blob: a5a54a48d51bf69bfc442b565656113977c1e66f [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050019#include <linux/mm.h>
Christoffer Dall749cf76c2013-01-20 18:28:06 -050020#include <linux/kvm_host.h>
Christoffer Dall11382452013-01-20 18:28:10 -050021#include <linux/uaccess.h>
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050022#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
26#include <asm/cacheflush.h>
27#include <asm/cputype.h>
28#include <trace/events/kvm.h>
Rusty Russell4fe21e42013-01-20 18:28:11 -050029#include <asm/vfp.h>
30#include "../vfp/vfpinstr.h"
Christoffer Dall749cf76c2013-01-20 18:28:06 -050031
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050032#include "trace.h"
33#include "coproc.h"
34
35
36/******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
39
Christoffer Dallc27581e2013-01-20 18:28:10 -050040/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41static u32 cache_levels;
42
43/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
44#define CSSELR_MAX 12
45
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050046int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
47{
48 kvm_inject_undefined(vcpu);
49 return 1;
50}
51
52int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
53{
54 /*
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
57 */
58 kvm_inject_undefined(vcpu);
59 return 1;
60}
61
62int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
63{
64 kvm_inject_undefined(vcpu);
65 return 1;
66}
67
68int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
69{
70 kvm_inject_undefined(vcpu);
71 return 1;
72}
73
Jonathan Austine8c2d992013-09-26 16:49:28 +010074static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
75{
76 /*
Marc Zyngier2d1d8412013-10-18 18:19:04 +010077 * Compute guest MPIDR. We build a virtual cluster out of the
78 * vcpu_id, but we read the 'U' bit from the underlying
79 * hardware directly.
Jonathan Austine8c2d992013-09-26 16:49:28 +010080 */
Marc Zyngier2d1d8412013-10-18 18:19:04 +010081 vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
82 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
83 (vcpu->vcpu_id & 3));
Jonathan Austine8c2d992013-09-26 16:49:28 +010084}
85
86/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
87static bool access_actlr(struct kvm_vcpu *vcpu,
88 const struct coproc_params *p,
89 const struct coproc_reg *r)
90{
91 if (p->is_write)
92 return ignore_write(vcpu, p);
93
94 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
95 return true;
96}
97
98/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
99static bool access_cbar(struct kvm_vcpu *vcpu,
100 const struct coproc_params *p,
101 const struct coproc_reg *r)
102{
103 if (p->is_write)
104 return write_to_read_only(vcpu, p);
105 return read_zero(vcpu, p);
106}
107
108/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
109static bool access_l2ctlr(struct kvm_vcpu *vcpu,
110 const struct coproc_params *p,
111 const struct coproc_reg *r)
112{
113 if (p->is_write)
114 return ignore_write(vcpu, p);
115
116 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
117 return true;
118}
119
120static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
121{
122 u32 l2ctlr, ncores;
123
124 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
125 l2ctlr &= ~(3 << 24);
126 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
Marc Zyngier9cbb6d92013-10-18 18:19:05 +0100127 /* How many cores in the current cluster and the next ones */
128 ncores -= (vcpu->vcpu_id & ~3);
129 /* Cap it to the maximum number of cores in a single cluster */
130 ncores = min(ncores, 3U);
Jonathan Austine8c2d992013-09-26 16:49:28 +0100131 l2ctlr |= (ncores & 3) << 24;
132
133 vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
134}
135
136static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
137{
138 u32 actlr;
139
140 /* ACTLR contains SMP bit: make sure you create all cpus first! */
141 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
142 /* Make the SMP bit consistent with the guest configuration */
143 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
144 actlr |= 1U << 6;
145 else
146 actlr &= ~(1U << 6);
147
148 vcpu->arch.cp15[c1_ACTLR] = actlr;
149}
150
151/*
152 * TRM entries: A7:4.3.50, A15:4.3.49
153 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
154 */
155static bool access_l2ectlr(struct kvm_vcpu *vcpu,
156 const struct coproc_params *p,
157 const struct coproc_reg *r)
158{
159 if (p->is_write)
160 return ignore_write(vcpu, p);
161
162 *vcpu_reg(vcpu, p->Rt1) = 0;
163 return true;
164}
165
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500166/* See note at ARM ARM B1.14.4 */
167static bool access_dcsw(struct kvm_vcpu *vcpu,
168 const struct coproc_params *p,
169 const struct coproc_reg *r)
170{
Marc Zyngierdb730d82012-10-03 11:17:02 +0100171 unsigned long val;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500172 int cpu;
173
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500174 if (!p->is_write)
175 return read_from_write_only(vcpu, p);
176
Marc Zyngier15bbc1b22013-04-17 12:09:09 -0700177 cpu = get_cpu();
178
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500179 cpumask_setall(&vcpu->arch.require_dcache_flush);
180 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
181
182 /* If we were already preempted, take the long way around */
183 if (cpu != vcpu->arch.last_pcpu) {
184 flush_cache_all();
185 goto done;
186 }
187
188 val = *vcpu_reg(vcpu, p->Rt1);
189
190 switch (p->CRm) {
191 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
192 case 14: /* DCCISW */
193 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
194 break;
195
196 case 10: /* DCCSW */
197 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
198 break;
199 }
200
201done:
202 put_cpu();
203
204 return true;
205}
206
207/*
208 * We could trap ID_DFR0 and tell the guest we don't support performance
209 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
210 * NAKed, so it will read the PMCR anyway.
