blob: 95b602b4f4460c9d49b3310f4b73b7d9516f33ff [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090024#include <linux/slab.h>
Jiri Slabyfa1c1142007-08-12 17:33:16 +020025
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020029#include "rfbuffer.h"
30#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020031
Nick Kossifidis9320b5c42010-11-23 20:36:45 +020032
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42 unsigned int i;
43 u32 srev;
44 u16 ret;
45
46 /*
47 * Set the radio chip access register
48 */
49 switch (chan) {
50 case CHANNEL_2GHZ:
51 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 break;
53 case CHANNEL_5GHZ:
54 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 break;
56 default:
57 return 0;
58 }
59
60 mdelay(2);
61
62 /* ...wait until PHY is ready and read the selected radio revision */
63 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65 for (i = 0; i < 8; i++)
66 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68 if (ah->ah_version == AR5K_AR5210) {
69 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 } else {
72 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 ((srev & 0x0f) << 4), 8);
75 }
76
77 /* Reset to the 5GHz mode */
78 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80 return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88 /* Check if the channel is in our supported range */
89 if (flags & CHANNEL_2GHZ) {
90 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 return true;
93 } else if (flags & CHANNEL_5GHZ)
94 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 return true;
97
98 return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 struct ieee80211_channel *channel)
103{
104 u8 refclk_freq;
105
106 if ((ah->ah_radio == AR5K_RF5112) ||
107 (ah->ah_radio == AR5K_RF5413) ||
108 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 refclk_freq = 40;
110 else
111 refclk_freq = 32;
112
113 if ((channel->center_freq % refclk_freq != 0) &&
114 ((channel->center_freq % refclk_freq < 10) ||
115 (channel->center_freq % refclk_freq > 22)))
116 return true;
117 else
118 return false;
119}
120
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 const struct ath5k_rf_reg *rf_regs,
126 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200127{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200128 const struct ath5k_rf_reg *rfreg = NULL;
129 u8 offset, bank, num_bits, col, position;
130 u16 entry;
131 u32 mask, data, last_bit, bits_shifted, first_bit;
132 u32 *rfb;
133 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200134 int i;
135
136 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200137 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200138
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200139 for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 if (rf_regs[i].index == reg_id) {
141 rfreg = &rf_regs[i];
142 break;
143 }
144 }
145
146 if (rfb == NULL || rfreg == NULL) {
147 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200148 /* should not happen */
149 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200150 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200151
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200152 bank = rfreg->bank;
153 num_bits = rfreg->field.len;
154 first_bit = rfreg->field.pos;
155 col = rfreg->field.col;
156
157 /* first_bit is an offset from bank's
158 * start. Since we have all banks on
159 * the same array, we use this offset
160 * to mark each bank's start */
161 offset = ah->ah_offset[bank];
162
163 /* Boundary check */
164 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200165 ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 return 0;
167 }
168
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200169 entry = ((first_bit - 1) / 8) + offset;
170 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200171
Joe Perchese9010e22008-03-07 14:21:16 -0800172 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200173 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200174
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200175 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 position = 0, entry++) {
177
178 last_bit = (position + bits_left > 8) ? 8 :
179 position + bits_left;
180
181 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200183
Joe Perchese9010e22008-03-07 14:21:16 -0800184 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200185 rfb[entry] &= ~mask;
186 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200187 data >>= (8 - position);
188 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200189 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 << bits_shifted;
191 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200192 }
193
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200194 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200195 }
196
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200197 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200198
199 return data;
200}
201
Nick Kossifidis9320b5c42010-11-23 20:36:45 +0200202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 struct ieee80211_channel *channel)
219{
220 /* Get exponent and mantissa and set it */
221 u32 coef_scaled, coef_exp, coef_man,
222 ds_coef_exp, ds_coef_man, clock;
223
224 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 !(channel->hw_value & CHANNEL_OFDM));
226
227 /* Get coefficient
228 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 * we scale coef by shifting clock value by 24 for
230 * better precision since we use integers */
Nick Kossifidis73a06a62010-11-23 21:48:32 +0200231 switch (ah->ah_bwmode) {
232 case AR5K_BWMODE_40MHZ:
233 clock = 40 * 2;
234 break;
235 case AR5K_BWMODE_10MHZ:
236 clock = 40 / 2;
237 break;
238 case AR5K_BWMODE_5MHZ:
239 clock = 40 / 4;
240 break;
241 default:
242 clock = 40;
243 break;
244 }
Nick Kossifidis9320b5c42010-11-23 20:36:45 +0200245 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247 /* Get exponent
248 * ALGO: coef_exp = 14 - highest set bit position */
249 coef_exp = ilog2(coef_scaled);
250
251 /* Doesn't make sense if it's zero*/
252 if (!coef_scaled || !coef_exp)
253 return -EINVAL;
254
255 /* Note: we've shifted coef_scaled by 24 */
256 coef_exp = 14 - (coef_exp - 24);
257
258
259 /* Get mantissa (significant digits)
260 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261 coef_man = coef_scaled +
262 (1 << (24 - coef_exp - 1));
263
264 /* Calculate delta slope coefficient exponent
265 * and mantissa (remove scaling) and set them on hw */
266 ds_coef_man = coef_man >> (24 - coef_exp);
267 ds_coef_exp = coef_exp - 16;
268
269 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274 return 0;
275}
276
277int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278{
279 /*Just a try M.F.*/
280 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282 return 0;
283}
284
285
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200286/**********************\
287* RF Gain optimization *
288\**********************/
289
290/*
Bob Copelanda180a132010-08-15 13:03:12 -0400291 * This code is used to optimize RF gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200292 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200293 *
294 * It's only used on RF5111 and RF5112, later RF chips seem to have
295 * auto adjustment on hw -notice they have a much smaller BANK 7 and
296 * no gain optimization ladder-.
297 *
298 * For more infos check out this patent doc
299 * http://www.freepatentsonline.com/7400691.html
300 *
301 * This paper describes power drops as seen on the receiver due to
302 * probe packets
303 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
304 * %20of%20Power%20Control.pdf
305 *
306 * And this is the MadWiFi bug entry related to the above
307 * http://madwifi-project.org/ticket/1659
308 * with various measurements and diagrams
309 *
310 * TODO: Deal with power drops due to probes by setting an apropriate
311 * tx power on the probe packets ! Make this part of the calibration process.
312 */
313
314/* Initialize ah_gain durring attach */
315int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
316{
317 /* Initialize the gain optimization values */
318 switch (ah->ah_radio) {
319 case AR5K_RF5111:
320 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
321 ah->ah_gain.g_low = 20;
322 ah->ah_gain.g_high = 35;
323 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
324 break;
325 case AR5K_RF5112:
326 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
327 ah->ah_gain.g_low = 20;
328 ah->ah_gain.g_high = 85;
329 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
330 break;
331 default:
332 return -EINVAL;
333 }
334
335 return 0;
336}
337
338/* Schedule a gain probe check on the next transmited packet.
339 * That means our next packet is going to be sent with lower
340 * tx power and a Peak to Average Power Detector (PAPD) will try
341 * to measure the gain.
342 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200343 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
344 * just after we enable the probe so that we don't mess with
345 * standard traffic ? Maybe it's time to use sw interrupts and
346 * a probe tasklet !!!
347 */
348static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
349{
350
351 /* Skip if gain calibration is inactive or
352 * we already handle a probe request */
353 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
354 return;
355
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200356 /* Send the packet with 2dB below max power as
357 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400358 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200359 AR5K_PHY_PAPD_PROBE_TXPOWER) |
360 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
361
362 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
363
364}
365
366/* Calculate gain_F measurement correction
367 * based on the current step for RF5112 rev. 2 */
368static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200369{
370 u32 mix, step;
371 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200372 const struct ath5k_gain_opt *go;
373 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200374 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200375
376 /* Only RF5112 Rev. 2 supports it */
377 if ((ah->ah_radio != AR5K_RF5112) ||
378 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
379 return 0;
380
381 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200382 rf_regs = rf_regs_5112a;
383 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200384
385 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200386
387 if (ah->ah_rf_banks == NULL)
388 return 0;
389
390 rf = ah->ah_rf_banks;
391 ah->ah_gain.g_f_corr = 0;
392
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200393 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200394 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200395 return 0;
396
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200397 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200398 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200399
400 /* Mix gain override */
401 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200402
403 switch (mix) {
404 case 3:
405 ah->ah_gain.g_f_corr = step * 2;
406 break;
407 case 2:
408 ah->ah_gain.g_f_corr = (step - 5) * 2;
409 break;
410 case 1:
411 ah->ah_gain.g_f_corr = step;
412 break;
413 default:
414 ah->ah_gain.g_f_corr = 0;
415 break;
416 }
417
418 return ah->ah_gain.g_f_corr;
419}
420
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200421/* Check if current gain_F measurement is in the range of our
422 * power detector windows. If we get a measurement outside range
423 * we know it's not accurate (detectors can't measure anything outside
424 * their detection window) so we must ignore it */
425static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200426{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200427 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200428 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200429 u32 *rf;
430
431 if (ah->ah_rf_banks == NULL)
432 return false;
433
434 rf = ah->ah_rf_banks;
435
436 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200437
438 rf_regs = rf_regs_5111;
439 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
440
441 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
442 false);
443
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200444 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200445 level[1] = (step == 63) ? 50 : step + 4;
446 level[2] = (step != 63) ? 64 : level[0];
447 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200448
449 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200450 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200451 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200452 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200453 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200454
455 rf_regs = rf_regs_5112;
456 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
457
458 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
459 false);
460
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200461 level[0] = level[2] = 0;
462
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200463 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200464 level[1] = level[3] = 83;
465 } else {
466 level[1] = level[3] = 107;
467 ah->ah_gain.g_high = 55;
468 }
469 }
470
471 return (ah->ah_gain.g_current >= level[0] &&
472 ah->ah_gain.g_current <= level[1]) ||
473 (ah->ah_gain.g_current >= level[2] &&
474 ah->ah_gain.g_current <= level[3]);
475}
476
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200477/* Perform gain_F adjustment by choosing the right set
Bob Copelanda180a132010-08-15 13:03:12 -0400478 * of parameters from RF gain optimization ladder */
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200479static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200480{
481 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200482 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200483 int ret = 0;
484
485 switch (ah->ah_radio) {
486 case AR5K_RF5111:
487 go = &rfgain_opt_5111;
488 break;
489 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200490 go = &rfgain_opt_5112;
491 break;
492 default:
493 return 0;
494 }
495
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200496 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200497
498 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200499
500 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200501 if (ah->ah_gain.g_step_idx == 0)
502 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200503
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200504 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
505 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
506 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200507 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200508 ah->ah_gain.g_target -= 2 *
509 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200510 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200511
512 ret = 1;
513 goto done;
514 }
515
516 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200517
518 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200519 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
520 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200521
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200522 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
523 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
524 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200525 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200526 ah->ah_gain.g_target -= 2 *
527 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200528 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200529
530 ret = 2;
531 goto done;
532 }
533
534done:
535 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
536 "ret %d, gain step %u, current gain %u, target gain %u\n",
537 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
538 ah->ah_gain.g_target);
539
540 return ret;
541}
542
Bob Copelanda180a132010-08-15 13:03:12 -0400543/* Main callback for thermal RF gain calibration engine
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200544 * Check for a new gain reading and schedule an adjustment
545 * if needed.
