blob: e3cac0f26d7bbe8bf4e99fa723f5fe93f4555782 [file] [log] [blame]
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt2400pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt2400pci.h"
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57static u32 rt2400pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58{
59 u32 reg;
60 unsigned int i;
61
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
67 }
68
69 return reg;
70}
71
72static void rt2400pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
74{
75 u32 reg;
76
77 /*
78 * Wait until the BBP becomes ready.
79 */
80 reg = rt2400pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
84 }
85
86 /*
87 * Write the data into the BBP.
88 */
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96}
97
98static void rt2400pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
100{
101 u32 reg;
102
103 /*
104 * Wait until the BBP becomes ready.
105 */
106 reg = rt2400pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
110 }
111
112 /*
113 * Write the request into the BBP.
114 */
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122 /*
123 * Wait until the BBP becomes ready.
124 */
125 reg = rt2400pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
130 }
131
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133}
134
135static void rt2400pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
137{
138 u32 reg;
139 unsigned int i;
140
141 if (!word)
142 return;
143
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
149 }
150
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
153
154rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
163}
164
165static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166{
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178}
179
180static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181{
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
184
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
191
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193}
194
195#ifdef CONFIG_RT2X00_LIB_DEBUGFS
196#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198static void rt2400pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
200{
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202}
203
204static void rt2400pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
206{
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208}
209
210static const struct rt2x00debug rt2400pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2400pci_read_csr,
214 .write = rt2400pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt2400pci_bbp_read,
226 .write = rt2400pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2400pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236};
237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239#ifdef CONFIG_RT2400PCI_RFKILL
240static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241{
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246}
247#endif /* CONFIG_RT2400PCI_RFKILL */
248
249/*
250 * Configuration handlers.
251 */
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200252static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
253 __le32 *mac)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700254{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200255 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
256 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700257}
258
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200259static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev,
260 __le32 *bssid)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700261{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200262 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
263 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700264}
265
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700266static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, int type)
267{
Johannes Berg4150c572007-09-17 01:29:23 -0400268 struct interface *intf = &rt2x00dev->interface;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700269 u32 reg;
270
271 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
272
273 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700274 * Enable beacon config
275 */
276 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
277 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
278 PREAMBLE + get_duration(IEEE80211_HEADER, 2));
279 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
280
281 /*
282 * Enable synchronisation.
283 */
284 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
Johannes Berg4150c572007-09-17 01:29:23 -0400285 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
286 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700287 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
Johannes Berg4150c572007-09-17 01:29:23 -0400288 if (is_interface_type(intf, IEEE80211_IF_TYPE_IBSS) ||
289 is_interface_type(intf, IEEE80211_IF_TYPE_AP))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700290 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
Johannes Berg4150c572007-09-17 01:29:23 -0400291 else if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700292 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
Johannes Berg4150c572007-09-17 01:29:23 -0400293 else
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700294 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700295 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
296}
297
298static void rt2400pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
299{
300 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
301 u32 reg;
302 u32 preamble;
303 u16 value;
304
305 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
306 preamble = SHORT_PREAMBLE;
307 else
308 preamble = PREAMBLE;
309
310 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
311 rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
312
313 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
314 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
315 SHORT_DIFS : DIFS) +
316 PLCP + preamble + get_duration(ACK_SIZE, 10);
317 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
318 value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
319 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
320 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
321
322 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
323
324 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
325 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
326 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
327 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
328 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
329
330 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
331 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
332 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
333 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
334 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
335
336 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
337 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
338 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
339 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
340 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
341
342 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
343 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
344 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
345 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
346 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
347}
348
349static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
350 const int phymode)
351{
352 struct ieee80211_hw_mode *mode;
353 struct ieee80211_rate *rate;
354
355 rt2x00dev->curr_hwmode = HWMODE_B;
356
357 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
358 rate = &mode->rates[mode->num_rates - 1];
359
360 rt2400pci_config_rate(rt2x00dev, rate->val2);
361}
362
363static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
364 const int index, const int channel)
365{
366 struct rf_channel reg;
367
368 /*
369 * Fill rf_reg structure.
370 */
371 memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
372
373 /*
374 * Switch on tuning bits.
375 */
376 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
377 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
378
379 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
380 rt2400pci_rf_write(rt2x00dev, 2, reg.rf2);
381 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
382
383 /*
384 * RF2420 chipset don't need any additional actions.
385 */
386 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
387 return;
388
389 /*
390 * For the RT2421 chipsets we need to write an invalid
391 * reference clock rate to activate auto_tune.