211 *
212 * Therefore we tell the guest we have 0 counters. Unfortunately, we
213 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
214 * all PM registers, which doesn't crash the guest kernel at least.
215 */
216static bool pm_fake(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
219{
220 if (p->is_write)
221 return ignore_write(vcpu, p);
222 else
223 return read_zero(vcpu, p);
224}
225
226#define access_pmcr pm_fake
227#define access_pmcntenset pm_fake
228#define access_pmcntenclr pm_fake
229#define access_pmovsr pm_fake
230#define access_pmselr pm_fake
231#define access_pmceid0 pm_fake
232#define access_pmceid1 pm_fake
233#define access_pmccntr pm_fake
234#define access_pmxevtyper pm_fake
235#define access_pmxevcntr pm_fake
236#define access_pmuserenr pm_fake
237#define access_pmintenset pm_fake
238#define access_pmintenclr pm_fake
239
240/* Architected CP15 registers.
Christoffer Dall240e99c2013-08-05 18:08:41 -0700241 * CRn denotes the primary register number, but is copied to the CRm in the
242 * user space API for 64-bit register access in line with the terminology used
243 * in the ARM ARM.
244 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
245 * registers preceding 32-bit ones.
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500246 */
247static const struct coproc_reg cp15_regs[] = {
Jonathan Austine8c2d992013-09-26 16:49:28 +0100248 /* MPIDR: we use VMPIDR for guest access. */
249 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
250 NULL, reset_mpidr, c0_MPIDR },
251
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500252 /* CSSELR: swapped by interrupt.S. */
253 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
254 NULL, reset_unknown, c0_CSSELR },
255
Jonathan Austine8c2d992013-09-26 16:49:28 +0100256 /* ACTLR: trapped by HCR.TAC bit. */
257 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
258 access_actlr, reset_actlr, c1_ACTLR },
259
260 /* CPACR: swapped by interrupt.S. */
261 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
262 NULL, reset_val, c1_CPACR, 0x00000000 },
263
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500264 /* TTBR0/TTBR1: swapped by interrupt.S. */
Christoffer Dall240e99c2013-08-05 18:08:41 -0700265 { CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
266 { CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500267
268 /* TTBCR: swapped by interrupt.S. */
269 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
270 NULL, reset_val, c2_TTBCR, 0x00000000 },
271
272 /* DACR: swapped by interrupt.S. */
273 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
274 NULL, reset_unknown, c3_DACR },
275
276 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
277 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
278 NULL, reset_unknown, c5_DFSR },
279 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
280 NULL, reset_unknown, c5_IFSR },
281 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
282 NULL, reset_unknown, c5_ADFSR },
283 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
284 NULL, reset_unknown, c5_AIFSR },
285
286 /* DFAR/IFAR: swapped by interrupt.S. */
287 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
288 NULL, reset_unknown, c6_DFAR },
289 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
290 NULL, reset_unknown, c6_IFAR },
Marc Zyngier6a077e42013-06-21 13:08:46 +0100291
292 /* PAR swapped by interrupt.S */
Christoffer Dall240e99c2013-08-05 18:08:41 -0700293 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
Marc Zyngier6a077e42013-06-21 13:08:46 +0100294
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500295 /*
296 * DC{C,I,CI}SW operations:
297 */
298 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
299 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
300 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
301 /*
Jonathan Austine8c2d992013-09-26 16:49:28 +0100302 * L2CTLR access (guest wants to know #CPUs).