546 *
547 * TODO: Use sw interrupt to schedule reset if gain_F needs
548 * adjustment */
549enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
550{
551 u32 data, type;
552 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200554 if (ah->ah_rf_banks == NULL ||
555 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
556 return AR5K_RFGAIN_INACTIVE;
557
558 /* No check requested, either engine is inactive
559 * or an adjustment is already requested */
560 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
561 goto done;
562
563 /* Read the PAPD (Peak to Average Power Detector)
564 * register */
565 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
566
567 /* No probe is scheduled, read gain_F measurement */
568 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
569 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
570 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
571
572 /* If tx packet is CCK correct the gain_F measurement
573 * by cck ofdm gain delta */
574 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
575 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
576 ah->ah_gain.g_current +=
577 ee->ee_cck_ofdm_gain_delta;
578 else
579 ah->ah_gain.g_current +=
580 AR5K_GAIN_CCK_PROBE_CORR;
581 }
582
583 /* Further correct gain_F measurement for
584 * RF5112A radios */
585 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
586 ath5k_hw_rf_gainf_corr(ah);
587 ah->ah_gain.g_current =
588 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
589 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
590 0;
591 }
592
593 /* Check if measurement is ok and if we need
594 * to adjust gain, schedule a gain adjustment,
595 * else switch back to the acive state */
596 if (ath5k_hw_rf_check_gainf_readback(ah) &&
597 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
598 ath5k_hw_rf_gainf_adjust(ah)) {
599 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
600 } else {
601 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
602 }
603 }
604
605done:
606 return ah->ah_gain.g_state;
607}
608
Bob Copelanda180a132010-08-15 13:03:12 -0400609/* Write initial RF gain table to set the RF sensitivity
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200610 * this one works on all RF chips and has nothing to do
611 * with gain_F calibration */
Nick Kossifidis9320b5c42010-11-23 20:36:45 +0200612static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200613{
614 const struct ath5k_ini_rfgain *ath5k_rfg;
615 unsigned int i, size;
616
617 switch (ah->ah_radio) {
618 case AR5K_RF5111:
619 ath5k_rfg = rfgain_5111;
620 size = ARRAY_SIZE(rfgain_5111);
621 break;
622 case AR5K_RF5112:
623 ath5k_rfg = rfgain_5112;
624 size = ARRAY_SIZE(rfgain_5112);
625 break;
626 case AR5K_RF2413:
627 ath5k_rfg = rfgain_2413;
628 size = ARRAY_SIZE(rfgain_2413);
629 break;
630 case AR5K_RF2316:
631 ath5k_rfg = rfgain_2316;
632 size = ARRAY_SIZE(rfgain_2316);
633 break;
634 case AR5K_RF5413:
635 ath5k_rfg = rfgain_5413;
636 size = ARRAY_SIZE(rfgain_5413);
637 break;
638 case AR5K_RF2317:
639 case AR5K_RF2425:
640 ath5k_rfg = rfgain_2425;
641 size = ARRAY_SIZE(rfgain_2425);
642 break;
643 default:
644 return -EINVAL;
645 }
646
647 switch (freq) {
648 case AR5K_INI_RFGAIN_2GHZ:
649 case AR5K_INI_RFGAIN_5GHZ:
650 break;
651 default:
652 return -EINVAL;
653 }
654
655 for (i = 0; i < size; i++) {
656 AR5K_REG_WAIT(i);
657 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
658 (u32)ath5k_rfg[i].rfg_register);
659 }
660
661 return 0;
662}
663
664
665
666/********************\
667* RF Registers setup *
668\********************/
669
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200670/*
Bob Copelanda180a132010-08-15 13:03:12 -0400671 * Setup RF registers by writing RF buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200672 */
Nick Kossifidis9320b5c42010-11-23 20:36:45 +0200673static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
674 struct ieee80211_channel *channel, unsigned int mode)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200675{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200676 const struct ath5k_rf_reg *rf_regs;
677 const struct ath5k_ini_rfbuffer *ini_rfb;
678 const struct ath5k_gain_opt *go = NULL;
679 const struct ath5k_gain_opt_step *g_step;
680 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
681 u8 ee_mode = 0;
682 u32 *rfb;
683 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200684
685 switch (ah->ah_radio) {
686 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200687 rf_regs = rf_regs_5111;
688 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
689 ini_rfb = rfb_5111;
690 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
691 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200692 break;
693 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200694 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
695 rf_regs = rf_regs_5112a;
696 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
697 ini_rfb = rfb_5112a;
698 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
699 } else {
700 rf_regs = rf_regs_5112;
701 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
702 ini_rfb = rfb_5112;
703 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
704 }
705 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200706 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500707 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200708 rf_regs = rf_regs_2413;
709 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
710 ini_rfb = rfb_2413;
711 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
712 break;
713 case AR5K_RF2316:
714 rf_regs = rf_regs_2316;
715 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
716 ini_rfb = rfb_2316;
717 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
718 break;
719 case AR5K_RF5413:
720 rf_regs = rf_regs_5413;
721 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
722 ini_rfb = rfb_5413;
723 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
724 break;
725 case AR5K_RF2317:
726 rf_regs = rf_regs_2425;
727 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
728 ini_rfb = rfb_2317;
729 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500730 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300731 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200732 rf_regs = rf_regs_2425;
733 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
734 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
735 ini_rfb = rfb_2425;
736 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
737 } else {
738 ini_rfb = rfb_2417;
739 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
740 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300741 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200742 default:
743 return -EINVAL;
744 }
745
Bob Copelanda180a132010-08-15 13:03:12 -0400746 /* If it's the first time we set RF buffer, allocate
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200747 * ah->ah_rf_banks based on ah->ah_rf_banks_size
748 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200749 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200750 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
751 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200752 if (ah->ah_rf_banks == NULL) {
753 ATH5K_ERR(ah->ah_sc, "out of memory\n");
754 return -ENOMEM;
755 }
756 }
757
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200758 /* Copy values to modify them */
759 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200760
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200761 for (i = 0; i < ah->ah_rf_banks_size; i++) {
762 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
763 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
764 return -EINVAL;
765 }
766
767 /* Bank changed, write down the offset */
768 if (bank != ini_rfb[i].rfb_bank) {
769 bank = ini_rfb[i].rfb_bank;
770 ah->ah_offset[bank] = i;
771 }
772
773 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
774 }
775
776 /* Set Output and Driver bias current (OB/DB) */
777 if (channel->hw_value & CHANNEL_2GHZ) {
778
779 if (channel->hw_value & CHANNEL_CCK)
780 ee_mode = AR5K_EEPROM_MODE_11B;
781 else
782 ee_mode = AR5K_EEPROM_MODE_11G;
783
784 /* For RF511X/RF211X combination we
785 * use b_OB and b_DB parameters stored
786 * in eeprom on ee->ee_ob[ee_mode][0]
787 *
788 * For all other chips we use OB/DB for 2Ghz
789 * stored in the b/g modal section just like
790 * 802.11a on ee->ee_ob[ee_mode][1] */
791 if ((ah->ah_radio == AR5K_RF5111) ||
792 (ah->ah_radio == AR5K_RF5112))
793 obdb = 0;
794 else
795 obdb = 1;
796
797 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
798 AR5K_RF_OB_2GHZ, true);
799
800 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
801 AR5K_RF_DB_2GHZ, true);
802
803 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
804 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
805 (ah->ah_radio == AR5K_RF5111)) {
806
807 /* For 11a, Turbo and XR we need to choose
808 * OB/DB based on frequency range */
809 ee_mode = AR5K_EEPROM_MODE_11A;
810 obdb = channel->center_freq >= 5725 ? 3 :
811 (channel->center_freq >= 5500 ? 2 :
812 (channel->center_freq >= 5260 ? 1 :
813 (channel->center_freq > 4000 ? 0 : -1)));
814
815 if (obdb < 0)
816 return -EINVAL;
817
818 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
819 AR5K_RF_OB_5GHZ, true);
820
821 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
822 AR5K_RF_DB_5GHZ, true);
823 }
824
825 g_step = &go->go_step[ah->ah_gain.g_step_idx];
826
827 /* Bank Modifications (chip-specific) */
828 if (ah->ah_radio == AR5K_RF5111) {
829
830 /* Set gain_F settings according to current step */
831 if (channel->hw_value & CHANNEL_OFDM) {
832
833 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
834 AR5K_PHY_FRAME_CTL_TX_CLIP,
835 g_step->gos_param[0]);
836
837 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
838 AR5K_RF_PWD_90, true);
839
840 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
841 AR5K_RF_PWD_84, true);
842
843 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
844 AR5K_RF_RFGAIN_SEL, true);
845
846 /* We programmed gain_F parameters, switch back
847 * to active state */
848 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
849
850 }
851
852 /* Bank 6/7 setup */
853
854 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
855 AR5K_RF_PWD_XPD, true);
856
857 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
858 AR5K_RF_XPD_GAIN, true);
859
860 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
861 AR5K_RF_GAIN_I, true);
862
863 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
864 AR5K_RF_PLO_SEL, true);
865
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200866 /* Tweak power detectors for half/quarter rate support */
867 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
868 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
869 u8 wait_i;
870
871 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
872 AR5K_RF_WAIT_S, true);
873
874 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
875 0x1f : 0x10;
876
877 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
878 AR5K_RF_WAIT_I, true);
879 ath5k_hw_rfb_op(ah, rf_regs, 3,
880 AR5K_RF_MAX_TIME, true);
881
882 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200883 }
884
885 if (ah->ah_radio == AR5K_RF5112) {
886
887 /* Set gain_F settings according to current step */
888 if (channel->hw_value & CHANNEL_OFDM) {
889
890 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
891 AR5K_RF_MIXGAIN_OVR, true);
892
893 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
894 AR5K_RF_PWD_138, true);
895
896 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
897 AR5K_RF_PWD_137, true);
898
899 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
900 AR5K_RF_PWD_136, true);
901
902 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
903 AR5K_RF_PWD_132, true);
904
905 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
906 AR5K_RF_PWD_131, true);
907
908 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
909 AR5K_RF_PWD_130, true);
910