392 * After that we set the value back to the correct channel.
393 */
394 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
395 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
396 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
397
398 msleep(1);
399
400 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
401 rt2400pci_rf_write(rt2x00dev, 2, reg.rf2);
402 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
403
404 msleep(1);
405
406 /*
407 * Switch off tuning bits.
408 */
409 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
410 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
411
412 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
413 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
414
415 /*
416 * Clear false CRC during channel switch.
417 */
418 rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
419}
420
421static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
422{
423 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
424}
425
426static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
427 int antenna_tx, int antenna_rx)
428{
429 u8 r1;
430 u8 r4;
431
432 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
433 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
434
435 /*
436 * Configure the TX antenna.
437 */
438 switch (antenna_tx) {
439 case ANTENNA_SW_DIVERSITY:
440 case ANTENNA_HW_DIVERSITY:
441 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
442 break;
443 case ANTENNA_A:
444 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
445 break;
446 case ANTENNA_B:
447 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
448 break;
449 }
450
451 /*
452 * Configure the RX antenna.
453 */
454 switch (antenna_rx) {
455 case ANTENNA_SW_DIVERSITY:
456 case ANTENNA_HW_DIVERSITY:
457 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
458 break;
459 case ANTENNA_A:
460 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
461 break;
462 case ANTENNA_B:
463 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
464 break;
465 }
466
467 rt2400pci_bbp_write(rt2x00dev, 4, r4);
468 rt2400pci_bbp_write(rt2x00dev, 1, r1);
469}
470
471static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
472 int short_slot_time, int beacon_int)
473{
474 u32 reg;
475
476 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
477 rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
478 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
479 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
480
481 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
482 rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
483 rt2x00_set_field32(&reg, CSR18_PIFS,
484 short_slot_time ? SHORT_PIFS : PIFS);
485 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
486
487 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
488 rt2x00_set_field32(&reg, CSR19_DIFS,
489 short_slot_time ? SHORT_DIFS : DIFS);
490 rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
491 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
492
493 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
494 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
495 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
496 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
497
498 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
499 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
500 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
501 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
502}
503
504static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
505 const unsigned int flags,
506 struct ieee80211_conf *conf)
507{
508 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
509
510 if (flags & CONFIG_UPDATE_PHYMODE)
511 rt2400pci_config_phymode(rt2x00dev, conf->phymode);
512 if (flags & CONFIG_UPDATE_CHANNEL)
513 rt2400pci_config_channel(rt2x00dev, conf->channel_val,
514 conf->channel);
515 if (flags & CONFIG_UPDATE_TXPOWER)
516 rt2400pci_config_txpower(rt2x00dev, conf->power_level);
517 if (flags & CONFIG_UPDATE_ANTENNA)
518 rt2400pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
519 conf->antenna_sel_rx);
520 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
521 rt2400pci_config_duration(rt2x00dev, short_slot_time,
522 conf->beacon_int);
523}
524
525static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
526 struct ieee80211_tx_queue_params *params)
527{
528 u32 reg;
529
530 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
531 rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
532 rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
533 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
534}
535
536/*
537 * LED functions.
538 */
539static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
540{
541 u32 reg;
542
543 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
544
545 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
546 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
547
548 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
549 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
550 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
551 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
552 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
553 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
554 } else {
555 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
556 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
557 }
558
559 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
560}
561
562static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
563{
564 u32 reg;
565
566 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
567 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
568 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
569 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
570}
571
572/*
573 * Link tuning
574 */
575static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev)
576{
577 u32 reg;
578 u8 bbp;
579
580 /*
581 * Update FCS error count from register.
582 */
583 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
584 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
585
586 /*
587 * Update False CCA count from register.
588 */
589 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
590 rt2x00dev->link.false_cca = bbp;
591}
592
593static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
594{
595 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
596 rt2x00dev->link.vgc_level = 0x08;
597}
598
599static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
600{
601 u8 reg;
602
603 /*
604 * The link tuner should not run longer then 60 seconds,
605 * and should run once every 2 seconds.
606 */
607 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
608 return;
609
610 /*
611 * Base r13 link tuning on the false cca count.
612 */
613 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
614
615 if (rt2x00dev->link.false_cca > 512 && reg < 0x20) {
616 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
617 rt2x00dev->link.vgc_level = reg;
618 } else if (rt2x00dev->link.false_cca < 100 && reg > 0x08) {
619 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
620 rt2x00dev->link.vgc_level = reg;
621 }
622}
623
624/*
625 * Initialization functions.