303 */
304 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
305 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
306 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
307
308 /*
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500309 * Dummy performance monitor implementation.
310 */
311 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
312 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
313 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
314 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
315 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
316 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
317 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
318 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
319 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
320 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
321 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
322 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
323 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
324
325 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
326 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
327 NULL, reset_unknown, c10_PRRR},
328 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
329 NULL, reset_unknown, c10_NMRR},
330
Marc Zyngieraf208142014-01-22 10:20:09 +0000331 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
332 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
333 access_vm_reg, reset_unknown, c10_AMAIR0},
334 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
335 access_vm_reg, reset_unknown, c10_AMAIR1},
336
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500337 /* VBAR: swapped by interrupt.S. */
338 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
339 NULL, reset_val, c12_VBAR, 0x00000000 },
340
341 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
342 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
343 NULL, reset_val, c13_CID, 0x00000000 },
344 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
345 NULL, reset_unknown, c13_TID_URW },
346 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
347 NULL, reset_unknown, c13_TID_URO },
348 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
349 NULL, reset_unknown, c13_TID_PRIV },
Marc Zyngierc7e3ba62013-01-23 13:21:59 -0500350
351 /* CNTKCTL: swapped by interrupt.S. */
352 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
353 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
Jonathan Austine8c2d992013-09-26 16:49:28 +0100354
355 /* The Configuration Base Address Register. */
356 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500357};
358
359/* Target specific emulation tables */
360static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
361
362void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
363{
Jonathan Austine8c2d992013-09-26 16:49:28 +0100364 unsigned int i;
365
366 for (i = 1; i < table->num; i++)
367 BUG_ON(cmp_reg(&table->table[i-1],
368 &table->table[i]) >= 0);
369
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500370 target_tables[table->target] = table;
371}
372
373/* Get specific register table for this target. */
374static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
375{
376 struct kvm_coproc_target_table *table;
377
378 table = target_tables[target];
379 *num = table->num;
380 return table->table;
381}
382
383static const struct coproc_reg *find_reg(const struct coproc_params *params,
384 const struct coproc_reg table[],
385 unsigned int num)
386{
387 unsigned int i;
388
389 for (i = 0; i < num; i++) {
390 const struct coproc_reg *r = &table[i];
391
392 if (params->is_64bit != r->is_64)
393 continue;
394 if (params->CRn != r->CRn)
395 continue;
396 if (params->CRm != r->CRm)
397 continue;
398 if (params->Op1 != r->Op1)
399 continue;
400 if (params->Op2 != r->Op2)
401 continue;
402
403 return r;
404 }
405 return NULL;
406}
407
408static int emulate_cp15(struct kvm_vcpu *vcpu,
409 const struct coproc_params *params)
410{
411 size_t num;
412 const struct coproc_reg *table, *r;
413
414 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
415 params->CRm, params->Op2, params->is_write);
416
417 table = get_target_table(vcpu->arch.target, &num);
418
419 /* Search target-specific then generic table. */
420 r = find_reg(params, table, num);
421 if (!r)
422 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
423
424 if (likely(r)) {
425 /* If we don't have an accessor, we should never get here! */
426 BUG_ON(!r->access);
427
428 if (likely(r->access(vcpu, params, r))) {
429 /* Skip instruction, since it was emulated */
Marc Zyngier23b415d2012-09-18 12:07:06 +0100430 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500431 return 1;
432 }
433 /* If access function fails, it should complain. */
434 } else {
Marc Zyngierdb730d82012-10-03 11:17:02 +0100435 kvm_err("Unsupported guest CP15 access at: %08lx\n",
