blob: 58c65cc8d0d34545b0c587a19ffcff9ed04ba80d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/config.h>
12#include <linux/kernel.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/bootmem.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22
23#include <asm/bitext.h>
24#include <asm/page.h>
25#include <asm/pgalloc.h>
26#include <asm/pgtable.h>
27#include <asm/io.h>
28#include <asm/kdebug.h>
29#include <asm/vaddrs.h>
30#include <asm/traps.h>
31#include <asm/smp.h>
32#include <asm/mbus.h>
33#include <asm/cache.h>
34#include <asm/oplib.h>
35#include <asm/sbus.h>
36#include <asm/asi.h>
37#include <asm/msi.h>
38#include <asm/a.out.h>
39#include <asm/mmu_context.h>
40#include <asm/io-unit.h>
41#include <asm/cacheflush.h>
42#include <asm/tlbflush.h>
43
44/* Now the cpu specific definitions. */
45#include <asm/viking.h>
46#include <asm/mxcc.h>
47#include <asm/ross.h>
48#include <asm/tsunami.h>
49#include <asm/swift.h>
50#include <asm/turbosparc.h>
51
52#include <asm/btfixup.h>
53
54enum mbus_module srmmu_modtype;
55unsigned int hwbug_bitmask;
56int vac_cache_size;
57int vac_line_size;
58
59extern struct resource sparc_iomap;
60
61extern unsigned long last_valid_pfn;
62
63extern unsigned long page_kernel;
64
65pgd_t *srmmu_swapper_pg_dir;
66
67#ifdef CONFIG_SMP
68#define FLUSH_BEGIN(mm)
69#define FLUSH_END
70#else
71#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
72#define FLUSH_END }
73#endif
74
75BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
76#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77
78int flush_page_for_dma_global = 1;
79
80#ifdef CONFIG_SMP
81BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
82#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
83#endif
84
85char *srmmu_name;
86
87ctxd_t *srmmu_ctx_table_phys;
88ctxd_t *srmmu_context_table;
89
90int viking_mxcc_present;
91static DEFINE_SPINLOCK(srmmu_context_spinlock);
92
93int is_hypersparc;
94
95/*
96 * In general all page table modifications should use the V8 atomic
97 * swap instruction. This insures the mmu and the cpu are in sync
98 * with respect to ref/mod bits in the page tables.
99 */
100static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
101{
102 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
103 return value;
104}
105
106static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
107{
108 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
109}
110
111/* The very generic SRMMU page table operations. */
112static inline int srmmu_device_memory(unsigned long x)
113{
114 return ((x & 0xF0000000) != 0);
115}
116
117int srmmu_cache_pagetables;
118
119/* these will be initialized in srmmu_nocache_calcsize() */
120unsigned long srmmu_nocache_size;
121unsigned long srmmu_nocache_end;
122
123/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
124#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125
126/* The context table is a nocache user with the biggest alignment needs. */
127#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128
129void *srmmu_nocache_pool;
130void *srmmu_nocache_bitmap;
131static struct bit_map srmmu_nocache_map;
132
133static unsigned long srmmu_pte_pfn(pte_t pte)
134{
135 if (srmmu_device_memory(pte_val(pte))) {
136 /* Just return something that will cause
137 * pfn_valid() to return false. This makes
138 * copy_one_pte() to just directly copy to
139 * PTE over.
140 */
141 return ~0UL;
142 }
143 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
144}
145
146static struct page *srmmu_pmd_page(pmd_t pmd)
147{
148
149 if (srmmu_device_memory(pmd_val(pmd)))
150 BUG();
151 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
152}
153
154static inline unsigned long srmmu_pgd_page(pgd_t pgd)
155{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
156
157
158static inline int srmmu_pte_none(pte_t pte)
159{ return !(pte_val(pte) & 0xFFFFFFF); }
160
161static inline int srmmu_pte_present(pte_t pte)
162{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
163
164static inline int srmmu_pte_read(pte_t pte)
165{ return !(pte_val(pte) & SRMMU_NOREAD); }
166
167static inline void srmmu_pte_clear(pte_t *ptep)
168{ srmmu_set_pte(ptep, __pte(0)); }
169
170static inline int srmmu_pmd_none(pmd_t pmd)
171{ return !(pmd_val(pmd) & 0xFFFFFFF); }
172
173static inline int srmmu_pmd_bad(pmd_t pmd)
174{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
175
176static inline int srmmu_pmd_present(pmd_t pmd)
177{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
178
179static inline void srmmu_pmd_clear(pmd_t *pmdp) {
180 int i;
181 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
182 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
183}
184
185static inline int srmmu_pgd_none(pgd_t pgd)
186{ return !(pgd_val(pgd) & 0xFFFFFFF); }
187
188static inline int srmmu_pgd_bad(pgd_t pgd)
189{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
190
191static inline int srmmu_pgd_present(pgd_t pgd)
192{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
193
194static inline void srmmu_pgd_clear(pgd_t * pgdp)
195{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
196
197static inline pte_t srmmu_pte_wrprotect(pte_t pte)
198{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
199
200static inline pte_t srmmu_pte_mkclean(pte_t pte)
201{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
202
203static inline pte_t srmmu_pte_mkold(pte_t pte)
204{ return __pte(pte_val(pte) & ~SRMMU_REF);}
205
206static inline pte_t srmmu_pte_mkwrite(pte_t pte)
207{ return __pte(pte_val(pte) | SRMMU_WRITE);}
208
209static inline pte_t srmmu_pte_mkdirty(pte_t pte)
210{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
211
212static inline pte_t srmmu_pte_mkyoung(pte_t pte)
213{ return __pte(pte_val(pte) | SRMMU_REF);}
214
215/*
216 * Conversion functions: convert a page and protection to a page entry,
217 * and a page entry and page directory to the page they refer to.
218 */
219static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
220{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
221
222static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
223{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
224
225static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
226{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
227
228/* XXX should we hyper_flush_whole_icache here - Anton */
229static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
230{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
231
232static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
233{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
234
235static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
236{
237 unsigned long ptp; /* Physical address, shifted right by 4 */
238 int i;
239
240 ptp = __nocache_pa((unsigned long) ptep) >> 4;
241 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
242 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
243 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
244 }
245}
246
247static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
248{
249 unsigned long ptp; /* Physical address, shifted right by 4 */
250 int i;
251
252 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
253 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
254 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
255 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
256 }
257}
258
259static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
260{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
261
262/* to find an entry in a top-level page table... */
Adrian Bunk31156242005-10-03 17:37:02 -0700263static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700264{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
265
266/* Find an entry in the second-level page table.. */
267static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
268{
269 return (pmd_t *) srmmu_pgd_page(*dir) +
270 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
271}
272
273/* Find an entry in the third-level page table.. */
274static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
275{
276 void *pte;
277
278 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
279 return (pte_t *) pte +
280 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
281}
282
283static unsigned long srmmu_swp_type(swp_entry_t entry)
284{
285 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
286}
287
288static unsigned long srmmu_swp_offset(swp_entry_t entry)
289{
290 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
291}
292
293static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
294{
295 return (swp_entry_t) {
296 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
297 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
298}
299
300/*
301 * size: bytes to allocate in the nocache area.
302 * align: bytes, number to align at.
303 * Returns the virtual address of the allocated area.