911 /* We programmed gain_F parameters, switch back
912 * to active state */
913 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
914 }
915
916 /* Bank 6/7 setup */
917
918 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
919 AR5K_RF_XPD_SEL, true);
920
921 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
922 /* Rev. 1 supports only one xpd */
923 ath5k_hw_rfb_op(ah, rf_regs,
924 ee->ee_x_gain[ee_mode],
925 AR5K_RF_XPD_GAIN, true);
926
927 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300928 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
929 if (ee->ee_pd_gains[ee_mode] > 1) {
930 ath5k_hw_rfb_op(ah, rf_regs,
931 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200932 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300933 ath5k_hw_rfb_op(ah, rf_regs,
934 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200935 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300936 } else {
937 ath5k_hw_rfb_op(ah, rf_regs,
938 pdg_curve_to_idx[0],
939 AR5K_RF_PD_GAIN_LO, true);
940 ath5k_hw_rfb_op(ah, rf_regs,
941 pdg_curve_to_idx[0],
942 AR5K_RF_PD_GAIN_HI, true);
943 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200944
945 /* Lower synth voltage on Rev 2 */
946 ath5k_hw_rfb_op(ah, rf_regs, 2,
947 AR5K_RF_HIGH_VC_CP, true);
948
949 ath5k_hw_rfb_op(ah, rf_regs, 2,
950 AR5K_RF_MID_VC_CP, true);
951
952 ath5k_hw_rfb_op(ah, rf_regs, 2,
953 AR5K_RF_LOW_VC_CP, true);
954
955 ath5k_hw_rfb_op(ah, rf_regs, 2,
956 AR5K_RF_PUSH_UP, true);
957
958 /* Decrease power consumption on 5213+ BaseBand */
959 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
960 ath5k_hw_rfb_op(ah, rf_regs, 1,
961 AR5K_RF_PAD2GND, true);
962
963 ath5k_hw_rfb_op(ah, rf_regs, 1,
964 AR5K_RF_XB2_LVL, true);
965
966 ath5k_hw_rfb_op(ah, rf_regs, 1,
967 AR5K_RF_XB5_LVL, true);
968
969 ath5k_hw_rfb_op(ah, rf_regs, 1,
970 AR5K_RF_PWD_167, true);
971
972 ath5k_hw_rfb_op(ah, rf_regs, 1,
973 AR5K_RF_PWD_166, true);
974 }
975 }
976
977 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
978 AR5K_RF_GAIN_I, true);
979
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200980 /* Tweak power detector for half/quarter rates */
981 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
982 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
983 u8 pd_delay;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200984
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200985 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
986 0xf : 0x8;
987
988 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
989 AR5K_RF_PD_PERIOD_A, true);
990 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
991 AR5K_RF_PD_DELAY_A, true);
992
993 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200994 }
995
996 if (ah->ah_radio == AR5K_RF5413 &&
997 channel->hw_value & CHANNEL_2GHZ) {
998
999 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1000 true);
1001
1002 /* Set optimum value for early revisions (on pci-e chips) */
1003 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1004 ah->ah_mac_srev < AR5K_SREV_AR5413)
1005 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1006 AR5K_RF_PWD_ICLOBUF_2G, true);
1007
1008 }
1009
1010 /* Write RF banks on hw */
1011 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1012 AR5K_REG_WAIT(i);
1013 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1014 }
1015
1016 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001017}
1018
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001019
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001020/**************************\
1021 PHY/RF channel functions
1022\**************************/
1023
1024/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001025 * Convertion needed for RF5110
1026 */
1027static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1028{
1029 u32 athchan;
1030
1031 /*
1032 * Convert IEEE channel/MHz to an internal channel value used
1033 * by the AR5210 chipset. This has not been verified with
1034 * newer chipsets like the AR5212A who have a completely
1035 * different RF/PHY part.
1036 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001037 athchan = (ath5k_hw_bitswap(
1038 (ieee80211_frequency_to_channel(
1039 channel->center_freq) - 24) / 2, 5)
1040 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001041 return athchan;
1042}
1043
1044/*
1045 * Set channel on RF5110
1046 */
1047static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1048 struct ieee80211_channel *channel)
1049{
1050 u32 data;
1051
1052 /*
1053 * Set the channel and wait
1054 */
1055 data = ath5k_hw_rf5110_chan2athchan(channel);
1056 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1057 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1058 mdelay(1);
1059
1060 return 0;
1061}
1062
1063/*
1064 * Convertion needed for 5111
1065 */
1066static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1067 struct ath5k_athchan_2ghz *athchan)
1068{
1069 int channel;
1070
1071 /* Cast this value to catch negative channel numbers (>= -19) */
1072 channel = (int)ieee;
1073
1074 /*
1075 * Map 2GHz IEEE channel to 5GHz Atheros channel
1076 */
1077 if (channel <= 13) {
1078 athchan->a2_athchan = 115 + channel;
1079 athchan->a2_flags = 0x46;
1080 } else if (channel == 14) {
1081 athchan->a2_athchan = 124;
1082 athchan->a2_flags = 0x44;
1083 } else if (channel >= 15 && channel <= 26) {
1084 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1085 athchan->a2_flags = 0x46;
1086 } else
1087 return -EINVAL;
1088
1089 return 0;
1090}
1091
1092/*
1093 * Set channel on 5111
1094 */
1095static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1096 struct ieee80211_channel *channel)
1097{
1098 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001099 unsigned int ath5k_channel =
1100 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001101 u32 data0, data1, clock;
1102 int ret;
1103
1104 /*
1105 * Set the channel on the RF5111 radio
1106 */
1107 data0 = data1 = 0;
1108
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001109 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001110 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001111 ret = ath5k_hw_rf5111_chan2athchan(
1112 ieee80211_frequency_to_channel(channel->center_freq),
1113 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001114 if (ret)
1115 return ret;
1116
1117 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1118 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1119 << 5) | (1 << 4);
1120 }
1121
1122 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1123 clock = 1;
1124 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1125 (clock << 1) | (1 << 10) | 1;
1126 } else {
1127 clock = 0;
1128 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1129 << 2) | (clock << 1) | (1 << 10) | 1;
1130 }
1131
1132 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1133 AR5K_RF_BUFFER);
1134 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1135 AR5K_RF_BUFFER_CONTROL_3);
1136
1137 return 0;
1138}
1139
1140/*
1141 * Set channel on 5112 and newer
1142 */
1143static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1144 struct ieee80211_channel *channel)
1145{
1146 u32 data, data0, data1, data2;
1147 u16 c;
1148
1149 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001150 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001151
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001152 if (c < 4800) {
1153 if (!((c - 2224) % 5)) {
1154 data0 = ((2 * (c - 704)) - 3040) / 10;
1155 data1 = 1;
1156 } else if (!((c - 2192) % 5)) {
1157 data0 = ((2 * (c - 672)) - 3040) / 10;
1158 data1 = 0;
1159 } else
1160 return -EINVAL;
1161
1162 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Bob Copeland1968cc72010-04-07 23:55:56 -04001163 } else if ((c % 5) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001164 if (!(c % 20) && c >= 5120) {
1165 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1166 data2 = ath5k_hw_bitswap(3, 2);
1167 } else if (!(c % 10)) {
1168 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1169 data2 = ath5k_hw_bitswap(2, 2);
1170 } else if (!(c % 5)) {
1171 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1172 data2 = ath5k_hw_bitswap(1, 2);
1173 } else
1174 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001175 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001176 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001177 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001178 }
1179
1180 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1181
1182 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1183 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1184
1185 return 0;
1186}
1187
1188/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001189 * Set the channel on the RF2425
1190 */
1191static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1192 struct ieee80211_channel *channel)
1193{
1194 u32 data, data0, data2;
1195 u16 c;
1196
1197 data = data0 = data2 = 0;
1198 c = channel->center_freq;
1199
1200 if (c < 4800) {
1201 data0 = ath5k_hw_bitswap((c - 2272), 8);
1202 data2 = 0;
1203 /* ? 5GHz ? */
Bob Copeland1968cc72010-04-07 23:55:56 -04001204 } else if ((c % 5) != 2 || c > 5435) {
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001205 if (!(c % 20) && c < 5120)
1206 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1207 else if (!(c % 10))
1208 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1209 else if (!(c % 5))
1210 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1211 else
1212 return -EINVAL;
1213 data2 = ath5k_hw_bitswap(1, 2);
1214 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001215 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001216 data2 = ath5k_hw_bitswap(0, 2);
1217 }
1218
1219 data = (data0 << 4) | data2 << 2 | 0x1001;
1220
1221 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1222 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1223
1224 return 0;
1225}
1226
1227/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001228 * Set a channel on the radio chip
1229 */
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02001230static int ath5k_hw_channel(struct ath5k_hw *ah,
1231 struct ieee80211_channel *channel)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001232{
1233 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001234 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001235 * Check bounds supported by the PHY (we don't care about regultory
1236 * restrictions at this point). Note: hw_value already has the band
1237 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1238 * of the band by that */
1239 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001240 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001241 "channel frequency (%u MHz) out of supported "
1242 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001243 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001244 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001245 }
1246
1247 /*
1248 * Set the channel and wait
1249 */
1250 switch (ah->ah_radio) {
1251 case AR5K_RF5110:
1252 ret = ath5k_hw_rf5110_channel(ah, channel);
1253 break;
1254 case AR5K_RF5111:
1255 ret = ath5k_hw_rf5111_channel(ah, channel);
1256 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001257 case AR5K_RF2425:
1258 ret = ath5k_hw_rf2425_channel(ah, channel);
1259 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001260 default:
1261 ret = ath5k_hw_rf5112_channel(ah, channel);
1262 break;
1263 }
1264
1265 if (ret)
1266 return ret;
1267
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001268 /* Set JAPAN setting for channel 14 */
1269 if (channel->center_freq == 2484) {
1270 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1271 AR5K_PHY_CCKTXCTL_JAPAN);
1272 } else {
1273 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1274 AR5K_PHY_CCKTXCTL_WORLD);
1275 }
1276
Bob Copeland46026e82009-06-10 22:22:20 -04001277 ah->ah_current_channel = channel;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001278
1279 return 0;
1280}
1281
1282/*****************\
1283 PHY calibration
1284\*****************/