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500436 *vcpu_pc(vcpu));
437 print_cp_instr(params);
438 }
439 kvm_inject_undefined(vcpu);
440 return 1;
441}
442
443/**
444 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
445 * @vcpu: The VCPU pointer
446 * @run: The kvm_run struct
447 */
448int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
449{
450 struct coproc_params params;
451
Marc Zyngier46c214d2014-01-21 18:56:26 +0000452 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
Marc Zyngier7393b592012-09-17 19:27:09 +0100453 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
454 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500455 params.is_64bit = true;
456
Marc Zyngier7393b592012-09-17 19:27:09 +0100457 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500458 params.Op2 = 0;
Marc Zyngier7393b592012-09-17 19:27:09 +0100459 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
Marc Zyngier46c214d2014-01-21 18:56:26 +0000460 params.CRm = 0;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500461
462 return emulate_cp15(vcpu, &params);
463}
464
465static void reset_coproc_regs(struct kvm_vcpu *vcpu,
466 const struct coproc_reg *table, size_t num)
467{
468 unsigned long i;
469
470 for (i = 0; i < num; i++)
471 if (table[i].reset)
472 table[i].reset(vcpu, &table[i]);
473}
474
475/**
476 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
477 * @vcpu: The VCPU pointer
478 * @run: The kvm_run struct
479 */
480int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
481{
482 struct coproc_params params;
483
Marc Zyngier7393b592012-09-17 19:27:09 +0100484 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
485 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
486 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500487 params.is_64bit = false;
488
Marc Zyngier7393b592012-09-17 19:27:09 +0100489 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
490 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
491 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500492 params.Rt2 = 0;
493
494 return emulate_cp15(vcpu, &params);
495}
496
Christoffer Dall11382452013-01-20 18:28:10 -0500497/******************************************************************************
498 * Userspace API
499 *****************************************************************************/
500
501static bool index_to_params(u64 id, struct coproc_params *params)
502{
503 switch (id & KVM_REG_SIZE_MASK) {
504 case KVM_REG_SIZE_U32:
505 /* Any unused index bits means it's not valid. */
506 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
507 | KVM_REG_ARM_COPROC_MASK
508 | KVM_REG_ARM_32_CRN_MASK
509 | KVM_REG_ARM_CRM_MASK
510 | KVM_REG_ARM_OPC1_MASK
511 | KVM_REG_ARM_32_OPC2_MASK))
512 return false;
513
514 params->is_64bit = false;
515 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
516 >> KVM_REG_ARM_32_CRN_SHIFT);
517 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
518 >> KVM_REG_ARM_CRM_SHIFT);
519 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
520 >> KVM_REG_ARM_OPC1_SHIFT);
521 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
522 >> KVM_REG_ARM_32_OPC2_SHIFT);
523 return true;
524 case KVM_REG_SIZE_U64:
525 /* Any unused index bits means it's not valid. */
526 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
527 | KVM_REG_ARM_COPROC_MASK
528 | KVM_REG_ARM_CRM_MASK
529 | KVM_REG_ARM_OPC1_MASK))
530 return false;
531 params->is_64bit = true;
Christoffer Dall240e99c2013-08-05 18:08:41 -0700532 /* CRm to CRn: see cp15_to_index for details */
533 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
Christoffer Dall11382452013-01-20 18:28:10 -0500534 >> KVM_REG_ARM_CRM_SHIFT);
535 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
536 >> KVM_REG_ARM_OPC1_SHIFT);
537 params->Op2 = 0;
Christoffer Dall240e99c2013-08-05 18:08:41 -0700538 params->CRm = 0;
Christoffer Dall11382452013-01-20 18:28:10 -0500539 return true;
540 default:
541 return false;
542 }
543}
544
545/* Decode an index value, and find the cp15 coproc_reg entry. */
546static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
547 u64 id)
548{
549 size_t num;
550 const struct coproc_reg *table, *r;
551 struct coproc_params params;
552
553 /* We only do cp15 for now. */
554 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
555 return NULL;
556
557 if (!index_to_params(id, &params))
558 return NULL;
559
560 table = get_target_table(vcpu->arch.target, &num);
561 r = find_reg(&params, table, num);
562 if (!r)
563 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
564
565 /* Not saved in the cp15 array? */
566 if (r && !r->reg)
567 r = NULL;
568
569 return r;
570}
571
572/*
573 * These are the invariant cp15 registers: we let the guest see the host
574 * versions of these, so they're part of the guest state.
575 *
576 * A future CPU may provide a mechanism to present different values to
577 * the guest, or a future kvm may trap them.
