)
2282{
2283 struct srpt_device *sdev;
2284 struct srpt_rdma_ch *ch;
2285 int ret;
2286 bool do_reset = false;
2287
2288 WARN_ON_ONCE(irqs_disabled());
2289
2290 sdev = cm_id->context;
2291 BUG_ON(!sdev);
2292 spin_lock_irq(&sdev->spinlock);
2293 list_for_each_entry(ch, &sdev->rch_list, list) {
2294 if (ch->cm_id == cm_id) {
2295 do_reset = srpt_test_and_set_ch_state(ch,
2296 CH_CONNECTING, CH_DRAINING) ||
2297 srpt_test_and_set_ch_state(ch,
2298 CH_LIVE, CH_DRAINING) ||
2299 srpt_test_and_set_ch_state(ch,
2300 CH_DISCONNECTING, CH_DRAINING);
2301 break;
2302 }
2303 }
2304 spin_unlock_irq(&sdev->spinlock);
2305
2306 if (do_reset) {
2307 ret = srpt_ch_qp_err(ch);
2308 if (ret < 0)
2309 printk(KERN_ERR "Setting queue pair in error state"
2310 " failed: %d\n", ret);
2311 }
2312}
2313
2314/**
2315 * srpt_find_channel() - Look up an RDMA channel.
2316 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2317 *
2318 * Return NULL if no matching RDMA channel has been found.
2319 */
2320static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2321 struct ib_cm_id *cm_id)
2322{
2323 struct srpt_rdma_ch *ch;
2324 bool found;
2325
2326 WARN_ON_ONCE(irqs_disabled());
2327 BUG_ON(!sdev);
2328
2329 found = false;
2330 spin_lock_irq(&sdev->spinlock);
2331 list_for_each_entry(ch, &sdev->rch_list, list) {
2332 if (ch->cm_id == cm_id) {
2333 found = true;
2334 break;
2335 }
2336 }
2337 spin_unlock_irq(&sdev->spinlock);
2338
2339 return found ? ch : NULL;
2340}
2341
2342/**
2343 * srpt_release_channel() - Release channel resources.
2344 *
2345 * Schedules the actual release because:
2346 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2347 * trigger a deadlock.
2348 * - It is not safe to call TCM transport_* functions from interrupt context.
2349 */
2350static void srpt_release_channel(struct srpt_rdma_ch *ch)
2351{
2352 schedule_work(&ch->release_work);
2353}
2354
2355static void srpt_release_channel_work(struct work_struct *w)
2356{
2357 struct srpt_rdma_ch *ch;
2358 struct srpt_device *sdev;
2359
2360 ch = container_of(w, struct srpt_rdma_ch, release_work);
2361 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2362 ch->release_done);
2363
2364 sdev = ch->sport->sdev;
2365 BUG_ON(!sdev);
2366
2367 transport_deregister_session_configfs(ch->sess);
2368 transport_deregister_session(ch->sess);
2369 ch->sess = NULL;
2370
2371 srpt_destroy_ch_ib(ch);
2372
2373 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2374 ch->sport->sdev, ch->rq_size,
2375 ch->rsp_size, DMA_TO_DEVICE);
2376
2377 spin_lock_irq(&sdev->spinlock);
2378 list_del(&ch->list);
2379 spin_unlock_irq(&sdev->spinlock);
2380
2381 ib_destroy_cm_id(ch->cm_id);
2382
2383 if (ch->release_done)
2384 complete(ch->release_done);
2385
2386 wake_up(&sdev->ch_releaseQ);
2387
2388 kfree(ch);
2389}
2390
2391static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2392 u8 i_port_id[16])
2393{
2394 struct srpt_node_acl *nacl;
2395
2396 list_for_each_entry(nacl, &sport->port_acl_list, list)
2397 if (memcmp(nacl->i_port_id, i_port_id,
2398 sizeof(nacl->i_port_id)) == 0)
2399 return nacl;
2400
2401 return NULL;
2402}
2403
2404static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2405 u8 i_port_id[16])
2406{
2407 struct srpt_node_acl *nacl;
2408
2409 spin_lock_irq(&sport->port_acl_lock);
2410 nacl = __srpt_lookup_acl(sport, i_port_id);
2411 spin_unlock_irq(&sport->port_acl_lock);
2412
2413 return nacl;
2414}
2415
2416/**
2417 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2418 *
2419 * Ownership of the cm_id is transferred to the target session if this
2420 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2421 */
2422static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2423 struct ib_cm_req_event_param *param,
2424 void *private_data)
2425{
2426 struct srpt_device *sdev = cm_id->context;
2427 struct srpt_port *sport = &sdev->port[param->port - 1];
2428 struct srp_login_req *req;
2429 struct srp_login_rsp *rsp;
2430 struct srp_login_rej *rej;
2431 struct ib_cm_rep_param *rep_param;
2432 struct srpt_rdma_ch *ch, *tmp_ch;
2433 struct srpt_node_acl *nacl;
2434 u32 it_iu_len;
2435 int i;
2436 int ret = 0;
2437
2438 WARN_ON_ONCE(irqs_disabled());
2439
2440 if (WARN_ON(!sdev || !private_data))
2441 return -EINVAL;
2442
2443 req = (struct srp_login_req *)private_data;
2444
2445 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2446
2447 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2448 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2449 " (guid=0x%llx:0x%llx)\n",
2450 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2451 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2452 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2453 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2454 it_iu_len,
2455 param->port,
2456 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2457 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2458
2459 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2460 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2461 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2462
2463 if (!rsp || !rej || !rep_param) {
2464 ret = -ENOMEM;
2465 goto out;
2466 }
2467
2468 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2469 rej->reason = __constant_cpu_to_be32(
2470 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2471 ret = -EINVAL;
2472 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2473 " length (%d bytes) is out of range (%d .. %d)\n",
2474 it_iu_len, 64, srp_max_req_size);
2475 goto reject;
2476 }
2477
2478 if (!sport->enabled) {
2479 rej->reason = __constant_cpu_to_be32(
2480 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2481 ret = -EINVAL;
2482 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2483 " has not yet been enabled\n");
2484 goto reject;
2485 }
2486
2487 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2488 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2489
2490 spin_lock_irq(&sdev->spinlock);
2491
2492 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2493 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2494 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2495 && param->port == ch->sport->port
2496 && param->listen_id == ch->sport->sdev->cm_id
2497 && ch->cm_id) {
2498 enum rdma_ch_state ch_state;
2499
2500 ch_state = srpt_get_ch_state(ch);
2501 if (ch_state != CH_CONNECTING
2502 && ch_state != CH_LIVE)
2503 continue;
2504
2505 /* found an existing channel */
2506 pr_debug("Found existing channel %s"
2507 " cm_id= %p state= %d\n",
2508 ch->sess_name, ch->cm_id, ch_state);
2509
2510 __srpt_close_ch(ch);
2511
2512 rsp->rsp_flags =
2513 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2514 }
2515 }
2516
2517 spin_unlock_irq(&sdev->spinlock);
2518
2519 } else
2520 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2521
2522 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2523 || *(__be64 *)(req->target_port_id + 8) !=
2524 cpu_to_be64(srpt_service_guid)) {
2525 rej->reason = __constant_cpu_to_be32(
2526 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2527 ret = -ENOMEM;
2528 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2529 " has an invalid target port identifier.\n");
2530 goto reject;
2531 }
2532
2533 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2534 if (!ch) {
2535 rej->reason = __constant_cpu_to_be32(
2536 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2537 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2538 ret = -ENOMEM;
2539 goto reject;
2540 }
2541
2542 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2543 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2544 memcpy(ch->t_port_id, req->target_port_id, 16);
2545 ch->sport = &sdev->port[param->port - 1];
2546 ch->cm_id = cm_id;
2547 /*
2548 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2549 * for the SRP protocol to the command queue size.
