blob: 1cf35932a4d5c7b987672f2aa129c5c38f78dfe2 [file] [log] [blame]
Roland Stigge70f7cb72012-06-30 18:50:38 +02001/*
2 * Driver for NAND MLC Controller in LPC32xx
3 *
4 * Author: Roland Stigge <stigge@antcom.de>
5 *
6 * Copyright © 2011 WORK Microwave GmbH
7 * Copyright © 2011, 2012 Roland Stigge
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 *
20 * NAND Flash Controller Operation:
21 * - Read: Auto Decode
22 * - Write: Auto Encode
23 * - Tested Page Sizes: 2048, 4096
24 */
25
26#include <linux/slab.h>
27#include <linux/module.h>
28#include <linux/platform_device.h>
29#include <linux/mtd/mtd.h>
30#include <linux/mtd/nand.h>
31#include <linux/mtd/partitions.h>
32#include <linux/clk.h>
33#include <linux/err.h>
34#include <linux/delay.h>
35#include <linux/completion.h>
36#include <linux/interrupt.h>
37#include <linux/of.h>
38#include <linux/of_mtd.h>
39#include <linux/of_gpio.h>
40#include <linux/amba/pl08x.h>
41#include <linux/io.h>
42#include <linux/mm.h>
43#include <linux/dma-mapping.h>
44#include <linux/dmaengine.h>
45#include <linux/mtd/nand_ecc.h>
46
47#define DRV_NAME "lpc32xx_mlc"
48
49/**********************************************************************
50* MLC NAND controller register offsets
51**********************************************************************/
52
53#define MLC_BUFF(x) (x + 0x00000)
54#define MLC_DATA(x) (x + 0x08000)
55#define MLC_CMD(x) (x + 0x10000)
56#define MLC_ADDR(x) (x + 0x10004)
57#define MLC_ECC_ENC_REG(x) (x + 0x10008)
58#define MLC_ECC_DEC_REG(x) (x + 0x1000C)
59#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
60#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
61#define MLC_RPR(x) (x + 0x10018)
62#define MLC_WPR(x) (x + 0x1001C)
63#define MLC_RUBP(x) (x + 0x10020)
64#define MLC_ROBP(x) (x + 0x10024)
65#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
66#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
67#define MLC_ICR(x) (x + 0x10030)
68#define MLC_TIME_REG(x) (x + 0x10034)
69#define MLC_IRQ_MR(x) (x + 0x10038)
70#define MLC_IRQ_SR(x) (x + 0x1003C)
71#define MLC_LOCK_PR(x) (x + 0x10044)
72#define MLC_ISR(x) (x + 0x10048)
73#define MLC_CEH(x) (x + 0x1004C)
74
75/**********************************************************************
76* MLC_CMD bit definitions
77**********************************************************************/
78#define MLCCMD_RESET 0xFF
79
80/**********************************************************************
81* MLC_ICR bit definitions
82**********************************************************************/
83#define MLCICR_WPROT (1 << 3)
84#define MLCICR_LARGEBLOCK (1 << 2)
85#define MLCICR_LONGADDR (1 << 1)
86#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
87
88/**********************************************************************
89* MLC_TIME_REG bit definitions
90**********************************************************************/
91#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
92#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
93#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
94#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
95#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
96#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
97#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
98
99/**********************************************************************
100* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
101**********************************************************************/
102#define MLCIRQ_NAND_READY (1 << 5)
103#define MLCIRQ_CONTROLLER_READY (1 << 4)
104#define MLCIRQ_DECODE_FAILURE (1 << 3)
105#define MLCIRQ_DECODE_ERROR (1 << 2)
106#define MLCIRQ_ECC_READY (1 << 1)
107#define MLCIRQ_WRPROT_FAULT (1 << 0)
108