578 */
579/* Unfortunately, there's no register-argument for mrc, so generate. */
580#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
581 static void get_##name(struct kvm_vcpu *v, \
582 const struct coproc_reg *r) \
583 { \
584 u32 val; \
585 \
586 asm volatile("mrc p15, " __stringify(op1) \
587 ", %0, c" __stringify(crn) \
588 ", c" __stringify(crm) \
589 ", " __stringify(op2) "\n" : "=r" (val)); \
590 ((struct coproc_reg *)r)->val = val; \
591 }
592
593FUNCTION_FOR32(0, 0, 0, 0, MIDR)
594FUNCTION_FOR32(0, 0, 0, 1, CTR)
595FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
596FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
597FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
598FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
599FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
600FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
601FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
602FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
603FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
604FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
605FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
606FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
607FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
608FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
609FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
610FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
611FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
612FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
613FUNCTION_FOR32(0, 0, 1, 7, AIDR)
614
615/* ->val is filled in by kvm_invariant_coproc_table_init() */
616static struct coproc_reg invariant_cp15[] = {
617 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
618 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
619 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
620 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
621 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
622
623 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
624 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
625 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
626 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
627 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
628 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
629 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
630 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
631
632 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
633 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
634 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
635 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
636 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
637 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
638
639 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
640 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
641};
642
643static int reg_from_user(void *val, const void __user *uaddr, u64 id)
644{
645 /* This Just Works because we are little endian. */
646 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
647 return -EFAULT;
648 return 0;
649}
650
651static int reg_to_user(void __user *uaddr, const void *val, u64 id)
652{
653 /* This Just Works because we are little endian. */
654 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
655 return -EFAULT;
656 return 0;
657}
658
659static int get_invariant_cp15(u64 id, void __user *uaddr)
660{
661 struct coproc_params params;
662 const struct coproc_reg *r;
663
664 if (!index_to_params(id, &params))
665 return -ENOENT;
666
667 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
668 if (!r)
669 return -ENOENT;
670
671 return reg_to_user(uaddr, &r->val, id);
672}
673
674static int set_invariant_cp15(u64 id, void __user *uaddr)
675{
676 struct coproc_params params;
677 const struct coproc_reg *r;
678 int err;
679 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
680
681 if (!index_to_params(id, &params))
682 return -ENOENT;
683 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
684 if (!r)
685 return -ENOENT;
686
687 err = reg_from_user(&val, uaddr, id);
688 if (err)
689 return err;
690
691 /* This is what we mean by invariant: you can't change it. */
692 if (r->val != val)
693 return -EINVAL;
694
695 return 0;
696}
697
Christoffer Dallc27581e2013-01-20 18:28:10 -0500698static bool is_valid_cache(u32 val)
699{
700 u32 level, ctype;
701
702 if (val >= CSSELR_MAX)
703 return -ENOENT;
704
705 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
706 level = (val >> 1);
707 ctype = (cache_levels >> (level * 3)) & 7;
708
709 switch (ctype) {
710 case 0: /* No cache */
711 return false;
712 case 1: /* Instruction cache only */
713 return (val & 1);
714 case 2: /* Data cache only */
715 case 4: /* Unified cache */
716 return !(val & 1);