2550 */
2551 ch->rq_size = SRPT_RQ_SIZE;
2552 spin_lock_init(&ch->spinlock);
2553 ch->state = CH_CONNECTING;
2554 INIT_LIST_HEAD(&ch->cmd_wait_list);
2555 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2556
2557 ch->ioctx_ring = (struct srpt_send_ioctx **)
2558 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2559 sizeof(*ch->ioctx_ring[0]),
2560 ch->rsp_size, DMA_TO_DEVICE);
2561 if (!ch->ioctx_ring)
2562 goto free_ch;
2563
2564 INIT_LIST_HEAD(&ch->free_list);
2565 for (i = 0; i < ch->rq_size; i++) {
2566 ch->ioctx_ring[i]->ch = ch;
2567 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2568 }
2569
2570 ret = srpt_create_ch_ib(ch);
2571 if (ret) {
2572 rej->reason = __constant_cpu_to_be32(
2573 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2574 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2575 " a new RDMA channel failed.\n");
2576 goto free_ring;
2577 }
2578
2579 ret = srpt_ch_qp_rtr(ch, ch->qp);
2580 if (ret) {
2581 rej->reason = __constant_cpu_to_be32(
2582 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2583 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2584 " RTR failed (error code = %d)\n", ret);
2585 goto destroy_ib;
2586 }
2587 /*
2588 * Use the initator port identifier as the session name.
2589 */
2590 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2591 be64_to_cpu(*(__be64 *)ch->i_port_id),
2592 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2593
2594 pr_debug("registering session %s\n", ch->sess_name);
2595
2596 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2597 if (!nacl) {
2598 printk(KERN_INFO "Rejected login because no ACL has been"
2599 " configured yet for initiator %s.\n", ch->sess_name);
2600 rej->reason = __constant_cpu_to_be32(
2601 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2602 goto destroy_ib;
2603 }
2604
2605 ch->sess = transport_init_session();
Dan Carpenter3af33632011-11-04 21:27:32 +03002606 if (IS_ERR(ch->sess)) {
Bart Van Asschea42d9852011-10-14 01:30:46 +00002607 rej->reason = __constant_cpu_to_be32(
2608 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2609 pr_debug("Failed to create session\n");
2610 goto deregister_session;
2611 }
2612 ch->sess->se_node_acl = &nacl->nacl;
2613 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2614
2615 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2616 ch->sess_name, ch->cm_id);
2617
2618 /* create srp_login_response */
2619 rsp->opcode = SRP_LOGIN_RSP;
2620 rsp->tag = req->tag;
2621 rsp->max_it_iu_len = req->req_it_iu_len;
2622 rsp->max_ti_iu_len = req->req_it_iu_len;
2623 ch->max_ti_iu_len = it_iu_len;
2624 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2625 | SRP_BUF_FORMAT_INDIRECT);
2626 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2627 atomic_set(&ch->req_lim, ch->rq_size);
2628 atomic_set(&ch->req_lim_delta, 0);
2629
2630 /* create cm reply */
2631 rep_param->qp_num = ch->qp->qp_num;
2632 rep_param->private_data = (void *)rsp;
2633 rep_param->private_data_len = sizeof *rsp;
2634 rep_param->rnr_retry_count = 7;
2635 rep_param->flow_control = 1;
2636 rep_param->failover_accepted = 0;
2637 rep_param->srq = 1;
2638 rep_param->responder_resources = 4;
2639 rep_param->initiator_depth = 4;
2640
2641 ret = ib_send_cm_rep(cm_id, rep_param);
2642 if (ret) {
2643 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2644 " (error code = %d)\n", ret);
2645 goto release_channel;
2646 }
2647
2648 spin_lock_irq(&sdev->spinlock);
2649 list_add_tail(&ch->list, &sdev->rch_list);
2650 spin_unlock_irq(&sdev->spinlock);
2651
2652 goto out;
2653
2654release_channel:
2655 srpt_set_ch_state(ch, CH_RELEASING);
2656 transport_deregister_session_configfs(ch->sess);
2657
2658deregister_session:
2659 transport_deregister_session(ch->sess);
2660 ch->sess = NULL;
2661
2662destroy_ib:
2663 srpt_destroy_ch_ib(ch);
2664
2665free_ring:
2666 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2667 ch->sport->sdev, ch->rq_size,
2668 ch->rsp_size, DMA_TO_DEVICE);
2669free_ch:
2670 kfree(ch);
2671
2672reject:
2673 rej->opcode = SRP_LOGIN_REJ;
2674 rej->tag = req->tag;
2675 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2676 | SRP_BUF_FORMAT_INDIRECT);
2677
2678 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2679 (void *)rej, sizeof *rej);
2680
2681out:
2682 kfree(rep_param);
2683 kfree(rsp);
2684 kfree(rej);
2685
2686 return ret;
2687}
2688
2689static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2690{
2691 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2692 srpt_drain_channel(cm_id);
2693}
2694
2695/**
2696 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2697 *
2698 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2699 * and that the recipient may begin transmitting (RTU = ready to use).