1285
Bob Copelande5e26472009-10-14 14:16:30 -04001286static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1287{
1288 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001289
Bob Copelande5e26472009-10-14 14:16:30 -04001290 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
Andreas Herrmann7919a572010-08-30 19:04:01 +00001291 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
Bob Copelande5e26472009-10-14 14:16:30 -04001292}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001293
Bob Copelande5e26472009-10-14 14:16:30 -04001294void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1295{
1296 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001297
Bob Copelande5e26472009-10-14 14:16:30 -04001298 ah->ah_nfcal_hist.index = 0;
1299 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1300 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1301}
1302
1303static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1304{
1305 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1306 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1307 hist->nfval[hist->index] = noise_floor;
1308}
1309
1310static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1311{
1312 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1313 s16 tmp;
1314 int i, j;
1315
1316 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1317 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1318 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1319 if (sort[j] > sort[j-1]) {
1320 tmp = sort[j];
1321 sort[j] = sort[j-1];
1322 sort[j-1] = tmp;
1323 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001324 }
1325 }
Bob Copelande5e26472009-10-14 14:16:30 -04001326 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1327 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1328 "cal %d:%d\n", i, sort[i]);
1329 }
1330 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1331}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001332
Bob Copelande5e26472009-10-14 14:16:30 -04001333/*
1334 * When we tell the hardware to perform a noise floor calibration
1335 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1336 * sample-and-hold the minimum noise level seen at the antennas.
1337 * This value is then stored in a ring buffer of recently measured
1338 * noise floor values so we have a moving window of the last few
1339 * samples.
1340 *
1341 * The median of the values in the history is then loaded into the
1342 * hardware for its own use for RSSI and CCA measurements.
1343 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001344void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001345{
1346 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1347 u32 val;
1348 s16 nf, threshold;
1349 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001350
Bob Copelande5e26472009-10-14 14:16:30 -04001351 /* keep last value if calibration hasn't completed */
1352 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1353 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1354 "NF did not complete in calibration window\n");
1355
1356 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001357 }
1358
Bob Copelande5e26472009-10-14 14:16:30 -04001359 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1360 case CHANNEL_A:
1361 case CHANNEL_T:
1362 case CHANNEL_XR:
1363 ee_mode = AR5K_EEPROM_MODE_11A;
1364 break;
1365 case CHANNEL_G:
1366 case CHANNEL_TG:
1367 ee_mode = AR5K_EEPROM_MODE_11G;
1368 break;
1369 default:
1370 case CHANNEL_B:
1371 ee_mode = AR5K_EEPROM_MODE_11B;
1372 break;
1373 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001374
Bob Copelande5e26472009-10-14 14:16:30 -04001375
1376 /* completed NF calibration, test threshold */
1377 nf = ath5k_hw_read_measured_noise_floor(ah);
1378 threshold = ee->ee_noise_floor_thr[ee_mode];
1379
1380 if (nf > threshold) {
1381 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1382 "noise floor failure detected; "
1383 "read %d, threshold %d\n",
1384 nf, threshold);
1385
1386 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1387 }
1388
1389 ath5k_hw_update_nfcal_hist(ah, nf);
1390 nf = ath5k_hw_get_median_noise_floor(ah);
1391
1392 /* load noise floor (in .5 dBm) so the hardware will use it */
1393 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1394 val |= (nf * 2) & AR5K_PHY_NF_M;
1395 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1396
1397 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1398 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1399
1400 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1401 0, false);
1402
1403 /*
1404 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1405 * so that we're not capped by the median we just loaded.
1406 * This will be used as the initial value for the next noise
1407 * floor calibration.
1408 */
1409 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1410 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1411 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1412 AR5K_PHY_AGCCTL_NF_EN |
1413 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1414 AR5K_PHY_AGCCTL_NF);
1415
1416 ah->ah_noise_floor = nf;
1417
1418 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1419 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001420}
1421
1422/*
1423 * Perform a PHY calibration on RF5110
1424 * -Fix BPSK/QAM Constellation (I/Q correction)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001425 */
1426static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1427 struct ieee80211_channel *channel)
1428{
1429 u32 phy_sig, phy_agc, phy_sat, beacon;
1430 int ret;
1431
1432 /*
1433 * Disable beacons and RX/TX queues, wait
1434 */
1435 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001436 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001437 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1438 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1439
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001440 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001441
1442 /*
1443 * Set the channel (with AGC turned off)
1444 */
1445 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1446 udelay(10);
1447 ret = ath5k_hw_channel(ah, channel);
1448
1449 /*
1450 * Activate PHY and wait
1451 */
1452 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1453 mdelay(1);
1454
1455 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1456
1457 if (ret)
1458 return ret;
1459
1460 /*
1461 * Calibrate the radio chip
1462 */
1463
1464 /* Remember normal state */
1465 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1466 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1467 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1468
1469 /* Update radio registers */
1470 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1471 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1472
1473 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1474 AR5K_PHY_AGCCOARSE_LO)) |
1475 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1476 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1477
1478 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1479 AR5K_PHY_ADCSAT_THR)) |
1480 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1481 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1482
1483 udelay(20);
1484
1485 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1486 udelay(10);
1487 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1488 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1489
1490 mdelay(1);
1491
1492 /*
1493 * Enable calibration and wait until completion
1494 */
1495 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1496
1497 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1498 AR5K_PHY_AGCCTL_CAL, 0, false);
1499
1500 /* Reset to normal state */
1501 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1502 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1503 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1504
1505 if (ret) {
1506 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001507 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001508 return ret;
1509 }
1510
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001511 /*
1512 * Re-enable RX/TX and beacons
1513 */
1514 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001515 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001516 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1517
1518 return 0;
1519}
1520
1521/*
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001522 * Perform I/Q calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001523 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001524static int
1525ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001526{
1527 u32 i_pwr, q_pwr;
1528 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001529 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001530
Joe Perchese9010e22008-03-07 14:21:16 -08001531 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001532 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001533 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001534
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001535 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001536 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001537 for (i = 0; i <= 10; i++) {
1538 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1539 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1540 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001541 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1542 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1543 if (i_pwr && q_pwr)
1544 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001545 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001546
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001547 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Bruno Randolf49a85d22010-03-09 16:56:15 +09001548
1549 if (ah->ah_version == AR5K_AR5211)
1550 q_coffd = q_pwr >> 6;
1551 else
1552 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001553
Bruno Randolf86415d42010-03-09 16:56:05 +09001554 /* protect against divide by 0 and loss of sign bits */
1555 if (i_coffd == 0 || q_coffd < 2)
Fabio Rossi516c6e12010-09-08 22:37:41 +02001556 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001557
Bruno Randolf86415d42010-03-09 16:56:05 +09001558 i_coff = (-iq_corr) / i_coffd;
1559 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001560
John W. Linvilleace5d5d2010-04-08 16:34:49 -04001561 if (ah->ah_version == AR5K_AR5211)
1562 q_coff = (i_pwr / q_coffd) - 64;
1563 else
1564 q_coff = (i_pwr / q_coffd) - 128;
Bruno Randolf86415d42010-03-09 16:56:05 +09001565 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001566
Bruno Randolf86415d42010-03-09 16:56:05 +09001567 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1568 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1569 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001570
Bruno Randolf86415d42010-03-09 16:56:05 +09001571 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1572 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1573 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1574 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001575
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001576 /* Re-enable calibration -if we don't we'll commit
1577 * the same values again and again */
1578 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1579 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1580 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1581
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001582 return 0;
1583}
1584
1585/*
1586 * Perform a PHY calibration
1587 */
1588int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1589 struct ieee80211_channel *channel)
1590{
1591 int ret;
1592
1593 if (ah->ah_radio == AR5K_RF5110)
1594 ret = ath5k_hw_rf5110_calibrate(ah, channel);
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001595 else {
1596 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1597 ath5k_hw_request_rfgain_probe(ah);
