| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * SLUB: A slab allocator that limits cache line use instead of queuing | 
|  | 3 | * objects in per cpu and per node lists. | 
|  | 4 | * | 
|  | 5 | * The allocator synchronizes using per slab locks and only | 
|  | 6 | * uses a centralized lock to manage a pool of partial slabs. | 
|  | 7 | * | 
|  | 8 | * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> | 
|  | 9 | */ | 
|  | 10 |  | 
|  | 11 | #include <linux/mm.h> | 
|  | 12 | #include <linux/module.h> | 
|  | 13 | #include <linux/bit_spinlock.h> | 
|  | 14 | #include <linux/interrupt.h> | 
|  | 15 | #include <linux/bitops.h> | 
|  | 16 | #include <linux/slab.h> | 
|  | 17 | #include <linux/seq_file.h> | 
|  | 18 | #include <linux/cpu.h> | 
|  | 19 | #include <linux/cpuset.h> | 
|  | 20 | #include <linux/mempolicy.h> | 
|  | 21 | #include <linux/ctype.h> | 
|  | 22 | #include <linux/kallsyms.h> | 
|  | 23 |  | 
|  | 24 | /* | 
|  | 25 | * Lock order: | 
|  | 26 | *   1. slab_lock(page) | 
|  | 27 | *   2. slab->list_lock | 
|  | 28 | * | 
|  | 29 | *   The slab_lock protects operations on the object of a particular | 
|  | 30 | *   slab and its metadata in the page struct. If the slab lock | 
|  | 31 | *   has been taken then no allocations nor frees can be performed | 
|  | 32 | *   on the objects in the slab nor can the slab be added or removed | 
|  | 33 | *   from the partial or full lists since this would mean modifying | 
|  | 34 | *   the page_struct of the slab. | 
|  | 35 | * | 
|  | 36 | *   The list_lock protects the partial and full list on each node and | 
|  | 37 | *   the partial slab counter. If taken then no new slabs may be added or | 
|  | 38 | *   removed from the lists nor make the number of partial slabs be modified. | 
|  | 39 | *   (Note that the total number of slabs is an atomic value that may be | 
|  | 40 | *   modified without taking the list lock). | 
|  | 41 | * | 
|  | 42 | *   The list_lock is a centralized lock and thus we avoid taking it as | 
|  | 43 | *   much as possible. As long as SLUB does not have to handle partial | 
|  | 44 | *   slabs, operations can continue without any centralized lock. F.e. | 
|  | 45 | *   allocating a long series of objects that fill up slabs does not require | 
|  | 46 | *   the list lock. | 
|  | 47 | * | 
|  | 48 | *   The lock order is sometimes inverted when we are trying to get a slab | 
|  | 49 | *   off a list. We take the list_lock and then look for a page on the list | 
|  | 50 | *   to use. While we do that objects in the slabs may be freed. We can | 
|  | 51 | *   only operate on the slab if we have also taken the slab_lock. So we use | 
|  | 52 | *   a slab_trylock() on the slab. If trylock was successful then no frees | 
|  | 53 | *   can occur anymore and we can use the slab for allocations etc. If the | 
|  | 54 | *   slab_trylock() does not succeed then frees are in progress in the slab and | 
|  | 55 | *   we must stay away from it for a while since we may cause a bouncing | 
|  | 56 | *   cacheline if we try to acquire the lock. So go onto the next slab. | 
|  | 57 | *   If all pages are busy then we may allocate a new slab instead of reusing | 
|  | 58 | *   a partial slab. A new slab has noone operating on it and thus there is | 
|  | 59 | *   no danger of cacheline contention. | 
|  | 60 | * | 
|  | 61 | *   Interrupts are disabled during allocation and deallocation in order to | 
|  | 62 | *   make the slab allocator safe to use in the context of an irq. In addition | 
|  | 63 | *   interrupts are disabled to ensure that the processor does not change | 
|  | 64 | *   while handling per_cpu slabs, due to kernel preemption. | 
|  | 65 | * | 
|  | 66 | * SLUB assigns one slab for allocation to each processor. | 
|  | 67 | * Allocations only occur from these slabs called cpu slabs. | 
|  | 68 | * | 
|  | 69 | * Slabs with free elements are kept on a partial list. | 
|  | 70 | * There is no list for full slabs. If an object in a full slab is | 
|  | 71 | * freed then the slab will show up again on the partial lists. | 
|  | 72 | * Otherwise there is no need to track full slabs unless we have to | 
|  | 73 | * track full slabs for debugging purposes. | 
|  | 74 | * | 
|  | 75 | * Slabs are freed when they become empty. Teardown and setup is | 
|  | 76 | * minimal so we rely on the page allocators per cpu caches for | 
|  | 77 | * fast frees and allocs. | 
|  | 78 | * | 
|  | 79 | * Overloading of page flags that are otherwise used for LRU management. | 
|  | 80 | * | 
|  | 81 | * PageActive 		The slab is used as a cpu cache. Allocations | 
|  | 82 | * 			may be performed from the slab. The slab is not | 
|  | 83 | * 			on any slab list and cannot be moved onto one. | 
|  | 84 | * | 
|  | 85 | * PageError		Slab requires special handling due to debug | 
|  | 86 | * 			options set. This moves	slab handling out of | 
|  | 87 | * 			the fast path. | 
|  | 88 | */ | 
|  | 89 |  | 
|  | 90 | /* | 
|  | 91 | * Issues still to be resolved: | 
|  | 92 | * | 
|  | 93 | * - The per cpu array is updated for each new slab and and is a remote | 
|  | 94 | *   cacheline for most nodes. This could become a bouncing cacheline given | 
|  | 95 | *   enough frequent updates. There are 16 pointers in a cacheline.so at | 
|  | 96 | *   max 16 cpus could compete. Likely okay. | 
|  | 97 | * | 
|  | 98 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
|  | 99 | * | 
|  | 100 | * - Support DEBUG_SLAB_LEAK. Trouble is we do not know where the full | 
|  | 101 | *   slabs are in SLUB. | 
|  | 102 | * | 
|  | 103 | * - SLAB_DEBUG_INITIAL is not supported but I have never seen a use of | 
|  | 104 | *   it. | 
|  | 105 | * | 
|  | 106 | * - Variable sizing of the per node arrays | 
|  | 107 | */ | 
|  | 108 |  | 
|  | 109 | /* Enable to test recovery from slab corruption on boot */ | 
|  | 110 | #undef SLUB_RESILIENCY_TEST | 
|  | 111 |  | 
|  | 112 | #if PAGE_SHIFT <= 12 | 
|  | 113 |  | 
|  | 114 | /* | 
|  | 115 | * Small page size. Make sure that we do not fragment memory | 
|  | 116 | */ | 
|  | 117 | #define DEFAULT_MAX_ORDER 1 | 
|  | 118 | #define DEFAULT_MIN_OBJECTS 4 | 
|  | 119 |  | 
|  | 120 | #else | 
|  | 121 |  | 
|  | 122 | /* | 
|  | 123 | * Large page machines are customarily able to handle larger | 
|  | 124 | * page orders. | 
|  | 125 | */ | 
|  | 126 | #define DEFAULT_MAX_ORDER 2 | 
|  | 127 | #define DEFAULT_MIN_OBJECTS 8 | 
|  | 128 |  | 
|  | 129 | #endif | 
|  | 130 |  | 
|  | 131 | /* | 
|  | 132 | * Flags from the regular SLAB that SLUB does not support: | 
|  | 133 | */ | 
|  | 134 | #define SLUB_UNIMPLEMENTED (SLAB_DEBUG_INITIAL) | 
|  | 135 |  | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 136 | /* Mininum number of partial slabs */ | 
|  | 137 | #define MIN_PARTIAL 2 | 
|  | 138 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 139 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ | 
|  | 140 | SLAB_POISON | SLAB_STORE_USER) | 
|  | 141 | /* | 
|  | 142 | * Set of flags that will prevent slab merging | 
|  | 143 | */ | 
|  | 144 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
|  | 145 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | 
|  | 146 |  | 
|  | 147 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | 
|  | 148 | SLAB_CACHE_DMA) | 
|  | 149 |  | 
|  | 150 | #ifndef ARCH_KMALLOC_MINALIGN | 
| Christoph Lameter | 47bfdc0 | 2007-05-06 14:49:37 -0700 | [diff] [blame] | 151 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 152 | #endif | 
|  | 153 |  | 
|  | 154 | #ifndef ARCH_SLAB_MINALIGN | 
| Christoph Lameter | 47bfdc0 | 2007-05-06 14:49:37 -0700 | [diff] [blame] | 155 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 156 | #endif | 
|  | 157 |  | 
|  | 158 | /* Internal SLUB flags */ | 
|  | 159 | #define __OBJECT_POISON 0x80000000	/* Poison object */ | 
|  | 160 |  | 
|  | 161 | static int kmem_size = sizeof(struct kmem_cache); | 
|  | 162 |  | 
|  | 163 | #ifdef CONFIG_SMP | 
|  | 164 | static struct notifier_block slab_notifier; | 
|  | 165 | #endif | 
|  | 166 |  | 
|  | 167 | static enum { | 
|  | 168 | DOWN,		/* No slab functionality available */ | 
|  | 169 | PARTIAL,	/* kmem_cache_open() works but kmalloc does not */ | 
|  | 170 | UP,		/* Everything works */ | 
|  | 171 | SYSFS		/* Sysfs up */ | 
|  | 172 | } slab_state = DOWN; | 
|  | 173 |  | 
|  | 174 | /* A list of all slab caches on the system */ | 
|  | 175 | static DECLARE_RWSEM(slub_lock); | 
|  | 176 | LIST_HEAD(slab_caches); | 
|  | 177 |  | 
|  | 178 | #ifdef CONFIG_SYSFS | 
|  | 179 | static int sysfs_slab_add(struct kmem_cache *); | 
|  | 180 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
|  | 181 | static void sysfs_slab_remove(struct kmem_cache *); | 
|  | 182 | #else | 
|  | 183 | static int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
|  | 184 | static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; } | 
|  | 185 | static void sysfs_slab_remove(struct kmem_cache *s) {} | 
|  | 186 | #endif | 
|  | 187 |  | 
|  | 188 | /******************************************************************** | 
|  | 189 | * 			Core slab cache functions | 
|  | 190 | *******************************************************************/ | 
|  | 191 |  | 
|  | 192 | int slab_is_available(void) | 
|  | 193 | { | 
|  | 194 | return slab_state >= UP; | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | 
|  | 198 | { | 
|  | 199 | #ifdef CONFIG_NUMA | 
|  | 200 | return s->node[node]; | 
|  | 201 | #else | 
|  | 202 | return &s->local_node; | 
|  | 203 | #endif | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 | /* | 
|  | 207 | * Object debugging | 
|  | 208 | */ | 
|  | 209 | static void print_section(char *text, u8 *addr, unsigned int length) | 
|  | 210 | { | 
|  | 211 | int i, offset; | 
|  | 212 | int newline = 1; | 
|  | 213 | char ascii[17]; | 
|  | 214 |  | 
|  | 215 | ascii[16] = 0; | 
|  | 216 |  | 
|  | 217 | for (i = 0; i < length; i++) { | 
|  | 218 | if (newline) { | 
|  | 219 | printk(KERN_ERR "%10s 0x%p: ", text, addr + i); | 
|  | 220 | newline = 0; | 
|  | 221 | } | 
|  | 222 | printk(" %02x", addr[i]); | 
|  | 223 | offset = i % 16; | 
|  | 224 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | 
|  | 225 | if (offset == 15) { | 
|  | 226 | printk(" %s\n",ascii); | 
|  | 227 | newline = 1; | 
|  | 228 | } | 
|  | 229 | } | 
|  | 230 | if (!newline) { | 
|  | 231 | i %= 16; | 
|  | 232 | while (i < 16) { | 
|  | 233 | printk("   "); | 
|  | 234 | ascii[i] = ' '; | 
|  | 235 | i++; | 
|  | 236 | } | 
|  | 237 | printk(" %s\n", ascii); | 
|  | 238 | } | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | /* | 
|  | 242 | * Slow version of get and set free pointer. | 
|  | 243 | * | 
|  | 244 | * This requires touching the cache lines of kmem_cache. | 
|  | 245 | * The offset can also be obtained from the page. In that | 
|  | 246 | * case it is in the cacheline that we already need to touch. | 
|  | 247 | */ | 
|  | 248 | static void *get_freepointer(struct kmem_cache *s, void *object) | 
|  | 249 | { | 
|  | 250 | return *(void **)(object + s->offset); | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 | static void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
|  | 254 | { | 
|  | 255 | *(void **)(object + s->offset) = fp; | 
|  | 256 | } | 
|  | 257 |  | 
|  | 258 | /* | 
|  | 259 | * Tracking user of a slab. | 
|  | 260 | */ | 
|  | 261 | struct track { | 
|  | 262 | void *addr;		/* Called from address */ | 
|  | 263 | int cpu;		/* Was running on cpu */ | 
|  | 264 | int pid;		/* Pid context */ | 
|  | 265 | unsigned long when;	/* When did the operation occur */ | 
|  | 266 | }; | 
|  | 267 |  | 
|  | 268 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
|  | 269 |  | 
|  | 270 | static struct track *get_track(struct kmem_cache *s, void *object, | 
|  | 271 | enum track_item alloc) | 
|  | 272 | { | 
|  | 273 | struct track *p; | 
|  | 274 |  | 
|  | 275 | if (s->offset) | 
|  | 276 | p = object + s->offset + sizeof(void *); | 
|  | 277 | else | 
|  | 278 | p = object + s->inuse; | 
|  | 279 |  | 
|  | 280 | return p + alloc; | 
|  | 281 | } | 
|  | 282 |  | 
|  | 283 | static void set_track(struct kmem_cache *s, void *object, | 
|  | 284 | enum track_item alloc, void *addr) | 
|  | 285 | { | 
|  | 286 | struct track *p; | 
|  | 287 |  | 
|  | 288 | if (s->offset) | 
|  | 289 | p = object + s->offset + sizeof(void *); | 
|  | 290 | else | 
|  | 291 | p = object + s->inuse; | 
|  | 292 |  | 
|  | 293 | p += alloc; | 
|  | 294 | if (addr) { | 
|  | 295 | p->addr = addr; | 
|  | 296 | p->cpu = smp_processor_id(); | 
|  | 297 | p->pid = current ? current->pid : -1; | 
|  | 298 | p->when = jiffies; | 
|  | 299 | } else | 
|  | 300 | memset(p, 0, sizeof(struct track)); | 
|  | 301 | } | 
|  | 302 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 303 | static void init_tracking(struct kmem_cache *s, void *object) | 
|  | 304 | { | 
|  | 305 | if (s->flags & SLAB_STORE_USER) { | 
|  | 306 | set_track(s, object, TRACK_FREE, NULL); | 
|  | 307 | set_track(s, object, TRACK_ALLOC, NULL); | 
|  | 308 | } | 
|  | 309 | } | 
|  | 310 |  | 
|  | 311 | static void print_track(const char *s, struct track *t) | 
|  | 312 | { | 
|  | 313 | if (!t->addr) | 
|  | 314 | return; | 
|  | 315 |  | 
|  | 316 | printk(KERN_ERR "%s: ", s); | 
|  | 317 | __print_symbol("%s", (unsigned long)t->addr); | 
|  | 318 | printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 | static void print_trailer(struct kmem_cache *s, u8 *p) | 
|  | 322 | { | 
|  | 323 | unsigned int off;	/* Offset of last byte */ | 
|  | 324 |  | 
|  | 325 | if (s->flags & SLAB_RED_ZONE) | 
|  | 326 | print_section("Redzone", p + s->objsize, | 
|  | 327 | s->inuse - s->objsize); | 
|  | 328 |  | 
|  | 329 | printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n", | 
|  | 330 | p + s->offset, | 
|  | 331 | get_freepointer(s, p)); | 
|  | 332 |  | 
|  | 333 | if (s->offset) | 
|  | 334 | off = s->offset + sizeof(void *); | 
|  | 335 | else | 
|  | 336 | off = s->inuse; | 
|  | 337 |  | 
|  | 338 | if (s->flags & SLAB_STORE_USER) { | 
|  | 339 | print_track("Last alloc", get_track(s, p, TRACK_ALLOC)); | 
|  | 340 | print_track("Last free ", get_track(s, p, TRACK_FREE)); | 
|  | 341 | off += 2 * sizeof(struct track); | 
|  | 342 | } | 
|  | 343 |  | 
|  | 344 | if (off != s->size) | 
|  | 345 | /* Beginning of the filler is the free pointer */ | 
|  | 346 | print_section("Filler", p + off, s->size - off); | 
|  | 347 | } | 
|  | 348 |  | 
|  | 349 | static void object_err(struct kmem_cache *s, struct page *page, | 
|  | 350 | u8 *object, char *reason) | 
|  | 351 | { | 
|  | 352 | u8 *addr = page_address(page); | 
|  | 353 |  | 
|  | 354 | printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n", | 
|  | 355 | s->name, reason, object, page); | 
|  | 356 | printk(KERN_ERR "    offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n", | 
|  | 357 | object - addr, page->flags, page->inuse, page->freelist); | 
|  | 358 | if (object > addr + 16) | 
|  | 359 | print_section("Bytes b4", object - 16, 16); | 
|  | 360 | print_section("Object", object, min(s->objsize, 128)); | 
|  | 361 | print_trailer(s, object); | 
|  | 362 | dump_stack(); | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 | static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...) | 
|  | 366 | { | 
|  | 367 | va_list args; | 
|  | 368 | char buf[100]; | 
|  | 369 |  | 
|  | 370 | va_start(args, reason); | 
|  | 371 | vsnprintf(buf, sizeof(buf), reason, args); | 
|  | 372 | va_end(args); | 