2700 */
2701static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2702{
2703 struct srpt_rdma_ch *ch;
2704 int ret;
2705
2706 ch = srpt_find_channel(cm_id->context, cm_id);
2707 BUG_ON(!ch);
2708
2709 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2710 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2711
2712 ret = srpt_ch_qp_rts(ch, ch->qp);
2713
2714 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2715 wait_list) {
2716 list_del(&ioctx->wait_list);
2717 srpt_handle_new_iu(ch, ioctx, NULL);
2718 }
2719 if (ret)
2720 srpt_close_ch(ch);
2721 }
2722}
2723
2724static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2725{
2726 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2727 srpt_drain_channel(cm_id);
2728}
2729
2730static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2731{
2732 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2733 srpt_drain_channel(cm_id);
2734}
2735
2736/**
2737 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2738 */
2739static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2740{
2741 struct srpt_rdma_ch *ch;
2742 unsigned long flags;
2743 bool send_drep = false;
2744
2745 ch = srpt_find_channel(cm_id->context, cm_id);
2746 BUG_ON(!ch);
2747
2748 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2749
2750 spin_lock_irqsave(&ch->spinlock, flags);
2751 switch (ch->state) {
2752 case CH_CONNECTING:
2753 case CH_LIVE:
2754 send_drep = true;
2755 ch->state = CH_DISCONNECTING;
2756 break;
2757 case CH_DISCONNECTING:
2758 case CH_DRAINING:
2759 case CH_RELEASING:
2760 WARN(true, "unexpected channel state %d\n", ch->state);
2761 break;
2762 }
2763 spin_unlock_irqrestore(&ch->spinlock, flags);
2764
2765 if (send_drep) {
2766 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2767 printk(KERN_ERR "Sending IB DREP failed.\n");
2768 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2769 ch->sess_name);
2770 }
2771}
2772
2773/**
2774 * srpt_cm_drep_recv() - Process reception of a DREP message.
2775 */
2776static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2777{
2778 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2779 cm_id);
2780 srpt_drain_channel(cm_id);
2781}
2782
2783/**
2784 * srpt_cm_handler() - IB connection manager callback function.
2785 *
2786 * A non-zero return value will cause the caller destroy the CM ID.
2787 *
2788 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2789 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2790 * a non-zero value in any other case will trigger a race with the
2791 * ib_destroy_cm_id() call in srpt_release_channel().
2792 */
2793static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2794{
2795 int ret;
2796
2797 ret = 0;
2798 switch (event->event) {
2799 case IB_CM_REQ_RECEIVED:
2800 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2801 event->private_data);
2802 break;
2803 case IB_CM_REJ_RECEIVED:
2804 srpt_cm_rej_recv(cm_id);
2805 break;
2806 case IB_CM_RTU_RECEIVED:
2807 case IB_CM_USER_ESTABLISHED:
2808 srpt_cm_rtu_recv(cm_id);
2809 break;
2810 case IB_CM_DREQ_RECEIVED:
2811 srpt_cm_dreq_recv(cm_id);
2812 break;
2813 case IB_CM_DREP_RECEIVED:
2814 srpt_cm_drep_recv(cm_id);
2815 break;
2816 case IB_CM_TIMEWAIT_EXIT:
2817 srpt_cm_timewait_exit(cm_id);
2818 break;
2819 case IB_CM_REP_ERROR:
2820 srpt_cm_rep_error(cm_id);
2821 break;
2822 case IB_CM_DREQ_ERROR:
2823 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2824 break;
2825 case IB_CM_MRA_RECEIVED:
2826 printk(KERN_INFO "Received IB MRA event\n");
2827 break;
2828 default:
2829 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2830 event->event);
2831 break;
2832 }
2833
2834 return ret;
2835}
2836
2837/**
2838 * srpt_perform_rdmas() - Perform IB RDMA.
2839 *
2840 * Returns zero upon success or a negative number upon failure.
2841 */
2842static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2843 struct srpt_send_ioctx *ioctx)
2844{
2845 struct ib_send_wr wr;
2846 struct ib_send_wr *bad_wr;
2847 struct rdma_iu *riu;
2848 int i;
2849 int ret;
2850 int sq_wr_avail;
2851 enum dma_data_direction dir;
2852 const int n_rdma = ioctx->n_rdma;
2853
2854 dir = ioctx->cmd.data_direction;
2855 if (dir == DMA_TO_DEVICE) {
2856 /* write */
2857 ret = -ENOMEM;
2858 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2859 if (sq_wr_avail < 0) {
2860 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2861 n_rdma);
2862 goto out;
2863 }
2864 }
2865
2866 ioctx->rdma_aborted = false;
2867 ret = 0;
2868 riu = ioctx->rdma_ius;
2869 memset(&wr, 0, sizeof wr);
2870
2871 for (i = 0; i < n_rdma; ++i, ++riu) {
2872 if (dir == DMA_FROM_DEVICE) {
2873 wr.opcode = IB_WR_RDMA_WRITE;
2874 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2875 SRPT_RDMA_WRITE_LAST :
2876 SRPT_RDMA_MID,
2877 ioctx->ioctx.index);
2878 } else {
2879 wr.opcode = IB_WR_RDMA_READ;
2880 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2881 SRPT_RDMA_READ_LAST :
2882 SRPT_RDMA_MID,
2883 ioctx->ioctx.index);
2884 }
2885 wr.next = NULL;
2886 wr.wr.rdma.remote_addr = riu->raddr;
2887 wr.wr.rdma.rkey = riu->rkey;
2888 wr.num_sge = riu->sge_cnt;
2889 wr.sg_list = riu->sge;
2890
2891 /* only get completion event for the last rdma write */
2892 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2893 wr.send_flags = IB_SEND_SIGNALED;
2894
2895 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2896 if (ret)
2897 break;
2898 }
2899
2900 if (ret)
2901 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2902 __func__, __LINE__, ret, i, n_rdma);
2903 if (ret && i > 0) {
2904 wr.num_sge = 0;
2905 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2906 wr.send_flags = IB_SEND_SIGNALED;
2907 while (ch->state == CH_LIVE &&
2908 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2909 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2910 ioctx->ioctx.index);
2911 msleep(1000);
2912 }
2913 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2914 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2915 ioctx->ioctx.index);
2916 msleep(1000);
2917 }
2918 }
2919out:
2920 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2921 atomic_add(n_rdma, &ch->sq_wr_avail);
2922 return ret;
2923}
2924
2925/**
2926 * srpt_xfer_data() - Start data transfer from initiator to target.