109/**********************************************************************
110* MLC_LOCK_PR bit definitions
111**********************************************************************/
112#define MLCLOCKPR_MAGIC 0xA25E
113
114/**********************************************************************
115* MLC_ISR bit definitions
116**********************************************************************/
117#define MLCISR_DECODER_FAILURE (1 << 6)
118#define MLCISR_ERRORS ((1 << 4) | (1 << 5))
119#define MLCISR_ERRORS_DETECTED (1 << 3)
120#define MLCISR_ECC_READY (1 << 2)
121#define MLCISR_CONTROLLER_READY (1 << 1)
122#define MLCISR_NAND_READY (1 << 0)
123
124/**********************************************************************
125* MLC_CEH bit definitions
126**********************************************************************/
127#define MLCCEH_NORMAL (1 << 0)
128
129struct lpc32xx_nand_cfg_mlc {
130 uint32_t tcea_delay;
131 uint32_t busy_delay;
132 uint32_t nand_ta;
133 uint32_t rd_high;
134 uint32_t rd_low;
135 uint32_t wr_high;
136 uint32_t wr_low;
137 int wp_gpio;
138 struct mtd_partition *parts;
139 unsigned num_parts;
140};
141
142static struct nand_ecclayout lpc32xx_nand_oob = {
143 .eccbytes = 40,
144 .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
145 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
146 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
147 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
148 .oobfree = {
149 { .offset = 0,
150 .length = 6, },
151 { .offset = 16,
152 .length = 6, },
153 { .offset = 32,
154 .length = 6, },
155 { .offset = 48,
156 .length = 6, },
157 },
158};
159
160static struct nand_bbt_descr lpc32xx_nand_bbt = {
161 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
162 NAND_BBT_WRITE,
163 .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
164};
165
166static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
167 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
168 NAND_BBT_WRITE,
169 .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
170};
171
172struct lpc32xx_nand_host {
173 struct nand_chip nand_chip;
174 struct clk *clk;
175 struct mtd_info mtd;
176 void __iomem *io_base;
177 int irq;
178 struct lpc32xx_nand_cfg_mlc *ncfg;
179 struct completion comp_nand;
180 struct completion comp_controller;
181 uint32_t llptr;
182 /*
183 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
184 */
185 dma_addr_t oob_buf_phy;
186 /*
187 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
188 */
189 uint8_t *oob_buf;
190 /* Physical address of DMA base address */
191 dma_addr_t io_base_phy;
192
193 struct completion comp_dma;
194 struct dma_chan *dma_chan;
195 struct dma_slave_config dma_slave_config;
196 struct scatterlist sgl;
197 uint8_t *dma_buf;
198 uint8_t *dummy_buf;
199 int mlcsubpages; /* number of 512bytes-subpages */
200};
201
202/*
203 * Activate/Deactivate DMA Operation:
204 *
205 * Using the PL080 DMA Controller for transferring the 512 byte subpages
206 * instead of doing readl() / writel() in a loop slows it down significantly.
207 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
208 *
209 * - readl() of 128 x 32 bits in a loop: ~20us
210 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
211 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
212 *
213 * This applies to the transfer itself. In the DMA case: only the
214 * wait_for_completion() (DMA setup _not_ included).
215 *
216 * Note that the 512 bytes subpage transfer is done directly from/to a
217 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
218 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
219 * controller transferring data between its internal buffer to/from the NAND
220 * chip.)
221 *
222 * Therefore, using the PL080 DMA is disabled by default, for now.