|  | 373 | printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf, | 
|  | 374 | page); | 
|  | 375 | dump_stack(); | 
|  | 376 | } | 
|  | 377 |  | 
|  | 378 | static void init_object(struct kmem_cache *s, void *object, int active) | 
|  | 379 | { | 
|  | 380 | u8 *p = object; | 
|  | 381 |  | 
|  | 382 | if (s->flags & __OBJECT_POISON) { | 
|  | 383 | memset(p, POISON_FREE, s->objsize - 1); | 
|  | 384 | p[s->objsize -1] = POISON_END; | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | if (s->flags & SLAB_RED_ZONE) | 
|  | 388 | memset(p + s->objsize, | 
|  | 389 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | 
|  | 390 | s->inuse - s->objsize); | 
|  | 391 | } | 
|  | 392 |  | 
|  | 393 | static int check_bytes(u8 *start, unsigned int value, unsigned int bytes) | 
|  | 394 | { | 
|  | 395 | while (bytes) { | 
|  | 396 | if (*start != (u8)value) | 
|  | 397 | return 0; | 
|  | 398 | start++; | 
|  | 399 | bytes--; | 
|  | 400 | } | 
|  | 401 | return 1; | 
|  | 402 | } | 
|  | 403 |  | 
|  | 404 |  | 
|  | 405 | static int check_valid_pointer(struct kmem_cache *s, struct page *page, | 
|  | 406 | void *object) | 
|  | 407 | { | 
|  | 408 | void *base; | 
|  | 409 |  | 
|  | 410 | if (!object) | 
|  | 411 | return 1; | 
|  | 412 |  | 
|  | 413 | base = page_address(page); | 
|  | 414 | if (object < base || object >= base + s->objects * s->size || | 
|  | 415 | (object - base) % s->size) { | 
|  | 416 | return 0; | 
|  | 417 | } | 
|  | 418 |  | 
|  | 419 | return 1; | 
|  | 420 | } | 
|  | 421 |  | 
|  | 422 | /* | 
|  | 423 | * Object layout: | 
|  | 424 | * | 
|  | 425 | * object address | 
|  | 426 | * 	Bytes of the object to be managed. | 
|  | 427 | * 	If the freepointer may overlay the object then the free | 
|  | 428 | * 	pointer is the first word of the object. | 
|  | 429 | * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
|  | 430 | * 	0xa5 (POISON_END) | 
|  | 431 | * | 
|  | 432 | * object + s->objsize | 
|  | 433 | * 	Padding to reach word boundary. This is also used for Redzoning. | 
|  | 434 | * 	Padding is extended to word size if Redzoning is enabled | 
|  | 435 | * 	and objsize == inuse. | 
|  | 436 | * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
|  | 437 | * 	0xcc (RED_ACTIVE) for objects in use. | 
|  | 438 | * | 
|  | 439 | * object + s->inuse | 
|  | 440 | * 	A. Free pointer (if we cannot overwrite object on free) | 
|  | 441 | * 	B. Tracking data for SLAB_STORE_USER | 
|  | 442 | * 	C. Padding to reach required alignment boundary | 
|  | 443 | * 		Padding is done using 0x5a (POISON_INUSE) | 
|  | 444 | * | 
|  | 445 | * object + s->size | 
|  | 446 | * | 
|  | 447 | * If slabcaches are merged then the objsize and inuse boundaries are to | 
|  | 448 | * be ignored. And therefore no slab options that rely on these boundaries | 
|  | 449 | * may be used with merged slabcaches. | 
|  | 450 | */ | 
|  | 451 |  | 
|  | 452 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
|  | 453 | void *from, void *to) | 
|  | 454 | { | 
|  | 455 | printk(KERN_ERR "@@@ SLUB: %s Restoring %s (0x%x) from 0x%p-0x%p\n", | 
|  | 456 | s->name, message, data, from, to - 1); | 
|  | 457 | memset(from, data, to - from); | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | 461 | { | 
|  | 462 | unsigned long off = s->inuse;	/* The end of info */ | 
|  | 463 |  | 
|  | 464 | if (s->offset) | 
|  | 465 | /* Freepointer is placed after the object. */ | 
|  | 466 | off += sizeof(void *); | 
|  | 467 |  | 
|  | 468 | if (s->flags & SLAB_STORE_USER) | 
|  | 469 | /* We also have user information there */ | 
|  | 470 | off += 2 * sizeof(struct track); | 
|  | 471 |  | 
|  | 472 | if (s->size == off) | 
|  | 473 | return 1; | 
|  | 474 |  | 
|  | 475 | if (check_bytes(p + off, POISON_INUSE, s->size - off)) | 
|  | 476 | return 1; | 
|  | 477 |  | 
|  | 478 | object_err(s, page, p, "Object padding check fails"); | 
|  | 479 |  | 
|  | 480 | /* | 
|  | 481 | * Restore padding | 
|  | 482 | */ | 
|  | 483 | restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size); | 
|  | 484 | return 0; | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | 488 | { | 
|  | 489 | u8 *p; | 
|  | 490 | int length, remainder; | 
|  | 491 |  | 
|  | 492 | if (!(s->flags & SLAB_POISON)) | 
|  | 493 | return 1; | 
|  | 494 |  | 
|  | 495 | p = page_address(page); | 
|  | 496 | length = s->objects * s->size; | 
|  | 497 | remainder = (PAGE_SIZE << s->order) - length; | 
|  | 498 | if (!remainder) | 
|  | 499 | return 1; | 
|  | 500 |  | 
|  | 501 | if (!check_bytes(p + length, POISON_INUSE, remainder)) { | 
|  | 502 | printk(KERN_ERR "SLUB: %s slab 0x%p: Padding fails check\n", | 
|  | 503 | s->name, p); | 
|  | 504 | dump_stack(); | 
|  | 505 | restore_bytes(s, "slab padding", POISON_INUSE, p + length, | 
|  | 506 | p + length + remainder); | 
|  | 507 | return 0; | 
|  | 508 | } | 
|  | 509 | return 1; | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | static int check_object(struct kmem_cache *s, struct page *page, | 
|  | 513 | void *object, int active) | 
|  | 514 | { | 
|  | 515 | u8 *p = object; | 
|  | 516 | u8 *endobject = object + s->objsize; | 
|  | 517 |  | 
|  | 518 | if (s->flags & SLAB_RED_ZONE) { | 
|  | 519 | unsigned int red = | 
|  | 520 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | 
|  | 521 |  | 
|  | 522 | if (!check_bytes(endobject, red, s->inuse - s->objsize)) { | 
|  | 523 | object_err(s, page, object, | 
|  | 524 | active ? "Redzone Active" : "Redzone Inactive"); | 
|  | 525 | restore_bytes(s, "redzone", red, | 
|  | 526 | endobject, object + s->inuse); | 
|  | 527 | return 0; | 
|  | 528 | } | 
|  | 529 | } else { | 
|  | 530 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse && | 
|  | 531 | !check_bytes(endobject, POISON_INUSE, | 
|  | 532 | s->inuse - s->objsize)) { | 
|  | 533 | object_err(s, page, p, "Alignment padding check fails"); | 
|  | 534 | /* | 
|  | 535 | * Fix it so that there will not be another report. | 
|  | 536 | * | 
|  | 537 | * Hmmm... We may be corrupting an object that now expects | 
|  | 538 | * to be longer than allowed. | 
|  | 539 | */ | 
|  | 540 | restore_bytes(s, "alignment padding", POISON_INUSE, | 
|  | 541 | endobject, object + s->inuse); | 
|  | 542 | } | 
|  | 543 | } | 
|  | 544 |  | 
|  | 545 | if (s->flags & SLAB_POISON) { | 
|  | 546 | if (!active && (s->flags & __OBJECT_POISON) && | 
|  | 547 | (!check_bytes(p, POISON_FREE, s->objsize - 1) || | 
|  | 548 | p[s->objsize - 1] != POISON_END)) { | 
|  | 549 |  | 
|  | 550 | object_err(s, page, p, "Poison check failed"); | 
|  | 551 | restore_bytes(s, "Poison", POISON_FREE, | 
|  | 552 | p, p + s->objsize -1); | 
|  | 553 | restore_bytes(s, "Poison", POISON_END, | 
|  | 554 | p + s->objsize - 1, p + s->objsize); | 
|  | 555 | return 0; | 
|  | 556 | } | 
|  | 557 | /* | 
|  | 558 | * check_pad_bytes cleans up on its own. | 
|  | 559 | */ | 
|  | 560 | check_pad_bytes(s, page, p); | 
|  | 561 | } | 
|  | 562 |  | 
|  | 563 | if (!s->offset && active) | 
|  | 564 | /* | 
|  | 565 | * Object and freepointer overlap. Cannot check | 
|  | 566 | * freepointer while object is allocated. | 
|  | 567 | */ | 
|  | 568 | return 1; | 
|  | 569 |  | 
|  | 570 | /* Check free pointer validity */ | 
|  | 571 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
|  | 572 | object_err(s, page, p, "Freepointer corrupt"); | 
|  | 573 | /* | 
|  | 574 | * No choice but to zap it and thus loose the remainder | 
|  | 575 | * of the free objects in this slab. May cause | 
|  | 576 | * another error because the object count maybe | 
|  | 577 | * wrong now. | 
|  | 578 | */ | 
|  | 579 | set_freepointer(s, p, NULL); | 
|  | 580 | return 0; | 
|  | 581 | } | 
|  | 582 | return 1; | 
|  | 583 | } | 
|  | 584 |  | 
|  | 585 | static int check_slab(struct kmem_cache *s, struct page *page) | 
|  | 586 | { | 
|  | 587 | VM_BUG_ON(!irqs_disabled()); | 
|  | 588 |  | 
|  | 589 | if (!PageSlab(page)) { | 
|  | 590 | printk(KERN_ERR "SLUB: %s Not a valid slab page @0x%p " | 
|  | 591 | "flags=%lx mapping=0x%p count=%d \n", | 
|  | 592 | s->name, page, page->flags, page->mapping, | 
|  | 593 | page_count(page)); | 
|  | 594 | return 0; | 
|  | 595 | } | 
|  | 596 | if (page->offset * sizeof(void *) != s->offset) { | 
|  | 597 | printk(KERN_ERR "SLUB: %s Corrupted offset %lu in slab @0x%p" | 
|  | 598 | " flags=0x%lx mapping=0x%p count=%d\n", | 
|  | 599 | s->name, | 
|  | 600 | (unsigned long)(page->offset * sizeof(void *)), | 
|  | 601 | page, | 
|  | 602 | page->flags, | 
|  | 603 | page->mapping, | 
|  | 604 | page_count(page)); | 
|  | 605 | dump_stack(); | 
|  | 606 | return 0; | 
|  | 607 | } | 
|  | 608 | if (page->inuse > s->objects) { | 
|  | 609 | printk(KERN_ERR "SLUB: %s Inuse %u > max %u in slab " | 
|  | 610 | "page @0x%p flags=%lx mapping=0x%p count=%d\n", | 
|  | 611 | s->name, page->inuse, s->objects, page, page->flags, | 
|  | 612 | page->mapping, page_count(page)); | 
|  | 613 | dump_stack(); | 
|  | 614 | return 0; | 
|  | 615 | } | 
|  | 616 | /* Slab_pad_check fixes things up after itself */ | 
|  | 617 | slab_pad_check(s, page); | 
|  | 618 | return 1; | 
|  | 619 | } | 
|  | 620 |  | 
|  | 621 | /* | 
|  | 622 | * Determine if a certain object on a page is on the freelist and | 
|  | 623 | * therefore free. Must hold the slab lock for cpu slabs to | 
|  | 624 | * guarantee that the chains are consistent. | 
|  | 625 | */ | 
|  | 626 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
|  | 627 | { | 
|  | 628 | int nr = 0; | 
|  | 629 | void *fp = page->freelist; | 
|  | 630 | void *object = NULL; | 
|  | 631 |  | 
|  | 632 | while (fp && nr <= s->objects) { | 
|  | 633 | if (fp == search) | 
|  | 634 | return 1; | 
|  | 635 | if (!check_valid_pointer(s, page, fp)) { | 
|  | 636 | if (object) { | 
|  | 637 | object_err(s, page, object, | 
|  | 638 | "Freechain corrupt"); | 
|  | 639 | set_freepointer(s, object, NULL); | 
|  | 640 | break; | 
|  | 641 | } else { | 
|  | 642 | printk(KERN_ERR "SLUB: %s slab 0x%p " | 
|  | 643 | "freepointer 0x%p corrupted.\n", | 
|  | 644 | s->name, page, fp); | 
|  | 645 | dump_stack(); | 
|  | 646 | page->freelist = NULL; | 
|  | 647 | page->inuse = s->objects; | 
|  | 648 | return 0; | 
|  | 649 | } | 
|  | 650 | break; | 
|  | 651 | } | 
|  | 652 | object = fp; | 
|  | 653 | fp = get_freepointer(s, object); | 
|  | 654 | nr++; | 
|  | 655 | } | 
|  | 656 |  | 
|  | 657 | if (page->inuse != s->objects - nr) { | 
|  | 658 | printk(KERN_ERR "slab %s: page 0x%p wrong object count." | 
|  | 659 | " counter is %d but counted were %d\n", | 
|  | 660 | s->name, page, page->inuse, | 
|  | 661 | s->objects - nr); | 
|  | 662 | page->inuse = s->objects - nr; | 
|  | 663 | } | 
|  | 664 | return search == NULL; | 
|  | 665 | } | 
|  | 666 |  | 
| Christoph Lameter | 643b113 | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 667 | /* | 
|  | 668 | * Tracking of fully allocated slabs for debugging | 
|  | 669 | */ | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 670 | static void add_full(struct kmem_cache_node *n, struct page *page) | 
| Christoph Lameter | 643b113 | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 671 | { | 
| Christoph Lameter | 643b113 | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 672 | spin_lock(&n->list_lock); | 
|  | 673 | list_add(&page->lru, &n->full); | 
|  | 674 | spin_unlock(&n->list_lock); | 
|  | 675 | } | 
|  | 676 |  | 
|  | 677 | static void remove_full(struct kmem_cache *s, struct page *page) | 
|  | 678 | { | 
|  | 679 | struct kmem_cache_node *n; | 
|  | 680 |  | 
|  | 681 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 682 | return; | 
|  | 683 |  | 
|  | 684 | n = get_node(s, page_to_nid(page)); | 
|  | 685 |  | 
|  | 686 | spin_lock(&n->list_lock); | 
|  | 687 | list_del(&page->lru); | 
|  | 688 | spin_unlock(&n->list_lock); | 
|  | 689 | } | 
|  | 690 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 691 | static int alloc_object_checks(struct kmem_cache *s, struct page *page, | 
|  | 692 | void *object) | 
|  | 693 | { | 
|  | 694 | if (!check_slab(s, page)) | 
|  | 695 | goto bad; | 
|  | 696 |  | 
|  | 697 | if (object && !on_freelist(s, page, object)) { | 
|  | 698 | printk(KERN_ERR "SLUB: %s Object 0x%p@0x%p " | 
|  | 699 | "already allocated.\n", | 
|  | 700 | s->name, object, page); | 
|  | 701 | goto dump; | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | if (!check_valid_pointer(s, page, object)) { | 
|  | 705 | object_err(s, page, object, "Freelist Pointer check fails"); | 
|  | 706 | goto dump; | 
|  | 707 | } | 
|  | 708 |  | 
|  | 709 | if (!object) | 
|  | 710 | return 1; | 
|  | 711 |  | 
|  | 712 | if (!check_object(s, page, object, 0)) | 
|  | 713 | goto bad; | 
|  | 714 | init_object(s, object, 1); | 
|  | 715 |  | 
|  | 716 | if (s->flags & SLAB_TRACE) { | 
|  | 717 | printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n", | 
|  | 718 | s->name, object, page->inuse, | 
|  | 719 | page->freelist); | 
|  | 720 | dump_stack(); | 
|  | 721 | } | 
|  | 722 | return 1; | 
|  | 723 | dump: | 
|  | 724 | dump_stack(); | 
|  | 725 | bad: | 
|  | 726 | if (PageSlab(page)) { | 
|  | 727 | /* | 
|  | 728 | * If this is a slab page then lets do the best we can | 
|  | 729 | * to avoid issues in the future. Marking all objects | 
|  | 730 | * as used avoids touching the remainder. | 
|  | 731 | */ | 
|  | 732 | printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n", | 
|  | 733 | s->name, page); | 
|  | 734 | page->inuse = s->objects; | 
|  | 735 | page->freelist = NULL; | 
|  | 736 | /* Fix up fields that may be corrupted */ | 
|  | 737 | page->offset = s->offset / sizeof(void *); | 
|  | 738 | } | 
|  | 739 | return 0; | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | static int free_object_checks(struct kmem_cache *s, struct page *page, | 
|  | 743 | void *object) | 
|  | 744 | { | 
|  | 745 | if (!check_slab(s, page)) | 
|  | 746 | goto fail; | 
|  | 747 |  | 
|  | 748 | if (!check_valid_pointer(s, page, object)) { | 
|  | 749 | printk(KERN_ERR "SLUB: %s slab 0x%p invalid " | 
|  | 750 | "object pointer 0x%p\n", | 
|  | 751 | s->name, page, object); | 
|  | 752 | goto fail; | 
|  | 753 | } | 
|  | 754 |  | 
|  | 755 | if (on_freelist(s, page, object)) { | 
|  | 756 | printk(KERN_ERR "SLUB: %s slab 0x%p object " | 
|  | 757 | "0x%p already free.\n", s->name, page, object); | 
|  | 758 | goto fail; | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | if (!check_object(s, page, object, 1)) | 
|  | 762 | return 0; | 
|  | 763 |  | 
|  | 764 | if (unlikely(s != page->slab)) { | 
|  | 765 | if (!PageSlab(page)) | 
|  | 766 | printk(KERN_ERR "slab_free %s size %d: attempt to" | 
|  | 767 | "free object(0x%p) outside of slab.\n", | 
|  | 768 | s->name, s->size, object); | 
|  | 769 | else | 
|  | 770 | if (!page->slab) | 
|  | 771 | printk(KERN_ERR | 
|  | 772 | "slab_free : no slab(NULL) for object 0x%p.\n", | 
|  | 773 | object); | 
|  | 774 | else | 
|  | 775 | printk(KERN_ERR "slab_free %s(%d): object at 0x%p" | 
|  | 776 | " belongs to slab %s(%d)\n", | 
|  | 777 | s->name, s->size, object, | 
|  | 778 | page->slab->name, page->slab->size); | 
|  | 779 | goto fail; | 
|  | 780 | } | 
|  | 781 | if (s->flags & SLAB_TRACE) { | 
|  | 782 | printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n", | 
|  | 783 | s->name, object, page->inuse, | 
|  | 784 | page->freelist); | 
|  | 785 | print_section("Object", object, s->objsize); | 
|  | 786 | dump_stack(); | 
|  | 787 | } | 
|  | 788 | init_object(s, object, 0); | 
|  | 789 | return 1; | 
|  | 790 | fail: | 
|  | 791 | dump_stack(); | 