2927 */
2928static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2929 struct srpt_send_ioctx *ioctx)
2930{
2931 int ret;
2932
2933 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2934 if (ret) {
2935 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2936 goto out;
2937 }
2938
2939 ret = srpt_perform_rdmas(ch, ioctx);
2940 if (ret) {
2941 if (ret == -EAGAIN || ret == -ENOMEM)
2942 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2943 __func__, __LINE__, ret);
2944 else
2945 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2946 __func__, __LINE__, ret);
2947 goto out_unmap;
2948 }
2949
2950out:
2951 return ret;
2952out_unmap:
2953 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2954 goto out;
2955}
2956
2957static int srpt_write_pending_status(struct se_cmd *se_cmd)
2958{
2959 struct srpt_send_ioctx *ioctx;
2960
2961 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2962 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2963}
2964
2965/*
2966 * srpt_write_pending() - Start data transfer from initiator to target (write).
2967 */
2968static int srpt_write_pending(struct se_cmd *se_cmd)
2969{
2970 struct srpt_rdma_ch *ch;
2971 struct srpt_send_ioctx *ioctx;
2972 enum srpt_command_state new_state;
2973 enum rdma_ch_state ch_state;
2974 int ret;
2975
2976 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2977
2978 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2979 WARN_ON(new_state == SRPT_STATE_DONE);
2980
2981 ch = ioctx->ch;
2982 BUG_ON(!ch);
2983
2984 ch_state = srpt_get_ch_state(ch);
2985 switch (ch_state) {
2986 case CH_CONNECTING:
2987 WARN(true, "unexpected channel state %d\n", ch_state);
2988 ret = -EINVAL;
2989 goto out;
2990 case CH_LIVE:
2991 break;
2992 case CH_DISCONNECTING:
2993 case CH_DRAINING:
2994 case CH_RELEASING:
2995 pr_debug("cmd with tag %lld: channel disconnecting\n",
2996 ioctx->tag);
2997 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2998 ret = -EINVAL;
2999 goto out;
3000 }
3001 ret = srpt_xfer_data(ch, ioctx);
3002
3003out:
3004 return ret;
3005}
3006
3007static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3008{
3009 switch (tcm_mgmt_status) {
3010 case TMR_FUNCTION_COMPLETE:
3011 return SRP_TSK_MGMT_SUCCESS;
3012 case TMR_FUNCTION_REJECTED:
3013 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3014 }
3015 return SRP_TSK_MGMT_FAILED;
3016}
3017
3018/**
3019 * srpt_queue_response() - Transmits the response to a SCSI command.
3020 *
3021 * Callback function called by the TCM core. Must not block since it can be
3022 * invoked on the context of the IB completion handler.
3023 */
3024static int srpt_queue_response(struct se_cmd *cmd)
3025{
3026 struct srpt_rdma_ch *ch;
3027 struct srpt_send_ioctx *ioctx;
3028 enum srpt_command_state state;
3029 unsigned long flags;
3030 int ret;
3031 enum dma_data_direction dir;
3032 int resp_len;
3033 u8 srp_tm_status;
3034
3035 ret = 0;
3036
3037 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3038 ch = ioctx->ch;
3039 BUG_ON(!ch);
3040
3041 spin_lock_irqsave(&ioctx->spinlock, flags);
3042 state = ioctx->state;
3043 switch (state) {
3044 case SRPT_STATE_NEW:
3045 case SRPT_STATE_DATA_IN:
3046 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3047 break;
3048 case SRPT_STATE_MGMT:
3049 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3050 break;
3051 default:
3052 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3053 ch, ioctx->ioctx.index, ioctx->state);
3054 break;
3055 }
3056 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3057
3058 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3059 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3060 atomic_inc(&ch->req_lim_delta);
3061 srpt_abort_cmd(ioctx);
3062 goto out;
3063 }
3064
3065 dir = ioctx->cmd.data_direction;
3066
3067 /* For read commands, transfer the data to the initiator. */
3068 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3069 !ioctx->queue_status_only) {
3070 ret = srpt_xfer_data(ch, ioctx);
3071 if (ret) {
3072 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3073 ioctx->tag);
3074 goto out;
3075 }
3076 }
3077
3078 if (state != SRPT_STATE_MGMT)
3079 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3080 cmd->scsi_status);
3081 else {
3082 srp_tm_status
3083 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3084 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3085 ioctx->tag);
3086 }
3087 ret = srpt_post_send(ch, ioctx, resp_len);
3088 if (ret) {
3089 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3090 ioctx->tag);
3091 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3092 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3093 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
3094 }
3095
3096out:
3097 return ret;
3098}
3099
3100static int srpt_queue_status(struct se_cmd *cmd)
3101{
3102 struct srpt_send_ioctx *ioctx;
3103
3104 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3105 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3106 if (cmd->se_cmd_flags &
3107 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3108 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3109 ioctx->queue_status_only = true;
3110 return srpt_queue_response(cmd);
3111}
3112
3113static void srpt_refresh_port_work(struct work_struct *work)
3114{
3115 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3116
3117 srpt_refresh_port(sport);
3118}
3119
3120static int srpt_ch_list_empty(struct srpt_device *sdev)
3121{
3122 int res;
3123
3124 spin_lock_irq(&sdev->spinlock);
3125 res = list_empty(&sdev->rch_list);
3126 spin_unlock_irq(&sdev->spinlock);
3127
3128 return res;
3129}
3130
3131/**
3132 * srpt_release_sdev() - Free the channel resources associated with a target.