304 */
305static unsigned long __srmmu_get_nocache(int size, int align)
306{
307 int offset;
308
309 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
310 printk("Size 0x%x too small for nocache request\n", size);
311 size = SRMMU_NOCACHE_BITMAP_SHIFT;
312 }
313 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
314 printk("Size 0x%x unaligned int nocache request\n", size);
315 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
316 }
317 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
318
319 offset = bit_map_string_get(&srmmu_nocache_map,
320 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
321 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
322 if (offset == -1) {
323 printk("srmmu: out of nocache %d: %d/%d\n",
324 size, (int) srmmu_nocache_size,
325 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
326 return 0;
327 }
328
329 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
330}
331
332unsigned inline long srmmu_get_nocache(int size, int align)
333{
334 unsigned long tmp;
335
336 tmp = __srmmu_get_nocache(size, align);
337
338 if (tmp)
339 memset((void *)tmp, 0, size);
340
341 return tmp;
342}
343
344void srmmu_free_nocache(unsigned long vaddr, int size)
345{
346 int offset;
347
348 if (vaddr < SRMMU_NOCACHE_VADDR) {
349 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
350 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
351 BUG();
352 }
353 if (vaddr+size > srmmu_nocache_end) {
354 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
355 vaddr, srmmu_nocache_end);
356 BUG();
357 }
358 if (size & (size-1)) {
359 printk("Size 0x%x is not a power of 2\n", size);
360 BUG();
361 }
362 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
363 printk("Size 0x%x is too small\n", size);
364 BUG();
365 }
366 if (vaddr & (size-1)) {
367 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
368 BUG();
369 }
370
371 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
372 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
373
374 bit_map_clear(&srmmu_nocache_map, offset, size);
375}
376
377void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
378
379extern unsigned long probe_memory(void); /* in fault.c */
380
381/*
382 * Reserve nocache dynamically proportionally to the amount of
383 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
384 */
385void srmmu_nocache_calcsize(void)
386{
387 unsigned long sysmemavail = probe_memory() / 1024;
388 int srmmu_nocache_npages;
389
390 srmmu_nocache_npages =
391 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
392
393 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
394 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
395 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
396 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
397
398 /* anything above 1280 blows up */
399 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
400 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
401
402 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
403 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
404}
405
406void srmmu_nocache_init(void)
407{
408 unsigned int bitmap_bits;
409 pgd_t *pgd;
410 pmd_t *pmd;
411 pte_t *pte;
412 unsigned long paddr, vaddr;
413 unsigned long pteval;
414
415 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
416
417 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
418 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
419 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
420
421 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
422 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
423
424 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
425 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
426 init_mm.pgd = srmmu_swapper_pg_dir;
427
428 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
429
430 paddr = __pa((unsigned long)srmmu_nocache_pool);
431 vaddr = SRMMU_NOCACHE_VADDR;
432
433 while (vaddr < srmmu_nocache_end) {
434 pgd = pgd_offset_k(vaddr);
435 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
436 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
437
438 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
439
440 if (srmmu_cache_pagetables)
441 pteval |= SRMMU_CACHE;
442
443 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
444
445 vaddr += PAGE_SIZE;
446 paddr += PAGE_SIZE;
447 }
448
449 flush_cache_all();
450 flush_tlb_all();
451}
452
453static inline pgd_t *srmmu_get_pgd_fast(void)
454{
455 pgd_t *pgd = NULL;
456
457 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
458 if (pgd) {
459 pgd_t *init = pgd_offset_k(0);
460 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
461 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
462 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
463 }
464
465 return pgd;
466}
467
468static void srmmu_free_pgd_fast(pgd_t *pgd)
469{
470 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
471}
472
473static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
474{
475 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
476}
477
478static void srmmu_pmd_free(pmd_t * pmd)
479{
480 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
481}
482
483/*
484 * Hardware needs alignment to 256 only, but we align to whole page size
485 * to reduce fragmentation problems due to the buddy principle.
486 * XXX Provide actual fragmentation statistics in /proc.
487 *
488 * Alignments up to the page size are the same for physical and virtual
489 * addresses of the nocache area.
490 */
491static pte_t *
492srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
493{
494 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
495}
496
497static struct page *
498srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
499{
500 unsigned long pte;
501
502 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
503 return NULL;
504 return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
505}
506
507static void srmmu_free_pte_fast(pte_t *pte)
508{
509 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
510}
511
512static void srmmu_pte_free(struct page *pte)
513{
514 unsigned long p;
515
516 p = (unsigned long)page_address(pte); /* Cached address (for test) */
517 if (p == 0)
518 BUG();
519 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
520 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
521 srmmu_free_nocache(p, PTE_SIZE);
522}
523
524/*
525 */
526static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
527{
528 struct ctx_list *ctxp;
529
530 ctxp = ctx_free.next;
531 if(ctxp != &ctx_free) {
532 remove_from_ctx_list(ctxp);
533 add_to_used_ctxlist(ctxp);
534 mm->context = ctxp->ctx_number;
535 ctxp->ctx_mm = mm;
536 return;
537 }
538 ctxp = ctx_used.next;
539 if(ctxp->ctx_mm == old_mm)
540 ctxp = ctxp->next;
541 if(ctxp == &ctx_used)
542 panic("out of mmu contexts");
543 flush_cache_mm(ctxp->ctx_mm);
544 flush_tlb_mm(ctxp->ctx_mm);
545 remove_from_ctx_list(ctxp);
546 add_to_used_ctxlist(ctxp);
547 ctxp->ctx_mm->context = NO_CONTEXT;
548 ctxp->ctx_mm = mm;
549 mm->context = ctxp->ctx_number;
550}
551
552static inline void free_context(int context)
553{
554 struct ctx_list *ctx_old;
555
556 ctx_old = ctx_list_pool + context;
557 remove_from_ctx_list(ctx_old);
558 add_to_free_ctxlist(ctx_old);
559}
560
561
562static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
563 struct task_struct *tsk, int cpu)
564{
565 if(mm->context == NO_CONTEXT) {
566 spin_lock(&srmmu_context_spinlock);
567 alloc_context(old_mm, mm);
568 spin_unlock(&srmmu_context_spinlock);
569 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
570 }
571
572 if (is_hypersparc)
573 hyper_flush_whole_icache();
574
575 srmmu_set_context(mm->context);
576}
577
578/* Low level IO area allocation on the SRMMU. */
579static inline void srmmu_mapioaddr(unsigned long physaddr,
580 unsigned long virt_addr, int bus_type)
581{
582 pgd_t *pgdp;
583 pmd_t *pmdp;
584 pte_t *ptep;
585 unsigned long tmp;
586
587 physaddr &= PAGE_MASK;
588 pgdp = pgd_offset_k(virt_addr);
589 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
590 ptep = srmmu_pte_offset(pmdp, virt_addr);
591 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
592
593 /*
594 * I need to test whether this is consistent over all
595 * sun4m's. The bus_type represents the upper 4 bits of
596 * 36-bit physical address on the I/O space lines...
597 */
598 tmp |= (bus_type << 28);
599 tmp |= SRMMU_PRIV;
600 __flush_page_to_ram(virt_addr);
601 srmmu_set_pte(ptep, __pte(tmp));
602}
603
604static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
605 unsigned long xva, unsigned int len)
606{
607 while (len != 0) {
608 len -= PAGE_SIZE;
609 srmmu_mapioaddr(xpa, xva, bus);
610 xva += PAGE_SIZE;
611 xpa += PAGE_SIZE;
612 }
613 flush_tlb_all();
614}
615
616static inline void srmmu_unmapioaddr(unsigned long virt_addr)
617{
618 pgd_t *pgdp;
619 pmd_t *pmdp;
620 pte_t *ptep;
621
622 pgdp = pgd_offset_k(virt_addr);
623 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
624 ptep = srmmu_pte_offset(pmdp, virt_addr);
625
626 /* No need to flush uncacheable page. */
627 srmmu_pte_clear(ptep);
628}
629
630static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
631{
632 while (len != 0) {
633 len -= PAGE_SIZE;
634 srmmu_unmapioaddr(virt_addr);
635 virt_addr += PAGE_SIZE;
636 }
637 flush_tlb_all();
638}
639
640/*
641 * On the SRMMU we do not have the problems with limited tlb entries
642 * for mapping kernel pages, so we just take things from the free page
643 * pool. As a side effect we are putting a little too much pressure
644 * on the gfp() subsystem. This setup also makes the logic of the
645 * iommu mapping code a lot easier as we can transparently handle
646 * mappings on the kernel stack without any special code as we did
647 * need on the sun4c.