717 case 3: /* Separate instruction and data caches */
718 return true;
719 default: /* Reserved: we can't know instruction or data. */
720 return false;
721 }
722}
723
724/* Which cache CCSIDR represents depends on CSSELR value. */
725static u32 get_ccsidr(u32 csselr)
726{
727 u32 ccsidr;
728
729 /* Make sure noone else changes CSSELR during this! */
730 local_irq_disable();
731 /* Put value into CSSELR */
732 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
733 isb();
734 /* Read result out of CCSIDR */
735 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
736 local_irq_enable();
737
738 return ccsidr;
739}
740
741static int demux_c15_get(u64 id, void __user *uaddr)
742{
743 u32 val;
744 u32 __user *uval = uaddr;
745
746 /* Fail if we have unknown bits set. */
747 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
748 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
749 return -ENOENT;
750
751 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
752 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
753 if (KVM_REG_SIZE(id) != 4)
754 return -ENOENT;
755 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
756 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
757 if (!is_valid_cache(val))
758 return -ENOENT;
759
760 return put_user(get_ccsidr(val), uval);
761 default:
762 return -ENOENT;
763 }
764}
765
766static int demux_c15_set(u64 id, void __user *uaddr)
767{
768 u32 val, newval;
769 u32 __user *uval = uaddr;
770
771 /* Fail if we have unknown bits set. */
772 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
773 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
774 return -ENOENT;
775
776 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
777 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
778 if (KVM_REG_SIZE(id) != 4)
779 return -ENOENT;
780 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
781 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
782 if (!is_valid_cache(val))
783 return -ENOENT;
784
785 if (get_user(newval, uval))
786 return -EFAULT;
787
788 /* This is also invariant: you can't change it. */
789 if (newval != get_ccsidr(val))
790 return -EINVAL;
791 return 0;
792 default:
793 return -ENOENT;
794 }
795}
796
Rusty Russell4fe21e42013-01-20 18:28:11 -0500797#ifdef CONFIG_VFPv3
798static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
799 KVM_REG_ARM_VFP_FPSCR,
800 KVM_REG_ARM_VFP_FPINST,
801 KVM_REG_ARM_VFP_FPINST2,
802 KVM_REG_ARM_VFP_MVFR0,
803 KVM_REG_ARM_VFP_MVFR1,
804 KVM_REG_ARM_VFP_FPSID };
805
806static unsigned int num_fp_regs(void)
807{
808 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
809 return 32;
810 else
811 return 16;
812}
813
814static unsigned int num_vfp_regs(void)
815{
816 /* Normal FP regs + control regs. */
817 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
818}
819
820static int copy_vfp_regids(u64 __user *uindices)
821{
822 unsigned int i;
823 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
824 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
825
826 for (i = 0; i < num_fp_regs(); i++) {
827 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
828 uindices))
829 return -EFAULT;
830 uindices++;
831 }
832
833 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
834 if (put_user(u32reg | vfp_sysregs[i], uindices))
835 return -EFAULT;
836 uindices++;
837 }
838
839 return num_vfp_regs();
840}
841
842static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
843{
844 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
845 u32 val;
846
847 /* Fail if we have unknown bits set. */
848 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
849 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
850 return -ENOENT;
851
852 if (vfpid < num_fp_regs()) {
853 if (KVM_REG_SIZE(id) != 8)
854 return -ENOENT;
855 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
856 id);
857 }
858
859 /* FP control registers are all 32 bit. */
860 if (KVM_REG_SIZE(id) != 4)
861 return -ENOENT;
862
863 switch (vfpid) {
864 case KVM_REG_ARM_VFP_FPEXC:
865 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
866 case KVM_REG_ARM_VFP_FPSCR:
867 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
868 case KVM_REG_ARM_VFP_FPINST:
869 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
870 case KVM_REG_ARM_VFP_FPINST2:
871 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
872 case KVM_REG_ARM_VFP_MVFR0:
873 val = fmrx(MVFR0);
874 return reg_to_user(uaddr, &val, id);
875 case KVM_REG_ARM_VFP_MVFR1:
876 val = fmrx(MVFR1);
877 return reg_to_user(uaddr, &val, id);
878 case KVM_REG_ARM_VFP_FPSID:
879 val = fmrx(FPSID);
880 return reg_to_user(uaddr, &val, id);
881 default:
882 return -ENOENT;
883 }
884}
885
886static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
887{
888 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
889 u32 val;
890
891 /* Fail if we have unknown bits set. */
892 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