3133 */
3134static int srpt_release_sdev(struct srpt_device *sdev)
3135{
3136 struct srpt_rdma_ch *ch, *tmp_ch;
3137 int res;
3138
3139 WARN_ON_ONCE(irqs_disabled());
3140
3141 BUG_ON(!sdev);
3142
3143 spin_lock_irq(&sdev->spinlock);
3144 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3145 __srpt_close_ch(ch);
3146 spin_unlock_irq(&sdev->spinlock);
3147
3148 res = wait_event_interruptible(sdev->ch_releaseQ,
3149 srpt_ch_list_empty(sdev));
3150 if (res)
3151 printk(KERN_ERR "%s: interrupted.\n", __func__);
3152
3153 return 0;
3154}
3155
3156static struct srpt_port *__srpt_lookup_port(const char *name)
3157{
3158 struct ib_device *dev;
3159 struct srpt_device *sdev;
3160 struct srpt_port *sport;
3161 int i;
3162
3163 list_for_each_entry(sdev, &srpt_dev_list, list) {
3164 dev = sdev->device;
3165 if (!dev)
3166 continue;
3167
3168 for (i = 0; i < dev->phys_port_cnt; i++) {
3169 sport = &sdev->port[i];
3170
3171 if (!strcmp(sport->port_guid, name))
3172 return sport;
3173 }
3174 }
3175
3176 return NULL;
3177}
3178
3179static struct srpt_port *srpt_lookup_port(const char *name)
3180{
3181 struct srpt_port *sport;
3182
3183 spin_lock(&srpt_dev_lock);
3184 sport = __srpt_lookup_port(name);
3185 spin_unlock(&srpt_dev_lock);
3186
3187 return sport;
3188}
3189
3190/**
3191 * srpt_add_one() - Infiniband device addition callback function.
3192 */
3193static void srpt_add_one(struct ib_device *device)
3194{
3195 struct srpt_device *sdev;
3196 struct srpt_port *sport;
3197 struct ib_srq_init_attr srq_attr;
3198 int i;
3199
3200 pr_debug("device = %p, device->dma_ops = %p\n", device,
3201 device->dma_ops);
3202
3203 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3204 if (!sdev)
3205 goto err;
3206
3207 sdev->device = device;
3208 INIT_LIST_HEAD(&sdev->rch_list);
3209 init_waitqueue_head(&sdev->ch_releaseQ);
3210 spin_lock_init(&sdev->spinlock);
3211
3212 if (ib_query_device(device, &sdev->dev_attr))
3213 goto free_dev;
3214
3215 sdev->pd = ib_alloc_pd(device);
3216 if (IS_ERR(sdev->pd))
3217 goto free_dev;
3218
3219 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3220 if (IS_ERR(sdev->mr))
3221 goto err_pd;
3222
3223 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3224
3225 srq_attr.event_handler = srpt_srq_event;
3226 srq_attr.srq_context = (void *)sdev;
3227 srq_attr.attr.max_wr = sdev->srq_size;
3228 srq_attr.attr.max_sge = 1;
3229 srq_attr.attr.srq_limit = 0;
3230
3231 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3232 if (IS_ERR(sdev->srq))
3233 goto err_mr;
3234
3235 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3236 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3237 device->name);
3238
3239 if (!srpt_service_guid)
3240 srpt_service_guid = be64_to_cpu(device->node_guid);
3241
3242 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3243 if (IS_ERR(sdev->cm_id))
3244 goto err_srq;
3245
3246 /* print out target login information */
3247 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3248 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3249 srpt_service_guid, srpt_service_guid);
3250
3251 /*
3252 * We do not have a consistent service_id (ie. also id_ext of target_id)
3253 * to identify this target. We currently use the guid of the first HCA
3254 * in the system as service_id; therefore, the target_id will change
3255 * if this HCA is gone bad and replaced by different HCA
3256 */
3257 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3258 goto err_cm;
3259
3260 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3261 srpt_event_handler);
3262 if (ib_register_event_handler(&sdev->event_handler))
3263 goto err_cm;
3264
3265 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3266 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3267 sizeof(*sdev->ioctx_ring[0]),
3268 srp_max_req_size, DMA_FROM_DEVICE);
3269 if (!sdev->ioctx_ring)
3270 goto err_event;
3271
3272 for (i = 0; i < sdev->srq_size; ++i)
3273 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3274
Roland Dreierf2250662012-02-02 12:55:58 -08003275 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
Bart Van Asschea42d9852011-10-14 01:30:46 +00003276
3277 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3278 sport = &sdev->port[i - 1];
3279 sport->sdev = sdev;
3280 sport->port = i;
3281 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3282 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3283 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3284 INIT_WORK(&sport->work, srpt_refresh_port_work);
3285 INIT_LIST_HEAD(&sport->port_acl_list);
3286 spin_lock_init(&sport->port_acl_lock);
3287
3288 if (srpt_refresh_port(sport)) {
3289 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3290 srpt_sdev_name(sdev), i);
3291 goto err_ring;
3292 }
3293 snprintf(sport->port_guid, sizeof(sport->port_guid),
3294 "0x%016llx%016llx",
3295 be64_to_cpu(sport->gid.global.subnet_prefix),
3296 be64_to_cpu(sport->gid.global.interface_id));
3297 }
3298
3299 spin_lock(&srpt_dev_lock);
3300 list_add_tail(&sdev->list, &srpt_dev_list);
3301 spin_unlock(&srpt_dev_lock);
3302
3303out:
3304 ib_set_client_data(device, &srpt_client, sdev);
3305 pr_debug("added %s.\n", device->name);
3306 return;
3307
3308err_ring:
3309 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3310 sdev->srq_size, srp_max_req_size,
3311 DMA_FROM_DEVICE);
3312err_event:
3313 ib_unregister_event_handler(&sdev->event_handler);
3314err_cm:
3315 ib_destroy_cm_id(sdev->cm_id);
3316err_srq:
3317 ib_destroy_srq(sdev->srq);
3318err_mr:
3319 ib_dereg_mr(sdev->mr);
3320err_pd:
3321 ib_dealloc_pd(sdev->pd);
3322free_dev:
3323 kfree(sdev);
3324err:
3325 sdev = NULL;
3326 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3327 goto out;
3328}
3329
3330/**
3331 * srpt_remove_one() - InfiniBand device removal callback function.
3332 */
3333static void srpt_remove_one(struct ib_device *device)
3334{
3335 struct srpt_device *sdev;
3336 int i;
3337
3338 sdev = ib_get_client_data(device, &srpt_client);
3339 if (!sdev) {
3340 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3341 device->name);
3342 return;
3343 }
3344
3345 srpt_unregister_mad_agent(sdev);
3346
3347 ib_unregister_event_handler(&sdev->event_handler);
3348
3349 /* Cancel any work queued by the just unregistered IB event handler. */
3350 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3351 cancel_work_sync(&sdev->port[i].work);
3352
3353 ib_destroy_cm_id(sdev->cm_id);
3354
3355 /*
3356 * Unregistering a target must happen after destroying sdev->cm_id
3357 * such that no new SRP_LOGIN_REQ information units can arrive while
3358 * destroying the target.