223 *
224 */
225static int use_dma;
226
227static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
228{
229 uint32_t clkrate, tmp;
230
231 /* Reset MLC controller */
232 writel(MLCCMD_RESET, MLC_CMD(host->io_base));
233 udelay(1000);
234
235 /* Get base clock for MLC block */
236 clkrate = clk_get_rate(host->clk);
237 if (clkrate == 0)
238 clkrate = 104000000;
239
240 /* Unlock MLC_ICR
241 * (among others, will be locked again automatically) */
242 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
243
244 /* Configure MLC Controller: Large Block, 5 Byte Address */
245 tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
246 writel(tmp, MLC_ICR(host->io_base));
247
248 /* Unlock MLC_TIME_REG
249 * (among others, will be locked again automatically) */
250 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
251
252 /* Compute clock setup values, see LPC and NAND manual */
253 tmp = 0;
254 tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
255 tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
256 tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
257 tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
258 tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
259 tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
260 tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
261 writel(tmp, MLC_TIME_REG(host->io_base));
262
263 /* Enable IRQ for CONTROLLER_READY and NAND_READY */
264 writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
265 MLC_IRQ_MR(host->io_base));
266
267 /* Normal nCE operation: nCE controlled by controller */
268 writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
269}
270
271/*
272 * Hardware specific access to control lines
273 */
274static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
275 unsigned int ctrl)
276{
277 struct nand_chip *nand_chip = mtd->priv;
278 struct lpc32xx_nand_host *host = nand_chip->priv;
279
280 if (cmd != NAND_CMD_NONE) {
281 if (ctrl & NAND_CLE)
282 writel(cmd, MLC_CMD(host->io_base));
283 else
284 writel(cmd, MLC_ADDR(host->io_base));
285 }
286}
287
288/*
289 * Read Device Ready (NAND device _and_ controller ready)
290 */
291static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
292{
293 struct nand_chip *nand_chip = mtd->priv;
294 struct lpc32xx_nand_host *host = nand_chip->priv;
295
296 if ((readb(MLC_ISR(host->io_base)) &
297 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
298 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
299 return 1;
300
301 return 0;
302}
303
304static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
305{
306 uint8_t sr;
307
308 /* Clear interrupt flag by reading status */
309 sr = readb(MLC_IRQ_SR(host->io_base));
310 if (sr & MLCIRQ_NAND_READY)
311 complete(&host->comp_nand);
312 if (sr & MLCIRQ_CONTROLLER_READY)
313 complete(&host->comp_controller);
314
315 return IRQ_HANDLED;
316}
317
318static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
319{
320 struct lpc32xx_nand_host *host = chip->priv;
321
322 if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
323 goto exit;
324
325 wait_for_completion(&host->comp_nand);
326
327 while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
328 /* Seems to be delayed sometimes by controller */
329 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
330 cpu_relax();
331 }
332
333exit:
334 return NAND_STATUS_READY;
335}
336
337static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
338 struct nand_chip *chip)
339{
340 struct lpc32xx_nand_host *host = chip->priv;
341
342 if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
343 goto exit;
344
345 wait_for_completion(&host->comp_controller);
346
347 while (!(readb(MLC_ISR(host->io_base)) &
348 MLCISR_CONTROLLER_READY)) {
349 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
350 cpu_relax();
351 }
352
353exit:
354 return NAND_STATUS_READY;
355}
356
357static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
358{
359 lpc32xx_waitfunc_nand(mtd, chip);
360 lpc32xx_waitfunc_controller(mtd, chip);
361
362 return NAND_STATUS_READY;
363}
364
365/*
366 * Enable NAND write protect
367 */
368static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
369{
370 if (gpio_is_valid(host->ncfg->wp_gpio))
371 gpio_set_value(host->ncfg->wp_gpio, 0);
372}
373
374/*
375 * Disable NAND write protect
376 */