626 */
627static void rt2400pci_init_rxring(struct rt2x00_dev *rt2x00dev)
628{
629 struct data_ring *ring = rt2x00dev->rx;
630 struct data_desc *rxd;
631 unsigned int i;
632 u32 word;
633
634 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
635
636 for (i = 0; i < ring->stats.limit; i++) {
637 rxd = ring->entry[i].priv;
638
639 rt2x00_desc_read(rxd, 2, &word);
640 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
641 ring->data_size);
642 rt2x00_desc_write(rxd, 2, word);
643
644 rt2x00_desc_read(rxd, 1, &word);
645 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
646 ring->entry[i].data_dma);
647 rt2x00_desc_write(rxd, 1, word);
648
649 rt2x00_desc_read(rxd, 0, &word);
650 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
651 rt2x00_desc_write(rxd, 0, word);
652 }
653
654 rt2x00_ring_index_clear(rt2x00dev->rx);
655}
656
657static void rt2400pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
658{
659 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
660 struct data_desc *txd;
661 unsigned int i;
662 u32 word;
663
664 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
665
666 for (i = 0; i < ring->stats.limit; i++) {
667 txd = ring->entry[i].priv;
668
669 rt2x00_desc_read(txd, 1, &word);
670 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
671 ring->entry[i].data_dma);
672 rt2x00_desc_write(txd, 1, word);
673
674 rt2x00_desc_read(txd, 2, &word);
675 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
676 ring->data_size);
677 rt2x00_desc_write(txd, 2, word);
678
679 rt2x00_desc_read(txd, 0, &word);
680 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
681 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
682 rt2x00_desc_write(txd, 0, word);
683 }
684
685 rt2x00_ring_index_clear(ring);
686}
687
688static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
689{
690 u32 reg;
691
692 /*
693 * Initialize rings.
694 */
695 rt2400pci_init_rxring(rt2x00dev);
696 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
697 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
698 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
699 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
700
701 /*
702 * Initialize registers.
703 */
704 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
705 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
706 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
707 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
708 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
709 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
710 rt2x00dev->bcn[1].stats.limit);
711 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
712 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
713 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
714
715 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
716 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
717 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
718 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
719
720 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
721 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
722 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
723 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
724
725 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
726 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
727 rt2x00dev->bcn[1].data_dma);
728 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
729
730 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
731 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
732 rt2x00dev->bcn[0].data_dma);
733 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
734
735 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
736 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
737 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
738 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
739
740 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
741 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
742 rt2x00dev->rx->data_dma);
743 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
744
745 return 0;
746}
747
748static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
749{
750 u32 reg;
751
752 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
753 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
754 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
755 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
756
757 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
758 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
759 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
760 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
761 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
762
763 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
764 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
765 (rt2x00dev->rx->data_size / 128));
766 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
767
768 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
769
770 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
771 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
772 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
773 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
774 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
775 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
776
777 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
778 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
779 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
780 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
781 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
782 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
783 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
784 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
785
786 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
787
788 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
789 return -EBUSY;
790
791 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
792 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
793
794 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
795 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
796 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
797
798 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
799 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
800 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
801 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
802 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
803 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
804
805 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
806 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
807 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
808 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
809 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
810
811 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
812 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
813 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
814 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
815
816 /*
817 * We must clear the FCS and FIFO error count.
818 * These registers are cleared on read,
819 * so we may pass a useless variable to store the value.
820 */
821 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
822 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
823
824 return 0;
825}
826
827static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
828{
829 unsigned int i;
830 u16 eeprom;
831 u8 reg_id;
832 u8 value;
833
834 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
835 rt2400pci_bbp_read(rt2x00dev, 0, &value);
836 if ((value != 0xff) && (value != 0x00))
837 goto continue_csr_init;
838 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
839 udelay(REGISTER_BUSY_DELAY);
840 }
841
842 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
843 return -EACCES;
844
845continue_csr_init:
846 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
847 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
848 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
849 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
850 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
851 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
852 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
853 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
854 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
855 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
856 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
857 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
858 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
859 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
860
861 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
862 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
863 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
864
865 if (eeprom != 0xffff && eeprom != 0x0000) {
866 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
867 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
868 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
869 reg_id, value);
870 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
871 }
872 }
873 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
874
875 return 0;
876}
877
878/*
879 * Device state switch handlers.