648 */
649struct thread_info *srmmu_alloc_thread_info(void)
650{
651 struct thread_info *ret;
652
653 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
654 THREAD_INFO_ORDER);
655#ifdef CONFIG_DEBUG_STACK_USAGE
656 if (ret)
657 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
658#endif /* DEBUG_STACK_USAGE */
659
660 return ret;
661}
662
663static void srmmu_free_thread_info(struct thread_info *ti)
664{
665 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
666}
667
668/* tsunami.S */
669extern void tsunami_flush_cache_all(void);
670extern void tsunami_flush_cache_mm(struct mm_struct *mm);
671extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
672extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
673extern void tsunami_flush_page_to_ram(unsigned long page);
674extern void tsunami_flush_page_for_dma(unsigned long page);
675extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
676extern void tsunami_flush_tlb_all(void);
677extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
678extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
679extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
680extern void tsunami_setup_blockops(void);
681
682/*
683 * Workaround, until we find what's going on with Swift. When low on memory,
684 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
685 * out it is already in page tables/ fault again on the same instruction.
686 * I really don't understand it, have checked it and contexts
687 * are right, flush_tlb_all is done as well, and it faults again...
688 * Strange. -jj
689 *
690 * The following code is a deadwood that may be necessary when
691 * we start to make precise page flushes again. --zaitcev
692 */
693static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
694{
695#if 0
696 static unsigned long last;
697 unsigned int val;
698 /* unsigned int n; */
699
700 if (address == last) {
701 val = srmmu_hwprobe(address);
702 if (val != 0 && pte_val(pte) != val) {
703 printk("swift_update_mmu_cache: "
704 "addr %lx put %08x probed %08x from %p\n",
705 address, pte_val(pte), val,
706 __builtin_return_address(0));
707 srmmu_flush_whole_tlb();
708 }
709 }
710 last = address;
711#endif
712}
713
714/* swift.S */
715extern void swift_flush_cache_all(void);
716extern void swift_flush_cache_mm(struct mm_struct *mm);
717extern void swift_flush_cache_range(struct vm_area_struct *vma,
718 unsigned long start, unsigned long end);
719extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
720extern void swift_flush_page_to_ram(unsigned long page);
721extern void swift_flush_page_for_dma(unsigned long page);
722extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
723extern void swift_flush_tlb_all(void);
724extern void swift_flush_tlb_mm(struct mm_struct *mm);
725extern void swift_flush_tlb_range(struct vm_area_struct *vma,
726 unsigned long start, unsigned long end);
727extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
728
729#if 0 /* P3: deadwood to debug precise flushes on Swift. */
730void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
731{
732 int cctx, ctx1;
733
734 page &= PAGE_MASK;
735 if ((ctx1 = vma->vm_mm->context) != -1) {
736 cctx = srmmu_get_context();
737/* Is context # ever different from current context? P3 */
738 if (cctx != ctx1) {
739 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
740 srmmu_set_context(ctx1);
741 swift_flush_page(page);
742 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
743 "r" (page), "i" (ASI_M_FLUSH_PROBE));
744 srmmu_set_context(cctx);
745 } else {
746 /* Rm. prot. bits from virt. c. */
747 /* swift_flush_cache_all(); */
748 /* swift_flush_cache_page(vma, page); */
749 swift_flush_page(page);
750
751 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
752 "r" (page), "i" (ASI_M_FLUSH_PROBE));
753 /* same as above: srmmu_flush_tlb_page() */
754 }
755 }
756}
757#endif
758
759/*
760 * The following are all MBUS based SRMMU modules, and therefore could
761 * be found in a multiprocessor configuration. On the whole, these
762 * chips seems to be much more touchy about DVMA and page tables
763 * with respect to cache coherency.
764 */
765
766/* Cypress flushes. */
767static void cypress_flush_cache_all(void)
768{
769 volatile unsigned long cypress_sucks;
770 unsigned long faddr, tagval;
771
772 flush_user_windows();
773 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
774 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
775 "=r" (tagval) :
776 "r" (faddr), "r" (0x40000),
777 "i" (ASI_M_DATAC_TAG));
778
779 /* If modified and valid, kick it. */
780 if((tagval & 0x60) == 0x60)
781 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
782 }
783}
784
785static void cypress_flush_cache_mm(struct mm_struct *mm)
786{
787 register unsigned long a, b, c, d, e, f, g;
788 unsigned long flags, faddr;
789 int octx;
790
791 FLUSH_BEGIN(mm)
792 flush_user_windows();
793 local_irq_save(flags);
794 octx = srmmu_get_context();
795 srmmu_set_context(mm->context);
796 a = 0x20; b = 0x40; c = 0x60;
797 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
798
799 faddr = (0x10000 - 0x100);
800 goto inside;
801 do {
802 faddr -= 0x100;
803 inside:
804 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
805 "sta %%g0, [%0 + %2] %1\n\t"
806 "sta %%g0, [%0 + %3] %1\n\t"
807 "sta %%g0, [%0 + %4] %1\n\t"
808 "sta %%g0, [%0 + %5] %1\n\t"
809 "sta %%g0, [%0 + %6] %1\n\t"
810 "sta %%g0, [%0 + %7] %1\n\t"
811 "sta %%g0, [%0 + %8] %1\n\t" : :
812 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
813 "r" (a), "r" (b), "r" (c), "r" (d),
814 "r" (e), "r" (f), "r" (g));
815 } while(faddr);
816 srmmu_set_context(octx);
817 local_irq_restore(flags);
818 FLUSH_END
819}
820
821static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
822{
823 struct mm_struct *mm = vma->vm_mm;
824 register unsigned long a, b, c, d, e, f, g;
825 unsigned long flags, faddr;
826 int octx;
827
828 FLUSH_BEGIN(mm)
829 flush_user_windows();
830 local_irq_save(flags);
831 octx = srmmu_get_context();
832 srmmu_set_context(mm->context);
833 a = 0x20; b = 0x40; c = 0x60;
834 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
835
836 start &= SRMMU_REAL_PMD_MASK;
837 while(start < end) {
838 faddr = (start + (0x10000 - 0x100));
839 goto inside;
840 do {
841 faddr -= 0x100;
842 inside:
843 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
844 "sta %%g0, [%0 + %2] %1\n\t"
845 "sta %%g0, [%0 + %3] %1\n\t"
846 "sta %%g0, [%0 + %4] %1\n\t"
847 "sta %%g0, [%0 + %5] %1\n\t"
848 "sta %%g0, [%0 + %6] %1\n\t"
849 "sta %%g0, [%0 + %7] %1\n\t"
850 "sta %%g0, [%0 + %8] %1\n\t" : :
851 "r" (faddr),
852 "i" (ASI_M_FLUSH_SEG),
853 "r" (a), "r" (b), "r" (c), "r" (d),
854 "r" (e), "r" (f), "r" (g));
855 } while (faddr != start);
856 start += SRMMU_REAL_PMD_SIZE;
857 }
858 srmmu_set_context(octx);
859 local_irq_restore(flags);
860 FLUSH_END
861}
862
863static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
864{
865 register unsigned long a, b, c, d, e, f, g;
866 struct mm_struct *mm = vma->vm_mm;
867 unsigned long flags, line;
868 int octx;
869
870 FLUSH_BEGIN(mm)
871 flush_user_windows();
872 local_irq_save(flags);
873 octx = srmmu_get_context();
874 srmmu_set_context(mm->context);
875 a = 0x20; b = 0x40; c = 0x60;
876 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
877
878 page &= PAGE_MASK;
879 line = (page + PAGE_SIZE) - 0x100;
880 goto inside;
881 do {
882 line -= 0x100;
883 inside:
884 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
885 "sta %%g0, [%0 + %2] %1\n\t"