377static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
378{
379 if (gpio_is_valid(host->ncfg->wp_gpio))
380 gpio_set_value(host->ncfg->wp_gpio, 1);
381}
382
383static void lpc32xx_dma_complete_func(void *completion)
384{
385 complete(completion);
386}
387
388static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
389 enum dma_transfer_direction dir)
390{
391 struct nand_chip *chip = mtd->priv;
392 struct lpc32xx_nand_host *host = chip->priv;
393 struct dma_async_tx_descriptor *desc;
394 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
395 int res;
396
397 sg_init_one(&host->sgl, mem, len);
398
399 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
400 DMA_BIDIRECTIONAL);
401 if (res != 1) {
402 dev_err(mtd->dev.parent, "Failed to map sg list\n");
403 return -ENXIO;
404 }
405 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
406 flags);
407 if (!desc) {
408 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
409 goto out1;
410 }
411
412 init_completion(&host->comp_dma);
413 desc->callback = lpc32xx_dma_complete_func;
414 desc->callback_param = &host->comp_dma;
415
416 dmaengine_submit(desc);
417 dma_async_issue_pending(host->dma_chan);
418
419 wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
420
421 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
422 DMA_BIDIRECTIONAL);
423 return 0;
424out1:
425 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
426 DMA_BIDIRECTIONAL);
427 return -ENXIO;
428}
429
430static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
431 uint8_t *buf, int oob_required, int page)
432{
433 struct lpc32xx_nand_host *host = chip->priv;
434 int i, j;
435 uint8_t *oobbuf = chip->oob_poi;
436 uint32_t mlc_isr;
437 int res;
438 uint8_t *dma_buf;
439 bool dma_mapped;
440
441 if ((void *)buf <= high_memory) {
442 dma_buf = buf;
443 dma_mapped = true;
444 } else {
445 dma_buf = host->dma_buf;
446 dma_mapped = false;
447 }
448
449 /* Writing Command and Address */
450 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
451
452 /* For all sub-pages */
453 for (i = 0; i < host->mlcsubpages; i++) {
454 /* Start Auto Decode Command */
455 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
456
457 /* Wait for Controller Ready */
458 lpc32xx_waitfunc_controller(mtd, chip);
459
460 /* Check ECC Error status */
461 mlc_isr = readl(MLC_ISR(host->io_base));
462 if (mlc_isr & MLCISR_DECODER_FAILURE) {
463 mtd->ecc_stats.failed++;
464 dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
465 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
466 mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
467 }
468
469 /* Read 512 + 16 Bytes */
470 if (use_dma) {
471 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
472 DMA_DEV_TO_MEM);
473 if (res)
474 return res;
475 } else {
476 for (j = 0; j < (512 >> 2); j++) {
477 *((uint32_t *)(buf)) =
478 readl(MLC_BUFF(host->io_base));
479 buf += 4;
480 }
481 }
482 for (j = 0; j < (16 >> 2); j++) {
483 *((uint32_t *)(oobbuf)) =
484 readl(MLC_BUFF(host->io_base));
485 oobbuf += 4;
486 }
487 }
488
489 if (use_dma && !dma_mapped)
490 memcpy(buf, dma_buf, mtd->writesize);
491
492 return 0;
493}
494
495static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
496 struct nand_chip *chip,
497 const uint8_t *buf, int oob_required)
498{
499 struct lpc32xx_nand_host *host = chip->priv;
500 const uint8_t *oobbuf = chip->oob_poi;
501 uint8_t *dma_buf = (uint8_t *)buf;
502 int res;
503 int i, j;
504
505 if (use_dma && (void *)buf >= high_memory) {
506 dma_buf = host->dma_buf;
507 memcpy(dma_buf, buf, mtd->writesize);
508 }
509
510 for (i = 0; i < host->mlcsubpages; i++) {
511 /* Start Encode */
512 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
513
514 /* Write 512 + 6 Bytes to Buffer */
515 if (use_dma) {
516 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
517 DMA_MEM_TO_DEV);
518 if (res)
519 return res;
520 } else {
521 for (j = 0; j < (512 >> 2); j++) {
522 writel(*((uint32_t *)(buf)),
523 MLC_BUFF(host->io_base));
524 buf += 4;
525 }
526 }
527 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
528 oobbuf += 4;
529 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
530 oobbuf += 12;
531
532 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
533 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
534
535 /* Wait for Controller Ready */