3359 */
3360 spin_lock(&srpt_dev_lock);
3361 list_del(&sdev->list);
3362 spin_unlock(&srpt_dev_lock);
3363 srpt_release_sdev(sdev);
3364
3365 ib_destroy_srq(sdev->srq);
3366 ib_dereg_mr(sdev->mr);
3367 ib_dealloc_pd(sdev->pd);
3368
3369 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3370 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3371 sdev->ioctx_ring = NULL;
3372 kfree(sdev);
3373}
3374
3375static struct ib_client srpt_client = {
3376 .name = DRV_NAME,
3377 .add = srpt_add_one,
3378 .remove = srpt_remove_one
3379};
3380
3381static int srpt_check_true(struct se_portal_group *se_tpg)
3382{
3383 return 1;
3384}
3385
3386static int srpt_check_false(struct se_portal_group *se_tpg)
3387{
3388 return 0;
3389}
3390
3391static char *srpt_get_fabric_name(void)
3392{
3393 return "srpt";
3394}
3395
3396static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3397{
3398 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3399}
3400
3401static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3402{
3403 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3404
3405 return sport->port_guid;
3406}
3407
3408static u16 srpt_get_tag(struct se_portal_group *tpg)
3409{
3410 return 1;
3411}
3412
3413static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3414{
3415 return 1;
3416}
3417
3418static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3419 struct se_node_acl *se_nacl,
3420 struct t10_pr_registration *pr_reg,
3421 int *format_code, unsigned char *buf)
3422{
3423 struct srpt_node_acl *nacl;
3424 struct spc_rdma_transport_id *tr_id;
3425
3426 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3427 tr_id = (void *)buf;
3428 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3429 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3430 return sizeof(*tr_id);
3431}
3432
3433static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3434 struct se_node_acl *se_nacl,
3435 struct t10_pr_registration *pr_reg,
3436 int *format_code)
3437{
3438 *format_code = 0;
3439 return sizeof(struct spc_rdma_transport_id);
3440}
3441
3442static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3443 const char *buf, u32 *out_tid_len,
3444 char **port_nexus_ptr)
3445{
3446 struct spc_rdma_transport_id *tr_id;
3447
3448 *port_nexus_ptr = NULL;
3449 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3450 tr_id = (void *)buf;
3451 return (char *)tr_id->i_port_id;
3452}
3453
3454static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3455{
3456 struct srpt_node_acl *nacl;
3457
3458 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3459 if (!nacl) {
3460 printk(KERN_ERR "Unable to alocate struct srpt_node_acl\n");
3461 return NULL;
3462 }
3463
3464 return &nacl->nacl;
3465}
3466
3467static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3468 struct se_node_acl *se_nacl)
3469{
3470 struct srpt_node_acl *nacl;
3471
3472 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3473 kfree(nacl);
3474}
3475
3476static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3477{
3478 return 1;
3479}
3480
3481static void srpt_release_cmd(struct se_cmd *se_cmd)
3482{
3483}
3484
3485/**
3486 * srpt_shutdown_session() - Whether or not a session may be shut down.
3487 */
3488static int srpt_shutdown_session(struct se_session *se_sess)
3489{
3490 return true;
3491}
3492
3493/**
3494 * srpt_close_session() - Forcibly close a session.
3495 *
3496 * Callback function invoked by the TCM core to clean up sessions associated
3497 * with a node ACL when the user invokes
3498 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3499 */
3500static void srpt_close_session(struct se_session *se_sess)
3501{
3502 DECLARE_COMPLETION_ONSTACK(release_done);
3503 struct srpt_rdma_ch *ch;
3504 struct srpt_device *sdev;
3505 int res;
3506
3507 ch = se_sess->fabric_sess_ptr;
3508 WARN_ON(ch->sess != se_sess);
3509
3510 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3511
3512 sdev = ch->sport->sdev;
3513 spin_lock_irq(&sdev->spinlock);
3514 BUG_ON(ch->release_done);
3515 ch->release_done = &release_done;
3516 __srpt_close_ch(ch);
3517 spin_unlock_irq(&sdev->spinlock);
3518
3519 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3520 WARN_ON(res <= 0);
3521}
3522
3523/**
3524 * To do: Find out whether stop_session() has a meaning for transports
3525 * other than iSCSI.
3526 */
3527static void srpt_stop_session(struct se_session *se_sess, int sess_sleep,
3528 int conn_sleep)
3529{
3530}
3531
3532static void srpt_reset_nexus(struct se_session *sess)
3533{
3534 printk(KERN_ERR "This is the SRP protocol, not iSCSI\n");
3535}
3536
3537static int srpt_sess_logged_in(struct se_session *se_sess)
3538{
3539 return true;
3540}
3541
3542/**
3543 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3544 *
3545 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3546 * This object represents an arbitrary integer used to uniquely identify a
3547 * particular attached remote initiator port to a particular SCSI target port
3548 * within a particular SCSI target device within a particular SCSI instance.
3549 */
3550static u32 srpt_sess_get_index(struct se_session *se_sess)
3551{
3552 return 0;
3553}
3554
3555static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3556{
3557}
3558
3559static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3560{
3561 struct srpt_send_ioctx *ioctx;
3562
3563 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3564 return ioctx->tag;
3565}
3566
3567/* Note: only used from inside debug printk's by the TCM core. */
3568static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3569{
3570 struct srpt_send_ioctx *ioctx;
3571
3572 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3573 return srpt_get_cmd_state(ioctx);
3574}
3575
3576static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length)
3577{
3578 return 0;
3579}
3580
3581static u16 srpt_get_fabric_sense_len(void)
3582{
3583 return 0;
3584}
3585
3586static int srpt_is_state_remove(struct se_cmd *se_cmd)
3587{
3588 return 0;
3589}
3590
3591/**
3592 * srpt_parse_i_port_id() - Parse an initiator port ID.
3593 * @name: ASCII representation of a 128-bit initiator port ID.
3594 * @i_port_id: Binary 128-bit port ID.