1598 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001599
1600 return ret;
1601}
1602
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02001603
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001604/***************************\
1605* Spur mitigation functions *
1606\***************************/
1607
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02001608static void
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001609ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1610 struct ieee80211_channel *channel)
1611{
1612 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1613 u32 mag_mask[4] = {0, 0, 0, 0};
1614 u32 pilot_mask[2] = {0, 0};
1615 /* Note: fbin values are scaled up by 2 */
1616 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1617 s32 spur_delta_phase, spur_freq_sigma_delta;
1618 s32 spur_offset, num_symbols_x16;
1619 u8 num_symbol_offsets, i, freq_band;
1620
1621 /* Convert current frequency to fbin value (the same way channels
1622 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1623 * up by 2 so we can compare it later */
1624 if (channel->hw_value & CHANNEL_2GHZ) {
1625 chan_fbin = (channel->center_freq - 2300) * 10;
1626 freq_band = AR5K_EEPROM_BAND_2GHZ;
1627 } else {
1628 chan_fbin = (channel->center_freq - 4900) * 10;
1629 freq_band = AR5K_EEPROM_BAND_5GHZ;
1630 }
1631
1632 /* Check if any spur_chan_fbin from EEPROM is
1633 * within our current channel's spur detection range */
1634 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1635 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1636 /* XXX: Half/Quarter channels ?*/
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001637 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001638 spur_detection_window *= 2;
1639
1640 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1641 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1642
1643 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1644 * so it's zero if we got nothing from EEPROM */
1645 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1646 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1647 break;
1648 }
1649
1650 if ((chan_fbin - spur_detection_window <=
1651 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1652 (chan_fbin + spur_detection_window >=
1653 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1654 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1655 break;
1656 }
1657 }
1658
1659 /* We need to enable spur filter for this channel */
1660 if (spur_chan_fbin) {
1661 spur_offset = spur_chan_fbin - chan_fbin;
1662 /*
1663 * Calculate deltas:
1664 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1665 * spur_delta_phase -> spur_offset / chip_freq << 11
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001666 * Note: Both values have 100Hz resolution
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001667 */
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001668 switch (ah->ah_bwmode) {
1669 case AR5K_BWMODE_40MHZ:
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001670 /* Both sample_freq and chip_freq are 80MHz */
1671 spur_delta_phase = (spur_offset << 16) / 25;
1672 spur_freq_sigma_delta = (spur_delta_phase >> 10);
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001673 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001674 break;
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001675 case AR5K_BWMODE_10MHZ:
1676 /* Both sample_freq and chip_freq are 20MHz (?) */
1677 spur_delta_phase = (spur_offset << 18) / 25;
1678 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1679 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1680 case AR5K_BWMODE_5MHZ:
1681 /* Both sample_freq and chip_freq are 10MHz (?) */
1682 spur_delta_phase = (spur_offset << 19) / 25;
1683 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1684 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001685 default:
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001686 if (channel->hw_value == CHANNEL_A) {
1687 /* Both sample_freq and chip_freq are 40MHz */
1688 spur_delta_phase = (spur_offset << 17) / 25;
1689 spur_freq_sigma_delta =
1690 (spur_delta_phase >> 10);
1691 symbol_width =
1692 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1693 } else {
1694 /* sample_freq -> 40MHz chip_freq -> 44MHz
1695 * (for b compatibility) */
1696 spur_delta_phase = (spur_offset << 17) / 25;
1697 spur_freq_sigma_delta =
1698 (spur_offset << 8) / 55;
1699 symbol_width =
1700 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1701 }
1702 break;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001703 }
1704
1705 /* Calculate pilot and magnitude masks */
1706
1707 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1708 * and divide by symbol_width to find how many symbols we have
1709 * Note: number of symbols is scaled up by 16 */
1710 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1711
1712 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1713 if (!(num_symbols_x16 & 0xF))
1714 /* _X_ */
1715 num_symbol_offsets = 3;
1716 else
1717 /* _xx_ */
1718 num_symbol_offsets = 4;
1719
1720 for (i = 0; i < num_symbol_offsets; i++) {
1721
1722 /* Calculate pilot mask */
1723 s32 curr_sym_off =
1724 (num_symbols_x16 / 16) + i + 25;
1725
1726 /* Pilot magnitude mask seems to be a way to
1727 * declare the boundaries for our detection
1728 * window or something, it's 2 for the middle
1729 * value(s) where the symbol is expected to be
1730 * and 1 on the boundary values */
1731 u8 plt_mag_map =
1732 (i == 0 || i == (num_symbol_offsets - 1))
1733 ? 1 : 2;
1734
1735 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1736 if (curr_sym_off <= 25)
1737 pilot_mask[0] |= 1 << curr_sym_off;
1738 else if (curr_sym_off >= 27)
1739 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1740 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1741 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1742
1743 /* Calculate magnitude mask (for viterbi decoder) */
1744 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1745 mag_mask[0] |=
1746 plt_mag_map << (curr_sym_off + 1) * 2;
1747 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1748 mag_mask[1] |=
1749 plt_mag_map << (curr_sym_off - 15) * 2;
1750 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1751 mag_mask[2] |=
1752 plt_mag_map << (curr_sym_off - 31) * 2;
Bob Copeland53b1cf82010-08-24 21:37:14 -04001753 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001754 mag_mask[3] |=
1755 plt_mag_map << (curr_sym_off - 47) * 2;
1756
1757 }
1758
1759 /* Write settings on hw to enable spur filter */
1760 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1761 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1762 /* XXX: Self correlator also ? */
1763 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1764 AR5K_PHY_IQ_PILOT_MASK_EN |
1765 AR5K_PHY_IQ_CHAN_MASK_EN |
1766 AR5K_PHY_IQ_SPUR_FILT_EN);
1767
1768 /* Set delta phase and freq sigma delta */
1769 ath5k_hw_reg_write(ah,
1770 AR5K_REG_SM(spur_delta_phase,
1771 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1772 AR5K_REG_SM(spur_freq_sigma_delta,
1773 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1774 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1775 AR5K_PHY_TIMING_11);
1776
1777 /* Write pilot masks */
1778 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1779 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1780 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1781 pilot_mask[1]);
1782
1783 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1784 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1785 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1786 pilot_mask[1]);
1787
1788 /* Write magnitude masks */
1789 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1790 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1791 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1792 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1793 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1794 mag_mask[3]);
1795
1796 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1797 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1798 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1799 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1800 AR5K_PHY_BIN_MASK2_4_MASK_4,
1801 mag_mask[3]);
1802
1803 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1804 AR5K_PHY_IQ_SPUR_FILT_EN) {
1805 /* Clean up spur mitigation settings and disable fliter */
1806 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1807 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1808 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1809 AR5K_PHY_IQ_PILOT_MASK_EN |
1810 AR5K_PHY_IQ_CHAN_MASK_EN |
1811 AR5K_PHY_IQ_SPUR_FILT_EN);
1812 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1813
1814 /* Clear pilot masks */
1815 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1816 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1817 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1818 0);
1819
1820 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1821 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1822 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1823 0);
1824
1825 /* Clear magnitude masks */
1826 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1827 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1828 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1829 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1830 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1831 0);
1832
1833 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1834 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1835 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1836 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1837 AR5K_PHY_BIN_MASK2_4_MASK_4,
1838 0);
1839 }
1840}
1841
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001842
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001843/*****************\
1844* Antenna control *
1845\*****************/
1846
Pavel Roskin626ede62010-02-18 20:28:02 -05001847static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001848ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001849{
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001850 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001851 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001852}
1853
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001854/*
1855 * Enable/disable fast rx antenna diversity
1856 */
1857static void
1858ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1859{
1860 switch (ee_mode) {
1861 case AR5K_EEPROM_MODE_11G:
1862 /* XXX: This is set to
1863 * disabled on initvals !!! */
1864 case AR5K_EEPROM_MODE_11A:
1865 if (enable)
1866 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1867 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1868 else
1869 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1870 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1871 break;
1872 case AR5K_EEPROM_MODE_11B:
1873 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1874 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1875 break;
1876 default:
1877 return;
1878 }
1879
1880 if (enable) {
1881 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf6665b542010-06-28 11:01:48 +09001882 AR5K_PHY_RESTART_DIV_GC, 4);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001883
1884 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1885 AR5K_PHY_FAST_ANT_DIV_EN);
1886 } else {
1887 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf39d5b2c2010-06-07 13:11:25 +09001888 AR5K_PHY_RESTART_DIV_GC, 0);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001889
1890 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1891 AR5K_PHY_FAST_ANT_DIV_EN);
1892 }
1893}
1894
Bruno Randolf0ca74022010-06-07 13:11:30 +09001895void
1896ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1897{
1898 u8 ant0, ant1;
1899
1900 /*
1901 * In case a fixed antenna was set as default
1902 * use the same switch table twice.