|  | 792 | printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n", | 
|  | 793 | s->name, page, object); | 
|  | 794 | return 0; | 
|  | 795 | } | 
|  | 796 |  | 
|  | 797 | /* | 
|  | 798 | * Slab allocation and freeing | 
|  | 799 | */ | 
|  | 800 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | 801 | { | 
|  | 802 | struct page * page; | 
|  | 803 | int pages = 1 << s->order; | 
|  | 804 |  | 
|  | 805 | if (s->order) | 
|  | 806 | flags |= __GFP_COMP; | 
|  | 807 |  | 
|  | 808 | if (s->flags & SLAB_CACHE_DMA) | 
|  | 809 | flags |= SLUB_DMA; | 
|  | 810 |  | 
|  | 811 | if (node == -1) | 
|  | 812 | page = alloc_pages(flags, s->order); | 
|  | 813 | else | 
|  | 814 | page = alloc_pages_node(node, flags, s->order); | 
|  | 815 |  | 
|  | 816 | if (!page) | 
|  | 817 | return NULL; | 
|  | 818 |  | 
|  | 819 | mod_zone_page_state(page_zone(page), | 
|  | 820 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | 821 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | 822 | pages); | 
|  | 823 |  | 
|  | 824 | return page; | 
|  | 825 | } | 
|  | 826 |  | 
|  | 827 | static void setup_object(struct kmem_cache *s, struct page *page, | 
|  | 828 | void *object) | 
|  | 829 | { | 
|  | 830 | if (PageError(page)) { | 
|  | 831 | init_object(s, object, 0); | 
|  | 832 | init_tracking(s, object); | 
|  | 833 | } | 
|  | 834 |  | 
|  | 835 | if (unlikely(s->ctor)) { | 
|  | 836 | int mode = SLAB_CTOR_CONSTRUCTOR; | 
|  | 837 |  | 
|  | 838 | if (!(s->flags & __GFP_WAIT)) | 
|  | 839 | mode |= SLAB_CTOR_ATOMIC; | 
|  | 840 |  | 
|  | 841 | s->ctor(object, s, mode); | 
|  | 842 | } | 
|  | 843 | } | 
|  | 844 |  | 
|  | 845 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | 846 | { | 
|  | 847 | struct page *page; | 
|  | 848 | struct kmem_cache_node *n; | 
|  | 849 | void *start; | 
|  | 850 | void *end; | 
|  | 851 | void *last; | 
|  | 852 | void *p; | 
|  | 853 |  | 
|  | 854 | if (flags & __GFP_NO_GROW) | 
|  | 855 | return NULL; | 
|  | 856 |  | 
|  | 857 | BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK)); | 
|  | 858 |  | 
|  | 859 | if (flags & __GFP_WAIT) | 
|  | 860 | local_irq_enable(); | 
|  | 861 |  | 
|  | 862 | page = allocate_slab(s, flags & GFP_LEVEL_MASK, node); | 
|  | 863 | if (!page) | 
|  | 864 | goto out; | 
|  | 865 |  | 
|  | 866 | n = get_node(s, page_to_nid(page)); | 
|  | 867 | if (n) | 
|  | 868 | atomic_long_inc(&n->nr_slabs); | 
|  | 869 | page->offset = s->offset / sizeof(void *); | 
|  | 870 | page->slab = s; | 
|  | 871 | page->flags |= 1 << PG_slab; | 
|  | 872 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | 
|  | 873 | SLAB_STORE_USER | SLAB_TRACE)) | 
|  | 874 | page->flags |= 1 << PG_error; | 
|  | 875 |  | 
|  | 876 | start = page_address(page); | 
|  | 877 | end = start + s->objects * s->size; | 
|  | 878 |  | 
|  | 879 | if (unlikely(s->flags & SLAB_POISON)) | 
|  | 880 | memset(start, POISON_INUSE, PAGE_SIZE << s->order); | 
|  | 881 |  | 
|  | 882 | last = start; | 
|  | 883 | for (p = start + s->size; p < end; p += s->size) { | 
|  | 884 | setup_object(s, page, last); | 
|  | 885 | set_freepointer(s, last, p); | 
|  | 886 | last = p; | 
|  | 887 | } | 
|  | 888 | setup_object(s, page, last); | 
|  | 889 | set_freepointer(s, last, NULL); | 
|  | 890 |  | 
|  | 891 | page->freelist = start; | 
|  | 892 | page->inuse = 0; | 
|  | 893 | out: | 
|  | 894 | if (flags & __GFP_WAIT) | 
|  | 895 | local_irq_disable(); | 
|  | 896 | return page; | 
|  | 897 | } | 
|  | 898 |  | 
|  | 899 | static void __free_slab(struct kmem_cache *s, struct page *page) | 
|  | 900 | { | 
|  | 901 | int pages = 1 << s->order; | 
|  | 902 |  | 
|  | 903 | if (unlikely(PageError(page) || s->dtor)) { | 
|  | 904 | void *start = page_address(page); | 
|  | 905 | void *end = start + (pages << PAGE_SHIFT); | 
|  | 906 | void *p; | 
|  | 907 |  | 
|  | 908 | slab_pad_check(s, page); | 
|  | 909 | for (p = start; p <= end - s->size; p += s->size) { | 
|  | 910 | if (s->dtor) | 
|  | 911 | s->dtor(p, s, 0); | 
|  | 912 | check_object(s, page, p, 0); | 
|  | 913 | } | 
|  | 914 | } | 
|  | 915 |  | 
|  | 916 | mod_zone_page_state(page_zone(page), | 
|  | 917 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | 918 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | 919 | - pages); | 
|  | 920 |  | 
|  | 921 | page->mapping = NULL; | 
|  | 922 | __free_pages(page, s->order); | 
|  | 923 | } | 
|  | 924 |  | 
|  | 925 | static void rcu_free_slab(struct rcu_head *h) | 
|  | 926 | { | 
|  | 927 | struct page *page; | 
|  | 928 |  | 
|  | 929 | page = container_of((struct list_head *)h, struct page, lru); | 
|  | 930 | __free_slab(page->slab, page); | 
|  | 931 | } | 
|  | 932 |  | 
|  | 933 | static void free_slab(struct kmem_cache *s, struct page *page) | 
|  | 934 | { | 
|  | 935 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | 
|  | 936 | /* | 
|  | 937 | * RCU free overloads the RCU head over the LRU | 
|  | 938 | */ | 
|  | 939 | struct rcu_head *head = (void *)&page->lru; | 
|  | 940 |  | 
|  | 941 | call_rcu(head, rcu_free_slab); | 
|  | 942 | } else | 
|  | 943 | __free_slab(s, page); | 
|  | 944 | } | 
|  | 945 |  | 
|  | 946 | static void discard_slab(struct kmem_cache *s, struct page *page) | 
|  | 947 | { | 
|  | 948 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  | 949 |  | 
|  | 950 | atomic_long_dec(&n->nr_slabs); | 
|  | 951 | reset_page_mapcount(page); | 
|  | 952 | page->flags &= ~(1 << PG_slab | 1 << PG_error); | 
|  | 953 | free_slab(s, page); | 
|  | 954 | } | 
|  | 955 |  | 
|  | 956 | /* | 
|  | 957 | * Per slab locking using the pagelock | 
|  | 958 | */ | 
|  | 959 | static __always_inline void slab_lock(struct page *page) | 
|  | 960 | { | 
|  | 961 | bit_spin_lock(PG_locked, &page->flags); | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | static __always_inline void slab_unlock(struct page *page) | 
|  | 965 | { | 
|  | 966 | bit_spin_unlock(PG_locked, &page->flags); | 
|  | 967 | } | 
|  | 968 |  | 
|  | 969 | static __always_inline int slab_trylock(struct page *page) | 
|  | 970 | { | 
|  | 971 | int rc = 1; | 
|  | 972 |  | 
|  | 973 | rc = bit_spin_trylock(PG_locked, &page->flags); | 
|  | 974 | return rc; | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | /* | 
|  | 978 | * Management of partially allocated slabs | 
|  | 979 | */ | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 980 | static void add_partial_tail(struct kmem_cache_node *n, struct page *page) | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 981 | { | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 982 | spin_lock(&n->list_lock); | 
|  | 983 | n->nr_partial++; | 
|  | 984 | list_add_tail(&page->lru, &n->partial); | 
|  | 985 | spin_unlock(&n->list_lock); | 
|  | 986 | } | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 987 |  | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 988 | static void add_partial(struct kmem_cache_node *n, struct page *page) | 
|  | 989 | { | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 990 | spin_lock(&n->list_lock); | 
|  | 991 | n->nr_partial++; | 
|  | 992 | list_add(&page->lru, &n->partial); | 
|  | 993 | spin_unlock(&n->list_lock); | 
|  | 994 | } | 
|  | 995 |  | 
|  | 996 | static void remove_partial(struct kmem_cache *s, | 
|  | 997 | struct page *page) | 
|  | 998 | { | 
|  | 999 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  | 1000 |  | 
|  | 1001 | spin_lock(&n->list_lock); | 
|  | 1002 | list_del(&page->lru); | 
|  | 1003 | n->nr_partial--; | 
|  | 1004 | spin_unlock(&n->list_lock); | 
|  | 1005 | } | 
|  | 1006 |  | 
|  | 1007 | /* | 
|  | 1008 | * Lock page and remove it from the partial list | 
|  | 1009 | * | 
|  | 1010 | * Must hold list_lock | 
|  | 1011 | */ | 
|  | 1012 | static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page) | 
|  | 1013 | { | 
|  | 1014 | if (slab_trylock(page)) { | 
|  | 1015 | list_del(&page->lru); | 
|  | 1016 | n->nr_partial--; | 
|  | 1017 | return 1; | 
|  | 1018 | } | 
|  | 1019 | return 0; | 
|  | 1020 | } | 
|  | 1021 |  | 
|  | 1022 | /* | 
|  | 1023 | * Try to get a partial slab from a specific node | 
|  | 1024 | */ | 
|  | 1025 | static struct page *get_partial_node(struct kmem_cache_node *n) | 
|  | 1026 | { | 
|  | 1027 | struct page *page; | 
|  | 1028 |  | 
|  | 1029 | /* | 
|  | 1030 | * Racy check. If we mistakenly see no partial slabs then we | 
|  | 1031 | * just allocate an empty slab. If we mistakenly try to get a | 
|  | 1032 | * partial slab then get_partials() will return NULL. | 
|  | 1033 | */ | 
|  | 1034 | if (!n || !n->nr_partial) | 
|  | 1035 | return NULL; | 
|  | 1036 |  | 
|  | 1037 | spin_lock(&n->list_lock); | 
|  | 1038 | list_for_each_entry(page, &n->partial, lru) | 
|  | 1039 | if (lock_and_del_slab(n, page)) | 
|  | 1040 | goto out; | 
|  | 1041 | page = NULL; | 
|  | 1042 | out: | 
|  | 1043 | spin_unlock(&n->list_lock); | 
|  | 1044 | return page; | 
|  | 1045 | } | 
|  | 1046 |  | 
|  | 1047 | /* | 
|  | 1048 | * Get a page from somewhere. Search in increasing NUMA | 
|  | 1049 | * distances. | 
|  | 1050 | */ | 
|  | 1051 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | 
|  | 1052 | { | 
|  | 1053 | #ifdef CONFIG_NUMA | 
|  | 1054 | struct zonelist *zonelist; | 
|  | 1055 | struct zone **z; | 
|  | 1056 | struct page *page; | 
|  | 1057 |  | 
|  | 1058 | /* | 
|  | 1059 | * The defrag ratio allows to configure the tradeoffs between | 
|  | 1060 | * inter node defragmentation and node local allocations. | 
|  | 1061 | * A lower defrag_ratio increases the tendency to do local | 
|  | 1062 | * allocations instead of scanning throught the partial | 
|  | 1063 | * lists on other nodes. | 
|  | 1064 | * | 
|  | 1065 | * If defrag_ratio is set to 0 then kmalloc() always | 
|  | 1066 | * returns node local objects. If its higher then kmalloc() | 
|  | 1067 | * may return off node objects in order to avoid fragmentation. | 
|  | 1068 | * | 
|  | 1069 | * A higher ratio means slabs may be taken from other nodes | 
|  | 1070 | * thus reducing the number of partial slabs on those nodes. | 
|  | 1071 | * | 
|  | 1072 | * If /sys/slab/xx/defrag_ratio is set to 100 (which makes | 
|  | 1073 | * defrag_ratio = 1000) then every (well almost) allocation | 
|  | 1074 | * will first attempt to defrag slab caches on other nodes. This | 
|  | 1075 | * means scanning over all nodes to look for partial slabs which | 
|  | 1076 | * may be a bit expensive to do on every slab allocation. | 
|  | 1077 | */ | 
|  | 1078 | if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) | 
|  | 1079 | return NULL; | 
|  | 1080 |  | 
|  | 1081 | zonelist = &NODE_DATA(slab_node(current->mempolicy)) | 
|  | 1082 | ->node_zonelists[gfp_zone(flags)]; | 
|  | 1083 | for (z = zonelist->zones; *z; z++) { | 
|  | 1084 | struct kmem_cache_node *n; | 
|  | 1085 |  | 
|  | 1086 | n = get_node(s, zone_to_nid(*z)); | 
|  | 1087 |  | 
|  | 1088 | if (n && cpuset_zone_allowed_hardwall(*z, flags) && | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1089 | n->nr_partial > MIN_PARTIAL) { | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1090 | page = get_partial_node(n); | 
|  | 1091 | if (page) | 
|  | 1092 | return page; | 
|  | 1093 | } | 
|  | 1094 | } | 
|  | 1095 | #endif | 
|  | 1096 | return NULL; | 
|  | 1097 | } | 
|  | 1098 |  | 
|  | 1099 | /* | 
|  | 1100 | * Get a partial page, lock it and return it. | 
|  | 1101 | */ | 
|  | 1102 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | 
|  | 1103 | { | 
|  | 1104 | struct page *page; | 
|  | 1105 | int searchnode = (node == -1) ? numa_node_id() : node; | 
|  | 1106 |  | 
|  | 1107 | page = get_partial_node(get_node(s, searchnode)); | 
|  | 1108 | if (page || (flags & __GFP_THISNODE)) | 
|  | 1109 | return page; | 
|  | 1110 |  | 
|  | 1111 | return get_any_partial(s, flags); | 
|  | 1112 | } | 
|  | 1113 |  | 
|  | 1114 | /* | 
|  | 1115 | * Move a page back to the lists. | 
|  | 1116 | * | 
|  | 1117 | * Must be called with the slab lock held. | 
|  | 1118 | * | 
|  | 1119 | * On exit the slab lock will have been dropped. | 
|  | 1120 | */ | 
|  | 1121 | static void putback_slab(struct kmem_cache *s, struct page *page) | 
|  | 1122 | { | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1123 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  | 1124 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1125 | if (page->inuse) { | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1126 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1127 | if (page->freelist) | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1128 | add_partial(n, page); | 
|  | 1129 | else if (PageError(page) && (s->flags & SLAB_STORE_USER)) | 
|  | 1130 | add_full(n, page); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1131 | slab_unlock(page); | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1132 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1133 | } else { | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1134 | if (n->nr_partial < MIN_PARTIAL) { | 
|  | 1135 | /* | 
|  | 1136 | * Adding an empty page to the partial slabs in order | 
|  | 1137 | * to avoid page allocator overhead. This page needs to | 
|  | 1138 | * come after all the others that are not fully empty | 
|  | 1139 | * in order to make sure that we do maximum | 
|  | 1140 | * defragmentation. | 
|  | 1141 | */ | 
|  | 1142 | add_partial_tail(n, page); | 
|  | 1143 | slab_unlock(page); | 
|  | 1144 | } else { | 
|  | 1145 | slab_unlock(page); | 
|  | 1146 | discard_slab(s, page); | 
|  | 1147 | } | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1148 | } | 
|  | 1149 | } | 
|  | 1150 |  | 
|  | 1151 | /* | 
|  | 1152 | * Remove the cpu slab | 
|  | 1153 | */ | 
|  | 1154 | static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu) | 
|  | 1155 | { | 
|  | 1156 | s->cpu_slab[cpu] = NULL; | 
|  | 1157 | ClearPageActive(page); | 
|  | 1158 |  | 
|  | 1159 | putback_slab(s, page); | 
|  | 1160 | } | 
|  | 1161 |  | 
|  | 1162 | static void flush_slab(struct kmem_cache *s, struct page *page, int cpu) | 
|  | 1163 | { | 
|  | 1164 | slab_lock(page); | 
|  | 1165 | deactivate_slab(s, page, cpu); | 
|  | 1166 | } | 
|  | 1167 |  | 
|  | 1168 | /* | 
|  | 1169 | * Flush cpu slab. | 
|  | 1170 | * Called from IPI handler with interrupts disabled. | 
|  | 1171 | */ | 
|  | 1172 | static void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
|  | 1173 | { | 
|  | 1174 | struct page *page = s->cpu_slab[cpu]; | 
|  | 1175 |  | 
|  | 1176 | if (likely(page)) | 
|  | 1177 | flush_slab(s, page, cpu); | 
|  | 1178 | } | 
|  | 1179 |  | 
|  | 1180 | static void flush_cpu_slab(void *d) | 
|  | 1181 | { | 
|  | 1182 | struct kmem_cache *s = d; | 
|  | 1183 | int cpu = smp_processor_id(); | 
|  | 1184 |  | 
|  | 1185 | __flush_cpu_slab(s, cpu); | 
|  | 1186 | } | 
|  | 1187 |  | 
|  | 1188 | static void flush_all(struct kmem_cache *s) | 
|  | 1189 | { | 
|  | 1190 | #ifdef CONFIG_SMP | 
|  | 1191 | on_each_cpu(flush_cpu_slab, s, 1, 1); | 
|  | 1192 | #else | 
|  | 1193 | unsigned long flags; | 
|  | 1194 |  | 
|  | 1195 | local_irq_save(flags); | 
|  | 1196 | flush_cpu_slab(s); | 
|  | 1197 | local_irq_restore(flags); | 
|  | 1198 | #endif | 
|  | 1199 | } | 
|  | 1200 |  | 
|  | 1201 | /* | 
|  | 1202 | * slab_alloc is optimized to only modify two cachelines on the fast path | 
|  | 1203 | * (aside from the stack): | 
|  | 1204 | * | 
|  | 1205 | * 1. The page struct | 
|  | 1206 | * 2. The first cacheline of the object to be allocated. | 
|  | 1207 | * | 
|  | 1208 | * The only cache lines that are read (apart from code) is the | 
