blob: d1bcd8226cb102dbedd26f8f48a16153649d0e91 [file] [log] [blame]
Catalin Marinasdcfdae02011-11-22 17:30:29 +00001/*
2 * arch/arm/include/asm/pgtable-3level.h
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef _ASM_PGTABLE_3LEVEL_H
21#define _ASM_PGTABLE_3LEVEL_H
22
23/*
24 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
25 * 8 bytes each, occupying a 4K page. The first level table covers a range of
26 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
27 * address range, only 4 entries in the PGD are used.
28 *
29 * There are enough spare bits in a page table entry for the kernel specific
30 * state.
31 */
32#define PTRS_PER_PTE 512
33#define PTRS_PER_PMD 512
34#define PTRS_PER_PGD 4
35
36#define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
37#define PTE_HWTABLE_OFF (0)
38#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
39
40/*
41 * PGDIR_SHIFT determines the size a top-level page table entry can map.
42 */
43#define PGDIR_SHIFT 30
44
45/*
46 * PMD_SHIFT determines the size a middle-level page table entry can map.
47 */
48#define PMD_SHIFT 21
49
50#define PMD_SIZE (1UL << PMD_SHIFT)
51#define PMD_MASK (~(PMD_SIZE-1))
52#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
53#define PGDIR_MASK (~(PGDIR_SIZE-1))
54
55/*
56 * section address mask and size definitions.
57 */
58#define SECTION_SHIFT 21
59#define SECTION_SIZE (1UL << SECTION_SHIFT)
60#define SECTION_MASK (~(SECTION_SIZE-1))
61
62#define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
63
64/*
Catalin Marinas1355e2a2012-07-25 14:32:38 +010065 * Hugetlb definitions.
66 */
67#define HPAGE_SHIFT PMD_SHIFT
68#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
69#define HPAGE_MASK (~(HPAGE_SIZE - 1))
70#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
71
72/*
Catalin Marinasdcfdae02011-11-22 17:30:29 +000073 * "Linux" PTE definitions for LPAE.
74 *
75 * These bits overlap with the hardware bits but the naming is preserved for
76 * consistency with the classic page table format.
77 */
Will Deacondbf62d52012-07-19 11:51:05 +010078#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
79#define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
Catalin Marinasdcfdae02011-11-22 17:30:29 +000080#define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
Catalin Marinasdcfdae02011-11-22 17:30:29 +000081#define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
82#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7) /* AP[2] */
83#define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
84#define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
85#define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
86#define L_PTE_DIRTY (_AT(pteval_t, 1) << 55) /* unused */
87#define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56) /* unused */
Will Deacon26ffd0d2012-09-01 05:22:12 +010088#define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
Catalin Marinasdcfdae02011-11-22 17:30:29 +000089
90/*
91 * To be used in assembly code with the upper page attributes.
92 */
93#define L_PTE_XN_HIGH (1 << (54 - 32))
94#define L_PTE_DIRTY_HIGH (1 << (55 - 32))
95
96/*
97 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
98 */
99#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
100#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
101#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
102#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
103#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
104#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
105#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
106#define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
107#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
108#define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
109
Catalin Marinasda028772011-11-22 17:30:29 +0000110/*
111 * Software PGD flags.
112 */
113#define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
114
Christoffer Dallcc577c22013-01-20 18:28:04 -0500115/*
116 * 2nd stage PTE definitions for LPAE.
117 */
118#define L_PTE_S2_MT_UNCACHED (_AT(pteval_t, 0x5) << 2) /* MemAttr[3:0] */
119#define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* MemAttr[3:0] */
120#define L_PTE_S2_MT_WRITEBACK (_AT(pteval_t, 0xf) << 2) /* MemAttr[3:0] */
121#define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */
Marc Zyngier865499e2013-04-12 14:00:16 +0100122#define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
Christoffer Dallcc577c22013-01-20 18:28:04 -0500123
124/*
125 * Hyp-mode PL2 PTE definitions for LPAE.
126 */
127#define L_PTE_HYP L_PTE_USER
128
Catalin Marinasda028772011-11-22 17:30:29 +0000129#ifndef __ASSEMBLY__
130
131#define pud_none(pud) (!pud_val(pud))
132#define pud_bad(pud) (!(pud_val(pud) & 2))
133#define pud_present(pud) (pud_val(pud))
Christoffer Dallcc577c22013-01-20 18:28:04 -0500134#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
135 PMD_TYPE_TABLE)
136#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
137 PMD_TYPE_SECT)
Catalin Marinasda028772011-11-22 17:30:29 +0000138
139#define pud_clear(pudp) \
140 do { \
141 *pudp = __pud(0); \
142 clean_pmd_entry(pudp); \
143 } while (0)
144
145#define set_pud(pudp, pud) \
146 do { \
147 *pudp = pud; \
148 flush_pmd_entry(pudp); \
149 } while (0)
150
151static inline pmd_t *pud_page_vaddr(pud_t pud)
152{
153 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
154}
155
156/* Find an entry in the second-level page table.. */
157#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
158static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
159{
160 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
161}
162
163#define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
164
165#define copy_pmd(pmdpd,pmdps) \
166 do { \
167 *pmdpd = *pmdps; \
168 flush_pmd_entry(pmdpd); \
169 } while (0)
170
171#define pmd_clear(pmdp) \
172 do { \
173 *pmdp = __pmd(0); \
174 clean_pmd_entry(pmdp); \
175 } while (0)
176
Steve Capperdde1b652013-05-17 12:32:55 +0100177/*
178 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
179 * that are written to a page table but not for ptes created with mk_pte.
180 *
181 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
182 * hugetlb_cow, where it is compared with an entry in a page table.
183 * This comparison test fails erroneously leading ultimately to a memory leak.
184 *
185 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
186 * present before running the comparison.
187 */
188#define __HAVE_ARCH_PTE_SAME
189#define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
190 : pte_val(pte_a)) \
191 == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
192 : pte_val(pte_b)))
193
Catalin Marinasda028772011-11-22 17:30:29 +0000194#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
195
Catalin Marinas1355e2a2012-07-25 14:32:38 +0100196#define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
197#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
198
Catalin Marinasda028772011-11-22 17:30:29 +0000199#endif /* __ASSEMBLY__ */
200
Catalin Marinasdcfdae02011-11-22 17:30:29 +0000201#endif /* _ASM_PGTABLE_3LEVEL_H */