536 lpc32xx_waitfunc_controller(mtd, chip);
537 }
538 return 0;
539}
540
541static int lpc32xx_write_page(struct mtd_info *mtd, struct nand_chip *chip,
542 const uint8_t *buf, int oob_required, int page,
543 int cached, int raw)
544{
545 int res;
546
547 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
548 res = lpc32xx_write_page_lowlevel(mtd, chip, buf, oob_required);
549 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
550 lpc32xx_waitfunc(mtd, chip);
551
552 return res;
553}
554
555static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
556 int page)
557{
558 struct lpc32xx_nand_host *host = chip->priv;
559
560 /* Read whole page - necessary with MLC controller! */
561 lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
562
563 return 0;
564}
565
566static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
567 int page)
568{
569 /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
570 return 0;
571}
572
573/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
574static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
575{
576 /* Always enabled! */
577}
578
Roland Stigge70f7cb72012-06-30 18:50:38 +0200579static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
580{
581 struct mtd_info *mtd = &host->mtd;
582 dma_cap_mask_t mask;
583
584 dma_cap_zero(mask);
585 dma_cap_set(DMA_SLAVE, mask);
Roland Stigge79f9df72012-07-12 14:22:57 +0200586 host->dma_chan = dma_request_channel(mask, pl08x_filter_id, "nand-mlc");
Roland Stigge70f7cb72012-06-30 18:50:38 +0200587 if (!host->dma_chan) {
588 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
589 return -EBUSY;
590 }
591
592 /*
593 * Set direction to a sensible value even if the dmaengine driver
594 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
595 * driver criticizes it as "alien transfer direction".
596 */
597 host->dma_slave_config.direction = DMA_DEV_TO_MEM;
598 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
600 host->dma_slave_config.src_maxburst = 128;
601 host->dma_slave_config.dst_maxburst = 128;
602 /* DMA controller does flow control: */
603 host->dma_slave_config.device_fc = false;
604 host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
605 host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
606 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
607 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
608 goto out1;
609 }
610
611 return 0;
612out1:
613 dma_release_channel(host->dma_chan);
614 return -ENXIO;
615}
616
617#ifdef CONFIG_OF
618static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
619{
620 struct lpc32xx_nand_cfg_mlc *pdata;
621 struct device_node *np = dev->of_node;
622
623 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
624 if (!pdata) {
625 dev_err(dev, "could not allocate memory for platform data\n");
626 return NULL;
627 }
628
629 of_property_read_u32(np, "nxp,tcea-delay", &pdata->tcea_delay);
630 of_property_read_u32(np, "nxp,busy-delay", &pdata->busy_delay);
631 of_property_read_u32(np, "nxp,nand-ta", &pdata->nand_ta);
632 of_property_read_u32(np, "nxp,rd-high", &pdata->rd_high);
633 of_property_read_u32(np, "nxp,rd-low", &pdata->rd_low);
634 of_property_read_u32(np, "nxp,wr-high", &pdata->wr_high);
635 of_property_read_u32(np, "nxp,wr-low", &pdata->wr_low);
636
637 if (!pdata->tcea_delay || !pdata->busy_delay || !pdata->nand_ta ||
638 !pdata->rd_high || !pdata->rd_low || !pdata->wr_high ||
639 !pdata->wr_low) {
640 dev_err(dev, "chip parameters not specified correctly\n");
641 return NULL;
642 }
643
644 pdata->wp_gpio = of_get_named_gpio(np, "gpios", 0);
645
646 return pdata;
647}
648#else
649static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
650{
651 return NULL;
652}
653#endif
654
655/*
656 * Probe for NAND controller
657 */
658static int __devinit lpc32xx_nand_probe(struct platform_device *pdev)
659{
660 struct lpc32xx_nand_host *host;
661 struct mtd_info *mtd;
662 struct nand_chip *nand_chip;
663 struct resource *rc;
664 int res;
665 struct mtd_part_parser_data ppdata = {};
666
667 /* Allocate memory for the device structure (and zero it) */
668 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
669 if (!host) {
670 dev_err(&pdev->dev, "failed to allocate device structure.\n");
671 return -ENOMEM;
672 }
673
674 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
675 if (rc == NULL) {