1903 */
1904 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1905 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1906 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1907 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1908 else {
1909 ant0 = AR5K_ANT_SWTABLE_A;
1910 ant1 = AR5K_ANT_SWTABLE_B;
1911 }
1912
1913 /* Set antenna idle switch table */
1914 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1915 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1916 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1917 AR5K_PHY_ANT_CTL_TXRX_EN));
1918
1919 /* Set antenna switch tables */
1920 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1921 AR5K_PHY_ANT_SWITCH_TABLE_0);
1922 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1923 AR5K_PHY_ANT_SWITCH_TABLE_1);
1924}
1925
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001926/*
1927 * Set antenna operating mode
1928 */
1929void
1930ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1931{
Bob Copeland46026e82009-06-10 22:22:20 -04001932 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001933 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1934 bool use_def_for_sg;
1935 u8 def_ant, tx_ant, ee_mode;
1936 u32 sta_id1 = 0;
1937
Bruno Randolf436c1092010-06-07 13:11:19 +09001938 /* if channel is not initialized yet we can't set the antennas
1939 * so just store the mode. it will be set on the next reset */
1940 if (channel == NULL) {
1941 ah->ah_ant_mode = ant_mode;
1942 return;
1943 }
1944
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001945 def_ant = ah->ah_def_ant;
1946
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001947 switch (channel->hw_value & CHANNEL_MODES) {
1948 case CHANNEL_A:
1949 case CHANNEL_T:
1950 case CHANNEL_XR:
1951 ee_mode = AR5K_EEPROM_MODE_11A;
1952 break;
1953 case CHANNEL_G:
1954 case CHANNEL_TG:
1955 ee_mode = AR5K_EEPROM_MODE_11G;
1956 break;
1957 case CHANNEL_B:
1958 ee_mode = AR5K_EEPROM_MODE_11B;
1959 break;
1960 default:
1961 ATH5K_ERR(ah->ah_sc,
1962 "invalid channel: %d\n", channel->center_freq);
1963 return;
1964 }
1965
1966 switch (ant_mode) {
1967 case AR5K_ANTMODE_DEFAULT:
1968 tx_ant = 0;
1969 use_def_for_tx = false;
1970 update_def_on_tx = false;
1971 use_def_for_rts = false;
1972 use_def_for_sg = false;
1973 fast_div = true;
1974 break;
1975 case AR5K_ANTMODE_FIXED_A:
1976 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001977 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001978 use_def_for_tx = true;
1979 update_def_on_tx = false;
1980 use_def_for_rts = true;
1981 use_def_for_sg = true;
1982 fast_div = false;
1983 break;
1984 case AR5K_ANTMODE_FIXED_B:
1985 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001986 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001987 use_def_for_tx = true;
1988 update_def_on_tx = false;
1989 use_def_for_rts = true;
1990 use_def_for_sg = true;
1991 fast_div = false;
1992 break;
1993 case AR5K_ANTMODE_SINGLE_AP:
1994 def_ant = 1; /* updated on tx */
1995 tx_ant = 0;
1996 use_def_for_tx = true;
1997 update_def_on_tx = true;
1998 use_def_for_rts = true;
1999 use_def_for_sg = true;
2000 fast_div = true;
2001 break;
2002 case AR5K_ANTMODE_SECTOR_AP:
2003 tx_ant = 1; /* variable */
2004 use_def_for_tx = false;
2005 update_def_on_tx = false;
2006 use_def_for_rts = true;
2007 use_def_for_sg = false;
2008 fast_div = false;
2009 break;
2010 case AR5K_ANTMODE_SECTOR_STA:
2011 tx_ant = 1; /* variable */
2012 use_def_for_tx = true;
2013 update_def_on_tx = false;
2014 use_def_for_rts = true;
2015 use_def_for_sg = false;
2016 fast_div = true;
2017 break;
2018 case AR5K_ANTMODE_DEBUG:
2019 def_ant = 1;
2020 tx_ant = 2;
2021 use_def_for_tx = false;
2022 update_def_on_tx = false;
2023 use_def_for_rts = false;
2024 use_def_for_sg = false;
2025 fast_div = false;
2026 break;
2027 default:
2028 return;
2029 }
2030
2031 ah->ah_tx_ant = tx_ant;
2032 ah->ah_ant_mode = ant_mode;
Bruno Randolfcaec9112010-03-09 16:55:28 +09002033 ah->ah_def_ant = def_ant;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002034
2035 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2036 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2037 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2038 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2039
2040 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2041
2042 if (sta_id1)
2043 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2044
Bruno Randolf0ca74022010-06-07 13:11:30 +09002045 ath5k_hw_set_antenna_switch(ah, ee_mode);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002046 /* Note: set diversity before default antenna
2047 * because it won't work correctly */
2048 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2049 ath5k_hw_set_def_antenna(ah, def_ant);
2050}
2051
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002052
2053/****************\
2054* TX power setup *
2055\****************/
2056
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002057/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002058 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002059 */
2060
2061/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002062 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002063 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002064static s16
2065ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2066 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002067{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002068 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002069
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002070 /* Avoid divide by zero and skip interpolation
2071 * if we have the same point */
2072 if ((x_left == x_right) || (y_left == y_right))
2073 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002074
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002075 /*
2076 * Since we use ints and not fps, we need to scale up in
2077 * order to get a sane ratio value (or else we 'll eg. get
2078 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2079 * to have some accuracy both for 0.5 and 0.25 steps.
2080 */
2081 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002082
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002083 /* Now scale down to be in range */
2084 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002085
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002086 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002087}
2088
2089/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002090 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2091 *
2092 * Since we have the top of the curve and we draw the line below
2093 * until we reach 1 (1 pcdac step) we need to know which point
2094 * (x value) that is so that we don't go below y axis and have negative
2095 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002096 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002097static s16
2098ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2099 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002100{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002101 s8 tmp;
2102 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002103 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002104
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03002105 /* Some vendors write the same pcdac value twice !!! */
2106 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2107 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04002108
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002109 if (pwrL[0] == pwrL[1])
2110 min_pwrL = pwrL[0];
2111 else {
2112 pwr_i = pwrL[0];
2113 do {
2114 pwr_i--;
2115 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2116 pwrL[0], pwrL[1],
2117 stepL[0], stepL[1]);
2118 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002119
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002120 min_pwrL = pwr_i;
2121 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002122
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002123 if (pwrR[0] == pwrR[1])
2124 min_pwrR = pwrR[0];
2125 else {
2126 pwr_i = pwrR[0];
2127 do {
2128 pwr_i--;
2129 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2130 pwrR[0], pwrR[1],
2131 stepR[0], stepR[1]);
2132 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002133
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002134 min_pwrR = pwr_i;
2135 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002136
2137 /* Keep the right boundary so that it works for both curves */
2138 return max(min_pwrL, min_pwrR);
2139}
2140
2141/*
2142 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2143 * Power to PCDAC curve.
2144 *
2145 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2146 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2147 * PCDAC/PDADC step for each curve is 64 but we can write more than
2148 * one curves on hw so we can go up to 128 (which is the max step we
2149 * can write on the final table).
2150 *
2151 * We write y values (PCDAC/PDADC steps) on hw.
2152 */
2153static void
2154ath5k_create_power_curve(s16 pmin, s16 pmax,
2155 const s16 *pwr, const u8 *vpd,
2156 u8 num_points,
2157 u8 *vpd_table, u8 type)
2158{
2159 u8 idx[2] = { 0, 1 };
2160 s16 pwr_i = 2*pmin;
2161 int i;
2162
2163 if (num_points < 2)
2164 return;
2165
2166 /* We want the whole line, so adjust boundaries
2167 * to cover the entire power range. Note that
2168 * power values are already 0.25dB so no need
2169 * to multiply pwr_i by 2 */
2170 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2171 pwr_i = pmin;
2172 pmin = 0;
2173 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002174 }
2175
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002176 /* Find surrounding turning points (TPs)
2177 * and interpolate between them */
2178 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2179 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2180
2181 /* We passed the right TP, move to the next set of TPs
2182 * if we pass the last TP, extrapolate above using the last
2183 * two TPs for ratio */
2184 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2185 idx[0]++;
2186 idx[1]++;
2187 }
2188
2189 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2190 pwr[idx[0]], pwr[idx[1]],
2191 vpd[idx[0]], vpd[idx[1]]);
2192
2193 /* Increase by 0.5dB
2194 * (0.25 dB units) */
2195 pwr_i += 2;
2196 }
2197}
2198
2199/*
2200 * Get the surrounding per-channel power calibration piers
2201 * for a given frequency so that we can interpolate between
2202 * them and come up with an apropriate dataset for our current
2203 * channel.
2204 */
2205static void
2206ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2207 struct ieee80211_channel *channel,
2208 struct ath5k_chan_pcal_info **pcinfo_l,
2209 struct ath5k_chan_pcal_info **pcinfo_r)
2210{
2211 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2212 struct ath5k_chan_pcal_info *pcinfo;
2213 u8 idx_l, idx_r;
2214 u8 mode, max, i;
2215 u32 target = channel->center_freq;
2216
2217 idx_l = 0;
2218 idx_r = 0;
2219
2220 if (!(channel->hw_value & CHANNEL_OFDM)) {
2221 pcinfo = ee->ee_pwr_cal_b;
2222 mode = AR5K_EEPROM_MODE_11B;
2223 } else if (channel->hw_value & CHANNEL_2GHZ) {
2224 pcinfo = ee->ee_pwr_cal_g;
2225 mode = AR5K_EEPROM_MODE_11G;
2226 } else {
2227 pcinfo = ee->ee_pwr_cal_a;
2228 mode = AR5K_EEPROM_MODE_11A;
2229 }
2230 max = ee->ee_n_piers[mode] - 1;
2231
2232 /* Frequency is below our calibrated
2233 * range. Use the lowest power curve
2234 * we have */
2235 if (target < pcinfo[0].freq) {
2236 idx_l = idx_r = 0;
2237 goto done;
2238 }
2239
2240 /* Frequency is above our calibrated
2241 * range. Use the highest power curve
2242 * we have */
2243 if (target > pcinfo[max].freq) {
2244 idx_l = idx_r = max;
2245 goto done;
2246 }
2247
2248 /* Frequency is inside our calibrated
2249 * channel range. Pick the surrounding
2250 * calibration piers so that we can
2251 * interpolate */
2252 for (i = 0; i <= max; i++) {
2253
2254 /* Frequency matches one of our calibration
2255 * piers, no need to interpolate, just use
2256 * that calibration pier */
2257 if (pcinfo[i].freq == target) {
2258 idx_l = idx_r = i;
2259 goto done;
2260 }
2261
2262 /* We found a calibration pier that's above
2263 * frequency, use this pier and the previous
2264 * one to interpolate */
2265 if (target < pcinfo[i].freq) {
2266 idx_r = i;
2267 idx_l = idx_r - 1;
2268 goto done;
2269 }
2270 }
2271
2272done:
2273 *pcinfo_l = &pcinfo[idx_l];
2274 *pcinfo_r = &pcinfo[idx_r];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002275}
2276
2277/*
2278 * Get the surrounding per-rate power calibration data
2279 * for a given frequency and interpolate between power
2280 * values to set max target power supported by hw for
2281 * each rate.