886 "sta %%g0, [%0 + %3] %1\n\t"
887 "sta %%g0, [%0 + %4] %1\n\t"
888 "sta %%g0, [%0 + %5] %1\n\t"
889 "sta %%g0, [%0 + %6] %1\n\t"
890 "sta %%g0, [%0 + %7] %1\n\t"
891 "sta %%g0, [%0 + %8] %1\n\t" : :
892 "r" (line),
893 "i" (ASI_M_FLUSH_PAGE),
894 "r" (a), "r" (b), "r" (c), "r" (d),
895 "r" (e), "r" (f), "r" (g));
896 } while(line != page);
897 srmmu_set_context(octx);
898 local_irq_restore(flags);
899 FLUSH_END
900}
901
902/* Cypress is copy-back, at least that is how we configure it. */
903static void cypress_flush_page_to_ram(unsigned long page)
904{
905 register unsigned long a, b, c, d, e, f, g;
906 unsigned long line;
907
908 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
909 page &= PAGE_MASK;
910 line = (page + PAGE_SIZE) - 0x100;
911 goto inside;
912 do {
913 line -= 0x100;
914 inside:
915 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
916 "sta %%g0, [%0 + %2] %1\n\t"
917 "sta %%g0, [%0 + %3] %1\n\t"
918 "sta %%g0, [%0 + %4] %1\n\t"
919 "sta %%g0, [%0 + %5] %1\n\t"
920 "sta %%g0, [%0 + %6] %1\n\t"
921 "sta %%g0, [%0 + %7] %1\n\t"
922 "sta %%g0, [%0 + %8] %1\n\t" : :
923 "r" (line),
924 "i" (ASI_M_FLUSH_PAGE),
925 "r" (a), "r" (b), "r" (c), "r" (d),
926 "r" (e), "r" (f), "r" (g));
927 } while(line != page);
928}
929
930/* Cypress is also IO cache coherent. */
931static void cypress_flush_page_for_dma(unsigned long page)
932{
933}
934
935/* Cypress has unified L2 VIPT, from which both instructions and data
936 * are stored. It does not have an onboard icache of any sort, therefore
937 * no flush is necessary.
938 */
939static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
940{
941}
942
943static void cypress_flush_tlb_all(void)
944{
945 srmmu_flush_whole_tlb();
946}
947
948static void cypress_flush_tlb_mm(struct mm_struct *mm)
949{
950 FLUSH_BEGIN(mm)
951 __asm__ __volatile__(
952 "lda [%0] %3, %%g5\n\t"
953 "sta %2, [%0] %3\n\t"
954 "sta %%g0, [%1] %4\n\t"
955 "sta %%g5, [%0] %3\n"
956 : /* no outputs */
957 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
958 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
959 : "g5");
960 FLUSH_END
961}
962
963static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964{
965 struct mm_struct *mm = vma->vm_mm;
966 unsigned long size;
967
968 FLUSH_BEGIN(mm)
969 start &= SRMMU_PGDIR_MASK;
970 size = SRMMU_PGDIR_ALIGN(end) - start;
971 __asm__ __volatile__(
972 "lda [%0] %5, %%g5\n\t"
973 "sta %1, [%0] %5\n"
974 "1:\n\t"
975 "subcc %3, %4, %3\n\t"
976 "bne 1b\n\t"
977 " sta %%g0, [%2 + %3] %6\n\t"
978 "sta %%g5, [%0] %5\n"
979 : /* no outputs */
980 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
981 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
982 "i" (ASI_M_FLUSH_PROBE)
983 : "g5", "cc");
984 FLUSH_END
985}
986
987static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
988{
989 struct mm_struct *mm = vma->vm_mm;
990
991 FLUSH_BEGIN(mm)
992 __asm__ __volatile__(
993 "lda [%0] %3, %%g5\n\t"
994 "sta %1, [%0] %3\n\t"
995 "sta %%g0, [%2] %4\n\t"
996 "sta %%g5, [%0] %3\n"
997 : /* no outputs */
998 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
999 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1000 : "g5");
1001 FLUSH_END
1002}
1003
1004/* viking.S */
1005extern void viking_flush_cache_all(void);
1006extern void viking_flush_cache_mm(struct mm_struct *mm);
1007extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1008 unsigned long end);
1009extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1010extern void viking_flush_page_to_ram(unsigned long page);
1011extern void viking_flush_page_for_dma(unsigned long page);
1012extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1013extern void viking_flush_page(unsigned long page);
1014extern void viking_mxcc_flush_page(unsigned long page);
1015extern void viking_flush_tlb_all(void);
1016extern void viking_flush_tlb_mm(struct mm_struct *mm);
1017extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1018 unsigned long end);
1019extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1020 unsigned long page);
1021extern void sun4dsmp_flush_tlb_all(void);
1022extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1023extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024 unsigned long end);
1025extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1026 unsigned long page);
1027
1028/* hypersparc.S */
1029extern void hypersparc_flush_cache_all(void);
1030extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1031extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1032extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1033extern void hypersparc_flush_page_to_ram(unsigned long page);
1034extern void hypersparc_flush_page_for_dma(unsigned long page);
1035extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1036extern void hypersparc_flush_tlb_all(void);
1037extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1038extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1039extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1040extern void hypersparc_setup_blockops(void);
1041
1042/*
1043 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1044 * kernel mappings are done with one single contiguous chunk of
1045 * ram. On small ram machines (classics mainly) we only get
1046 * around 8mb mapped for us.
1047 */
1048
1049void __init early_pgtable_allocfail(char *type)
1050{
1051 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1052 prom_halt();
1053}
1054
1055void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1056{
1057 pgd_t *pgdp;
1058 pmd_t *pmdp;
1059 pte_t *ptep;
1060
1061 while(start < end) {
1062 pgdp = pgd_offset_k(start);
1063 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1064 pmdp = (pmd_t *) __srmmu_get_nocache(
1065 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1066 if (pmdp == NULL)
1067 early_pgtable_allocfail("pmd");
1068 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1069 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1070 }
1071 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1072 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1073 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1074 if (ptep == NULL)
1075 early_pgtable_allocfail("pte");
1076 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1077 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1078 }
1079 if (start > (0xffffffffUL - PMD_SIZE))
1080 break;
1081 start = (start + PMD_SIZE) & PMD_MASK;
1082 }
1083}
1084
1085void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1086{
1087 pgd_t *pgdp;
1088 pmd_t *pmdp;
1089 pte_t *ptep;
1090
1091 while(start < end) {
1092 pgdp = pgd_offset_k(start);
1093 if(srmmu_pgd_none(*pgdp)) {
1094 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1095 if (pmdp == NULL)
1096 early_pgtable_allocfail("pmd");
1097 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1098 srmmu_pgd_set(pgdp, pmdp);
1099 }
1100 pmdp = srmmu_pmd_offset(pgdp, start);
1101 if(srmmu_pmd_none(*pmdp)) {
1102 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1103 PTE_SIZE);
1104 if (ptep == NULL)
1105 early_pgtable_allocfail("pte");
1106 memset(ptep, 0, PTE_SIZE);
1107 srmmu_pmd_set(pmdp, ptep);
1108 }
1109 if (start > (0xffffffffUL - PMD_SIZE))
1110 break;
1111 start = (start + PMD_SIZE) & PMD_MASK;
1112 }
1113}
1114
1115/*
1116 * This is much cleaner than poking around physical address space
1117 * looking at the prom's page table directly which is what most
1118 * other OS's do. Yuck... this is much better.