893 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
894 return -ENOENT;
895
896 if (vfpid < num_fp_regs()) {
897 if (KVM_REG_SIZE(id) != 8)
898 return -ENOENT;
899 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
900 uaddr, id);
901 }
902
903 /* FP control registers are all 32 bit. */
904 if (KVM_REG_SIZE(id) != 4)
905 return -ENOENT;
906
907 switch (vfpid) {
908 case KVM_REG_ARM_VFP_FPEXC:
909 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
910 case KVM_REG_ARM_VFP_FPSCR:
911 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
912 case KVM_REG_ARM_VFP_FPINST:
913 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
914 case KVM_REG_ARM_VFP_FPINST2:
915 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
916 /* These are invariant. */
917 case KVM_REG_ARM_VFP_MVFR0:
918 if (reg_from_user(&val, uaddr, id))
919 return -EFAULT;
920 if (val != fmrx(MVFR0))
921 return -EINVAL;
922 return 0;
923 case KVM_REG_ARM_VFP_MVFR1:
924 if (reg_from_user(&val, uaddr, id))
925 return -EFAULT;
926 if (val != fmrx(MVFR1))
927 return -EINVAL;
928 return 0;
929 case KVM_REG_ARM_VFP_FPSID:
930 if (reg_from_user(&val, uaddr, id))
931 return -EFAULT;
932 if (val != fmrx(FPSID))
933 return -EINVAL;
934 return 0;
935 default:
936 return -ENOENT;
937 }
938}
939#else /* !CONFIG_VFPv3 */
940static unsigned int num_vfp_regs(void)
941{
942 return 0;
943}
944
945static int copy_vfp_regids(u64 __user *uindices)
946{
947 return 0;
948}
949
950static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
951{
952 return -ENOENT;
953}
954
955static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
956{
957 return -ENOENT;
958}
959#endif /* !CONFIG_VFPv3 */
960
Christoffer Dall11382452013-01-20 18:28:10 -0500961int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
962{
963 const struct coproc_reg *r;
964 void __user *uaddr = (void __user *)(long)reg->addr;
965
Christoffer Dallc27581e2013-01-20 18:28:10 -0500966 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
967 return demux_c15_get(reg->id, uaddr);
968
Rusty Russell4fe21e42013-01-20 18:28:11 -0500969 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
970 return vfp_get_reg(vcpu, reg->id, uaddr);
971
Christoffer Dall11382452013-01-20 18:28:10 -0500972 r = index_to_coproc_reg(vcpu, reg->id);
973 if (!r)
974 return get_invariant_cp15(reg->id, uaddr);
975
976 /* Note: copies two regs if size is 64 bit. */
977 return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
978}
979
980int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
981{
982 const struct coproc_reg *r;
983 void __user *uaddr = (void __user *)(long)reg->addr;
984
Christoffer Dallc27581e2013-01-20 18:28:10 -0500985 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
986 return demux_c15_set(reg->id, uaddr);
987
Rusty Russell4fe21e42013-01-20 18:28:11 -0500988 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
989 return vfp_set_reg(vcpu, reg->id, uaddr);
990
Christoffer Dall11382452013-01-20 18:28:10 -0500991 r = index_to_coproc_reg(vcpu, reg->id);
992 if (!r)
993 return set_invariant_cp15(reg->id, uaddr);
994
995 /* Note: copies two regs if size is 64 bit */
996 return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
997}
998
Christoffer Dallc27581e2013-01-20 18:28:10 -0500999static unsigned int num_demux_regs(void)
1000{
1001 unsigned int i, count = 0;
1002
1003 for (i = 0; i < CSSELR_MAX; i++)
1004 if (is_valid_cache(i))
1005 count++;
1006
1007 return count;
1008}
1009
1010static int write_demux_regids(u64 __user *uindices)
1011{
1012 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1013 unsigned int i;
1014
1015 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1016 for (i = 0; i < CSSELR_MAX; i++) {
1017 if (!is_valid_cache(i))
1018 continue;
1019 if (put_user(val | i, uindices))
1020 return -EFAULT;
1021 uindices++;
1022 }
1023 return 0;
1024}
1025
Christoffer Dall11382452013-01-20 18:28:10 -05001026static u64 cp15_to_index(const struct coproc_reg *reg)
1027{
1028 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1029 if (reg->is_64) {
1030 val |= KVM_REG_SIZE_U64;
1031 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
Christoffer Dall240e99c2013-08-05 18:08:41 -07001032 /*
1033 * CRn always denotes the primary coproc. reg. nr. for the
1034 * in-kernel representation, but the user space API uses the
1035 * CRm for the encoding, because it is modelled after the
1036 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1037 * B3-1445
1038 */
1039 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
Christoffer Dall11382452013-01-20 18:28:10 -05001040 } else {
1041 val |= KVM_REG_SIZE_U32;
1042 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1043 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1044 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1045 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1046 }
1047 return val;