3595 */
3596static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3597{
3598 const char *p;
3599 unsigned len, count, leading_zero_bytes;
3600 int ret, rc;
3601
3602 p = name;
3603 if (strnicmp(p, "0x", 2) == 0)
3604 p += 2;
3605 ret = -EINVAL;
3606 len = strlen(p);
3607 if (len % 2)
3608 goto out;
3609 count = min(len / 2, 16U);
3610 leading_zero_bytes = 16 - count;
3611 memset(i_port_id, 0, leading_zero_bytes);
3612 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3613 if (rc < 0)
3614 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3615 ret = 0;
3616out:
3617 return ret;
3618}
3619
3620/*
3621 * configfs callback function invoked for
3622 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3623 */
3624static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3625 struct config_group *group,
3626 const char *name)
3627{
3628 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3629 struct se_node_acl *se_nacl, *se_nacl_new;
3630 struct srpt_node_acl *nacl;
3631 int ret = 0;
3632 u32 nexus_depth = 1;
3633 u8 i_port_id[16];
3634
3635 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3636 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3637 ret = -EINVAL;
3638 goto err;
3639 }
3640
3641 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3642 if (!se_nacl_new) {
3643 ret = -ENOMEM;
3644 goto err;
3645 }
3646 /*
3647 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3648 * when converting a node ACL from demo mode to explict
3649 */
3650 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3651 nexus_depth);
3652 if (IS_ERR(se_nacl)) {
3653 ret = PTR_ERR(se_nacl);
3654 goto err;
3655 }
3656 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3657 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3658 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3659 nacl->sport = sport;
3660
3661 spin_lock_irq(&sport->port_acl_lock);
3662 list_add_tail(&nacl->list, &sport->port_acl_list);
3663 spin_unlock_irq(&sport->port_acl_lock);
3664
3665 return se_nacl;
3666err:
3667 return ERR_PTR(ret);
3668}
3669
3670/*
3671 * configfs callback function invoked for
3672 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3673 */
3674static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3675{
3676 struct srpt_node_acl *nacl;
3677 struct srpt_device *sdev;
3678 struct srpt_port *sport;
3679
3680 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3681 sport = nacl->sport;
3682 sdev = sport->sdev;
3683 spin_lock_irq(&sport->port_acl_lock);
3684 list_del(&nacl->list);
3685 spin_unlock_irq(&sport->port_acl_lock);
3686 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3687 srpt_release_fabric_acl(NULL, se_nacl);
3688}
3689
3690static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3691 struct se_portal_group *se_tpg,
3692 char *page)
3693{
3694 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3695
3696 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3697}
3698
3699static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3700 struct se_portal_group *se_tpg,
3701 const char *page,
3702 size_t count)
3703{
3704 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3705 unsigned long val;
3706 int ret;
3707
3708 ret = strict_strtoul(page, 0, &val);
3709 if (ret < 0) {
3710 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3711 return -EINVAL;
3712 }
3713 if (val > MAX_SRPT_RDMA_SIZE) {
3714 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3715 MAX_SRPT_RDMA_SIZE);
3716 return -EINVAL;
3717 }
3718 if (val < DEFAULT_MAX_RDMA_SIZE) {
3719 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3720 val, DEFAULT_MAX_RDMA_SIZE);
3721 return -EINVAL;
3722 }
3723 sport->port_attrib.srp_max_rdma_size = val;
3724
3725 return count;
3726}
3727
3728TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3729
3730static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3731 struct se_portal_group *se_tpg,
3732 char *page)
3733{
3734 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3735
3736 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3737}
3738
3739static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3740 struct se_portal_group *se_tpg,
3741 const char *page,
3742 size_t count)
3743{
3744 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3745 unsigned long val;
3746 int ret;
3747
3748 ret = strict_strtoul(page, 0, &val);
3749 if (ret < 0) {
3750 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3751 return -EINVAL;
3752 }
3753 if (val > MAX_SRPT_RSP_SIZE) {
3754 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3755 MAX_SRPT_RSP_SIZE);
3756 return -EINVAL;
3757 }
3758 if (val < MIN_MAX_RSP_SIZE) {
3759 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3760 MIN_MAX_RSP_SIZE);
3761 return -EINVAL;
3762 }
3763 sport->port_attrib.srp_max_rsp_size = val;
3764
3765 return count;
3766}
3767
3768TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3769
3770static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3771 struct se_portal_group *se_tpg,
3772 char *page)
3773{
3774 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3775
3776 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3777}
3778
3779static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3780 struct se_portal_group *se_tpg,
3781 const char *page,
3782 size_t count)
3783{
3784 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3785 unsigned long val;
3786 int ret;
3787
3788 ret = strict_strtoul(page, 0, &val);
3789 if (ret < 0) {
3790 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3791 return -EINVAL;
3792 }
3793 if (val > MAX_SRPT_SRQ_SIZE) {
3794 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3795 MAX_SRPT_SRQ_SIZE);
3796 return -EINVAL;
3797 }
3798 if (val < MIN_SRPT_SRQ_SIZE) {
3799 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3800 MIN_SRPT_SRQ_SIZE);
3801 return -EINVAL;
3802 }
3803 sport->port_attrib.srp_sq_size = val;
3804
3805 return count;
3806}
3807
3808TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3809
3810static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3811 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3812 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3813 &srpt_tpg_attrib_srp_sq_size.attr,
3814 NULL,
3815};
3816
3817static ssize_t srpt_tpg_show_enable(
3818 struct se_portal_group *se_tpg,
3819 char *page)
3820{
3821 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3822
3823 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3824}
3825
3826static ssize_t srpt_tpg_store_enable(
3827 struct se_portal_group *se_tpg,
3828 const char *page,
3829 size_t count)
3830{
3831 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3832 unsigned long tmp;
3833 int ret;
3834
3835 ret = strict_strtoul(page, 0, &tmp);
3836 if (ret < 0) {
3837 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3838 return -EINVAL;
3839 }
3840
3841 if ((tmp != 0) && (tmp != 1)) {
3842 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3843 return -EINVAL;
3844 }
3845 if (tmp == 1)
3846 sport->enabled = true;
3847 else
3848 sport->enabled = false;
3849
3850 return count;
3851}
3852
3853TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3854
3855static struct configfs_attribute *srpt_tpg_attrs[] = {
3856 &srpt_tpg_enable.attr,
3857 NULL,
3858};
3859
3860/**
3861 * configfs callback invoked for