676 dev_err(&pdev->dev, "No memory resource found for device!\r\n");
677 return -ENXIO;
678 }
679
680 host->io_base = devm_request_and_ioremap(&pdev->dev, rc);
681 if (host->io_base == NULL) {
682 dev_err(&pdev->dev, "ioremap failed\n");
683 return -EIO;
684 }
685 host->io_base_phy = rc->start;
686
687 mtd = &host->mtd;
688 nand_chip = &host->nand_chip;
689 if (pdev->dev.of_node)
690 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
691 else
692 host->ncfg = pdev->dev.platform_data;
693 if (!host->ncfg) {
694 dev_err(&pdev->dev, "Missing platform data\n");
695 return -ENOENT;
696 }
697 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
698 return -EPROBE_DEFER;
699 if (gpio_is_valid(host->ncfg->wp_gpio) &&
700 gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
701 dev_err(&pdev->dev, "GPIO not available\n");
702 return -EBUSY;
703 }
704 lpc32xx_wp_disable(host);
705
706 nand_chip->priv = host; /* link the private data structures */
707 mtd->priv = nand_chip;
708 mtd->owner = THIS_MODULE;
709 mtd->dev.parent = &pdev->dev;
710
711 /* Get NAND clock */
712 host->clk = clk_get(&pdev->dev, NULL);
713 if (IS_ERR(host->clk)) {
714 dev_err(&pdev->dev, "Clock initialization failure\n");
715 res = -ENOENT;
716 goto err_exit1;
717 }
718 clk_enable(host->clk);
719
720 nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
721 nand_chip->dev_ready = lpc32xx_nand_device_ready;
722 nand_chip->chip_delay = 25; /* us */
723 nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
724 nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
725
726 /* Init NAND controller */
727 lpc32xx_nand_setup(host);
728
729 platform_set_drvdata(pdev, host);
730
731 /* Initialize function pointers */
732 nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
733 nand_chip->ecc.read_page_raw = lpc32xx_read_page;
734 nand_chip->ecc.read_page = lpc32xx_read_page;
735 nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
736 nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
737 nand_chip->ecc.write_oob = lpc32xx_write_oob;
738 nand_chip->ecc.read_oob = lpc32xx_read_oob;
739 nand_chip->ecc.strength = 4;
740 nand_chip->write_page = lpc32xx_write_page;
741 nand_chip->waitfunc = lpc32xx_waitfunc;
742
743 nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
744 nand_chip->bbt_td = &lpc32xx_nand_bbt;
745 nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
746
747 /* bitflip_threshold's default is defined as ecc_strength anyway.
748 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
749 * being 0, it causes bad block table scanning errors in
750 * nand_scan_tail(), so preparing it here. */
751 mtd->bitflip_threshold = nand_chip->ecc.strength;
752
753 if (use_dma) {
754 res = lpc32xx_dma_setup(host);
755 if (res) {
756 res = -EIO;
757 goto err_exit2;
758 }
759 }
760
761 /*
762 * Scan to find existance of the device and
763 * Get the type of NAND device SMALL block or LARGE block
764 */
765 if (nand_scan_ident(mtd, 1, NULL)) {
766 res = -ENXIO;
767 goto err_exit3;
768 }
769
770 host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
771 if (!host->dma_buf) {
772 dev_err(&pdev->dev, "Error allocating dma_buf memory\n");
773 res = -ENOMEM;
774 goto err_exit3;
775 }
776
777 host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
778 if (!host->dummy_buf) {
779 dev_err(&pdev->dev, "Error allocating dummy_buf memory\n");
780 res = -ENOMEM;
781 goto err_exit3;
782 }
783
784 nand_chip->ecc.mode = NAND_ECC_HW;
785 nand_chip->ecc.size = mtd->writesize;
786 nand_chip->ecc.layout = &lpc32xx_nand_oob;
787 host->mlcsubpages = mtd->writesize / 512;
788
789 /* initially clear interrupt status */
790 readb(MLC_IRQ_SR(host->io_base));
791
792 init_completion(&host->comp_nand);
793 init_completion(&host->comp_controller);
794
795 host->irq = platform_get_irq(pdev, 0);
796 if ((host->irq < 0) || (host->irq >= NR_IRQS)) {
797 dev_err(&pdev->dev, "failed to get platform irq\n");
798 res = -EINVAL;
799 goto err_exit3;
800 }
801
802 if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
803 IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
804 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
805 res = -ENXIO;
806 goto err_exit3;
807 }
808
809 /*
810 * Fills out all the uninitialized function pointers with the defaults
811 * And scans for a bad block table if appropriate.