|  | 1209 | * per cpu array in the kmem_cache struct. | 
|  | 1210 | * | 
|  | 1211 | * Fastpath is not possible if we need to get a new slab or have | 
|  | 1212 | * debugging enabled (which means all slabs are marked with PageError) | 
|  | 1213 | */ | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1214 | static void *slab_alloc(struct kmem_cache *s, | 
|  | 1215 | gfp_t gfpflags, int node, void *addr) | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1216 | { | 
|  | 1217 | struct page *page; | 
|  | 1218 | void **object; | 
|  | 1219 | unsigned long flags; | 
|  | 1220 | int cpu; | 
|  | 1221 |  | 
|  | 1222 | local_irq_save(flags); | 
|  | 1223 | cpu = smp_processor_id(); | 
|  | 1224 | page = s->cpu_slab[cpu]; | 
|  | 1225 | if (!page) | 
|  | 1226 | goto new_slab; | 
|  | 1227 |  | 
|  | 1228 | slab_lock(page); | 
|  | 1229 | if (unlikely(node != -1 && page_to_nid(page) != node)) | 
|  | 1230 | goto another_slab; | 
|  | 1231 | redo: | 
|  | 1232 | object = page->freelist; | 
|  | 1233 | if (unlikely(!object)) | 
|  | 1234 | goto another_slab; | 
|  | 1235 | if (unlikely(PageError(page))) | 
|  | 1236 | goto debug; | 
|  | 1237 |  | 
|  | 1238 | have_object: | 
|  | 1239 | page->inuse++; | 
|  | 1240 | page->freelist = object[page->offset]; | 
|  | 1241 | slab_unlock(page); | 
|  | 1242 | local_irq_restore(flags); | 
|  | 1243 | return object; | 
|  | 1244 |  | 
|  | 1245 | another_slab: | 
|  | 1246 | deactivate_slab(s, page, cpu); | 
|  | 1247 |  | 
|  | 1248 | new_slab: | 
|  | 1249 | page = get_partial(s, gfpflags, node); | 
|  | 1250 | if (likely(page)) { | 
|  | 1251 | have_slab: | 
|  | 1252 | s->cpu_slab[cpu] = page; | 
|  | 1253 | SetPageActive(page); | 
|  | 1254 | goto redo; | 
|  | 1255 | } | 
|  | 1256 |  | 
|  | 1257 | page = new_slab(s, gfpflags, node); | 
|  | 1258 | if (page) { | 
|  | 1259 | cpu = smp_processor_id(); | 
|  | 1260 | if (s->cpu_slab[cpu]) { | 
|  | 1261 | /* | 
|  | 1262 | * Someone else populated the cpu_slab while we enabled | 
|  | 1263 | * interrupts, or we have got scheduled on another cpu. | 
|  | 1264 | * The page may not be on the requested node. | 
|  | 1265 | */ | 
|  | 1266 | if (node == -1 || | 
|  | 1267 | page_to_nid(s->cpu_slab[cpu]) == node) { | 
|  | 1268 | /* | 
|  | 1269 | * Current cpuslab is acceptable and we | 
|  | 1270 | * want the current one since its cache hot | 
|  | 1271 | */ | 
|  | 1272 | discard_slab(s, page); | 
|  | 1273 | page = s->cpu_slab[cpu]; | 
|  | 1274 | slab_lock(page); | 
|  | 1275 | goto redo; | 
|  | 1276 | } | 
|  | 1277 | /* Dump the current slab */ | 
|  | 1278 | flush_slab(s, s->cpu_slab[cpu], cpu); | 
|  | 1279 | } | 
|  | 1280 | slab_lock(page); | 
|  | 1281 | goto have_slab; | 
|  | 1282 | } | 
|  | 1283 | local_irq_restore(flags); | 
|  | 1284 | return NULL; | 
|  | 1285 | debug: | 
|  | 1286 | if (!alloc_object_checks(s, page, object)) | 
|  | 1287 | goto another_slab; | 
|  | 1288 | if (s->flags & SLAB_STORE_USER) | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1289 | set_track(s, object, TRACK_ALLOC, addr); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1290 | goto have_object; | 
|  | 1291 | } | 
|  | 1292 |  | 
|  | 1293 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
|  | 1294 | { | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1295 | return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1296 | } | 
|  | 1297 | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  | 1298 |  | 
|  | 1299 | #ifdef CONFIG_NUMA | 
|  | 1300 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
|  | 1301 | { | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1302 | return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1303 | } | 
|  | 1304 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  | 1305 | #endif | 
|  | 1306 |  | 
|  | 1307 | /* | 
|  | 1308 | * The fastpath only writes the cacheline of the page struct and the first | 
|  | 1309 | * cacheline of the object. | 
|  | 1310 | * | 
|  | 1311 | * No special cachelines need to be read | 
|  | 1312 | */ | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1313 | static void slab_free(struct kmem_cache *s, struct page *page, | 
|  | 1314 | void *x, void *addr) | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1315 | { | 
|  | 1316 | void *prior; | 
|  | 1317 | void **object = (void *)x; | 
|  | 1318 | unsigned long flags; | 
|  | 1319 |  | 
|  | 1320 | local_irq_save(flags); | 
|  | 1321 | slab_lock(page); | 
|  | 1322 |  | 
|  | 1323 | if (unlikely(PageError(page))) | 
|  | 1324 | goto debug; | 
|  | 1325 | checks_ok: | 
|  | 1326 | prior = object[page->offset] = page->freelist; | 
|  | 1327 | page->freelist = object; | 
|  | 1328 | page->inuse--; | 
|  | 1329 |  | 
|  | 1330 | if (unlikely(PageActive(page))) | 
|  | 1331 | /* | 
|  | 1332 | * Cpu slabs are never on partial lists and are | 
|  | 1333 | * never freed. | 
|  | 1334 | */ | 
|  | 1335 | goto out_unlock; | 
|  | 1336 |  | 
|  | 1337 | if (unlikely(!page->inuse)) | 
|  | 1338 | goto slab_empty; | 
|  | 1339 |  | 
|  | 1340 | /* | 
|  | 1341 | * Objects left in the slab. If it | 
|  | 1342 | * was not on the partial list before | 
|  | 1343 | * then add it. | 
|  | 1344 | */ | 
|  | 1345 | if (unlikely(!prior)) | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1346 | add_partial(get_node(s, page_to_nid(page)), page); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1347 |  | 
|  | 1348 | out_unlock: | 
|  | 1349 | slab_unlock(page); | 
|  | 1350 | local_irq_restore(flags); | 
|  | 1351 | return; | 
|  | 1352 |  | 
|  | 1353 | slab_empty: | 
|  | 1354 | if (prior) | 
|  | 1355 | /* | 
| Christoph Lameter | 643b113 | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1356 | * Slab on the partial list. | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1357 | */ | 
|  | 1358 | remove_partial(s, page); | 
|  | 1359 |  | 
|  | 1360 | slab_unlock(page); | 
|  | 1361 | discard_slab(s, page); | 
|  | 1362 | local_irq_restore(flags); | 
|  | 1363 | return; | 
|  | 1364 |  | 
|  | 1365 | debug: | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1366 | if (!free_object_checks(s, page, x)) | 
|  | 1367 | goto out_unlock; | 
| Christoph Lameter | 643b113 | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1368 | if (!PageActive(page) && !page->freelist) | 
|  | 1369 | remove_full(s, page); | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1370 | if (s->flags & SLAB_STORE_USER) | 
|  | 1371 | set_track(s, x, TRACK_FREE, addr); | 
|  | 1372 | goto checks_ok; | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1373 | } | 
|  | 1374 |  | 
|  | 1375 | void kmem_cache_free(struct kmem_cache *s, void *x) | 
|  | 1376 | { | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1377 | struct page *page; | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1378 |  | 
| Christoph Lameter | b49af68 | 2007-05-06 14:49:41 -0700 | [diff] [blame] | 1379 | page = virt_to_head_page(x); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1380 |  | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1381 | slab_free(s, page, x, __builtin_return_address(0)); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1382 | } | 
|  | 1383 | EXPORT_SYMBOL(kmem_cache_free); | 
|  | 1384 |  | 
|  | 1385 | /* Figure out on which slab object the object resides */ | 
|  | 1386 | static struct page *get_object_page(const void *x) | 
|  | 1387 | { | 
| Christoph Lameter | b49af68 | 2007-05-06 14:49:41 -0700 | [diff] [blame] | 1388 | struct page *page = virt_to_head_page(x); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1389 |  | 
|  | 1390 | if (!PageSlab(page)) | 
|  | 1391 | return NULL; | 
|  | 1392 |  | 
|  | 1393 | return page; | 
|  | 1394 | } | 
|  | 1395 |  | 
|  | 1396 | /* | 
|  | 1397 | * kmem_cache_open produces objects aligned at "size" and the first object | 
|  | 1398 | * is placed at offset 0 in the slab (We have no metainformation on the | 
|  | 1399 | * slab, all slabs are in essence "off slab"). | 
|  | 1400 | * | 
|  | 1401 | * In order to get the desired alignment one just needs to align the | 
|  | 1402 | * size. | 
|  | 1403 | * | 
|  | 1404 | * Notice that the allocation order determines the sizes of the per cpu | 
|  | 1405 | * caches. Each processor has always one slab available for allocations. | 
|  | 1406 | * Increasing the allocation order reduces the number of times that slabs | 
|  | 1407 | * must be moved on and off the partial lists and therefore may influence | 
|  | 1408 | * locking overhead. | 
|  | 1409 | * | 
|  | 1410 | * The offset is used to relocate the free list link in each object. It is | 
|  | 1411 | * therefore possible to move the free list link behind the object. This | 
|  | 1412 | * is necessary for RCU to work properly and also useful for debugging. | 
|  | 1413 | */ | 
|  | 1414 |  | 
|  | 1415 | /* | 
|  | 1416 | * Mininum / Maximum order of slab pages. This influences locking overhead | 
|  | 1417 | * and slab fragmentation. A higher order reduces the number of partial slabs | 
|  | 1418 | * and increases the number of allocations possible without having to | 
|  | 1419 | * take the list_lock. | 
|  | 1420 | */ | 
|  | 1421 | static int slub_min_order; | 
|  | 1422 | static int slub_max_order = DEFAULT_MAX_ORDER; | 
|  | 1423 |  | 
|  | 1424 | /* | 
|  | 1425 | * Minimum number of objects per slab. This is necessary in order to | 
|  | 1426 | * reduce locking overhead. Similar to the queue size in SLAB. | 
|  | 1427 | */ | 
|  | 1428 | static int slub_min_objects = DEFAULT_MIN_OBJECTS; | 
|  | 1429 |  | 
|  | 1430 | /* | 
|  | 1431 | * Merge control. If this is set then no merging of slab caches will occur. | 
|  | 1432 | */ | 
|  | 1433 | static int slub_nomerge; | 
|  | 1434 |  | 
|  | 1435 | /* | 
|  | 1436 | * Debug settings: | 
|  | 1437 | */ | 
|  | 1438 | static int slub_debug; | 
|  | 1439 |  | 
|  | 1440 | static char *slub_debug_slabs; | 
|  | 1441 |  | 
|  | 1442 | /* | 
|  | 1443 | * Calculate the order of allocation given an slab object size. | 
|  | 1444 | * | 
|  | 1445 | * The order of allocation has significant impact on other elements | 
|  | 1446 | * of the system. Generally order 0 allocations should be preferred | 
|  | 1447 | * since they do not cause fragmentation in the page allocator. Larger | 
|  | 1448 | * objects may have problems with order 0 because there may be too much | 
|  | 1449 | * space left unused in a slab. We go to a higher order if more than 1/8th | 
|  | 1450 | * of the slab would be wasted. | 
|  | 1451 | * | 
|  | 1452 | * In order to reach satisfactory performance we must ensure that | 
|  | 1453 | * a minimum number of objects is in one slab. Otherwise we may | 
|  | 1454 | * generate too much activity on the partial lists. This is less a | 
|  | 1455 | * concern for large slabs though. slub_max_order specifies the order | 
|  | 1456 | * where we begin to stop considering the number of objects in a slab. | 
|  | 1457 | * | 
|  | 1458 | * Higher order allocations also allow the placement of more objects | 
|  | 1459 | * in a slab and thereby reduce object handling overhead. If the user | 
|  | 1460 | * has requested a higher mininum order then we start with that one | 
|  | 1461 | * instead of zero. | 
|  | 1462 | */ | 
|  | 1463 | static int calculate_order(int size) | 
|  | 1464 | { | 
|  | 1465 | int order; | 
|  | 1466 | int rem; | 
|  | 1467 |  | 
|  | 1468 | for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT); | 
|  | 1469 | order < MAX_ORDER; order++) { | 
|  | 1470 | unsigned long slab_size = PAGE_SIZE << order; | 
|  | 1471 |  | 
|  | 1472 | if (slub_max_order > order && | 
|  | 1473 | slab_size < slub_min_objects * size) | 
|  | 1474 | continue; | 
|  | 1475 |  | 
|  | 1476 | if (slab_size < size) | 
|  | 1477 | continue; | 
|  | 1478 |  | 
|  | 1479 | rem = slab_size % size; | 
|  | 1480 |  | 
|  | 1481 | if (rem <= (PAGE_SIZE << order) / 8) | 
|  | 1482 | break; | 
|  | 1483 |  | 
|  | 1484 | } | 
|  | 1485 | if (order >= MAX_ORDER) | 
|  | 1486 | return -E2BIG; | 
|  | 1487 | return order; | 
|  | 1488 | } | 
|  | 1489 |  | 
|  | 1490 | /* | 
|  | 1491 | * Function to figure out which alignment to use from the | 
|  | 1492 | * various ways of specifying it. | 
|  | 1493 | */ | 
|  | 1494 | static unsigned long calculate_alignment(unsigned long flags, | 
|  | 1495 | unsigned long align, unsigned long size) | 
|  | 1496 | { | 
|  | 1497 | /* | 
|  | 1498 | * If the user wants hardware cache aligned objects then | 
|  | 1499 | * follow that suggestion if the object is sufficiently | 
|  | 1500 | * large. | 
|  | 1501 | * | 
|  | 1502 | * The hardware cache alignment cannot override the | 
|  | 1503 | * specified alignment though. If that is greater | 
|  | 1504 | * then use it. | 
|  | 1505 | */ | 
|  | 1506 | if ((flags & (SLAB_MUST_HWCACHE_ALIGN | SLAB_HWCACHE_ALIGN)) && | 
|  | 1507 | size > L1_CACHE_BYTES / 2) | 
|  | 1508 | return max_t(unsigned long, align, L1_CACHE_BYTES); | 
|  | 1509 |  | 
|  | 1510 | if (align < ARCH_SLAB_MINALIGN) | 
|  | 1511 | return ARCH_SLAB_MINALIGN; | 
|  | 1512 |  | 
|  | 1513 | return ALIGN(align, sizeof(void *)); | 
|  | 1514 | } | 
|  | 1515 |  | 
|  | 1516 | static void init_kmem_cache_node(struct kmem_cache_node *n) | 
|  | 1517 | { | 
|  | 1518 | n->nr_partial = 0; | 
|  | 1519 | atomic_long_set(&n->nr_slabs, 0); | 
|  | 1520 | spin_lock_init(&n->list_lock); | 
|  | 1521 | INIT_LIST_HEAD(&n->partial); | 
| Christoph Lameter | 643b113 | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 1522 | INIT_LIST_HEAD(&n->full); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1523 | } | 
|  | 1524 |  | 
|  | 1525 | #ifdef CONFIG_NUMA | 
|  | 1526 | /* | 
|  | 1527 | * No kmalloc_node yet so do it by hand. We know that this is the first | 
|  | 1528 | * slab on the node for this slabcache. There are no concurrent accesses | 
|  | 1529 | * possible. | 
|  | 1530 | * | 
|  | 1531 | * Note that this function only works on the kmalloc_node_cache | 
|  | 1532 | * when allocating for the kmalloc_node_cache. | 
|  | 1533 | */ | 
|  | 1534 | static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags, | 
|  | 1535 | int node) | 
|  | 1536 | { | 
|  | 1537 | struct page *page; | 
|  | 1538 | struct kmem_cache_node *n; | 
|  | 1539 |  | 
|  | 1540 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | 
|  | 1541 |  | 
|  | 1542 | page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node); | 
|  | 1543 | /* new_slab() disables interupts */ | 
|  | 1544 | local_irq_enable(); | 
|  | 1545 |  | 
|  | 1546 | BUG_ON(!page); | 
|  | 1547 | n = page->freelist; | 
|  | 1548 | BUG_ON(!n); | 
|  | 1549 | page->freelist = get_freepointer(kmalloc_caches, n); | 
|  | 1550 | page->inuse++; | 
|  | 1551 | kmalloc_caches->node[node] = n; | 
|  | 1552 | init_object(kmalloc_caches, n, 1); | 
|  | 1553 | init_kmem_cache_node(n); | 
|  | 1554 | atomic_long_inc(&n->nr_slabs); | 
| Christoph Lameter | e95eed5 | 2007-05-06 14:49:44 -0700 | [diff] [blame^] | 1555 | add_partial(n, page); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 1556 | return n; | 
|  | 1557 | } | 
|  | 1558 |  | 
|  | 1559 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
|  | 1560 | { | 
|  | 1561 | int node; | 
|  | 1562 |  | 
|  | 1563 | for_each_online_node(node) { | 
|  | 1564 | struct kmem_cache_node *n = s->node[node]; | 
|  | 1565 | if (n && n != &s->local_node) | 
|  | 1566 | kmem_cache_free(kmalloc_caches, n); | 
|  | 1567 | s->node[node] = NULL; | 
|  | 1568 | } | 
|  | 1569 | } | 
|  | 1570 |  | 
|  | 1571 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 