2282 */
2283static void
2284ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2285 struct ieee80211_channel *channel,
2286 struct ath5k_rate_pcal_info *rates)
2287{
2288 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2289 struct ath5k_rate_pcal_info *rpinfo;
2290 u8 idx_l, idx_r;
2291 u8 mode, max, i;
2292 u32 target = channel->center_freq;
2293
2294 idx_l = 0;
2295 idx_r = 0;
2296
2297 if (!(channel->hw_value & CHANNEL_OFDM)) {
2298 rpinfo = ee->ee_rate_tpwr_b;
2299 mode = AR5K_EEPROM_MODE_11B;
2300 } else if (channel->hw_value & CHANNEL_2GHZ) {
2301 rpinfo = ee->ee_rate_tpwr_g;
2302 mode = AR5K_EEPROM_MODE_11G;
2303 } else {
2304 rpinfo = ee->ee_rate_tpwr_a;
2305 mode = AR5K_EEPROM_MODE_11A;
2306 }
2307 max = ee->ee_rate_target_pwr_num[mode] - 1;
2308
2309 /* Get the surrounding calibration
2310 * piers - same as above */
2311 if (target < rpinfo[0].freq) {
2312 idx_l = idx_r = 0;
2313 goto done;
2314 }
2315
2316 if (target > rpinfo[max].freq) {
2317 idx_l = idx_r = max;
2318 goto done;
2319 }
2320
2321 for (i = 0; i <= max; i++) {
2322
2323 if (rpinfo[i].freq == target) {
2324 idx_l = idx_r = i;
2325 goto done;
2326 }
2327
2328 if (target < rpinfo[i].freq) {
2329 idx_r = i;
2330 idx_l = idx_r - 1;
2331 goto done;
2332 }
2333 }
2334
2335done:
2336 /* Now interpolate power value, based on the frequency */
2337 rates->freq = target;
2338
2339 rates->target_power_6to24 =
2340 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2341 rpinfo[idx_r].freq,
2342 rpinfo[idx_l].target_power_6to24,
2343 rpinfo[idx_r].target_power_6to24);
2344
2345 rates->target_power_36 =
2346 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2347 rpinfo[idx_r].freq,
2348 rpinfo[idx_l].target_power_36,
2349 rpinfo[idx_r].target_power_36);
2350
2351 rates->target_power_48 =
2352 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2353 rpinfo[idx_r].freq,
2354 rpinfo[idx_l].target_power_48,
2355 rpinfo[idx_r].target_power_48);
2356
2357 rates->target_power_54 =
2358 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2359 rpinfo[idx_r].freq,
2360 rpinfo[idx_l].target_power_54,
2361 rpinfo[idx_r].target_power_54);
2362}
2363
2364/*
2365 * Get the max edge power for this channel if
2366 * we have such data from EEPROM's Conformance Test
2367 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002368 */
2369static void
2370ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2371 struct ieee80211_channel *channel)
2372{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002373 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002374 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2375 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2376 u8 *ctl_val = ee->ee_ctl;
2377 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2378 s16 edge_pwr = 0;
2379 u8 rep_idx;
2380 u8 i, ctl_mode;
2381 u8 ctl_idx = 0xFF;
2382 u32 target = channel->center_freq;
2383
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002384 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002385
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002386 switch (channel->hw_value & CHANNEL_MODES) {
2387 case CHANNEL_A:
Bob Copeland6752ee92009-04-30 15:55:51 -04002388 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002389 break;
2390 case CHANNEL_G:
Bob Copeland6752ee92009-04-30 15:55:51 -04002391 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002392 break;
2393 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002394 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002395 break;
2396 case CHANNEL_T:
Bob Copeland6752ee92009-04-30 15:55:51 -04002397 ctl_mode |= AR5K_CTL_TURBO;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002398 break;
2399 case CHANNEL_TG:
Bob Copeland6752ee92009-04-30 15:55:51 -04002400 ctl_mode |= AR5K_CTL_TURBOG;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002401 break;
2402 case CHANNEL_XR:
2403 /* Fall through */
2404 default:
2405 return;
2406 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002407
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002408 for (i = 0; i < ee->ee_ctls; i++) {
2409 if (ctl_val[i] == ctl_mode) {
2410 ctl_idx = i;
2411 break;
2412 }
2413 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002414
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002415 /* If we have a CTL dataset available grab it and find the
2416 * edge power for our frequency */
2417 if (ctl_idx == 0xFF)
2418 return;
2419
2420 /* Edge powers are sorted by frequency from lower
2421 * to higher. Each CTL corresponds to 8 edge power
2422 * measurements. */
2423 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2424
2425 /* Don't do boundaries check because we
2426 * might have more that one bands defined
2427 * for this mode */
2428
2429 /* Get the edge power that's closer to our
2430 * frequency */
2431 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2432 rep_idx += i;
2433 if (target <= rep[rep_idx].freq)
2434 edge_pwr = (s16) rep[rep_idx].edge;
2435 }
2436
2437 if (edge_pwr)
2438 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2439}
2440
2441
2442/*
2443 * Power to PCDAC table functions
2444 */
2445
2446/*
2447 * Fill Power to PCDAC table on RF5111
2448 *
2449 * No further processing is needed for RF5111, the only thing we have to
2450 * do is fill the values below and above calibration range since eeprom data
2451 * may not cover the entire PCDAC table.
2452 */
2453static void
2454ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2455 s16 *table_max)
2456{
2457 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2458 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2459 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2460 s16 min_pwr, max_pwr;
2461
2462 /* Get table boundaries */
2463 min_pwr = table_min[0];
2464 pcdac_0 = pcdac_tmp[0];
2465
2466 max_pwr = table_max[0];
2467 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2468
2469 /* Extrapolate below minimum using pcdac_0 */
2470 pcdac_i = 0;
2471 for (i = 0; i < min_pwr; i++)
2472 pcdac_out[pcdac_i++] = pcdac_0;
2473
2474 /* Copy values from pcdac_tmp */
2475 pwr_idx = min_pwr;
2476 for (i = 0 ; pwr_idx <= max_pwr &&
2477 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2478 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2479 pwr_idx++;
2480 }
2481
2482 /* Extrapolate above maximum */
2483 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2484 pcdac_out[pcdac_i++] = pcdac_n;
2485
2486}
2487
2488/*
2489 * Combine available XPD Curves and fill Linear Power to PCDAC table
2490 * on RF5112
2491 *
2492 * RFX112 can have up to 2 curves (one for low txpower range and one for
2493 * higher txpower range). We need to put them both on pcdac_out and place
2494 * them in the correct location. In case we only have one curve available
2495 * just fit it on pcdac_out (it's supposed to cover the entire range of
2496 * available pwr levels since it's always the higher power curve). Extrapolate
2497 * below and above final table if needed.
2498 */
2499static void
2500ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2501 s16 *table_max, u8 pdcurves)
2502{
2503 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2504 u8 *pcdac_low_pwr;
2505 u8 *pcdac_high_pwr;
2506 u8 *pcdac_tmp;
2507 u8 pwr;
2508 s16 max_pwr_idx;
2509 s16 min_pwr_idx;
2510 s16 mid_pwr_idx = 0;
2511 /* Edge flag turs on the 7nth bit on the PCDAC
2512 * to delcare the higher power curve (force values
2513 * to be greater than 64). If we only have one curve
2514 * we don't need to set this, if we have 2 curves and
2515 * fill the table backwards this can also be used to
2516 * switch from higher power curve to lower power curve */
2517 u8 edge_flag;
2518 int i;
2519
2520 /* When we have only one curve available
2521 * that's the higher power curve. If we have
2522 * two curves the first is the high power curve
2523 * and the next is the low power curve. */
2524 if (pdcurves > 1) {
2525 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2526 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2527 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2528 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2529
2530 /* If table size goes beyond 31.5dB, keep the
2531 * upper 31.5dB range when setting tx power.