3862 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3863 */
3864static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3865 struct config_group *group,
3866 const char *name)
3867{
3868 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3869 int res;
3870
3871 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3872 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3873 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3874 if (res)
3875 return ERR_PTR(res);
3876
3877 return &sport->port_tpg_1;
3878}
3879
3880/**
3881 * configfs callback invoked for
3882 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3883 */
3884static void srpt_drop_tpg(struct se_portal_group *tpg)
3885{
3886 struct srpt_port *sport = container_of(tpg,
3887 struct srpt_port, port_tpg_1);
3888
3889 sport->enabled = false;
3890 core_tpg_deregister(&sport->port_tpg_1);
3891}
3892
3893/**
3894 * configfs callback invoked for
3895 * mkdir /sys/kernel/config/target/$driver/$port
3896 */
3897static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3898 struct config_group *group,
3899 const char *name)
3900{
3901 struct srpt_port *sport;
3902 int ret;
3903
3904 sport = srpt_lookup_port(name);
3905 pr_debug("make_tport(%s)\n", name);
3906 ret = -EINVAL;
3907 if (!sport)
3908 goto err;
3909
3910 return &sport->port_wwn;
3911
3912err:
3913 return ERR_PTR(ret);
3914}
3915
3916/**
3917 * configfs callback invoked for
3918 * rmdir /sys/kernel/config/target/$driver/$port
3919 */
3920static void srpt_drop_tport(struct se_wwn *wwn)
3921{
3922 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3923
3924 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3925}
3926
3927static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3928 char *buf)
3929{
3930 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3931}
3932
3933TF_WWN_ATTR_RO(srpt, version);
3934
3935static struct configfs_attribute *srpt_wwn_attrs[] = {
3936 &srpt_wwn_version.attr,
3937 NULL,
3938};
3939
3940static struct target_core_fabric_ops srpt_template = {
3941 .get_fabric_name = srpt_get_fabric_name,
3942 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3943 .tpg_get_wwn = srpt_get_fabric_wwn,
3944 .tpg_get_tag = srpt_get_tag,
3945 .tpg_get_default_depth = srpt_get_default_depth,
3946 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3947 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3948 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3949 .tpg_check_demo_mode = srpt_check_false,
3950 .tpg_check_demo_mode_cache = srpt_check_true,
3951 .tpg_check_demo_mode_write_protect = srpt_check_true,
3952 .tpg_check_prod_mode_write_protect = srpt_check_false,
3953 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3954 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3955 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3956 .release_cmd = srpt_release_cmd,
3957 .check_stop_free = srpt_check_stop_free,
3958 .shutdown_session = srpt_shutdown_session,
3959 .close_session = srpt_close_session,
3960 .stop_session = srpt_stop_session,
3961 .fall_back_to_erl0 = srpt_reset_nexus,
3962 .sess_logged_in = srpt_sess_logged_in,
3963 .sess_get_index = srpt_sess_get_index,
3964 .sess_get_initiator_sid = NULL,
3965 .write_pending = srpt_write_pending,
3966 .write_pending_status = srpt_write_pending_status,
3967 .set_default_node_attributes = srpt_set_default_node_attrs,
3968 .get_task_tag = srpt_get_task_tag,
3969 .get_cmd_state = srpt_get_tcm_cmd_state,
3970 .queue_data_in = srpt_queue_response,
3971 .queue_status = srpt_queue_status,
3972 .queue_tm_rsp = srpt_queue_response,
3973 .get_fabric_sense_len = srpt_get_fabric_sense_len,
3974 .set_fabric_sense_len = srpt_set_fabric_sense_len,
3975 .is_state_remove = srpt_is_state_remove,
3976 /*
3977 * Setup function pointers for generic logic in
3978 * target_core_fabric_configfs.c
3979 */
3980 .fabric_make_wwn = srpt_make_tport,
3981 .fabric_drop_wwn = srpt_drop_tport,
3982 .fabric_make_tpg = srpt_make_tpg,
3983 .fabric_drop_tpg = srpt_drop_tpg,
3984 .fabric_post_link = NULL,
3985 .fabric_pre_unlink = NULL,
3986 .fabric_make_np = NULL,
3987 .fabric_drop_np = NULL,
3988 .fabric_make_nodeacl = srpt_make_nodeacl,
3989 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3990};
3991
3992/**
3993 * srpt_init_module() - Kernel module initialization.
3994 *
3995 * Note: Since ib_register_client() registers callback functions, and since at
3996 * least one of these callback functions (srpt_add_one()) calls target core
3997 * functions, this driver must be registered with the target core before
3998 * ib_register_client() is called.
3999 */
4000static int __init srpt_init_module(void)
4001{
4002 int ret;
4003
4004 ret = -EINVAL;
4005 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
4006 printk(KERN_ERR "invalid value %d for kernel module parameter"
4007 " srp_max_req_size -- must be at least %d.\n",
4008 srp_max_req_size, MIN_MAX_REQ_SIZE);
4009 goto out;
4010 }
4011
4012 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
4013 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
4014 printk(KERN_ERR "invalid value %d for kernel module parameter"
4015 " srpt_srq_size -- must be in the range [%d..%d].\n",
4016 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
4017 goto out;
4018 }
4019
Bart Van Asschea42d9852011-10-14 01:30:46 +00004020 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
Dan Carpenter3af33632011-11-04 21:27:32 +03004021 if (IS_ERR(srpt_target)) {
Bart Van Asschea42d9852011-10-14 01:30:46 +00004022 printk(KERN_ERR "couldn't register\n");
Dan Carpenter3af33632011-11-04 21:27:32 +03004023 ret = PTR_ERR(srpt_target);
Bart Van Asschea42d9852011-10-14 01:30:46 +00004024 goto out;
4025 }
4026
4027 srpt_target->tf_ops = srpt_template;
4028
4029 /* Enable SG chaining */
4030 srpt_target->tf_ops.task_sg_chaining = true;
4031
4032 /*
4033 * Set up default attribute lists.
4034 */
4035 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4036 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4037 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4038 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4039 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4040 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4041 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4042 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4043 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4044
4045 ret = target_fabric_configfs_register(srpt_target);
4046 if (ret < 0) {
4047 printk(KERN_ERR "couldn't register\n");
4048 goto out_free_target;
4049 }
4050
4051 ret = ib_register_client(&srpt_client);
4052 if (ret) {
4053 printk(KERN_ERR "couldn't register IB client\n");
4054 goto out_unregister_target;
4055 }
4056
4057 return 0;
4058
4059out_unregister_target:
4060 target_fabric_configfs_deregister(srpt_target);
4061 srpt_target = NULL;
4062out_free_target:
4063 if (srpt_target)
4064 target_fabric_configfs_free(srpt_target);
4065out:
4066 return ret;
4067}
4068
4069static void __exit srpt_cleanup_module(void)
4070{
4071 ib_unregister_client(&srpt_client);
4072 target_fabric_configfs_deregister(srpt_target);
4073 srpt_target = NULL;
4074}
4075
4076module_init(srpt_init_module);
4077module_exit(srpt_cleanup_module);