|  | 1572 | { | 
|  | 1573 | int node; | 
|  | 1574 | int local_node; | 
|  | 1575 |  | 
|  | 1576 | if (slab_state >= UP) | 
|  | 1577 | local_node = page_to_nid(virt_to_page(s)); | 
|  | 1578 | else | 
|  | 1579 | local_node = 0; | 
|  | 1580 |  | 
|  | 1581 | for_each_online_node(node) { | 
|  | 1582 | struct kmem_cache_node *n; | 
|  | 1583 |  | 
|  | 1584 | if (local_node == node) | 
|  | 1585 | n = &s->local_node; | 
|  | 1586 | else { | 
|  | 1587 | if (slab_state == DOWN) { | 
|  | 1588 | n = early_kmem_cache_node_alloc(gfpflags, | 
|  | 1589 | node); | 
|  | 1590 | continue; | 
|  | 1591 | } | 
|  | 1592 | n = kmem_cache_alloc_node(kmalloc_caches, | 
|  | 1593 | gfpflags, node); | 
|  | 1594 |  | 
|  | 1595 | if (!n) { | 
|  | 1596 | free_kmem_cache_nodes(s); | 
|  | 1597 | return 0; | 
|  | 1598 | } | 
|  | 1599 |  | 
|  | 1600 | } | 
|  | 1601 | s->node[node] = n; | 
|  | 1602 | init_kmem_cache_node(n); | 
|  | 1603 | } | 
|  | 1604 | return 1; | 
|  | 1605 | } | 
|  | 1606 | #else | 
|  | 1607 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
|  | 1608 | { | 
|  | 1609 | } | 
|  | 1610 |  | 
|  | 1611 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 
|  | 1612 | { | 
|  | 1613 | init_kmem_cache_node(&s->local_node); | 
|  | 1614 | return 1; | 
|  | 1615 | } | 
|  | 1616 | #endif | 
|  | 1617 |  | 
|  | 1618 | /* | 
|  | 1619 | * calculate_sizes() determines the order and the distribution of data within | 
|  | 1620 | * a slab object. | 
|  | 1621 | */ | 
|  | 1622 | static int calculate_sizes(struct kmem_cache *s) | 
|  | 1623 | { | 
|  | 1624 | unsigned long flags = s->flags; | 
|  | 1625 | unsigned long size = s->objsize; | 
|  | 1626 | unsigned long align = s->align; | 
|  | 1627 |  | 
|  | 1628 | /* | 
|  | 1629 | * Determine if we can poison the object itself. If the user of | 
|  | 1630 | * the slab may touch the object after free or before allocation | 
|  | 1631 | * then we should never poison the object itself. | 
|  | 1632 | */ | 
|  | 1633 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | 
|  | 1634 | !s->ctor && !s->dtor) | 
|  | 1635 | s->flags |= __OBJECT_POISON; | 
|  | 1636 | else | 
|  | 1637 | s->flags &= ~__OBJECT_POISON; | 
|  | 1638 |  | 
|  | 1639 | /* | 
|  | 1640 | * Round up object size to the next word boundary. We can only | 
|  | 1641 | * place the free pointer at word boundaries and this determines | 
|  | 1642 | * the possible location of the free pointer. | 
|  | 1643 | */ | 
|  | 1644 | size = ALIGN(size, sizeof(void *)); | 
|  | 1645 |  | 
|  | 1646 | /* | 
|  | 1647 | * If we are redzoning then check if there is some space between the | 
|  | 1648 | * end of the object and the free pointer. If not then add an | 
|  | 1649 | * additional word, so that we can establish a redzone between | 
|  | 1650 | * the object and the freepointer to be able to check for overwrites. | 
|  | 1651 | */ | 
|  | 1652 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | 
|  | 1653 | size += sizeof(void *); | 
|  | 1654 |  | 
|  | 1655 | /* | 
|  | 1656 | * With that we have determined how much of the slab is in actual | 
|  | 1657 | * use by the object. This is the potential offset to the free | 
|  | 1658 | * pointer. | 
|  | 1659 | */ | 
|  | 1660 | s->inuse = size; | 
|  | 1661 |  | 
|  | 1662 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | 
|  | 1663 | s->ctor || s->dtor)) { | 
|  | 1664 | /* | 
|  | 1665 | * Relocate free pointer after the object if it is not | 
|  | 1666 | * permitted to overwrite the first word of the object on | 
|  | 1667 | * kmem_cache_free. | 
|  | 1668 | * | 
|  | 1669 | * This is the case if we do RCU, have a constructor or | 
|  | 1670 | * destructor or are poisoning the objects. | 
|  | 1671 | */ | 
|  | 1672 | s->offset = size; | 
|  | 1673 | size += sizeof(void *); | 
|  | 1674 | } | 
|  | 1675 |  | 
|  | 1676 | if (flags & SLAB_STORE_USER) | 
|  | 1677 | /* | 
|  | 1678 | * Need to store information about allocs and frees after | 
|  | 1679 | * the object. | 
|  | 1680 | */ | 
|  | 1681 | size += 2 * sizeof(struct track); | 
|  | 1682 |  | 
|  | 1683 | if (flags & DEBUG_DEFAULT_FLAGS) | 
|  | 1684 | /* | 
|  | 1685 | * Add some empty padding so that we can catch | 
|  | 1686 | * overwrites from earlier objects rather than let | 
|  | 1687 | * tracking information or the free pointer be | 
|  | 1688 | * corrupted if an user writes before the start | 
|  | 1689 | * of the object. | 
|  | 1690 | */ | 
|  | 1691 | size += sizeof(void *); | 
|  | 1692 | /* | 
|  | 1693 | * Determine the alignment based on various parameters that the | 
|  | 1694 | * user specified (this is unecessarily complex due to the attempt | 
|  | 1695 | * to be compatible with SLAB. Should be cleaned up some day). | 
|  | 1696 | */ | 
|  | 1697 | align = calculate_alignment(flags, align, s->objsize); | 
|  | 1698 |  | 
|  | 1699 | /* | 
|  | 1700 | * SLUB stores one object immediately after another beginning from | 
|  | 1701 | * offset 0. In order to align the objects we have to simply size | 
|  | 1702 | * each object to conform to the alignment. | 
|  | 1703 | */ | 
|  | 1704 | size = ALIGN(size, align); | 
|  | 1705 | s->size = size; | 
|  | 1706 |  | 
|  | 1707 | s->order = calculate_order(size); | 
|  | 1708 | if (s->order < 0) | 
|  | 1709 | return 0; | 
|  | 1710 |  | 
|  | 1711 | /* | 
|  | 1712 | * Determine the number of objects per slab | 
|  | 1713 | */ | 
|  | 1714 | s->objects = (PAGE_SIZE << s->order) / size; | 
|  | 1715 |  | 
|  | 1716 | /* | 
|  | 1717 | * Verify that the number of objects is within permitted limits. | 
|  | 1718 | * The page->inuse field is only 16 bit wide! So we cannot have | 
|  | 1719 | * more than 64k objects per slab. | 
|  | 1720 | */ | 
|  | 1721 | if (!s->objects || s->objects > 65535) | 
|  | 1722 | return 0; | 
|  | 1723 | return 1; | 
|  | 1724 |  | 
|  | 1725 | } | 
|  | 1726 |  | 
|  | 1727 | static int __init finish_bootstrap(void) | 
|  | 1728 | { | 
|  | 1729 | struct list_head *h; | 
|  | 1730 | int err; | 
|  | 1731 |  | 
|  | 1732 | slab_state = SYSFS; | 
|  | 1733 |  | 
|  | 1734 | list_for_each(h, &slab_caches) { | 
|  | 1735 | struct kmem_cache *s = | 
|  | 1736 | container_of(h, struct kmem_cache, list); | 
|  | 1737 |  | 
|  | 1738 | err = sysfs_slab_add(s); | 
|  | 1739 | BUG_ON(err); | 
|  | 1740 | } | 
|  | 1741 | return 0; | 
|  | 1742 | } | 
|  | 1743 |  | 
|  | 1744 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | 
|  | 1745 | const char *name, size_t size, | 
|  | 1746 | size_t align, unsigned long flags, | 
|  | 1747 | void (*ctor)(void *, struct kmem_cache *, unsigned long), | 
|  | 1748 | void (*dtor)(void *, struct kmem_cache *, unsigned long)) | 
|  | 1749 | { | 
|  | 1750 | memset(s, 0, kmem_size); | 
|  | 1751 | s->name = name; | 
|  | 1752 | s->ctor = ctor; | 
|  | 1753 | s->dtor = dtor; | 
|  | 1754 | s->objsize = size; | 
|  | 1755 | s->flags = flags; | 
|  | 1756 | s->align = align; | 
|  | 1757 |  | 
|  | 1758 | BUG_ON(flags & SLUB_UNIMPLEMENTED); | 
|  | 1759 |  | 
|  | 1760 | /* | 
|  | 1761 | * The page->offset field is only 16 bit wide. This is an offset | 
|  | 1762 | * in units of words from the beginning of an object. If the slab | 
|  | 1763 | * size is bigger then we cannot move the free pointer behind the | 
|  | 1764 | * object anymore. | 
|  | 1765 | * | 
|  | 1766 | * On 32 bit platforms the limit is 256k. On 64bit platforms | 
|  | 1767 | * the limit is 512k. | 
|  | 1768 | * | 
|  | 1769 | * Debugging or ctor/dtors may create a need to move the free | 
|  | 1770 | * pointer. Fail if this happens. | 
|  | 1771 | */ | 
|  | 1772 | if (s->size >= 65535 * sizeof(void *)) { | 
|  | 1773 | BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON | | 
|  | 1774 | SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); | 
|  | 1775 | BUG_ON(ctor || dtor); | 
|  | 1776 | } | 
|  | 1777 | else | 
|  | 1778 | /* | 
|  | 1779 | * Enable debugging if selected on the kernel commandline. | 
|  | 1780 | */ | 
|  | 1781 | if (slub_debug && (!slub_debug_slabs || | 
|  | 1782 | strncmp(slub_debug_slabs, name, | 
|  | 1783 | strlen(slub_debug_slabs)) == 0)) | 
|  | 1784 | s->flags |= slub_debug; | 
|  | 1785 |  | 
|  | 1786 | if (!calculate_sizes(s)) | 
|  | 1787 | goto error; | 
|  | 1788 |  | 
|  | 1789 | s->refcount = 1; | 
|  | 1790 | #ifdef CONFIG_NUMA | 
|  | 1791 | s->defrag_ratio = 100; | 
|  | 1792 | #endif | 
|  | 1793 |  | 
|  | 1794 | if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) | 
|  | 1795 | return 1; | 
|  | 1796 | error: | 
|  | 1797 | if (flags & SLAB_PANIC) | 
|  | 1798 | panic("Cannot create slab %s size=%lu realsize=%u " | 
|  | 1799 | "order=%u offset=%u flags=%lx\n", | 
|  | 1800 | s->name, (unsigned long)size, s->size, s->order, | 
|  | 1801 | s->offset, flags); | 
|  | 1802 | return 0; | 
|  | 1803 | } | 
|  | 1804 | EXPORT_SYMBOL(kmem_cache_open); | 
|  | 1805 |  | 
|  | 1806 | /* | 
|  | 1807 | * Check if a given pointer is valid | 
|  | 1808 | */ | 
|  | 1809 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | 
|  | 1810 | { | 
|  | 1811 | struct page * page; | 
|  | 1812 | void *addr; | 
|  | 1813 |  | 
|  | 1814 | page = get_object_page(object); | 
|  | 1815 |  | 
|  | 1816 | if (!page || s != page->slab) | 
|  | 1817 | /* No slab or wrong slab */ | 
|  | 1818 | return 0; | 
|  | 1819 |  | 
|  | 1820 | addr = page_address(page); | 
|  | 1821 | if (object < addr || object >= addr + s->objects * s->size) | 
|  | 1822 | /* Out of bounds */ | 
|  | 1823 | return 0; | 
|  | 1824 |  | 
|  | 1825 | if ((object - addr) % s->size) | 
|  | 1826 | /* Improperly aligned */ | 
|  | 1827 | return 0; | 
|  | 1828 |  | 
|  | 1829 | /* | 
|  | 1830 | * We could also check if the object is on the slabs freelist. | 
|  | 1831 | * But this would be too expensive and it seems that the main | 
|  | 1832 | * purpose of kmem_ptr_valid is to check if the object belongs | 
|  | 1833 | * to a certain slab. | 
|  | 1834 | */ | 
|  | 1835 | return 1; | 
|  | 1836 | } | 
|  | 1837 | EXPORT_SYMBOL(kmem_ptr_validate); | 
|  | 1838 |  | 
|  | 1839 | /* | 
|  | 1840 | * Determine the size of a slab object | 
|  | 1841 | */ | 
|  | 1842 | unsigned int kmem_cache_size(struct kmem_cache *s) | 
|  | 1843 | { | 
|  | 1844 | return s->objsize; | 
|  | 1845 | } | 
|  | 1846 | EXPORT_SYMBOL(kmem_cache_size); | 
|  | 1847 |  | 
|  | 1848 | const char *kmem_cache_name(struct kmem_cache *s) | 
|  | 1849 | { | 
|  | 1850 | return s->name; | 
|  | 1851 | } | 
|  | 1852 | EXPORT_SYMBOL(kmem_cache_name); | 
|  | 1853 |  | 
|  | 1854 | /* | 
|  | 1855 | * Attempt to free all slabs on a node | 
|  | 1856 | */ | 
|  | 1857 | static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | 1858 | struct list_head *list) | 
|  | 1859 | { | 
|  | 1860 | int slabs_inuse = 0; | 
|  | 1861 | unsigned long flags; | 
|  | 1862 | struct page *page, *h; | 
|  | 1863 |  | 
|  | 1864 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 1865 | list_for_each_entry_safe(page, h, list, lru) | 
|  | 1866 | if (!page->inuse) { | 
|  | 1867 | list_del(&page->lru); | 
|  | 1868 | discard_slab(s, page); | 
|  | 1869 | } else | 
|  | 1870 | slabs_inuse++; | 
|  | 1871 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 1872 | return slabs_inuse; | 
|  | 1873 | } | 
|  | 1874 |  | 
|  | 1875 | /* | 
|  | 1876 | * Release all resources used by slab cache | 
|  | 1877 | */ | 
|  | 1878 | static int kmem_cache_close(struct kmem_cache *s) | 
|  | 1879 | { | 
|  | 1880 | int node; | 
|  | 1881 |  | 
|  | 1882 | flush_all(s); | 
|  | 1883 |  | 
|  | 1884 | /* Attempt to free all objects */ | 
|  | 1885 | for_each_online_node(node) { | 
|  | 1886 | struct kmem_cache_node *n = get_node(s, node); | 
|  | 1887 |  | 
|  | 1888 | free_list(s, n, &n->partial); | 
|  | 1889 | if (atomic_long_read(&n->nr_slabs)) | 
|  | 1890 | return 1; | 
|  | 1891 | } | 
|  | 1892 | free_kmem_cache_nodes(s); | 
|  | 1893 | return 0; | 
|  | 1894 | } | 
|  | 1895 |  | 
|  | 1896 | /* | 
|  | 1897 | * Close a cache and release the kmem_cache structure | 
|  | 1898 | * (must be used for caches created using kmem_cache_create) | 
|  | 1899 | */ | 
|  | 1900 | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | 1901 | { | 
|  | 1902 | down_write(&slub_lock); | 
|  | 1903 | s->refcount--; | 
|  | 1904 | if (!s->refcount) { | 
|  | 1905 | list_del(&s->list); | 
|  | 1906 | if (kmem_cache_close(s)) | 
|  | 1907 | WARN_ON(1); | 
|  | 1908 | sysfs_slab_remove(s); | 
|  | 1909 | kfree(s); | 
|  | 1910 | } | 
|  | 1911 | up_write(&slub_lock); | 
|  | 1912 | } | 
|  | 1913 | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  | 1914 |  | 
|  | 1915 | /******************************************************************** | 
|  | 1916 | *		Kmalloc subsystem | 
|  | 1917 | *******************************************************************/ | 
|  | 1918 |  | 
|  | 1919 | struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned; | 
|  | 1920 | EXPORT_SYMBOL(kmalloc_caches); | 
|  | 1921 |  | 
|  | 1922 | #ifdef CONFIG_ZONE_DMA | 
|  | 1923 | static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1]; | 
|  | 1924 | #endif | 
|  | 1925 |  | 
|  | 1926 | static int __init setup_slub_min_order(char *str) | 
|  | 1927 | { | 
|  | 1928 | get_option (&str, &slub_min_order); | 
|  | 1929 |  | 
|  | 1930 | return 1; | 
|  | 1931 | } | 
|  | 1932 |  | 
|  | 1933 | __setup("slub_min_order=", setup_slub_min_order); | 
|  | 1934 |  | 
|  | 1935 | static int __init setup_slub_max_order(char *str) | 
|  | 1936 | { | 
|  | 1937 | get_option (&str, &slub_max_order); | 
|  | 1938 |  | 
|  | 1939 | return 1; | 
|  | 1940 | } | 
|  | 1941 |  | 
|  | 1942 | __setup("slub_max_order=", setup_slub_max_order); | 
|  | 1943 |  | 
|  | 1944 | static int __init setup_slub_min_objects(char *str) | 
|  | 1945 | { | 
|  | 1946 | get_option (&str, &slub_min_objects); | 
|  | 1947 |  | 
|  | 1948 | return 1; | 
|  | 1949 | } | 
|  | 1950 |  | 
|  | 1951 | __setup("slub_min_objects=", setup_slub_min_objects); | 
|  | 1952 |  | 
|  | 1953 | static int __init setup_slub_nomerge(char *str) | 
|  | 1954 | { | 
|  | 1955 | slub_nomerge = 1; | 
|  | 1956 | return 1; | 
|  | 1957 | } | 
|  | 1958 |  | 
|  | 1959 | __setup("slub_nomerge", setup_slub_nomerge); | 
|  | 1960 |  | 
|  | 1961 | static int __init setup_slub_debug(char *str) | 
|  | 1962 | { | 
|  | 1963 | if (!str || *str != '=') | 
|  | 1964 | slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | 1965 | else { | 
|  | 1966 | str++; | 
|  | 1967 | if (*str == 0 || *str == ',') | 
|  | 1968 | slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | 1969 | else | 
|  | 1970 | for( ;*str && *str != ','; str++) | 
|  | 1971 | switch (*str) { | 
|  | 1972 | case 'f' : case 'F' : | 
|  | 1973 | slub_debug |= SLAB_DEBUG_FREE; | 
|  | 1974 | break; | 
|  | 1975 | case 'z' : case 'Z' : | 
|  | 1976 | slub_debug |= SLAB_RED_ZONE; | 
|  | 1977 | break; | 
|  | 1978 | case 'p' : case 'P' : | 
|  | 1979 | slub_debug |= SLAB_POISON; | 
|  | 1980 | break; | 
|  | 1981 | case 'u' : case 'U' : | 
|  | 1982 | slub_debug |= SLAB_STORE_USER; | 
|  | 1983 | break; | 
|  | 1984 | case 't' : case 'T' : | 
|  | 1985 | slub_debug |= SLAB_TRACE; | 
|  | 1986 | break; | 
|  | 1987 | default: | 
|  | 1988 | printk(KERN_ERR "slub_debug option '%c' " | 
|  | 1989 | "unknown. skipped\n",*str); | 
|  | 1990 | } | 
|  | 1991 | } | 
|  | 1992 |  | 
|  | 1993 | if (*str == ',') | 
|  | 1994 | slub_debug_slabs = str + 1; | 
|  | 1995 | return 1; | 
|  | 1996 | } | 
|  | 1997 |  | 
|  | 1998 | __setup("slub_debug", setup_slub_debug); | 
|  | 1999 |  | 