880 */
881static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
882 enum dev_state state)
883{
884 u32 reg;
885
886 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
887 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
888 state == STATE_RADIO_RX_OFF);
889 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
890}
891
892static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
893 enum dev_state state)
894{
895 int mask = (state == STATE_RADIO_IRQ_OFF);
896 u32 reg;
897
898 /*
899 * When interrupts are being enabled, the interrupt registers
900 * should clear the register to assure a clean state.
901 */
902 if (state == STATE_RADIO_IRQ_ON) {
903 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
904 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
905 }
906
907 /*
908 * Only toggle the interrupts bits we are going to use.
909 * Non-checked interrupt bits are disabled by default.
910 */
911 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
912 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
913 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
914 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
915 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
916 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
917 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
918}
919
920static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
921{
922 /*
923 * Initialize all registers.
924 */
925 if (rt2400pci_init_rings(rt2x00dev) ||
926 rt2400pci_init_registers(rt2x00dev) ||
927 rt2400pci_init_bbp(rt2x00dev)) {
928 ERROR(rt2x00dev, "Register initialization failed.\n");
929 return -EIO;
930 }
931
932 /*
933 * Enable interrupts.
934 */
935 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
936
937 /*
938 * Enable LED
939 */
940 rt2400pci_enable_led(rt2x00dev);
941
942 return 0;
943}
944
945static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
946{
947 u32 reg;
948
949 /*
950 * Disable LED
951 */
952 rt2400pci_disable_led(rt2x00dev);
953
954 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
955
956 /*
957 * Disable synchronisation.
958 */
959 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
960
961 /*
962 * Cancel RX and TX.
963 */
964 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
965 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
966 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
967
968 /*
969 * Disable interrupts.
970 */
971 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
972}
973
974static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
975 enum dev_state state)
976{
977 u32 reg;
978 unsigned int i;
979 char put_to_sleep;
980 char bbp_state;
981 char rf_state;
982
983 put_to_sleep = (state != STATE_AWAKE);
984
985 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
986 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
987 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
988 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
989 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
990 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
991
992 /*
993 * Device is not guaranteed to be in the requested state yet.
994 * We must wait until the register indicates that the
995 * device has entered the correct state.
996 */
997 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
998 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
999 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1000 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1001 if (bbp_state == state && rf_state == state)
1002 return 0;
1003 msleep(10);
1004 }
1005
1006 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1007 "current device state: bbp %d and rf %d.\n",
1008 state, bbp_state, rf_state);
1009
1010 return -EBUSY;
1011}
1012
1013static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1014 enum dev_state state)
1015{
1016 int retval = 0;
1017
1018 switch (state) {
1019 case STATE_RADIO_ON:
1020 retval = rt2400pci_enable_radio(rt2x00dev);
1021 break;
1022 case STATE_RADIO_OFF:
1023 rt2400pci_disable_radio(rt2x00dev);
1024 break;
1025 case STATE_RADIO_RX_ON:
1026 case STATE_RADIO_RX_OFF:
1027 rt2400pci_toggle_rx(rt2x00dev, state);
1028 break;
1029 case STATE_DEEP_SLEEP:
1030 case STATE_SLEEP:
1031 case STATE_STANDBY:
1032 case STATE_AWAKE:
1033 retval = rt2400pci_set_state(rt2x00dev, state);
1034 break;
1035 default:
1036 retval = -ENOTSUPP;
1037 break;
1038 }
1039
1040 return retval;
1041}
1042
1043/*
1044 * TX descriptor initialization
1045 */
1046static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1047 struct data_desc *txd,
Johannes Berg4150c572007-09-17 01:29:23 -04001048 struct txdata_entry_desc *desc,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001049 struct ieee80211_hdr *ieee80211hdr,
1050 unsigned int length,
1051 struct ieee80211_tx_control *control)
1052{
1053 u32 word;
1054 u32 signal = 0;
1055 u32 service = 0;
1056 u32 length_high = 0;
1057 u32 length_low = 0;
1058
1059 /*
1060 * The PLCP values should be treated as if they
1061 * were BBP values.