1119 */
1120void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1121{
1122 pgd_t *pgdp;
1123 pmd_t *pmdp;
1124 pte_t *ptep;
1125 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1126 unsigned long prompte;
1127
1128 while(start <= end) {
1129 if (start == 0)
1130 break; /* probably wrap around */
1131 if(start == 0xfef00000)
1132 start = KADB_DEBUGGER_BEGVM;
1133 if(!(prompte = srmmu_hwprobe(start))) {
1134 start += PAGE_SIZE;
1135 continue;
1136 }
1137
1138 /* A red snapper, see what it really is. */
1139 what = 0;
1140
1141 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1142 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1143 what = 1;
1144 }
1145
1146 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1147 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1148 prompte)
1149 what = 2;
1150 }
1151
1152 pgdp = pgd_offset_k(start);
1153 if(what == 2) {
1154 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1155 start += SRMMU_PGDIR_SIZE;
1156 continue;
1157 }
1158 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1159 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1160 if (pmdp == NULL)
1161 early_pgtable_allocfail("pmd");
1162 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1163 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1164 }
1165 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1166 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1167 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1168 PTE_SIZE);
1169 if (ptep == NULL)
1170 early_pgtable_allocfail("pte");
1171 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1172 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1173 }
1174 if(what == 1) {
1175 /*
1176 * We bend the rule where all 16 PTPs in a pmd_t point
1177 * inside the same PTE page, and we leak a perfectly
1178 * good hardware PTE piece. Alternatives seem worse.
1179 */
1180 unsigned int x; /* Index of HW PMD in soft cluster */
1181 x = (start >> PMD_SHIFT) & 15;
1182 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1183 start += SRMMU_REAL_PMD_SIZE;
1184 continue;
1185 }
1186 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1187 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1188 start += PAGE_SIZE;
1189 }
1190}
1191
1192#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1193
1194/* Create a third-level SRMMU 16MB page mapping. */
1195static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1196{
1197 pgd_t *pgdp = pgd_offset_k(vaddr);
1198 unsigned long big_pte;
1199
1200 big_pte = KERNEL_PTE(phys_base >> 4);
1201 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1202}
1203
1204/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1205static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1206{
1207 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1208 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1209 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1210 /* Map "low" memory only */
1211 const unsigned long min_vaddr = PAGE_OFFSET;
1212 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1213
1214 if (vstart < min_vaddr || vstart >= max_vaddr)
1215 return vstart;
1216
1217 if (vend > max_vaddr || vend < min_vaddr)
1218 vend = max_vaddr;
1219
1220 while(vstart < vend) {
1221 do_large_mapping(vstart, pstart);
1222 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1223 }
1224 return vstart;
1225}
1226
1227static inline void memprobe_error(char *msg)
1228{
1229 prom_printf(msg);
1230 prom_printf("Halting now...\n");
1231 prom_halt();
1232}
1233
1234static inline void map_kernel(void)
1235{
1236 int i;
1237
1238 if (phys_base > 0) {
1239 do_large_mapping(PAGE_OFFSET, phys_base);
1240 }
1241
1242 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1243 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1244 }
1245
1246 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1247}
1248
1249/* Paging initialization on the Sparc Reference MMU. */
1250extern void sparc_context_init(int);
1251
1252void (*poke_srmmu)(void) __initdata = NULL;
1253
1254extern unsigned long bootmem_init(unsigned long *pages_avail);
1255
1256void __init srmmu_paging_init(void)
1257{
1258 int i, cpunode;
1259 char node_str[128];
1260 pgd_t *pgd;
1261 pmd_t *pmd;
1262 pte_t *pte;
1263 unsigned long pages_avail;
1264
1265 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1266
1267 if (sparc_cpu_model == sun4d)
1268 num_contexts = 65536; /* We know it is Viking */
1269 else {
1270 /* Find the number of contexts on the srmmu. */
1271 cpunode = prom_getchild(prom_root_node);
1272 num_contexts = 0;
1273 while(cpunode != 0) {
1274 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1275 if(!strcmp(node_str, "cpu")) {
1276 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1277 break;
1278 }
1279 cpunode = prom_getsibling(cpunode);
1280 }
1281 }
1282
1283 if(!num_contexts) {
1284 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1285 prom_halt();
1286 }
1287
1288 pages_avail = 0;
1289 last_valid_pfn = bootmem_init(&pages_avail);
1290
1291 srmmu_nocache_calcsize();
1292 srmmu_nocache_init();
1293 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1294 map_kernel();
1295
1296 /* ctx table has to be physically aligned to its size */
1297 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1298 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1299
1300 for(i = 0; i < num_contexts; i++)
1301 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1302
1303 flush_cache_all();
1304 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
Bob Breuera54123e2006-03-23 22:36:19 -08001305#ifdef CONFIG_SMP
1306 /* Stop from hanging here... */
1307 local_flush_tlb_all();
1308#else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309 flush_tlb_all();
Bob Breuera54123e2006-03-23 22:36:19 -08001310#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311 poke_srmmu();
1312
1313#ifdef CONFIG_SUN_IO
1314 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1315 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1316#endif
1317
1318 srmmu_allocate_ptable_skeleton(
1319 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1320 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1321
1322 pgd = pgd_offset_k(PKMAP_BASE);
1323 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1324 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1325 pkmap_page_table = pte;
1326
1327 flush_cache_all();
1328 flush_tlb_all();
1329
1330 sparc_context_init(num_contexts);
1331
1332 kmap_init();
1333
1334 {
1335 unsigned long zones_size[MAX_NR_ZONES];
1336 unsigned long zholes_size[MAX_NR_ZONES];
1337 unsigned long npages;
1338 int znum;
1339
1340 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1341 zones_size[znum] = zholes_size[znum] = 0;
1342
1343 npages = max_low_pfn - pfn_base;
1344
1345 zones_size[ZONE_DMA] = npages;
1346 zholes_size[ZONE_DMA] = npages - pages_avail;
1347
1348 npages = highend_pfn - max_low_pfn;
1349 zones_size[ZONE_HIGHMEM] = npages;
1350 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1351
1352 free_area_init_node(0, &contig_page_data, zones_size,
1353 pfn_base, zholes_size);
1354 }
1355}
1356
1357static void srmmu_mmu_info(struct seq_file *m)
1358{
1359 seq_printf(m,
1360 "MMU type\t: %s\n"
1361 "contexts\t: %d\n"
1362 "nocache total\t: %ld\n"
1363 "nocache used\t: %d\n",
1364 srmmu_name,
1365 num_contexts,
1366 srmmu_nocache_size,
1367 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1368}
1369
1370static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1371{
1372}
1373
1374static void srmmu_destroy_context(struct mm_struct *mm)
1375{
1376
1377 if(mm->context != NO_CONTEXT) {
1378 flush_cache_mm(mm);
1379 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1380 flush_tlb_mm(mm);
1381 spin_lock(&srmmu_context_spinlock);
1382 free_context(mm->context);
1383 spin_unlock(&srmmu_context_spinlock);
1384 mm->context = NO_CONTEXT;
1385 }
1386}
1387
1388/* Init various srmmu chip types. */
1389static void __init srmmu_is_bad(void)
1390{
1391 prom_printf("Could not determine SRMMU chip type.\n");
1392 prom_halt();
1393}
1394
1395static void __init init_vac_layout(void)
1396{
1397 int nd, cache_lines;
1398 char node_str[128];
1399#ifdef CONFIG_SMP
1400 int cpu = 0;
1401 unsigned long max_size = 0;
1402 unsigned long min_line_size = 0x10000000;
1403#endif
1404
1405 nd = prom_getchild(prom_root_node);
1406 while((nd = prom_getsibling(nd)) != 0) {
1407 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1408 if(!strcmp(node_str, "cpu")) {
1409 vac_line_size = prom_getint(nd, "cache-line-size");
1410 if (vac_line_size == -1) {
1411 prom_printf("can't determine cache-line-size, "
1412 "halting.\n");
1413 prom_halt();
1414 }
1415 cache_lines = prom_getint(nd, "cache-nlines");
1416 if (cache_lines == -1) {
1417 prom_printf("can't determine cache-nlines, halting.\n");
1418 prom_halt();
1419 }
1420
1421 vac_cache_size = cache_lines * vac_line_size;
1422#ifdef CONFIG_SMP
1423 if(vac_cache_size > max_size)
1424 max_size = vac_cache_size;
1425 if(vac_line_size < min_line_size)
1426 min_line_size = vac_line_size;
Bob Breuera54123e2006-03-23 22:36:19 -08001427 //FIXME: cpus not contiguous!!