|  | 2000 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, | 
|  | 2001 | const char *name, int size, gfp_t gfp_flags) | 
|  | 2002 | { | 
|  | 2003 | unsigned int flags = 0; | 
|  | 2004 |  | 
|  | 2005 | if (gfp_flags & SLUB_DMA) | 
|  | 2006 | flags = SLAB_CACHE_DMA; | 
|  | 2007 |  | 
|  | 2008 | down_write(&slub_lock); | 
|  | 2009 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | 
|  | 2010 | flags, NULL, NULL)) | 
|  | 2011 | goto panic; | 
|  | 2012 |  | 
|  | 2013 | list_add(&s->list, &slab_caches); | 
|  | 2014 | up_write(&slub_lock); | 
|  | 2015 | if (sysfs_slab_add(s)) | 
|  | 2016 | goto panic; | 
|  | 2017 | return s; | 
|  | 2018 |  | 
|  | 2019 | panic: | 
|  | 2020 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | 
|  | 2021 | } | 
|  | 2022 |  | 
|  | 2023 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | 
|  | 2024 | { | 
|  | 2025 | int index = kmalloc_index(size); | 
|  | 2026 |  | 
| Christoph Lameter | 614410d | 2007-05-06 14:49:38 -0700 | [diff] [blame] | 2027 | if (!index) | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2028 | return NULL; | 
|  | 2029 |  | 
|  | 2030 | /* Allocation too large? */ | 
|  | 2031 | BUG_ON(index < 0); | 
|  | 2032 |  | 
|  | 2033 | #ifdef CONFIG_ZONE_DMA | 
|  | 2034 | if ((flags & SLUB_DMA)) { | 
|  | 2035 | struct kmem_cache *s; | 
|  | 2036 | struct kmem_cache *x; | 
|  | 2037 | char *text; | 
|  | 2038 | size_t realsize; | 
|  | 2039 |  | 
|  | 2040 | s = kmalloc_caches_dma[index]; | 
|  | 2041 | if (s) | 
|  | 2042 | return s; | 
|  | 2043 |  | 
|  | 2044 | /* Dynamically create dma cache */ | 
|  | 2045 | x = kmalloc(kmem_size, flags & ~SLUB_DMA); | 
|  | 2046 | if (!x) | 
|  | 2047 | panic("Unable to allocate memory for dma cache\n"); | 
|  | 2048 |  | 
|  | 2049 | if (index <= KMALLOC_SHIFT_HIGH) | 
|  | 2050 | realsize = 1 << index; | 
|  | 2051 | else { | 
|  | 2052 | if (index == 1) | 
|  | 2053 | realsize = 96; | 
|  | 2054 | else | 
|  | 2055 | realsize = 192; | 
|  | 2056 | } | 
|  | 2057 |  | 
|  | 2058 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", | 
|  | 2059 | (unsigned int)realsize); | 
|  | 2060 | s = create_kmalloc_cache(x, text, realsize, flags); | 
|  | 2061 | kmalloc_caches_dma[index] = s; | 
|  | 2062 | return s; | 
|  | 2063 | } | 
|  | 2064 | #endif | 
|  | 2065 | return &kmalloc_caches[index]; | 
|  | 2066 | } | 
|  | 2067 |  | 
|  | 2068 | void *__kmalloc(size_t size, gfp_t flags) | 
|  | 2069 | { | 
|  | 2070 | struct kmem_cache *s = get_slab(size, flags); | 
|  | 2071 |  | 
|  | 2072 | if (s) | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 2073 | return slab_alloc(s, flags, -1, __builtin_return_address(0)); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2074 | return NULL; | 
|  | 2075 | } | 
|  | 2076 | EXPORT_SYMBOL(__kmalloc); | 
|  | 2077 |  | 
|  | 2078 | #ifdef CONFIG_NUMA | 
|  | 2079 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | 2080 | { | 
|  | 2081 | struct kmem_cache *s = get_slab(size, flags); | 
|  | 2082 |  | 
|  | 2083 | if (s) | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 2084 | return slab_alloc(s, flags, node, __builtin_return_address(0)); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2085 | return NULL; | 
|  | 2086 | } | 
|  | 2087 | EXPORT_SYMBOL(__kmalloc_node); | 
|  | 2088 | #endif | 
|  | 2089 |  | 
|  | 2090 | size_t ksize(const void *object) | 
|  | 2091 | { | 
|  | 2092 | struct page *page = get_object_page(object); | 
|  | 2093 | struct kmem_cache *s; | 
|  | 2094 |  | 
|  | 2095 | BUG_ON(!page); | 
|  | 2096 | s = page->slab; | 
|  | 2097 | BUG_ON(!s); | 
|  | 2098 |  | 
|  | 2099 | /* | 
|  | 2100 | * Debugging requires use of the padding between object | 
|  | 2101 | * and whatever may come after it. | 
|  | 2102 | */ | 
|  | 2103 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | 
|  | 2104 | return s->objsize; | 
|  | 2105 |  | 
|  | 2106 | /* | 
|  | 2107 | * If we have the need to store the freelist pointer | 
|  | 2108 | * back there or track user information then we can | 
|  | 2109 | * only use the space before that information. | 
|  | 2110 | */ | 
|  | 2111 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | 
|  | 2112 | return s->inuse; | 
|  | 2113 |  | 
|  | 2114 | /* | 
|  | 2115 | * Else we can use all the padding etc for the allocation | 
|  | 2116 | */ | 
|  | 2117 | return s->size; | 
|  | 2118 | } | 
|  | 2119 | EXPORT_SYMBOL(ksize); | 
|  | 2120 |  | 
|  | 2121 | void kfree(const void *x) | 
|  | 2122 | { | 
|  | 2123 | struct kmem_cache *s; | 
|  | 2124 | struct page *page; | 
|  | 2125 |  | 
|  | 2126 | if (!x) | 
|  | 2127 | return; | 
|  | 2128 |  | 
| Christoph Lameter | b49af68 | 2007-05-06 14:49:41 -0700 | [diff] [blame] | 2129 | page = virt_to_head_page(x); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2130 | s = page->slab; | 
|  | 2131 |  | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 2132 | slab_free(s, page, (void *)x, __builtin_return_address(0)); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2133 | } | 
|  | 2134 | EXPORT_SYMBOL(kfree); | 
|  | 2135 |  | 
|  | 2136 | /** | 
|  | 2137 | * krealloc - reallocate memory. The contents will remain unchanged. | 
|  | 2138 | * | 
|  | 2139 | * @p: object to reallocate memory for. | 
|  | 2140 | * @new_size: how many bytes of memory are required. | 
|  | 2141 | * @flags: the type of memory to allocate. | 
|  | 2142 | * | 
|  | 2143 | * The contents of the object pointed to are preserved up to the | 
|  | 2144 | * lesser of the new and old sizes.  If @p is %NULL, krealloc() | 
|  | 2145 | * behaves exactly like kmalloc().  If @size is 0 and @p is not a | 
|  | 2146 | * %NULL pointer, the object pointed to is freed. | 
|  | 2147 | */ | 
|  | 2148 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | 
|  | 2149 | { | 
|  | 2150 | struct kmem_cache *new_cache; | 
|  | 2151 | void *ret; | 
|  | 2152 | struct page *page; | 
|  | 2153 |  | 
|  | 2154 | if (unlikely(!p)) | 
|  | 2155 | return kmalloc(new_size, flags); | 
|  | 2156 |  | 
|  | 2157 | if (unlikely(!new_size)) { | 
|  | 2158 | kfree(p); | 
|  | 2159 | return NULL; | 
|  | 2160 | } | 
|  | 2161 |  | 
| Christoph Lameter | b49af68 | 2007-05-06 14:49:41 -0700 | [diff] [blame] | 2162 | page = virt_to_head_page(p); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2163 |  | 
|  | 2164 | new_cache = get_slab(new_size, flags); | 
|  | 2165 |  | 
|  | 2166 | /* | 
|  | 2167 | * If new size fits in the current cache, bail out. | 
|  | 2168 | */ | 
|  | 2169 | if (likely(page->slab == new_cache)) | 
|  | 2170 | return (void *)p; | 
|  | 2171 |  | 
|  | 2172 | ret = kmalloc(new_size, flags); | 
|  | 2173 | if (ret) { | 
|  | 2174 | memcpy(ret, p, min(new_size, ksize(p))); | 
|  | 2175 | kfree(p); | 
|  | 2176 | } | 
|  | 2177 | return ret; | 
|  | 2178 | } | 
|  | 2179 | EXPORT_SYMBOL(krealloc); | 
|  | 2180 |  | 
|  | 2181 | /******************************************************************** | 
|  | 2182 | *			Basic setup of slabs | 
|  | 2183 | *******************************************************************/ | 
|  | 2184 |  | 
|  | 2185 | void __init kmem_cache_init(void) | 
|  | 2186 | { | 
|  | 2187 | int i; | 
|  | 2188 |  | 
|  | 2189 | #ifdef CONFIG_NUMA | 
|  | 2190 | /* | 
|  | 2191 | * Must first have the slab cache available for the allocations of the | 
|  | 2192 | * struct kmalloc_cache_node's. There is special bootstrap code in | 
|  | 2193 | * kmem_cache_open for slab_state == DOWN. | 
|  | 2194 | */ | 
|  | 2195 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | 
|  | 2196 | sizeof(struct kmem_cache_node), GFP_KERNEL); | 
|  | 2197 | #endif | 
|  | 2198 |  | 
|  | 2199 | /* Able to allocate the per node structures */ | 
|  | 2200 | slab_state = PARTIAL; | 
|  | 2201 |  | 
|  | 2202 | /* Caches that are not of the two-to-the-power-of size */ | 
|  | 2203 | create_kmalloc_cache(&kmalloc_caches[1], | 
|  | 2204 | "kmalloc-96", 96, GFP_KERNEL); | 
|  | 2205 | create_kmalloc_cache(&kmalloc_caches[2], | 
|  | 2206 | "kmalloc-192", 192, GFP_KERNEL); | 
|  | 2207 |  | 
|  | 2208 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | 
|  | 2209 | create_kmalloc_cache(&kmalloc_caches[i], | 
|  | 2210 | "kmalloc", 1 << i, GFP_KERNEL); | 
|  | 2211 |  | 
|  | 2212 | slab_state = UP; | 
|  | 2213 |  | 
|  | 2214 | /* Provide the correct kmalloc names now that the caches are up */ | 
|  | 2215 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | 
|  | 2216 | kmalloc_caches[i]. name = | 
|  | 2217 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | 
|  | 2218 |  | 
|  | 2219 | #ifdef CONFIG_SMP | 
|  | 2220 | register_cpu_notifier(&slab_notifier); | 
|  | 2221 | #endif | 
|  | 2222 |  | 
|  | 2223 | if (nr_cpu_ids)	/* Remove when nr_cpu_ids is fixed upstream ! */ | 
|  | 2224 | kmem_size = offsetof(struct kmem_cache, cpu_slab) | 
|  | 2225 | + nr_cpu_ids * sizeof(struct page *); | 
|  | 2226 |  | 
|  | 2227 | printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | 
|  | 2228 | " Processors=%d, Nodes=%d\n", | 
|  | 2229 | KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES, | 
|  | 2230 | slub_min_order, slub_max_order, slub_min_objects, | 
|  | 2231 | nr_cpu_ids, nr_node_ids); | 
|  | 2232 | } | 
|  | 2233 |  | 
|  | 2234 | /* | 
|  | 2235 | * Find a mergeable slab cache | 
|  | 2236 | */ | 
|  | 2237 | static int slab_unmergeable(struct kmem_cache *s) | 
|  | 2238 | { | 
|  | 2239 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | 
|  | 2240 | return 1; | 
|  | 2241 |  | 
|  | 2242 | if (s->ctor || s->dtor) | 
|  | 2243 | return 1; | 
|  | 2244 |  | 
|  | 2245 | return 0; | 
|  | 2246 | } | 
|  | 2247 |  | 
|  | 2248 | static struct kmem_cache *find_mergeable(size_t size, | 
|  | 2249 | size_t align, unsigned long flags, | 
|  | 2250 | void (*ctor)(void *, struct kmem_cache *, unsigned long), | 
|  | 2251 | void (*dtor)(void *, struct kmem_cache *, unsigned long)) | 
|  | 2252 | { | 
|  | 2253 | struct list_head *h; | 
|  | 2254 |  | 
|  | 2255 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | 
|  | 2256 | return NULL; | 
|  | 2257 |  | 
|  | 2258 | if (ctor || dtor) | 
|  | 2259 | return NULL; | 
|  | 2260 |  | 
|  | 2261 | size = ALIGN(size, sizeof(void *)); | 
|  | 2262 | align = calculate_alignment(flags, align, size); | 
|  | 2263 | size = ALIGN(size, align); | 
|  | 2264 |  | 
|  | 2265 | list_for_each(h, &slab_caches) { | 
|  | 2266 | struct kmem_cache *s = | 
|  | 2267 | container_of(h, struct kmem_cache, list); | 
|  | 2268 |  | 
|  | 2269 | if (slab_unmergeable(s)) | 
|  | 2270 | continue; | 
|  | 2271 |  | 
|  | 2272 | if (size > s->size) | 
|  | 2273 | continue; | 
|  | 2274 |  | 
|  | 2275 | if (((flags | slub_debug) & SLUB_MERGE_SAME) != | 
|  | 2276 | (s->flags & SLUB_MERGE_SAME)) | 
|  | 2277 | continue; | 
|  | 2278 | /* | 
|  | 2279 | * Check if alignment is compatible. | 
|  | 2280 | * Courtesy of Adrian Drzewiecki | 
|  | 2281 | */ | 
|  | 2282 | if ((s->size & ~(align -1)) != s->size) | 
|  | 2283 | continue; | 
|  | 2284 |  | 
|  | 2285 | if (s->size - size >= sizeof(void *)) | 
|  | 2286 | continue; | 
|  | 2287 |  | 
|  | 2288 | return s; | 
|  | 2289 | } | 
|  | 2290 | return NULL; | 
|  | 2291 | } | 
|  | 2292 |  | 
|  | 2293 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 
|  | 2294 | size_t align, unsigned long flags, | 
|  | 2295 | void (*ctor)(void *, struct kmem_cache *, unsigned long), | 
|  | 2296 | void (*dtor)(void *, struct kmem_cache *, unsigned long)) | 
|  | 2297 | { | 
|  | 2298 | struct kmem_cache *s; | 
|  | 2299 |  | 
|  | 2300 | down_write(&slub_lock); | 
|  | 2301 | s = find_mergeable(size, align, flags, dtor, ctor); | 
|  | 2302 | if (s) { | 
|  | 2303 | s->refcount++; | 
|  | 2304 | /* | 
|  | 2305 | * Adjust the object sizes so that we clear | 
|  | 2306 | * the complete object on kzalloc. | 
|  | 2307 | */ | 
|  | 2308 | s->objsize = max(s->objsize, (int)size); | 
|  | 2309 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 
|  | 2310 | if (sysfs_slab_alias(s, name)) | 
|  | 2311 | goto err; | 
|  | 2312 | } else { | 
|  | 2313 | s = kmalloc(kmem_size, GFP_KERNEL); | 
|  | 2314 | if (s && kmem_cache_open(s, GFP_KERNEL, name, | 
|  | 2315 | size, align, flags, ctor, dtor)) { | 
|  | 2316 | if (sysfs_slab_add(s)) { | 
|  | 2317 | kfree(s); | 
|  | 2318 | goto err; | 
|  | 2319 | } | 
|  | 2320 | list_add(&s->list, &slab_caches); | 
|  | 2321 | } else | 
|  | 2322 | kfree(s); | 
|  | 2323 | } | 
|  | 2324 | up_write(&slub_lock); | 
|  | 2325 | return s; | 
|  | 2326 |  | 
|  | 2327 | err: | 
|  | 2328 | up_write(&slub_lock); | 
|  | 2329 | if (flags & SLAB_PANIC) | 
|  | 2330 | panic("Cannot create slabcache %s\n", name); | 
|  | 2331 | else | 
|  | 2332 | s = NULL; | 
|  | 2333 | return s; | 
|  | 2334 | } | 
|  | 2335 | EXPORT_SYMBOL(kmem_cache_create); | 
|  | 2336 |  | 
|  | 2337 | void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags) | 
|  | 2338 | { | 
|  | 2339 | void *x; | 
|  | 2340 |  | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 2341 | x = slab_alloc(s, flags, -1, __builtin_return_address(0)); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2342 | if (x) | 
|  | 2343 | memset(x, 0, s->objsize); | 
|  | 2344 | return x; | 
|  | 2345 | } | 
|  | 2346 | EXPORT_SYMBOL(kmem_cache_zalloc); | 
|  | 2347 |  | 
|  | 2348 | #ifdef CONFIG_SMP | 
|  | 2349 | static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu) | 
|  | 2350 | { | 
|  | 2351 | struct list_head *h; | 
|  | 2352 |  | 
|  | 2353 | down_read(&slub_lock); | 
|  | 2354 | list_for_each(h, &slab_caches) { | 
|  | 2355 | struct kmem_cache *s = | 
|  | 2356 | container_of(h, struct kmem_cache, list); | 
|  | 2357 |  | 
|  | 2358 | func(s, cpu); | 
|  | 2359 | } | 
|  | 2360 | up_read(&slub_lock); | 
|  | 2361 | } | 
|  | 2362 |  | 
|  | 2363 | /* | 
|  | 2364 | * Use the cpu notifier to insure that the slab are flushed | 
|  | 2365 | * when necessary. | 
|  | 2366 | */ | 
|  | 2367 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | 
|  | 2368 | unsigned long action, void *hcpu) | 
|  | 2369 | { | 
|  | 2370 | long cpu = (long)hcpu; | 
|  | 2371 |  | 
|  | 2372 | switch (action) { | 
|  | 2373 | case CPU_UP_CANCELED: | 
|  | 2374 | case CPU_DEAD: | 
|  | 2375 | for_all_slabs(__flush_cpu_slab, cpu); | 
|  | 2376 | break; | 
|  | 2377 | default: | 
|  | 2378 | break; | 
|  | 2379 | } | 
|  | 2380 | return NOTIFY_OK; | 
|  | 2381 | } | 
|  | 2382 |  | 
|  | 2383 | static struct notifier_block __cpuinitdata slab_notifier = | 
|  | 2384 | { &slab_cpuup_callback, NULL, 0 }; | 
|  | 2385 |  | 
|  | 2386 | #endif | 
|  | 2387 |  | 
|  | 2388 | /*************************************************************** | 
|  | 2389 | *	Compatiblility definitions | 
|  | 2390 | **************************************************************/ | 
|  | 2391 |  | 
|  | 2392 | int kmem_cache_shrink(struct kmem_cache *s) | 
|  | 2393 | { | 
|  | 2394 | flush_all(s); | 
|  | 2395 | return 0; | 
|  | 2396 | } | 
|  | 2397 | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  | 2398 |  | 
|  | 2399 | #ifdef CONFIG_NUMA | 
|  | 2400 |  | 
|  | 2401 | /***************************************************************** | 
|  | 2402 | * Generic reaper used to support the page allocator | 
|  | 2403 | * (the cpu slabs are reaped by a per slab workqueue). | 
|  | 2404 | * | 
|  | 2405 | * Maybe move this to the page allocator? | 
|  | 2406 | ****************************************************************/ | 
|  | 2407 |  | 
|  | 2408 | static DEFINE_PER_CPU(unsigned long, reap_node); | 
|  | 2409 |  | 