1062 */
1063 rt2x00_set_field32(&signal, BBPCSR_VALUE, desc->signal);
1064 rt2x00_set_field32(&signal, BBPCSR_REGNUM, 5);
1065 rt2x00_set_field32(&signal, BBPCSR_BUSY, 1);
1066
1067 rt2x00_set_field32(&service, BBPCSR_VALUE, desc->service);
1068 rt2x00_set_field32(&service, BBPCSR_REGNUM, 6);
1069 rt2x00_set_field32(&service, BBPCSR_BUSY, 1);
1070
1071 rt2x00_set_field32(&length_high, BBPCSR_VALUE, desc->length_high);
1072 rt2x00_set_field32(&length_high, BBPCSR_REGNUM, 7);
1073 rt2x00_set_field32(&length_high, BBPCSR_BUSY, 1);
1074
1075 rt2x00_set_field32(&length_low, BBPCSR_VALUE, desc->length_low);
1076 rt2x00_set_field32(&length_low, BBPCSR_REGNUM, 8);
1077 rt2x00_set_field32(&length_low, BBPCSR_BUSY, 1);
1078
1079 /*
1080 * Start writing the descriptor words.
1081 */
1082 rt2x00_desc_read(txd, 2, &word);
1083 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, length);
1084 rt2x00_desc_write(txd, 2, word);
1085
1086 rt2x00_desc_read(txd, 3, &word);
1087 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, signal);
1088 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, service);
1089 rt2x00_desc_write(txd, 3, word);
1090
1091 rt2x00_desc_read(txd, 4, &word);
1092 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, length_low);
1093 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, length_high);
1094 rt2x00_desc_write(txd, 4, word);
1095
1096 rt2x00_desc_read(txd, 0, &word);
1097 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1098 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1099 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1100 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1101 rt2x00_set_field32(&word, TXD_W0_ACK,
1102 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1103 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1104 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1105 rt2x00_set_field32(&word, TXD_W0_RTS,
1106 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1107 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1108 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1109 !!(control->flags &
1110 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1111 rt2x00_desc_write(txd, 0, word);
1112}
1113
1114/*
1115 * TX data initialization
1116 */
1117static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1118 unsigned int queue)
1119{
1120 u32 reg;
1121
1122 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1123 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1124 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1125 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1126 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1127 }
1128 return;
1129 }
1130
1131 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1132 if (queue == IEEE80211_TX_QUEUE_DATA0)
1133 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1134 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1135 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1136 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1137 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1138 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1139}
1140
1141/*
1142 * RX control handlers
1143 */
Johannes Berg4150c572007-09-17 01:29:23 -04001144static void rt2400pci_fill_rxdone(struct data_entry *entry,
1145 struct rxdata_entry_desc *desc)
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001146{
1147 struct data_desc *rxd = entry->priv;
1148 u32 word0;
1149 u32 word2;
1150
1151 rt2x00_desc_read(rxd, 0, &word0);
1152 rt2x00_desc_read(rxd, 2, &word2);
1153
Johannes Berg4150c572007-09-17 01:29:23 -04001154 desc->flags = 0;
1155 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1156 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1157 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1158 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001159
1160 /*
1161 * Obtain the status about this packet.
1162 */
Johannes Berg4150c572007-09-17 01:29:23 -04001163 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1164 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001165 entry->ring->rt2x00dev->rssi_offset;
Johannes Berg4150c572007-09-17 01:29:23 -04001166 desc->ofdm = 0;
1167 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001168}
1169
1170/*
1171 * Interrupt functions.
1172 */
1173static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1174{
1175 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1176 struct data_entry *entry;
1177 struct data_desc *txd;
1178 u32 word;
1179 int tx_status;
1180 int retry;
1181
1182 while (!rt2x00_ring_empty(ring)) {
1183 entry = rt2x00_get_data_entry_done(ring);
1184 txd = entry->priv;
1185 rt2x00_desc_read(txd, 0, &word);
1186
1187 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1188 !rt2x00_get_field32(word, TXD_W0_VALID))
1189 break;
1190
1191 /*
1192 * Obtain the status about this packet.
1193 */
1194 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1195 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1196
1197 rt2x00lib_txdone(entry, tx_status, retry);
1198
1199 /*
1200 * Make this entry available for reuse.
1201 */
1202 entry->flags = 0;
1203 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1204 rt2x00_desc_write(txd, 0, word);
1205 rt2x00_ring_index_done_inc(ring);
1206 }
1207
1208 /*
1209 * If the data ring was full before the txdone handler
1210 * we must make sure the packet queue in the mac80211 stack
1211 * is reenabled when the txdone handler has finished.
1212 */
1213 entry = ring->entry;
1214 if (!rt2x00_ring_full(ring))
1215 ieee80211_wake_queue(rt2x00dev->hw,
1216 entry->tx_status.control.queue);
1217}
1218
1219static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1220{
1221 struct rt2x00_dev *rt2x00dev = dev_instance;
1222 u32 reg;
1223
1224 /*
1225 * Get the interrupt sources & saved to local variable.