812 */
813 if (nand_scan_tail(mtd)) {
814 res = -ENXIO;
815 goto err_exit4;
816 }
817
818 mtd->name = DRV_NAME;
819
820 ppdata.of_node = pdev->dev.of_node;
821 res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
822 host->ncfg->num_parts);
823 if (!res)
824 return res;
825
826 nand_release(mtd);
827
828err_exit4:
829 free_irq(host->irq, host);
830err_exit3:
831 if (use_dma)
832 dma_release_channel(host->dma_chan);
833err_exit2:
834 clk_disable(host->clk);
835 clk_put(host->clk);
836 platform_set_drvdata(pdev, NULL);
837err_exit1:
838 lpc32xx_wp_enable(host);
839 gpio_free(host->ncfg->wp_gpio);
840
841 return res;
842}
843
844/*
845 * Remove NAND device
846 */
847static int __devexit lpc32xx_nand_remove(struct platform_device *pdev)
848{
849 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
850 struct mtd_info *mtd = &host->mtd;
851
852 nand_release(mtd);
853 free_irq(host->irq, host);
854 if (use_dma)
855 dma_release_channel(host->dma_chan);
856
857 clk_disable(host->clk);
858 clk_put(host->clk);
859 platform_set_drvdata(pdev, NULL);
860
861 lpc32xx_wp_enable(host);
862 gpio_free(host->ncfg->wp_gpio);
863
864 return 0;
865}
866
867#ifdef CONFIG_PM
868static int lpc32xx_nand_resume(struct platform_device *pdev)
869{
870 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
871
872 /* Re-enable NAND clock */
873 clk_enable(host->clk);
874
875 /* Fresh init of NAND controller */
876 lpc32xx_nand_setup(host);
877
878 /* Disable write protect */
879 lpc32xx_wp_disable(host);
880
881 return 0;
882}
883
884static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
885{
886 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
887
888 /* Enable write protect for safety */
889 lpc32xx_wp_enable(host);
890
891 /* Disable clock */
892 clk_disable(host->clk);
893 return 0;
894}
895
896#else
897#define lpc32xx_nand_resume NULL
898#define lpc32xx_nand_suspend NULL
899#endif
900
901#if defined(CONFIG_OF)
902static const struct of_device_id lpc32xx_nand_match[] = {
903 { .compatible = "nxp,lpc3220-mlc" },
904 { /* sentinel */ },
905};
906MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
907#endif
908
909static struct platform_driver lpc32xx_nand_driver = {
910 .probe = lpc32xx_nand_probe,
911 .remove = __devexit_p(lpc32xx_nand_remove),
912 .resume = lpc32xx_nand_resume,
913 .suspend = lpc32xx_nand_suspend,
914 .driver = {
915 .name = DRV_NAME,
916 .owner = THIS_MODULE,
917 .of_match_table = of_match_ptr(lpc32xx_nand_match),
918 },
919};
920
921module_platform_driver(lpc32xx_nand_driver);
922
923MODULE_LICENSE("GPL");
924MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
925MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");