|  | 2410 | static void init_reap_node(int cpu) | 
|  | 2411 | { | 
|  | 2412 | int node; | 
|  | 2413 |  | 
|  | 2414 | node = next_node(cpu_to_node(cpu), node_online_map); | 
|  | 2415 | if (node == MAX_NUMNODES) | 
|  | 2416 | node = first_node(node_online_map); | 
|  | 2417 |  | 
|  | 2418 | __get_cpu_var(reap_node) = node; | 
|  | 2419 | } | 
|  | 2420 |  | 
|  | 2421 | static void next_reap_node(void) | 
|  | 2422 | { | 
|  | 2423 | int node = __get_cpu_var(reap_node); | 
|  | 2424 |  | 
|  | 2425 | /* | 
|  | 2426 | * Also drain per cpu pages on remote zones | 
|  | 2427 | */ | 
|  | 2428 | if (node != numa_node_id()) | 
|  | 2429 | drain_node_pages(node); | 
|  | 2430 |  | 
|  | 2431 | node = next_node(node, node_online_map); | 
|  | 2432 | if (unlikely(node >= MAX_NUMNODES)) | 
|  | 2433 | node = first_node(node_online_map); | 
|  | 2434 | __get_cpu_var(reap_node) = node; | 
|  | 2435 | } | 
|  | 2436 | #else | 
|  | 2437 | #define init_reap_node(cpu) do { } while (0) | 
|  | 2438 | #define next_reap_node(void) do { } while (0) | 
|  | 2439 | #endif | 
|  | 2440 |  | 
|  | 2441 | #define REAPTIMEOUT_CPUC	(2*HZ) | 
|  | 2442 |  | 
|  | 2443 | #ifdef CONFIG_SMP | 
|  | 2444 | static DEFINE_PER_CPU(struct delayed_work, reap_work); | 
|  | 2445 |  | 
|  | 2446 | static void cache_reap(struct work_struct *unused) | 
|  | 2447 | { | 
|  | 2448 | next_reap_node(); | 
|  | 2449 | refresh_cpu_vm_stats(smp_processor_id()); | 
|  | 2450 | schedule_delayed_work(&__get_cpu_var(reap_work), | 
|  | 2451 | REAPTIMEOUT_CPUC); | 
|  | 2452 | } | 
|  | 2453 |  | 
|  | 2454 | static void __devinit start_cpu_timer(int cpu) | 
|  | 2455 | { | 
|  | 2456 | struct delayed_work *reap_work = &per_cpu(reap_work, cpu); | 
|  | 2457 |  | 
|  | 2458 | /* | 
|  | 2459 | * When this gets called from do_initcalls via cpucache_init(), | 
|  | 2460 | * init_workqueues() has already run, so keventd will be setup | 
|  | 2461 | * at that time. | 
|  | 2462 | */ | 
|  | 2463 | if (keventd_up() && reap_work->work.func == NULL) { | 
|  | 2464 | init_reap_node(cpu); | 
|  | 2465 | INIT_DELAYED_WORK(reap_work, cache_reap); | 
|  | 2466 | schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); | 
|  | 2467 | } | 
|  | 2468 | } | 
|  | 2469 |  | 
|  | 2470 | static int __init cpucache_init(void) | 
|  | 2471 | { | 
|  | 2472 | int cpu; | 
|  | 2473 |  | 
|  | 2474 | /* | 
|  | 2475 | * Register the timers that drain pcp pages and update vm statistics | 
|  | 2476 | */ | 
|  | 2477 | for_each_online_cpu(cpu) | 
|  | 2478 | start_cpu_timer(cpu); | 
|  | 2479 | return 0; | 
|  | 2480 | } | 
|  | 2481 | __initcall(cpucache_init); | 
|  | 2482 | #endif | 
|  | 2483 |  | 
|  | 2484 | #ifdef SLUB_RESILIENCY_TEST | 
|  | 2485 | static unsigned long validate_slab_cache(struct kmem_cache *s); | 
|  | 2486 |  | 
|  | 2487 | static void resiliency_test(void) | 
|  | 2488 | { | 
|  | 2489 | u8 *p; | 
|  | 2490 |  | 
|  | 2491 | printk(KERN_ERR "SLUB resiliency testing\n"); | 
|  | 2492 | printk(KERN_ERR "-----------------------\n"); | 
|  | 2493 | printk(KERN_ERR "A. Corruption after allocation\n"); | 
|  | 2494 |  | 
|  | 2495 | p = kzalloc(16, GFP_KERNEL); | 
|  | 2496 | p[16] = 0x12; | 
|  | 2497 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | 
|  | 2498 | " 0x12->0x%p\n\n", p + 16); | 
|  | 2499 |  | 
|  | 2500 | validate_slab_cache(kmalloc_caches + 4); | 
|  | 2501 |  | 
|  | 2502 | /* Hmmm... The next two are dangerous */ | 
|  | 2503 | p = kzalloc(32, GFP_KERNEL); | 
|  | 2504 | p[32 + sizeof(void *)] = 0x34; | 
|  | 2505 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | 
|  | 2506 | " 0x34 -> -0x%p\n", p); | 
|  | 2507 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | 
|  | 2508 |  | 
|  | 2509 | validate_slab_cache(kmalloc_caches + 5); | 
|  | 2510 | p = kzalloc(64, GFP_KERNEL); | 
|  | 2511 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
|  | 2512 | *p = 0x56; | 
|  | 2513 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
|  | 2514 | p); | 
|  | 2515 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | 
|  | 2516 | validate_slab_cache(kmalloc_caches + 6); | 
|  | 2517 |  | 
|  | 2518 | printk(KERN_ERR "\nB. Corruption after free\n"); | 
|  | 2519 | p = kzalloc(128, GFP_KERNEL); | 
|  | 2520 | kfree(p); | 
|  | 2521 | *p = 0x78; | 
|  | 2522 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
|  | 2523 | validate_slab_cache(kmalloc_caches + 7); | 
|  | 2524 |  | 
|  | 2525 | p = kzalloc(256, GFP_KERNEL); | 
|  | 2526 | kfree(p); | 
|  | 2527 | p[50] = 0x9a; | 
|  | 2528 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | 
|  | 2529 | validate_slab_cache(kmalloc_caches + 8); | 
|  | 2530 |  | 
|  | 2531 | p = kzalloc(512, GFP_KERNEL); | 
|  | 2532 | kfree(p); | 
|  | 2533 | p[512] = 0xab; | 
|  | 2534 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
|  | 2535 | validate_slab_cache(kmalloc_caches + 9); | 
|  | 2536 | } | 
|  | 2537 | #else | 
|  | 2538 | static void resiliency_test(void) {}; | 
|  | 2539 | #endif | 
|  | 2540 |  | 
|  | 2541 | /* | 
|  | 2542 | * These are not as efficient as kmalloc for the non debug case. | 
|  | 2543 | * We do not have the page struct available so we have to touch one | 
|  | 2544 | * cacheline in struct kmem_cache to check slab flags. | 
|  | 2545 | */ | 
|  | 2546 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) | 
|  | 2547 | { | 
|  | 2548 | struct kmem_cache *s = get_slab(size, gfpflags); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2549 |  | 
|  | 2550 | if (!s) | 
|  | 2551 | return NULL; | 
|  | 2552 |  | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 2553 | return slab_alloc(s, gfpflags, -1, caller); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2554 | } | 
|  | 2555 |  | 
|  | 2556 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
|  | 2557 | int node, void *caller) | 
|  | 2558 | { | 
|  | 2559 | struct kmem_cache *s = get_slab(size, gfpflags); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2560 |  | 
|  | 2561 | if (!s) | 
|  | 2562 | return NULL; | 
|  | 2563 |  | 
| Christoph Lameter | 77c5e2d | 2007-05-06 14:49:42 -0700 | [diff] [blame] | 2564 | return slab_alloc(s, gfpflags, node, caller); | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2565 | } | 
|  | 2566 |  | 
|  | 2567 | #ifdef CONFIG_SYSFS | 
|  | 2568 |  | 
| Christoph Lameter | 53e15af | 2007-05-06 14:49:43 -0700 | [diff] [blame] | 2569 | static int validate_slab(struct kmem_cache *s, struct page *page) | 
|  | 2570 | { | 
|  | 2571 | void *p; | 
|  | 2572 | void *addr = page_address(page); | 
|  | 2573 | unsigned long map[BITS_TO_LONGS(s->objects)]; | 
|  | 2574 |  | 
|  | 2575 | if (!check_slab(s, page) || | 
|  | 2576 | !on_freelist(s, page, NULL)) | 
|  | 2577 | return 0; | 
|  | 2578 |  | 
|  | 2579 | /* Now we know that a valid freelist exists */ | 
|  | 2580 | bitmap_zero(map, s->objects); | 
|  | 2581 |  | 
|  | 2582 | for(p = page->freelist; p; p = get_freepointer(s, p)) { | 
|  | 2583 | set_bit((p - addr) / s->size, map); | 
|  | 2584 | if (!check_object(s, page, p, 0)) | 
|  | 2585 | return 0; | 
|  | 2586 | } | 
|  | 2587 |  | 
|  | 2588 | for(p = addr; p < addr + s->objects * s->size; p += s->size) | 
|  | 2589 | if (!test_bit((p - addr) / s->size, map)) | 
|  | 2590 | if (!check_object(s, page, p, 1)) | 
|  | 2591 | return 0; | 
|  | 2592 | return 1; | 
|  | 2593 | } | 
|  | 2594 |  | 
|  | 2595 | static void validate_slab_slab(struct kmem_cache *s, struct page *page) | 
|  | 2596 | { | 
|  | 2597 | if (slab_trylock(page)) { | 
|  | 2598 | validate_slab(s, page); | 
|  | 2599 | slab_unlock(page); | 
|  | 2600 | } else | 
|  | 2601 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | 
|  | 2602 | s->name, page); | 
|  | 2603 |  | 
|  | 2604 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | 
|  | 2605 | if (!PageError(page)) | 
|  | 2606 | printk(KERN_ERR "SLUB %s: PageError not set " | 
|  | 2607 | "on slab 0x%p\n", s->name, page); | 
|  | 2608 | } else { | 
|  | 2609 | if (PageError(page)) | 
|  | 2610 | printk(KERN_ERR "SLUB %s: PageError set on " | 
|  | 2611 | "slab 0x%p\n", s->name, page); | 
|  | 2612 | } | 
|  | 2613 | } | 
|  | 2614 |  | 
|  | 2615 | static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n) | 
|  | 2616 | { | 
|  | 2617 | unsigned long count = 0; | 
|  | 2618 | struct page *page; | 
|  | 2619 | unsigned long flags; | 
|  | 2620 |  | 
|  | 2621 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 2622 |  | 
|  | 2623 | list_for_each_entry(page, &n->partial, lru) { | 
|  | 2624 | validate_slab_slab(s, page); | 
|  | 2625 | count++; | 
|  | 2626 | } | 
|  | 2627 | if (count != n->nr_partial) | 
|  | 2628 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | 
|  | 2629 | "counter=%ld\n", s->name, count, n->nr_partial); | 
|  | 2630 |  | 
|  | 2631 | if (!(s->flags & SLAB_STORE_USER)) | 
|  | 2632 | goto out; | 
|  | 2633 |  | 
|  | 2634 | list_for_each_entry(page, &n->full, lru) { | 
|  | 2635 | validate_slab_slab(s, page); | 
|  | 2636 | count++; | 
|  | 2637 | } | 
|  | 2638 | if (count != atomic_long_read(&n->nr_slabs)) | 
|  | 2639 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | 
|  | 2640 | "counter=%ld\n", s->name, count, | 
|  | 2641 | atomic_long_read(&n->nr_slabs)); | 
|  | 2642 |  | 
|  | 2643 | out: | 
|  | 2644 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 2645 | return count; | 
|  | 2646 | } | 
|  | 2647 |  | 
|  | 2648 | static unsigned long validate_slab_cache(struct kmem_cache *s) | 
|  | 2649 | { | 
|  | 2650 | int node; | 
|  | 2651 | unsigned long count = 0; | 
|  | 2652 |  | 
|  | 2653 | flush_all(s); | 
|  | 2654 | for_each_online_node(node) { | 
|  | 2655 | struct kmem_cache_node *n = get_node(s, node); | 
|  | 2656 |  | 
|  | 2657 | count += validate_slab_node(s, n); | 
|  | 2658 | } | 
|  | 2659 | return count; | 
|  | 2660 | } | 
|  | 2661 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2662 | static unsigned long count_partial(struct kmem_cache_node *n) | 
|  | 2663 | { | 
|  | 2664 | unsigned long flags; | 
|  | 2665 | unsigned long x = 0; | 
|  | 2666 | struct page *page; | 
|  | 2667 |  | 
|  | 2668 | spin_lock_irqsave(&n->list_lock, flags); | 
|  | 2669 | list_for_each_entry(page, &n->partial, lru) | 
|  | 2670 | x += page->inuse; | 
|  | 2671 | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | 2672 | return x; | 
|  | 2673 | } | 
|  | 2674 |  | 
|  | 2675 | enum slab_stat_type { | 
|  | 2676 | SL_FULL, | 
|  | 2677 | SL_PARTIAL, | 
|  | 2678 | SL_CPU, | 
|  | 2679 | SL_OBJECTS | 
|  | 2680 | }; | 
|  | 2681 |  | 
|  | 2682 | #define SO_FULL		(1 << SL_FULL) | 
|  | 2683 | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
|  | 2684 | #define SO_CPU		(1 << SL_CPU) | 
|  | 2685 | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
|  | 2686 |  | 
|  | 2687 | static unsigned long slab_objects(struct kmem_cache *s, | 
|  | 2688 | char *buf, unsigned long flags) | 
|  | 2689 | { | 
|  | 2690 | unsigned long total = 0; | 
|  | 2691 | int cpu; | 
|  | 2692 | int node; | 
|  | 2693 | int x; | 
|  | 2694 | unsigned long *nodes; | 
|  | 2695 | unsigned long *per_cpu; | 
|  | 2696 |  | 
|  | 2697 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | 
|  | 2698 | per_cpu = nodes + nr_node_ids; | 
|  | 2699 |  | 
|  | 2700 | for_each_possible_cpu(cpu) { | 
|  | 2701 | struct page *page = s->cpu_slab[cpu]; | 
|  | 2702 | int node; | 
|  | 2703 |  | 
|  | 2704 | if (page) { | 
|  | 2705 | node = page_to_nid(page); | 
|  | 2706 | if (flags & SO_CPU) { | 
|  | 2707 | int x = 0; | 
|  | 2708 |  | 
|  | 2709 | if (flags & SO_OBJECTS) | 
|  | 2710 | x = page->inuse; | 
|  | 2711 | else | 
|  | 2712 | x = 1; | 
|  | 2713 | total += x; | 
|  | 2714 | nodes[node] += x; | 
|  | 2715 | } | 
|  | 2716 | per_cpu[node]++; | 
|  | 2717 | } | 
|  | 2718 | } | 
|  | 2719 |  | 
|  | 2720 | for_each_online_node(node) { | 
|  | 2721 | struct kmem_cache_node *n = get_node(s, node); | 
|  | 2722 |  | 
|  | 2723 | if (flags & SO_PARTIAL) { | 
|  | 2724 | if (flags & SO_OBJECTS) | 
|  | 2725 | x = count_partial(n); | 
|  | 2726 | else | 
|  | 2727 | x = n->nr_partial; | 
|  | 2728 | total += x; | 
|  | 2729 | nodes[node] += x; | 
|  | 2730 | } | 
|  | 2731 |  | 
|  | 2732 | if (flags & SO_FULL) { | 
|  | 2733 | int full_slabs = atomic_read(&n->nr_slabs) | 
|  | 2734 | - per_cpu[node] | 
|  | 2735 | - n->nr_partial; | 
|  | 2736 |  | 
|  | 2737 | if (flags & SO_OBJECTS) | 
|  | 2738 | x = full_slabs * s->objects; | 
|  | 2739 | else | 
|  | 2740 | x = full_slabs; | 
|  | 2741 | total += x; | 
|  | 2742 | nodes[node] += x; | 
|  | 2743 | } | 
|  | 2744 | } | 
|  | 2745 |  | 
|  | 2746 | x = sprintf(buf, "%lu", total); | 
|  | 2747 | #ifdef CONFIG_NUMA | 
|  | 2748 | for_each_online_node(node) | 
|  | 2749 | if (nodes[node]) | 
|  | 2750 | x += sprintf(buf + x, " N%d=%lu", | 
|  | 2751 | node, nodes[node]); | 
|  | 2752 | #endif | 
|  | 2753 | kfree(nodes); | 
|  | 2754 | return x + sprintf(buf + x, "\n"); | 
|  | 2755 | } | 
|  | 2756 |  | 
|  | 2757 | static int any_slab_objects(struct kmem_cache *s) | 
|  | 2758 | { | 
|  | 2759 | int node; | 
|  | 2760 | int cpu; | 
|  | 2761 |  | 
|  | 2762 | for_each_possible_cpu(cpu) | 
|  | 2763 | if (s->cpu_slab[cpu]) | 
|  | 2764 | return 1; | 
|  | 2765 |  | 
|  | 2766 | for_each_node(node) { | 
|  | 2767 | struct kmem_cache_node *n = get_node(s, node); | 
|  | 2768 |  | 
|  | 2769 | if (n->nr_partial || atomic_read(&n->nr_slabs)) | 
|  | 2770 | return 1; | 
|  | 2771 | } | 
|  | 2772 | return 0; | 
|  | 2773 | } | 
|  | 2774 |  | 
|  | 2775 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
|  | 2776 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | 
|  | 2777 |  | 
|  | 2778 | struct slab_attribute { | 
|  | 2779 | struct attribute attr; | 
|  | 2780 | ssize_t (*show)(struct kmem_cache *s, char *buf); | 
|  | 2781 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
|  | 2782 | }; | 
|  | 2783 |  | 
|  | 2784 | #define SLAB_ATTR_RO(_name) \ | 
|  | 2785 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | 
|  | 2786 |  | 
|  | 2787 | #define SLAB_ATTR(_name) \ | 
|  | 2788 | static struct slab_attribute _name##_attr =  \ | 
|  | 2789 | __ATTR(_name, 0644, _name##_show, _name##_store) | 
|  | 2790 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 2791 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
|  | 2792 | { | 
|  | 2793 | return sprintf(buf, "%d\n", s->size); | 
|  | 2794 | } | 
|  | 2795 | SLAB_ATTR_RO(slab_size); | 
|  | 2796 |  | 
|  | 2797 | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
|  | 2798 | { | 
|  | 2799 | return sprintf(buf, "%d\n", s->align); | 
|  | 2800 | } | 
|  | 2801 | SLAB_ATTR_RO(align); | 
|  | 2802 |  | 
|  | 2803 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
|  | 2804 | { | 
|  | 2805 | return sprintf(buf, "%d\n", s->objsize); | 
|  | 2806 | } | 
|  | 2807 | SLAB_ATTR_RO(object_size); | 
|  | 2808 |  | 
|  | 2809 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
|  | 2810 | { | 
|  | 2811 | return sprintf(buf, "%d\n", s->objects); | 
|  | 2812 | } | 
|  | 2813 | SLAB_ATTR_RO(objs_per_slab); | 
|  | 2814 |  | 
|  | 2815 | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
|  | 2816 | { | 
|  | 2817 | return sprintf(buf, "%d\n", s->order); | 
|  | 2818 | } | 
|  | 2819 | SLAB_ATTR_RO(order); | 
|  | 2820 |  | 
|  | 2821 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
|  | 2822 | { | 
|  | 2823 | if (s->ctor) { | 
|  | 2824 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | 
|  | 2825 |  | 
|  | 2826 | return n + sprintf(buf + n, "\n"); | 
|  | 2827 | } | 
|  | 2828 | return 0; | 
|  | 2829 | } | 