1226 * Write register value back to clear pending interrupts.
1227 */
1228 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1229 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1230
1231 if (!reg)
1232 return IRQ_NONE;
1233
1234 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1235 return IRQ_HANDLED;
1236
1237 /*
1238 * Handle interrupts, walk through all bits
1239 * and run the tasks, the bits are checked in order of
1240 * priority.
1241 */
1242
1243 /*
1244 * 1 - Beacon timer expired interrupt.
1245 */
1246 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1247 rt2x00lib_beacondone(rt2x00dev);
1248
1249 /*
1250 * 2 - Rx ring done interrupt.
1251 */
1252 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1253 rt2x00pci_rxdone(rt2x00dev);
1254
1255 /*
1256 * 3 - Atim ring transmit done interrupt.
1257 */
1258 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1259 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1260
1261 /*
1262 * 4 - Priority ring transmit done interrupt.
1263 */
1264 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1265 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1266
1267 /*
1268 * 5 - Tx ring transmit done interrupt.
1269 */
1270 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1271 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1272
1273 return IRQ_HANDLED;
1274}
1275
1276/*
1277 * Device probe functions.
1278 */
1279static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1280{
1281 struct eeprom_93cx6 eeprom;
1282 u32 reg;
1283 u16 word;
1284 u8 *mac;
1285
1286 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1287
1288 eeprom.data = rt2x00dev;
1289 eeprom.register_read = rt2400pci_eepromregister_read;
1290 eeprom.register_write = rt2400pci_eepromregister_write;
1291 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1292 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1293 eeprom.reg_data_in = 0;
1294 eeprom.reg_data_out = 0;
1295 eeprom.reg_data_clock = 0;
1296 eeprom.reg_chip_select = 0;
1297
1298 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1299 EEPROM_SIZE / sizeof(u16));
1300
1301 /*
1302 * Start validation of the data that has been read.
1303 */
1304 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1305 if (!is_valid_ether_addr(mac)) {
Joe Perches0795af52007-10-03 17:59:30 -07001306 DECLARE_MAC_BUF(macbuf);
1307
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001308 random_ether_addr(mac);
Joe Perches0795af52007-10-03 17:59:30 -07001309 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001310 }
1311
1312 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1313 if (word == 0xffff) {
1314 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1315 return -EINVAL;
1316 }
1317
1318 return 0;
1319}
1320
1321static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1322{
1323 u32 reg;
1324 u16 value;
1325 u16 eeprom;
1326
1327 /*
1328 * Read EEPROM word for configuration.
1329 */
1330 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1331
1332 /*
1333 * Identify RF chipset.
1334 */
1335 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1336 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1337 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1338
1339 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1340 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1341 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1342 return -ENODEV;
1343 }
1344
1345 /*
1346 * Identify default antenna configuration.
1347 */
1348 rt2x00dev->hw->conf.antenna_sel_tx =
1349 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1350 rt2x00dev->hw->conf.antenna_sel_rx =
1351 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1352
1353 /*
1354 * Store led mode, for correct led behaviour.
1355 */
1356 rt2x00dev->led_mode =
1357 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1358
1359 /*
1360 * Detect if this device has an hardware controlled radio.
1361 */
1362 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
Ivo van Doorn066cb632007-09-25 20:55:39 +02001363 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001364
1365 /*
1366 * Check if the BBP tuning should be enabled.
1367 */
1368 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1369 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1370
1371 return 0;
1372}
1373
1374/*
1375 * RF value list for RF2420 & RF2421
1376 * Supports: 2.4 GHz
1377 */
1378static const struct rf_channel rf_vals_bg[] = {
1379 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1380 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1381 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1382 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1383 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1384 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1385 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1386 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1387 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1388 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1389 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1390 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1391 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1392 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1393};
1394
1395static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1396{
1397 struct hw_mode_spec *spec = &rt2x00dev->spec;
1398 u8 *txpower;
1399 unsigned int i;
1400
1401 /*
1402 * Initialize all hw fields.
1403 */
Johannes Berg4150c572007-09-17 01:29:23 -04001404 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001405 rt2x00dev->hw->extra_tx_headroom = 0;
1406 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1407 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1408 rt2x00dev->hw->queues = 2;
1409
1410 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1411 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1412 rt2x00_eeprom_addr(rt2x00dev,
1413 EEPROM_MAC_ADDR_0));
1414
1415 /*
1416 * Convert tx_power array in eeprom.