Linus Torvalds1da177e2005-04-16 15:20:36 -07001428 cpu++;
1429 if (cpu >= NR_CPUS || !cpu_online(cpu))
1430 break;
1431#else
1432 break;
1433#endif
1434 }
1435 }
1436 if(nd == 0) {
1437 prom_printf("No CPU nodes found, halting.\n");
1438 prom_halt();
1439 }
1440#ifdef CONFIG_SMP
1441 vac_cache_size = max_size;
1442 vac_line_size = min_line_size;
1443#endif
1444 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1445 (int)vac_cache_size, (int)vac_line_size);
1446}
1447
1448static void __init poke_hypersparc(void)
1449{
1450 volatile unsigned long clear;
1451 unsigned long mreg = srmmu_get_mmureg();
1452
1453 hyper_flush_unconditional_combined();
1454
1455 mreg &= ~(HYPERSPARC_CWENABLE);
1456 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1457 mreg |= (HYPERSPARC_CMODE);
1458
1459 srmmu_set_mmureg(mreg);
1460
1461#if 0 /* XXX I think this is bad news... -DaveM */
1462 hyper_clear_all_tags();
1463#endif
1464
1465 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1466 hyper_flush_whole_icache();
1467 clear = srmmu_get_faddr();
1468 clear = srmmu_get_fstatus();
1469}
1470
1471static void __init init_hypersparc(void)
1472{
1473 srmmu_name = "ROSS HyperSparc";
1474 srmmu_modtype = HyperSparc;
1475
1476 init_vac_layout();
1477
1478 is_hypersparc = 1;
1479
1480 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1481 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1487
1488 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1492
1493 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1494 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1495 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1496
1497
1498 poke_srmmu = poke_hypersparc;
1499
1500 hypersparc_setup_blockops();
1501}
1502
1503static void __init poke_cypress(void)
1504{
1505 unsigned long mreg = srmmu_get_mmureg();
1506 unsigned long faddr, tagval;
1507 volatile unsigned long cypress_sucks;
1508 volatile unsigned long clear;
1509
1510 clear = srmmu_get_faddr();
1511 clear = srmmu_get_fstatus();
1512
1513 if (!(mreg & CYPRESS_CENABLE)) {
1514 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1515 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1516 "sta %%g0, [%0] %2\n\t" : :
1517 "r" (faddr), "r" (0x40000),
1518 "i" (ASI_M_DATAC_TAG));
1519 }
1520 } else {
1521 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1522 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1523 "=r" (tagval) :
1524 "r" (faddr), "r" (0x40000),
1525 "i" (ASI_M_DATAC_TAG));
1526
1527 /* If modified and valid, kick it. */
1528 if((tagval & 0x60) == 0x60)
1529 cypress_sucks = *(unsigned long *)
1530 (0xf0020000 + faddr);
1531 }
1532 }
1533
1534 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1535 clear = srmmu_get_faddr();
1536 clear = srmmu_get_fstatus();
1537
1538 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1539 srmmu_set_mmureg(mreg);
1540}
1541
1542static void __init init_cypress_common(void)
1543{
1544 init_vac_layout();
1545
1546 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1547 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1548 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1549 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1552 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1553
1554 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1558
1559
1560 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1561 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1562 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1563
1564 poke_srmmu = poke_cypress;
1565}
1566
1567static void __init init_cypress_604(void)
1568{
1569 srmmu_name = "ROSS Cypress-604(UP)";
1570 srmmu_modtype = Cypress;
1571 init_cypress_common();
1572}
1573
1574static void __init init_cypress_605(unsigned long mrev)
1575{
1576 srmmu_name = "ROSS Cypress-605(MP)";
1577 if(mrev == 0xe) {
1578 srmmu_modtype = Cypress_vE;
1579 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1580 } else {
1581 if(mrev == 0xd) {
1582 srmmu_modtype = Cypress_vD;
1583 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1584 } else {
1585 srmmu_modtype = Cypress;
1586 }
1587 }
1588 init_cypress_common();
1589}
1590
1591static void __init poke_swift(void)
1592{
1593 unsigned long mreg;
1594
1595 /* Clear any crap from the cache or else... */
1596 swift_flush_cache_all();
1597
1598 /* Enable I & D caches */
1599 mreg = srmmu_get_mmureg();
1600 mreg |= (SWIFT_IE | SWIFT_DE);
1601 /*
1602 * The Swift branch folding logic is completely broken. At
1603 * trap time, if things are just right, if can mistakenly
1604 * think that a trap is coming from kernel mode when in fact
1605 * it is coming from user mode (it mis-executes the branch in
1606 * the trap code). So you see things like crashme completely
1607 * hosing your machine which is completely unacceptable. Turn
1608 * this shit off... nice job Fujitsu.
1609 */
1610 mreg &= ~(SWIFT_BF);
1611 srmmu_set_mmureg(mreg);
1612}
1613
1614#define SWIFT_MASKID_ADDR 0x10003018
1615static void __init init_swift(void)
1616{
1617 unsigned long swift_rev;
1618
1619 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1620 "srl %0, 0x18, %0\n\t" :
1621 "=r" (swift_rev) :
1622 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1623 srmmu_name = "Fujitsu Swift";
1624 switch(swift_rev) {
1625 case 0x11:
1626 case 0x20:
1627 case 0x23:
1628 case 0x30:
1629 srmmu_modtype = Swift_lots_o_bugs;
1630 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1631 /*
1632 * Gee george, I wonder why Sun is so hush hush about
1633 * this hardware bug... really braindamage stuff going
1634 * on here. However I think we can find a way to avoid
1635 * all of the workaround overhead under Linux. Basically,
1636 * any page fault can cause kernel pages to become user
1637 * accessible (the mmu gets confused and clears some of
1638 * the ACC bits in kernel ptes). Aha, sounds pretty
1639 * horrible eh? But wait, after extensive testing it appears
1640 * that if you use pgd_t level large kernel pte's (like the
1641 * 4MB pages on the Pentium) the bug does not get tripped
1642 * at all. This avoids almost all of the major overhead.