|  | 2830 | SLAB_ATTR_RO(ctor); | 
|  | 2831 |  | 
|  | 2832 | static ssize_t dtor_show(struct kmem_cache *s, char *buf) | 
|  | 2833 | { | 
|  | 2834 | if (s->dtor) { | 
|  | 2835 | int n = sprint_symbol(buf, (unsigned long)s->dtor); | 
|  | 2836 |  | 
|  | 2837 | return n + sprintf(buf + n, "\n"); | 
|  | 2838 | } | 
|  | 2839 | return 0; | 
|  | 2840 | } | 
|  | 2841 | SLAB_ATTR_RO(dtor); | 
|  | 2842 |  | 
|  | 2843 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
|  | 2844 | { | 
|  | 2845 | return sprintf(buf, "%d\n", s->refcount - 1); | 
|  | 2846 | } | 
|  | 2847 | SLAB_ATTR_RO(aliases); | 
|  | 2848 |  | 
|  | 2849 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
|  | 2850 | { | 
|  | 2851 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); | 
|  | 2852 | } | 
|  | 2853 | SLAB_ATTR_RO(slabs); | 
|  | 2854 |  | 
|  | 2855 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
|  | 2856 | { | 
|  | 2857 | return slab_objects(s, buf, SO_PARTIAL); | 
|  | 2858 | } | 
|  | 2859 | SLAB_ATTR_RO(partial); | 
|  | 2860 |  | 
|  | 2861 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
|  | 2862 | { | 
|  | 2863 | return slab_objects(s, buf, SO_CPU); | 
|  | 2864 | } | 
|  | 2865 | SLAB_ATTR_RO(cpu_slabs); | 
|  | 2866 |  | 
|  | 2867 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
|  | 2868 | { | 
|  | 2869 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); | 
|  | 2870 | } | 
|  | 2871 | SLAB_ATTR_RO(objects); | 
|  | 2872 |  | 
|  | 2873 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
|  | 2874 | { | 
|  | 2875 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | 
|  | 2876 | } | 
|  | 2877 |  | 
|  | 2878 | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
|  | 2879 | const char *buf, size_t length) | 
|  | 2880 | { | 
|  | 2881 | s->flags &= ~SLAB_DEBUG_FREE; | 
|  | 2882 | if (buf[0] == '1') | 
|  | 2883 | s->flags |= SLAB_DEBUG_FREE; | 
|  | 2884 | return length; | 
|  | 2885 | } | 
|  | 2886 | SLAB_ATTR(sanity_checks); | 
|  | 2887 |  | 
|  | 2888 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
|  | 2889 | { | 
|  | 2890 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
|  | 2891 | } | 
|  | 2892 |  | 
|  | 2893 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
|  | 2894 | size_t length) | 
|  | 2895 | { | 
|  | 2896 | s->flags &= ~SLAB_TRACE; | 
|  | 2897 | if (buf[0] == '1') | 
|  | 2898 | s->flags |= SLAB_TRACE; | 
|  | 2899 | return length; | 
|  | 2900 | } | 
|  | 2901 | SLAB_ATTR(trace); | 
|  | 2902 |  | 
|  | 2903 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
|  | 2904 | { | 
|  | 2905 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
|  | 2906 | } | 
|  | 2907 |  | 
|  | 2908 | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
|  | 2909 | const char *buf, size_t length) | 
|  | 2910 | { | 
|  | 2911 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
|  | 2912 | if (buf[0] == '1') | 
|  | 2913 | s->flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | 2914 | return length; | 
|  | 2915 | } | 
|  | 2916 | SLAB_ATTR(reclaim_account); | 
|  | 2917 |  | 
|  | 2918 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
|  | 2919 | { | 
|  | 2920 | return sprintf(buf, "%d\n", !!(s->flags & | 
|  | 2921 | (SLAB_HWCACHE_ALIGN|SLAB_MUST_HWCACHE_ALIGN))); | 
|  | 2922 | } | 
|  | 2923 | SLAB_ATTR_RO(hwcache_align); | 
|  | 2924 |  | 
|  | 2925 | #ifdef CONFIG_ZONE_DMA | 
|  | 2926 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
|  | 2927 | { | 
|  | 2928 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
|  | 2929 | } | 
|  | 2930 | SLAB_ATTR_RO(cache_dma); | 
|  | 2931 | #endif | 
|  | 2932 |  | 
|  | 2933 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
|  | 2934 | { | 
|  | 2935 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | 
|  | 2936 | } | 
|  | 2937 | SLAB_ATTR_RO(destroy_by_rcu); | 
|  | 2938 |  | 
|  | 2939 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
|  | 2940 | { | 
|  | 2941 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
|  | 2942 | } | 
|  | 2943 |  | 
|  | 2944 | static ssize_t red_zone_store(struct kmem_cache *s, | 
|  | 2945 | const char *buf, size_t length) | 
|  | 2946 | { | 
|  | 2947 | if (any_slab_objects(s)) | 
|  | 2948 | return -EBUSY; | 
|  | 2949 |  | 
|  | 2950 | s->flags &= ~SLAB_RED_ZONE; | 
|  | 2951 | if (buf[0] == '1') | 
|  | 2952 | s->flags |= SLAB_RED_ZONE; | 
|  | 2953 | calculate_sizes(s); | 
|  | 2954 | return length; | 
|  | 2955 | } | 
|  | 2956 | SLAB_ATTR(red_zone); | 
|  | 2957 |  | 
|  | 2958 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
|  | 2959 | { | 
|  | 2960 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
|  | 2961 | } | 
|  | 2962 |  | 
|  | 2963 | static ssize_t poison_store(struct kmem_cache *s, | 
|  | 2964 | const char *buf, size_t length) | 
|  | 2965 | { | 
|  | 2966 | if (any_slab_objects(s)) | 
|  | 2967 | return -EBUSY; | 
|  | 2968 |  | 
|  | 2969 | s->flags &= ~SLAB_POISON; | 
|  | 2970 | if (buf[0] == '1') | 
|  | 2971 | s->flags |= SLAB_POISON; | 
|  | 2972 | calculate_sizes(s); | 
|  | 2973 | return length; | 
|  | 2974 | } | 
|  | 2975 | SLAB_ATTR(poison); | 
|  | 2976 |  | 
|  | 2977 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
|  | 2978 | { | 
|  | 2979 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
|  | 2980 | } | 
|  | 2981 |  | 
|  | 2982 | static ssize_t store_user_store(struct kmem_cache *s, | 
|  | 2983 | const char *buf, size_t length) | 
|  | 2984 | { | 
|  | 2985 | if (any_slab_objects(s)) | 
|  | 2986 | return -EBUSY; | 
|  | 2987 |  | 
|  | 2988 | s->flags &= ~SLAB_STORE_USER; | 
|  | 2989 | if (buf[0] == '1') | 
|  | 2990 | s->flags |= SLAB_STORE_USER; | 
|  | 2991 | calculate_sizes(s); | 
|  | 2992 | return length; | 
|  | 2993 | } | 
|  | 2994 | SLAB_ATTR(store_user); | 
|  | 2995 |  | 
| Christoph Lameter | 53e15af | 2007-05-06 14:49:43 -0700 | [diff] [blame] | 2996 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
|  | 2997 | { | 
|  | 2998 | return 0; | 
|  | 2999 | } | 
|  | 3000 |  | 
|  | 3001 | static ssize_t validate_store(struct kmem_cache *s, | 
|  | 3002 | const char *buf, size_t length) | 
|  | 3003 | { | 
|  | 3004 | if (buf[0] == '1') | 
|  | 3005 | validate_slab_cache(s); | 
|  | 3006 | else | 
|  | 3007 | return -EINVAL; | 
|  | 3008 | return length; | 
|  | 3009 | } | 
|  | 3010 | SLAB_ATTR(validate); | 
|  | 3011 |  | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 3012 | #ifdef CONFIG_NUMA | 
|  | 3013 | static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) | 
|  | 3014 | { | 
|  | 3015 | return sprintf(buf, "%d\n", s->defrag_ratio / 10); | 
|  | 3016 | } | 
|  | 3017 |  | 
|  | 3018 | static ssize_t defrag_ratio_store(struct kmem_cache *s, | 
|  | 3019 | const char *buf, size_t length) | 
|  | 3020 | { | 
|  | 3021 | int n = simple_strtoul(buf, NULL, 10); | 
|  | 3022 |  | 
|  | 3023 | if (n < 100) | 
|  | 3024 | s->defrag_ratio = n * 10; | 
|  | 3025 | return length; | 
|  | 3026 | } | 
|  | 3027 | SLAB_ATTR(defrag_ratio); | 
|  | 3028 | #endif | 
|  | 3029 |  | 
|  | 3030 | static struct attribute * slab_attrs[] = { | 
|  | 3031 | &slab_size_attr.attr, | 
|  | 3032 | &object_size_attr.attr, | 
|  | 3033 | &objs_per_slab_attr.attr, | 
|  | 3034 | &order_attr.attr, | 
|  | 3035 | &objects_attr.attr, | 
|  | 3036 | &slabs_attr.attr, | 
|  | 3037 | &partial_attr.attr, | 
|  | 3038 | &cpu_slabs_attr.attr, | 
|  | 3039 | &ctor_attr.attr, | 
|  | 3040 | &dtor_attr.attr, | 
|  | 3041 | &aliases_attr.attr, | 
|  | 3042 | &align_attr.attr, | 
|  | 3043 | &sanity_checks_attr.attr, | 
|  | 3044 | &trace_attr.attr, | 
|  | 3045 | &hwcache_align_attr.attr, | 
|  | 3046 | &reclaim_account_attr.attr, | 
|  | 3047 | &destroy_by_rcu_attr.attr, | 
|  | 3048 | &red_zone_attr.attr, | 
|  | 3049 | &poison_attr.attr, | 
|  | 3050 | &store_user_attr.attr, | 
| Christoph Lameter | 53e15af | 2007-05-06 14:49:43 -0700 | [diff] [blame] | 3051 | &validate_attr.attr, | 
| Christoph Lameter | 81819f0 | 2007-05-06 14:49:36 -0700 | [diff] [blame] | 3052 | #ifdef CONFIG_ZONE_DMA | 
|  | 3053 | &cache_dma_attr.attr, | 
|  | 3054 | #endif | 
|  | 3055 | #ifdef CONFIG_NUMA | 
|  | 3056 | &defrag_ratio_attr.attr, | 
|  | 3057 | #endif | 
|  | 3058 | NULL | 
|  | 3059 | }; | 
|  | 3060 |  | 
|  | 3061 | static struct attribute_group slab_attr_group = { | 
|  | 3062 | .attrs = slab_attrs, | 
|  | 3063 | }; | 
|  | 3064 |  | 
|  | 3065 | static ssize_t slab_attr_show(struct kobject *kobj, | 
|  | 3066 | struct attribute *attr, | 
|  | 3067 | char *buf) | 
|  | 3068 | { | 
|  | 3069 | struct slab_attribute *attribute; | 
|  | 3070 | struct kmem_cache *s; | 
|  | 3071 | int err; | 
|  | 3072 |  | 
|  | 3073 | attribute = to_slab_attr(attr); | 
|  | 3074 | s = to_slab(kobj); | 
|  | 3075 |  | 
|  | 3076 | if (!attribute->show) | 
|  | 3077 | return -EIO; | 
|  | 3078 |  | 
|  | 3079 | err = attribute->show(s, buf); | 
|  | 3080 |  | 
|  | 3081 | return err; | 
|  | 3082 | } | 
|  | 3083 |  | 
|  | 3084 | static ssize_t slab_attr_store(struct kobject *kobj, | 
|  | 3085 | struct attribute *attr, | 
|  | 3086 | const char *buf, size_t len) | 
|  | 3087 | { | 
|  | 3088 | struct slab_attribute *attribute; | 
|  | 3089 | struct kmem_cache *s; | 
|  | 3090 | int err; | 
|  | 3091 |  | 
|  | 3092 | attribute = to_slab_attr(attr); | 
|  | 3093 | s = to_slab(kobj); | 
|  | 3094 |  | 
|  | 3095 | if (!attribute->store) | 
|  | 3096 | return -EIO; | 
|  | 3097 |  | 
|  | 3098 | err = attribute->store(s, buf, len); | 
|  | 3099 |  | 
|  | 3100 | return err; | 
|  | 3101 | } | 
|  | 3102 |  | 
|  | 3103 | static struct sysfs_ops slab_sysfs_ops = { | 
|  | 3104 | .show = slab_attr_show, | 
|  | 3105 | .store = slab_attr_store, | 
|  | 3106 | }; | 
|  | 3107 |  | 
|  | 3108 | static struct kobj_type slab_ktype = { | 
|  | 3109 | .sysfs_ops = &slab_sysfs_ops, | 
|  | 3110 | }; | 
|  | 3111 |  | 
|  | 3112 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
|  | 3113 | { | 
|  | 3114 | struct kobj_type *ktype = get_ktype(kobj); | 
|  | 3115 |  | 
|  | 3116 | if (ktype == &slab_ktype) | 
|  | 3117 | return 1; | 
|  | 3118 | return 0; | 
|  | 3119 | } | 
|  | 3120 |  | 
|  | 3121 | static struct kset_uevent_ops slab_uevent_ops = { | 
|  | 3122 | .filter = uevent_filter, | 
|  | 3123 | }; | 
|  | 3124 |  | 
|  | 3125 | decl_subsys(slab, &slab_ktype, &slab_uevent_ops); | 
|  | 3126 |  | 
|  | 3127 | #define ID_STR_LENGTH 64 | 
|  | 3128 |  | 
|  | 3129 | /* Create a unique string id for a slab cache: | 
|  | 3130 | * format | 
|  | 3131 | * :[flags-]size:[memory address of kmemcache] | 
|  | 3132 | */ | 
|  | 3133 | static char *create_unique_id(struct kmem_cache *s) | 
|  | 3134 | { | 
|  | 3135 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
|  | 3136 | char *p = name; | 
|  | 3137 |  | 
|  | 3138 | BUG_ON(!name); | 
|  | 3139 |  | 
|  | 3140 | *p++ = ':'; | 
|  | 3141 | /* | 
|  | 3142 | * First flags affecting slabcache operations. We will only | 
|  | 3143 | * get here for aliasable slabs so we do not need to support | 
|  | 3144 | * too many flags. The flags here must cover all flags that | 
|  | 3145 | * are matched during merging to guarantee that the id is | 
|  | 3146 | * unique. | 
|  | 3147 | */ | 
|  | 3148 | if (s->flags & SLAB_CACHE_DMA) | 
|  | 3149 | *p++ = 'd'; | 
|  | 3150 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | 3151 | *p++ = 'a'; | 
|  | 3152 | if (s->flags & SLAB_DEBUG_FREE) | 
|  | 3153 | *p++ = 'F'; | 
|  | 3154 | if (p != name + 1) | 
|  | 3155 | *p++ = '-'; | 
|  | 3156 | p += sprintf(p, "%07d", s->size); | 
|  | 3157 | BUG_ON(p > name + ID_STR_LENGTH - 1); | 
|  | 3158 | return name; | 
|  | 3159 | } | 
|  | 3160 |  | 
|  | 3161 | static int sysfs_slab_add(struct kmem_cache *s) | 
|  | 3162 | { | 
|  | 3163 | int err; | 
|  | 3164 | const char *name; | 
|  | 3165 | int unmergeable; | 
|  | 3166 |  | 
|  | 3167 | if (slab_state < SYSFS) | 
|  | 3168 | /* Defer until later */ | 
|  | 3169 | return 0; | 
|  | 3170 |  | 
|  | 3171 | unmergeable = slab_unmergeable(s); | 
|  | 3172 | if (unmergeable) { | 
|  | 3173 | /* | 
|  | 3174 | * Slabcache can never be merged so we can use the name proper. | 
|  | 3175 | * This is typically the case for debug situations. In that | 
|  | 3176 | * case we can catch duplicate names easily. | 
|  | 3177 | */ | 
|  | 3178 | sysfs_remove_link(&slab_subsys.kset.kobj, s->name); | 
|  | 3179 | name = s->name; | 
|  | 3180 | } else { | 
|  | 3181 | /* | 
|  | 3182 | * Create a unique name for the slab as a target | 
|  | 3183 | * for the symlinks. | 
|  | 3184 | */ | 
|  | 3185 | name = create_unique_id(s); | 
|  | 3186 | } | 
|  | 3187 |  | 
|  | 3188 | kobj_set_kset_s(s, slab_subsys); | 
|  | 3189 | kobject_set_name(&s->kobj, name); | 
|  | 3190 | kobject_init(&s->kobj); | 
|  | 3191 | err = kobject_add(&s->kobj); | 
|  | 3192 | if (err) | 
|  | 3193 | return err; | 
|  | 3194 |  | 
|  | 3195 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
|  | 3196 | if (err) | 
|  | 3197 | return err; | 
|  | 3198 | kobject_uevent(&s->kobj, KOBJ_ADD); | 
|  | 3199 | if (!unmergeable) { | 
|  | 3200 | /* Setup first alias */ | 
|  | 3201 | sysfs_slab_alias(s, s->name); | 
|  | 3202 | kfree(name); | 
|  | 3203 | } | 
|  | 3204 | return 0; | 
|  | 3205 | } | 
|  | 3206 |  | 
|  | 3207 | static void sysfs_slab_remove(struct kmem_cache *s) | 
|  | 3208 | { | 
|  | 3209 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
|  | 3210 | kobject_del(&s->kobj); | 
|  | 3211 | } | 
|  | 3212 |  | 
|  | 3213 | /* | 
|  | 3214 | * Need to buffer aliases during bootup until sysfs becomes | 
|  | 3215 | * available lest we loose that information. | 
|  | 3216 | */ | 
|  | 3217 | struct saved_alias { | 
|  | 3218 | struct kmem_cache *s; | 
|  | 3219 | const char *name; | 
|  | 3220 | struct saved_alias *next; | 
|  | 3221 | }; | 
|  | 3222 |  | 
|  | 3223 | struct saved_alias *alias_list; | 
|  | 3224 |  | 
|  | 3225 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
|  | 3226 | { | 
|  | 3227 | struct saved_alias *al; | 
|  | 3228 |  | 
|  | 3229 | if (slab_state == SYSFS) { | 
|  | 3230 | /* | 
|  | 3231 | * If we have a leftover link then remove it. | 
|  | 3232 | */ | 
|  | 3233 | sysfs_remove_link(&slab_subsys.kset.kobj, name); | 
|  | 3234 | return sysfs_create_link(&slab_subsys.kset.kobj, | 
|  | 3235 | &s->kobj, name); | 
|  | 3236 | } | 
|  | 3237 |  | 
|  | 3238 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
|  | 3239 | if (!al) | 
|  | 3240 | return -ENOMEM; | 
|  | 3241 |  | 
|  | 3242 | al->s = s; | 
|  | 3243 | al->name = name; | 
|  | 3244 | al->next = alias_list; | 
|  | 3245 | alias_list = al; | 
|  | 3246 | return 0; | 
|  | 3247 | } | 
|  | 3248 |  | 
|  | 3249 | static int __init slab_sysfs_init(void) | 
|  | 3250 | { | 
|  | 3251 | int err; | 
|  | 3252 |  | 
|  | 3253 | err = subsystem_register(&slab_subsys); | 
|  | 3254 | if (err) { | 
|  | 3255 | printk(KERN_ERR "Cannot register slab subsystem.\n"); | 
|  | 3256 | return -ENOSYS; | 
|  | 3257 | } | 
|  | 3258 |  | 
|  | 3259 | finish_bootstrap(); | 
|  | 3260 |  | 
|  | 3261 | while (alias_list) { | 
|  | 3262 | struct saved_alias *al = alias_list; | 
|  | 3263 |  | 
|  | 3264 | alias_list = alias_list->next; | 
|  | 3265 | err = sysfs_slab_alias(al->s, al->name); | 
|  | 3266 | BUG_ON(err); | 
|  | 3267 | kfree(al); | 
|  | 3268 | } | 
|  | 3269 |  | 
|  | 3270 | resiliency_test(); | 
|  | 3271 | return 0; | 
|  | 3272 | } | 
|  | 3273 |  | 
|  | 3274 | __initcall(slab_sysfs_init); | 
|  | 3275 | #else | 
|  | 3276 | __initcall(finish_bootstrap); | 
|  | 3277 | #endif |