1417 */
1418 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1419 for (i = 0; i < 14; i++)
1420 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1421
1422 /*
1423 * Initialize hw_mode information.
1424 */
1425 spec->num_modes = 1;
1426 spec->num_rates = 4;
1427 spec->tx_power_a = NULL;
1428 spec->tx_power_bg = txpower;
1429 spec->tx_power_default = DEFAULT_TXPOWER;
1430
1431 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1432 spec->channels = rf_vals_bg;
1433}
1434
1435static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1436{
1437 int retval;
1438
1439 /*
1440 * Allocate eeprom data.
1441 */
1442 retval = rt2400pci_validate_eeprom(rt2x00dev);
1443 if (retval)
1444 return retval;
1445
1446 retval = rt2400pci_init_eeprom(rt2x00dev);
1447 if (retval)
1448 return retval;
1449
1450 /*
1451 * Initialize hw specifications.
1452 */
1453 rt2400pci_probe_hw_mode(rt2x00dev);
1454
1455 /*
1456 * This device requires the beacon ring
1457 */
Ivo van Doorn066cb632007-09-25 20:55:39 +02001458 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001459
1460 /*
1461 * Set the rssi offset.
1462 */
1463 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1464
1465 return 0;
1466}
1467
1468/*
1469 * IEEE80211 stack callback functions.
1470 */
Johannes Berg4150c572007-09-17 01:29:23 -04001471static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1472 unsigned int changed_flags,
1473 unsigned int *total_flags,
1474 int mc_count,
1475 struct dev_addr_list *mc_list)
1476{
1477 struct rt2x00_dev *rt2x00dev = hw->priv;
1478 struct interface *intf = &rt2x00dev->interface;
1479 u32 reg;
1480
1481 /*
1482 * Mask off any flags we are going to ignore from
1483 * the total_flags field.
1484 */
1485 *total_flags &=
1486 FIF_ALLMULTI |
1487 FIF_FCSFAIL |
1488 FIF_PLCPFAIL |
1489 FIF_CONTROL |
1490 FIF_OTHER_BSS |
1491 FIF_PROMISC_IN_BSS;
1492
1493 /*
1494 * Apply some rules to the filters:
1495 * - Some filters imply different filters to be set.
1496 * - Some things we can't filter out at all.
1497 * - Some filters are set based on interface type.
1498 */
1499 *total_flags |= FIF_ALLMULTI;
Ivo van Doorn5886d0d2007-10-06 14:13:38 +02001500 if (*total_flags & FIF_OTHER_BSS ||
1501 *total_flags & FIF_PROMISC_IN_BSS)
Johannes Berg4150c572007-09-17 01:29:23 -04001502 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1503 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1504 *total_flags |= FIF_PROMISC_IN_BSS;
1505
1506 /*
1507 * Check if there is any work left for us.
1508 */
1509 if (intf->filter == *total_flags)
1510 return;
1511 intf->filter = *total_flags;
1512
1513 /*
1514 * Start configuration steps.
1515 * Note that the version error will always be dropped
1516 * since there is no filter for it at this time.
1517 */
1518 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1519 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1520 !(*total_flags & FIF_FCSFAIL));
1521 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1522 !(*total_flags & FIF_PLCPFAIL));
1523 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1524 !(*total_flags & FIF_CONTROL));
1525 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1526 !(*total_flags & FIF_PROMISC_IN_BSS));
1527 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1528 !(*total_flags & FIF_PROMISC_IN_BSS));
1529 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1530 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1531}
1532
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001533static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1534 u32 short_retry, u32 long_retry)
1535{
1536 struct rt2x00_dev *rt2x00dev = hw->priv;
1537 u32 reg;
1538
1539 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1540 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1541 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1542 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1543
1544 return 0;
1545}
1546
1547static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1548 int queue,
1549 const struct ieee80211_tx_queue_params *params)
1550{
1551 struct rt2x00_dev *rt2x00dev = hw->priv;
1552
1553 /*
1554 * We don't support variating cw_min and cw_max variables
1555 * per queue. So by default we only configure the TX queue,
1556 * and ignore all other configurations.
1557 */
1558 if (queue != IEEE80211_TX_QUEUE_DATA0)
1559 return -EINVAL;
1560
1561 if (rt2x00mac_conf_tx(hw, queue, params))
1562 return -EINVAL;
1563
1564 /*
1565 * Write configuration to register.