1643 * Welcome to a world where your vendor tells you to,
1644 * "apply this kernel patch" instead of "sorry for the
1645 * broken hardware, send it back and we'll give you
1646 * properly functioning parts"
1647 */
1648 break;
1649 case 0x25:
1650 case 0x31:
1651 srmmu_modtype = Swift_bad_c;
1652 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1653 /*
1654 * You see Sun allude to this hardware bug but never
1655 * admit things directly, they'll say things like,
1656 * "the Swift chip cache problems" or similar.
1657 */
1658 break;
1659 default:
1660 srmmu_modtype = Swift_ok;
1661 break;
1662 };
1663
1664 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1665 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1666 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1667 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1668
1669
1670 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1674
1675 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1676 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1678
1679 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1680
1681 flush_page_for_dma_global = 0;
1682
1683 /*
1684 * Are you now convinced that the Swift is one of the
1685 * biggest VLSI abortions of all time? Bravo Fujitsu!
1686 * Fujitsu, the !#?!%$'d up processor people. I bet if
1687 * you examined the microcode of the Swift you'd find
1688 * XXX's all over the place.
1689 */
1690 poke_srmmu = poke_swift;
1691}
1692
1693static void turbosparc_flush_cache_all(void)
1694{
1695 flush_user_windows();
1696 turbosparc_idflash_clear();
1697}
1698
1699static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1700{
1701 FLUSH_BEGIN(mm)
1702 flush_user_windows();
1703 turbosparc_idflash_clear();
1704 FLUSH_END
1705}
1706
1707static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1708{
1709 FLUSH_BEGIN(vma->vm_mm)
1710 flush_user_windows();
1711 turbosparc_idflash_clear();
1712 FLUSH_END
1713}
1714
1715static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1716{
1717 FLUSH_BEGIN(vma->vm_mm)
1718 flush_user_windows();
1719 if (vma->vm_flags & VM_EXEC)
1720 turbosparc_flush_icache();
1721 turbosparc_flush_dcache();
1722 FLUSH_END
1723}
1724
1725/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1726static void turbosparc_flush_page_to_ram(unsigned long page)
1727{
1728#ifdef TURBOSPARC_WRITEBACK
1729 volatile unsigned long clear;
1730
1731 if (srmmu_hwprobe(page))
1732 turbosparc_flush_page_cache(page);
1733 clear = srmmu_get_fstatus();
1734#endif
1735}
1736
1737static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1738{
1739}
1740
1741static void turbosparc_flush_page_for_dma(unsigned long page)
1742{
1743 turbosparc_flush_dcache();
1744}
1745
1746static void turbosparc_flush_tlb_all(void)
1747{
1748 srmmu_flush_whole_tlb();
1749}
1750
1751static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1752{
1753 FLUSH_BEGIN(mm)
1754 srmmu_flush_whole_tlb();
1755 FLUSH_END
1756}
1757
1758static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1759{
1760 FLUSH_BEGIN(vma->vm_mm)
1761 srmmu_flush_whole_tlb();
1762 FLUSH_END
1763}
1764
1765static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1766{
1767 FLUSH_BEGIN(vma->vm_mm)
1768 srmmu_flush_whole_tlb();
1769 FLUSH_END
1770}
1771
1772
1773static void __init poke_turbosparc(void)
1774{
1775 unsigned long mreg = srmmu_get_mmureg();
1776 unsigned long ccreg;
1777
1778 /* Clear any crap from the cache or else... */
1779 turbosparc_flush_cache_all();
1780 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1781 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1782 srmmu_set_mmureg(mreg);
1783
1784 ccreg = turbosparc_get_ccreg();
1785
1786#ifdef TURBOSPARC_WRITEBACK
1787 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1788 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1789 /* Write-back D-cache, emulate VLSI
1790 * abortion number three, not number one */
1791#else
1792 /* For now let's play safe, optimize later */
1793 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1794 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1795 ccreg &= ~(TURBOSPARC_uS2);
1796 /* Emulate VLSI abortion number three, not number one */
1797#endif
1798
1799 switch (ccreg & 7) {
1800 case 0: /* No SE cache */
1801 case 7: /* Test mode */
1802 break;
1803 default:
1804 ccreg |= (TURBOSPARC_SCENABLE);
1805 }
1806 turbosparc_set_ccreg (ccreg);
1807
1808 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1809 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1810 srmmu_set_mmureg(mreg);
1811}
1812
1813static void __init init_turbosparc(void)
1814{
1815 srmmu_name = "Fujitsu TurboSparc";
1816 srmmu_modtype = TurboSparc;
1817
1818 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1819 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1820 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1821 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1822
1823 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1824 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1826 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1827
1828 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1829
1830 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1831 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1832
1833 poke_srmmu = poke_turbosparc;
1834}
1835
1836static void __init poke_tsunami(void)
1837{
1838 unsigned long mreg = srmmu_get_mmureg();
1839
1840 tsunami_flush_icache();
1841 tsunami_flush_dcache();
1842 mreg &= ~TSUNAMI_ITD;
1843 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1844 srmmu_set_mmureg(mreg);
1845}
1846
1847static void __init init_tsunami(void)
1848{
1849 /*
1850 * Tsunami's pretty sane, Sun and TI actually got it
1851 * somewhat right this time. Fujitsu should have
1852 * taken some lessons from them.
1853 */
1854
1855 srmmu_name = "TI Tsunami";
1856 srmmu_modtype = Tsunami;
1857
1858 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1859 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1860 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1861 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1862
1863
1864 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1865 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1868
1869 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1870 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1871 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1872
1873 poke_srmmu = poke_tsunami;
1874
1875 tsunami_setup_blockops();
1876}
1877
1878static void __init poke_viking(void)
1879{
1880 unsigned long mreg = srmmu_get_mmureg();
1881 static int smp_catch;
1882
1883 if(viking_mxcc_present) {
1884 unsigned long mxcc_control = mxcc_get_creg();
1885
1886 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1887 mxcc_control &= ~(MXCC_CTL_RRC);
1888 mxcc_set_creg(mxcc_control);
1889
1890 /*
1891 * We don't need memory parity checks.
1892 * XXX This is a mess, have to dig out later. ecd.
1893 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1894 */
1895
1896 /* We do cache ptables on MXCC. */
1897 mreg |= VIKING_TCENABLE;
1898 } else {
1899 unsigned long bpreg;
1900
1901 mreg &= ~(VIKING_TCENABLE);
1902 if(smp_catch++) {
1903 /* Must disable mixed-cmd mode here for other cpu's. */
1904 bpreg = viking_get_bpreg();
1905 bpreg &= ~(VIKING_ACTION_MIX);
1906 viking_set_bpreg(bpreg);
1907
1908 /* Just in case PROM does something funny. */
1909 msi_set_sync();
1910 }
1911 }
1912
1913 mreg |= VIKING_SPENABLE;
1914 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1915 mreg |= VIKING_SBENABLE;
1916 mreg &= ~(VIKING_ACENABLE);
1917 srmmu_set_mmureg(mreg);
1918
1919#ifdef CONFIG_SMP
1920 /* Avoid unnecessary cross calls. */
1921 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1922 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1923 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1924 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1925 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1926 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1927 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1928 btfixup();
1929#endif
1930}
1931
1932static void __init init_viking(void)
1933{
1934 unsigned long mreg = srmmu_get_mmureg();
1935
1936 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1937 if(mreg & VIKING_MMODE) {
1938 srmmu_name = "TI Viking";
1939 viking_mxcc_present = 0;
1940 msi_set_sync();
1941
1942 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1943 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1944 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1945
1946 /*
1947 * We need this to make sure old viking takes no hits
1948 * on it's cache for dma snoops to workaround the
1949 * "load from non-cacheable memory" interrupt bug.