1048}
1049
1050static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1051{
1052 if (!*uind)
1053 return true;
1054
1055 if (put_user(cp15_to_index(reg), *uind))
1056 return false;
1057
1058 (*uind)++;
1059 return true;
1060}
1061
1062/* Assumed ordered tables, see kvm_coproc_table_init. */
1063static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1064{
1065 const struct coproc_reg *i1, *i2, *end1, *end2;
1066 unsigned int total = 0;
1067 size_t num;
1068
1069 /* We check for duplicates here, to allow arch-specific overrides. */
1070 i1 = get_target_table(vcpu->arch.target, &num);
1071 end1 = i1 + num;
1072 i2 = cp15_regs;
1073 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1074
1075 BUG_ON(i1 == end1 || i2 == end2);
1076
1077 /* Walk carefully, as both tables may refer to the same register. */
1078 while (i1 || i2) {
1079 int cmp = cmp_reg(i1, i2);
1080 /* target-specific overrides generic entry. */
1081 if (cmp <= 0) {
1082 /* Ignore registers we trap but don't save. */
1083 if (i1->reg) {
1084 if (!copy_reg_to_user(i1, &uind))
1085 return -EFAULT;
1086 total++;
1087 }
1088 } else {
1089 /* Ignore registers we trap but don't save. */
1090 if (i2->reg) {
1091 if (!copy_reg_to_user(i2, &uind))
1092 return -EFAULT;
1093 total++;
1094 }
1095 }
1096
1097 if (cmp <= 0 && ++i1 == end1)
1098 i1 = NULL;
1099 if (cmp >= 0 && ++i2 == end2)
1100 i2 = NULL;
1101 }
1102 return total;
1103}
1104
1105unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1106{
1107 return ARRAY_SIZE(invariant_cp15)
Christoffer Dallc27581e2013-01-20 18:28:10 -05001108 + num_demux_regs()
Rusty Russell4fe21e42013-01-20 18:28:11 -05001109 + num_vfp_regs()
Christoffer Dall11382452013-01-20 18:28:10 -05001110 + walk_cp15(vcpu, (u64 __user *)NULL);
1111}
1112
1113int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1114{
1115 unsigned int i;
1116 int err;
1117
1118 /* Then give them all the invariant registers' indices. */
1119 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1120 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1121 return -EFAULT;
1122 uindices++;
1123 }
1124
1125 err = walk_cp15(vcpu, uindices);
Christoffer Dallc27581e2013-01-20 18:28:10 -05001126 if (err < 0)
1127 return err;
1128 uindices += err;
1129
Rusty Russell4fe21e42013-01-20 18:28:11 -05001130 err = copy_vfp_regids(uindices);
1131 if (err < 0)
1132 return err;
1133 uindices += err;
1134
Christoffer Dallc27581e2013-01-20 18:28:10 -05001135 return write_demux_regids(uindices);
Christoffer Dall11382452013-01-20 18:28:10 -05001136}
1137
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001138void kvm_coproc_table_init(void)
1139{
1140 unsigned int i;
1141
1142 /* Make sure tables are unique and in order. */
1143 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1144 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
Christoffer Dall11382452013-01-20 18:28:10 -05001145
1146 /* We abuse the reset function to overwrite the table itself. */
1147 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1148 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
Christoffer Dallc27581e2013-01-20 18:28:10 -05001149
1150 /*
1151 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1152 *
1153 * If software reads the Cache Type fields from Ctype1
1154 * upwards, once it has seen a value of 0b000, no caches
1155 * exist at further-out levels of the hierarchy. So, for
1156 * example, if Ctype3 is the first Cache Type field with a
1157 * value of 0b000, the values of Ctype4 to Ctype7 must be
1158 * ignored.
1159 */
1160 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1161 for (i = 0; i < 7; i++)
1162 if (((cache_levels >> (i*3)) & 7) == 0)
1163 break;
1164 /* Clear all higher bits. */
1165 cache_levels &= (1 << (i*3))-1;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001166}
1167
1168/**
1169 * kvm_reset_coprocs - sets cp15 registers to reset value
1170 * @vcpu: The VCPU pointer
1171 *
1172 * This function finds the right table above and sets the registers on the
1173 * virtual CPU struct to their architecturally defined reset values.
1174 */
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001175void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1176{
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001177 size_t num;
1178 const struct coproc_reg *table;
1179
1180 /* Catch someone adding a register without putting in reset entry. */
1181 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1182
1183 /* Generic chip reset first (so target could override). */
1184 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1185
1186 table = get_target_table(vcpu->arch.target, &num);
1187 reset_coproc_regs(vcpu, table, num);
1188
1189 for (num = 1; num < NR_CP15_REGS; num++)
1190 if (vcpu->arch.cp15[num] == 0x42424242)
1191 panic("Didn't reset vcpu->arch.cp15[%zi]", num);
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001192}