1566 */
1567 rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
1568
1569 return 0;
1570}
1571
1572static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1573{
1574 struct rt2x00_dev *rt2x00dev = hw->priv;
1575 u64 tsf;
1576 u32 reg;
1577
1578 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1579 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1580 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1581 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1582
1583 return tsf;
1584}
1585
1586static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1587{
1588 struct rt2x00_dev *rt2x00dev = hw->priv;
1589
1590 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1591 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1592}
1593
1594static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1595{
1596 struct rt2x00_dev *rt2x00dev = hw->priv;
1597 u32 reg;
1598
1599 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1600 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1601}
1602
1603static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1604 .tx = rt2x00mac_tx,
Johannes Berg4150c572007-09-17 01:29:23 -04001605 .start = rt2x00mac_start,
1606 .stop = rt2x00mac_stop,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001607 .add_interface = rt2x00mac_add_interface,
1608 .remove_interface = rt2x00mac_remove_interface,
1609 .config = rt2x00mac_config,
1610 .config_interface = rt2x00mac_config_interface,
Johannes Berg4150c572007-09-17 01:29:23 -04001611 .configure_filter = rt2400pci_configure_filter,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001612 .get_stats = rt2x00mac_get_stats,
1613 .set_retry_limit = rt2400pci_set_retry_limit,
1614 .conf_tx = rt2400pci_conf_tx,
1615 .get_tx_stats = rt2x00mac_get_tx_stats,
1616 .get_tsf = rt2400pci_get_tsf,
1617 .reset_tsf = rt2400pci_reset_tsf,
1618 .beacon_update = rt2x00pci_beacon_update,
1619 .tx_last_beacon = rt2400pci_tx_last_beacon,
1620};
1621
1622static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1623 .irq_handler = rt2400pci_interrupt,
1624 .probe_hw = rt2400pci_probe_hw,
1625 .initialize = rt2x00pci_initialize,
1626 .uninitialize = rt2x00pci_uninitialize,
1627 .set_device_state = rt2400pci_set_device_state,
1628#ifdef CONFIG_RT2400PCI_RFKILL
1629 .rfkill_poll = rt2400pci_rfkill_poll,
1630#endif /* CONFIG_RT2400PCI_RFKILL */
1631 .link_stats = rt2400pci_link_stats,
1632 .reset_tuner = rt2400pci_reset_tuner,
1633 .link_tuner = rt2400pci_link_tuner,
1634 .write_tx_desc = rt2400pci_write_tx_desc,
1635 .write_tx_data = rt2x00pci_write_tx_data,
1636 .kick_tx_queue = rt2400pci_kick_tx_queue,
1637 .fill_rxdone = rt2400pci_fill_rxdone,
1638 .config_mac_addr = rt2400pci_config_mac_addr,
1639 .config_bssid = rt2400pci_config_bssid,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001640 .config_type = rt2400pci_config_type,
1641 .config = rt2400pci_config,
1642};
1643
1644static const struct rt2x00_ops rt2400pci_ops = {
1645 .name = DRV_NAME,
1646 .rxd_size = RXD_DESC_SIZE,
1647 .txd_size = TXD_DESC_SIZE,
1648 .eeprom_size = EEPROM_SIZE,
1649 .rf_size = RF_SIZE,
1650 .lib = &rt2400pci_rt2x00_ops,
1651 .hw = &rt2400pci_mac80211_ops,
1652#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1653 .debugfs = &rt2400pci_rt2x00debug,
1654#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1655};
1656
1657/*
1658 * RT2400pci module information.
1659 */
1660static struct pci_device_id rt2400pci_device_table[] = {
1661 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1662 { 0, }
1663};
1664
1665MODULE_AUTHOR(DRV_PROJECT);
1666MODULE_VERSION(DRV_VERSION);
1667MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1668MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1669MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1670MODULE_LICENSE("GPL");
1671
1672static struct pci_driver rt2400pci_driver = {
1673 .name = DRV_NAME,
1674 .id_table = rt2400pci_device_table,
1675 .probe = rt2x00pci_probe,
1676 .remove = __devexit_p(rt2x00pci_remove),
1677 .suspend = rt2x00pci_suspend,
1678 .resume = rt2x00pci_resume,
1679};
1680
1681static int __init rt2400pci_init(void)
1682{
1683 return pci_register_driver(&rt2400pci_driver);
1684}
1685
1686static void __exit rt2400pci_exit(void)
1687{
1688 pci_unregister_driver(&rt2400pci_driver);
1689}
1690
1691module_init(rt2400pci_init);
1692module_exit(rt2400pci_exit);