1950 * This is only necessary because of the new way in
1951 * which we use the IOMMU.
1952 */
1953 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1954
1955 flush_page_for_dma_global = 0;
1956 } else {
1957 srmmu_name = "TI Viking/MXCC";
1958 viking_mxcc_present = 1;
1959
1960 srmmu_cache_pagetables = 1;
1961
1962 /* MXCC vikings lack the DMA snooping bug. */
1963 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1964 }
1965
1966 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1967 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1970
1971#ifdef CONFIG_SMP
1972 if (sparc_cpu_model == sun4d) {
1973 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1974 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1975 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1977 } else
1978#endif
1979 {
1980 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1981 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1982 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1983 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1984 }
1985
1986 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1987 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1988
1989 poke_srmmu = poke_viking;
1990}
1991
1992/* Probe for the srmmu chip version. */
1993static void __init get_srmmu_type(void)
1994{
1995 unsigned long mreg, psr;
1996 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1997
1998 srmmu_modtype = SRMMU_INVAL_MOD;
1999 hwbug_bitmask = 0;
2000
2001 mreg = srmmu_get_mmureg(); psr = get_psr();
2002 mod_typ = (mreg & 0xf0000000) >> 28;
2003 mod_rev = (mreg & 0x0f000000) >> 24;
2004 psr_typ = (psr >> 28) & 0xf;
2005 psr_vers = (psr >> 24) & 0xf;
2006
2007 /* First, check for HyperSparc or Cypress. */
2008 if(mod_typ == 1) {
2009 switch(mod_rev) {
2010 case 7:
2011 /* UP or MP Hypersparc */
2012 init_hypersparc();
2013 break;
2014 case 0:
2015 case 2:
2016 /* Uniprocessor Cypress */
2017 init_cypress_604();
2018 break;
2019 case 10:
2020 case 11:
2021 case 12:
2022 /* _REALLY OLD_ Cypress MP chips... */
2023 case 13:
2024 case 14:
2025 case 15:
2026 /* MP Cypress mmu/cache-controller */
2027 init_cypress_605(mod_rev);
2028 break;
2029 default:
2030 /* Some other Cypress revision, assume a 605. */
2031 init_cypress_605(mod_rev);
2032 break;
2033 };
2034 return;
2035 }
2036
2037 /*
2038 * Now Fujitsu TurboSparc. It might happen that it is
2039 * in Swift emulation mode, so we will check later...
2040 */
2041 if (psr_typ == 0 && psr_vers == 5) {
2042 init_turbosparc();
2043 return;
2044 }
2045
2046 /* Next check for Fujitsu Swift. */
2047 if(psr_typ == 0 && psr_vers == 4) {
2048 int cpunode;
2049 char node_str[128];
2050
2051 /* Look if it is not a TurboSparc emulating Swift... */
2052 cpunode = prom_getchild(prom_root_node);
2053 while((cpunode = prom_getsibling(cpunode)) != 0) {
2054 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2055 if(!strcmp(node_str, "cpu")) {
2056 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2057 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2058 init_turbosparc();
2059 return;
2060 }
2061 break;
2062 }
2063 }
2064
2065 init_swift();
2066 return;
2067 }
2068
2069 /* Now the Viking family of srmmu. */
2070 if(psr_typ == 4 &&
2071 ((psr_vers == 0) ||
2072 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2073 init_viking();
2074 return;
2075 }
2076
2077 /* Finally the Tsunami. */
2078 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2079 init_tsunami();
2080 return;
2081 }
2082
2083 /* Oh well */
2084 srmmu_is_bad();
2085}
2086
2087/* don't laugh, static pagetables */
2088static void srmmu_check_pgt_cache(int low, int high)
2089{
2090}
2091
2092extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2093 tsetup_mmu_patchme, rtrap_mmu_patchme;
2094
2095extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2096 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2097
2098extern unsigned long srmmu_fault;
2099
2100#define PATCH_BRANCH(insn, dest) do { \
2101 iaddr = &(insn); \
2102 daddr = &(dest); \
2103 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2104 } while(0)
2105
2106static void __init patch_window_trap_handlers(void)
2107{
2108 unsigned long *iaddr, *daddr;
2109
2110 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2111 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2112 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2113 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2114 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2115 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2116 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2117}
2118
2119#ifdef CONFIG_SMP
2120/* Local cross-calls. */
2121static void smp_flush_page_for_dma(unsigned long page)
2122{
2123 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2124 local_flush_page_for_dma(page);
2125}
2126
2127#endif
2128
2129static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2130{
2131 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2132}
2133
2134static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2135{
2136 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2137}
2138
David S. Miller14778d92006-03-21 02:29:39 -08002139static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2140{
2141 prot &= ~__pgprot(SRMMU_CACHE);
2142
2143 return prot;
2144}
2145
Linus Torvalds1da177e2005-04-16 15:20:36 -07002146/* Load up routines and constants for sun4m and sun4d mmu */
2147void __init ld_mmu_srmmu(void)
2148{
2149 extern void ld_mmu_iommu(void);
2150 extern void ld_mmu_iounit(void);
2151 extern void ___xchg32_sun4md(void);
2152
2153 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2154 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2155 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2156
2157 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2158 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2159
2160 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2161 BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2162 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2163 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2164 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2165 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002166
2167 /* Functions */
David S. Miller14778d92006-03-21 02:29:39 -08002168 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169#ifndef CONFIG_SMP
2170 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2171#endif
2172 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2173
2174 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2175 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2176
2177 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2178 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2179 BTFIXUPSET_CALL(pgd_page, srmmu_pgd_page, BTFIXUPCALL_NORM);
2180
2181 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2182
2183 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2184 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2185 BTFIXUPSET_CALL(pte_read, srmmu_pte_read, BTFIXUPCALL_NORM);
2186
2187 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2188 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2189 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2190
2191 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2192 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2193 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2195
2196 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2197 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2198 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2201 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2202
2203 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2204 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2205 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2206
2207 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2208 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2209 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2210 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2211 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2212 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2213 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2214 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2215
2216 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2217 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2218 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2219 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2220 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2221 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2222 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2223 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2224 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2225 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2226 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2227 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2228
2229 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2230 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2231
2232 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2235
2236 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2237
2238 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2239 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2240
2241 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2242 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2243
2244 get_srmmu_type();
2245 patch_window_trap_handlers();
2246
2247#ifdef CONFIG_SMP
2248 /* El switcheroo... */
2249
2250 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2251 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2252 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2253 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2254 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2255 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2256 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2257 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2258 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2259 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2260 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2261
2262 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2263 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2264 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2265 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2266 if (sparc_cpu_model != sun4d) {
2267 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2268 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2271 }
2272 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2273 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2274 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2275#endif
2276
2277 if (sparc_cpu_model == sun4d)
2278 ld_mmu_iounit();
2279 else
2280 ld_mmu_iommu();
2281#ifdef CONFIG_SMP
2282 if (sparc_cpu_model == sun4d)
2283 sun4d_init_smp();
2284 else
2285 sun4m_init_smp();
2286#endif
2287}