2532 * Note: 126 = 31.5 dB in quarter dB steps */
2533 if (table_max[0] - table_min[1] > 126)
2534 min_pwr_idx = table_max[0] - 126;
2535 else
2536 min_pwr_idx = table_min[1];
2537
2538 /* Since we fill table backwards
2539 * start from high power curve */
2540 pcdac_tmp = pcdac_high_pwr;
2541
2542 edge_flag = 0x40;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002543 } else {
2544 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2545 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2546 min_pwr_idx = table_min[0];
2547 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2548 pcdac_tmp = pcdac_high_pwr;
2549 edge_flag = 0;
2550 }
2551
2552 /* This is used when setting tx power*/
2553 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2554
2555 /* Fill Power to PCDAC table backwards */
2556 pwr = max_pwr_idx;
2557 for (i = 63; i >= 0; i--) {
2558 /* Entering lower power range, reset
2559 * edge flag and set pcdac_tmp to lower
2560 * power curve.*/
2561 if (edge_flag == 0x40 &&
2562 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2563 edge_flag = 0x00;
2564 pcdac_tmp = pcdac_low_pwr;
2565 pwr = mid_pwr_idx/2;
2566 }
2567
2568 /* Don't go below 1, extrapolate below if we have
2569 * already swithced to the lower power curve -or
2570 * we only have one curve and edge_flag is zero
2571 * anyway */
2572 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2573 while (i >= 0) {
2574 pcdac_out[i] = pcdac_out[i + 1];
2575 i--;
2576 }
2577 break;
2578 }
2579
2580 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2581
2582 /* Extrapolate above if pcdac is greater than
2583 * 126 -this can happen because we OR pcdac_out
2584 * value with edge_flag on high power curve */
2585 if (pcdac_out[i] > 126)
2586 pcdac_out[i] = 126;
2587
2588 /* Decrease by a 0.5dB step */
2589 pwr--;
2590 }
2591}
2592
2593/* Write PCDAC values on hw */
2594static void
2595ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2596{
2597 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2598 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002599
2600 /*
2601 * Write TX power values
2602 */
2603 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2604 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002605 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2606 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002607 AR5K_PHY_PCDAC_TXPOWER(i));
2608 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002609}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002610
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002611
2612/*
2613 * Power to PDADC table functions
2614 */
2615
2616/*
2617 * Set the gain boundaries and create final Power to PDADC table
2618 *
2619 * We can have up to 4 pd curves, we need to do a simmilar process
2620 * as we do for RF5112. This time we don't have an edge_flag but we
2621 * set the gain boundaries on a separate register.
2622 */
2623static void
2624ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2625 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2626{
2627 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2628 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2629 u8 *pdadc_tmp;
2630 s16 pdadc_0;
2631 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2632 u8 pd_gain_overlap;
2633
2634 /* Note: Register value is initialized on initvals
2635 * there is no feedback from hw.
2636 * XXX: What about pd_gain_overlap from EEPROM ? */
2637 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2638 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2639
2640 /* Create final PDADC table */
2641 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2642 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2643
2644 if (pdg == pdcurves - 1)
2645 /* 2 dB boundary stretch for last
2646 * (higher power) curve */
2647 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2648 else
2649 /* Set gain boundary in the middle
2650 * between this curve and the next one */
2651 gain_boundaries[pdg] =
2652 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2653
2654 /* Sanity check in case our 2 db stretch got out of
2655 * range. */
2656 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2657 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2658
2659 /* For the first curve (lower power)
2660 * start from 0 dB */
2661 if (pdg == 0)
2662 pdadc_0 = 0;
2663 else
2664 /* For the other curves use the gain overlap */
2665 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2666 pd_gain_overlap;
2667
2668 /* Force each power step to be at least 0.5 dB */
2669 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2670 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2671 else
2672 pwr_step = 1;
2673
2674 /* If pdadc_0 is negative, we need to extrapolate
2675 * below this pdgain by a number of pwr_steps */
2676 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2677 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2678 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2679 pdadc_0++;
2680 }
2681
2682 /* Set last pwr level, using gain boundaries */
2683 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2684 /* Limit it to be inside pwr range */
2685 table_size = pwr_max[pdg] - pwr_min[pdg];
2686 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2687
2688 /* Fill pdadc_out table */
Bob Copeland4f59fce2010-04-07 23:55:59 -04002689 while (pdadc_0 < max_idx && pdadc_i < 128)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002690 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2691
2692 /* Need to extrapolate above this pdgain? */
2693 if (pdadc_n <= max_idx)
2694 continue;
2695
2696 /* Force each power step to be at least 0.5 dB */
2697 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2698 pwr_step = pdadc_tmp[table_size - 1] -
2699 pdadc_tmp[table_size - 2];
2700 else
2701 pwr_step = 1;
2702
2703 /* Extrapolate above */
2704 while ((pdadc_0 < (s16) pdadc_n) &&
2705 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2706 s16 tmp = pdadc_tmp[table_size - 1] +
2707 (pdadc_0 - max_idx) * pwr_step;
2708 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2709 pdadc_0++;
2710 }
2711 }
2712
2713 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2714 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2715 pdg++;
2716 }
2717
2718 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2719 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2720 pdadc_i++;
2721 }
2722
2723 /* Set gain boundaries */
2724 ath5k_hw_reg_write(ah,
2725 AR5K_REG_SM(pd_gain_overlap,
2726 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2727 AR5K_REG_SM(gain_boundaries[0],
2728 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2729 AR5K_REG_SM(gain_boundaries[1],
2730 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2731 AR5K_REG_SM(gain_boundaries[2],
2732 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2733 AR5K_REG_SM(gain_boundaries[3],
2734 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2735 AR5K_PHY_TPC_RG5);
2736
2737 /* Used for setting rate power table */
2738 ah->ah_txpower.txp_min_idx = pwr_min[0];
2739
2740}
2741
2742/* Write PDADC values on hw */
2743static void
2744ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2745 u8 pdcurves, u8 *pdg_to_idx)
2746{
2747 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2748 u32 reg;
2749 u8 i;
2750
2751 /* Select the right pdgain curves */
2752
2753 /* Clear current settings */
2754 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2755 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2756 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2757 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2758 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2759
2760 /*
2761 * Use pd_gains curve from eeprom
2762 *
2763 * This overrides the default setting from initvals
2764 * in case some vendors (e.g. Zcomax) don't use the default
2765 * curves. If we don't honor their settings we 'll get a
2766 * 5dB (1 * gain overlap ?) drop.
2767 */
2768 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2769
2770 switch (pdcurves) {
2771 case 3:
2772 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2773 /* Fall through */
2774 case 2:
2775 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2776 /* Fall through */
2777 case 1:
2778 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2779 break;
2780 }
2781 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2782
2783 /*
2784 * Write TX power values
2785 */
2786 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2787 ath5k_hw_reg_write(ah,
2788 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2789 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2790 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2791 ((pdadc_out[4*i + 3] & 0xff) << 24),
2792 AR5K_PHY_PDADC_TXPOWER(i));
2793 }
2794}
2795
2796
2797/*
2798 * Common code for PCDAC/PDADC tables
2799 */
2800
2801/*
2802 * This is the main function that uses all of the above
2803 * to set PCDAC/PDADC table on hw for the current channel.
2804 * This table is used for tx power calibration on the basband,
2805 * without it we get weird tx power levels and in some cases
2806 * distorted spectral mask
2807 */
2808static int
2809ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2810 struct ieee80211_channel *channel,
2811 u8 ee_mode, u8 type)
2812{
2813 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2814 struct ath5k_chan_pcal_info *pcinfo_L;
2815 struct ath5k_chan_pcal_info *pcinfo_R;
2816 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2817 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2818 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2819 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2820 u8 *tmpL;
2821 u8 *tmpR;
2822 u32 target = channel->center_freq;
2823 int pdg, i;
2824
2825 /* Get surounding freq piers for this channel */
2826 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2827 &pcinfo_L,
2828 &pcinfo_R);
2829
2830 /* Loop over pd gain curves on
2831 * surounding freq piers by index */
2832 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2833
2834 /* Fill curves in reverse order
2835 * from lower power (max gain)
2836 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002837 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002838 u8 idx = pdg_curve_to_idx[pdg];
2839
2840 /* Grab the needed curves by index */
2841 pdg_L = &pcinfo_L->pd_curves[idx];
2842 pdg_R = &pcinfo_R->pd_curves[idx];
2843
2844 /* Initialize the temp tables */
2845 tmpL = ah->ah_txpower.tmpL[pdg];
2846 tmpR = ah->ah_txpower.tmpR[pdg];
2847
2848 /* Set curve's x boundaries and create
2849 * curves so that they cover the same
2850 * range (if we don't do that one table
2851 * will have values on some range and the
2852 * other one won't have any so interpolation
2853 * will fail) */
2854 table_min[pdg] = min(pdg_L->pd_pwr[0],
2855 pdg_R->pd_pwr[0]) / 2;
2856
2857 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2858 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2859
2860 /* Now create the curves on surrounding channels
2861 * and interpolate if needed to get the final
2862 * curve for this gain on this channel */
2863 switch (type) {
2864 case AR5K_PWRTABLE_LINEAR_PCDAC:
2865 /* Override min/max so that we don't loose
2866 * accuracy (don't divide by 2) */
2867 table_min[pdg] = min(pdg_L->pd_pwr[0],
2868 pdg_R->pd_pwr[0]);
2869
2870 table_max[pdg] =
2871 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2872 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2873
2874 /* Override minimum so that we don't get
2875 * out of bounds while extrapolating
2876 * below. Don't do this when we have 2
2877 * curves and we are on the high power curve
2878 * because table_min is ok in this case */
2879 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2880
2881 table_min[pdg] =
2882 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2883 pdg_R->pd_step,
2884 pdg_L->pd_pwr,
2885 pdg_R->pd_pwr);
2886
2887 /* Don't go too low because we will
2888 * miss the upper part of the curve.
2889 * Note: 126 = 31.5dB (max power supported)
2890 * in 0.25dB units */
2891 if (table_max[pdg] - table_min[pdg] > 126)
2892 table_min[pdg] = table_max[pdg] - 126;
2893 }
2894
2895 /* Fall through */
2896 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2897 case AR5K_PWRTABLE_PWR_TO_PDADC:
2898
2899 ath5k_create_power_curve(table_min[pdg],
2900 table_max[pdg],
2901 pdg_L->pd_pwr,
2902 pdg_L->pd_step,
2903 pdg_L->pd_points, tmpL, type);
2904
2905 /* We are in a calibration
2906 * pier, no need to interpolate
2907 * between freq piers */
2908 if (pcinfo_L == pcinfo_R)
2909 continue;
2910
2911 ath5k_create_power_curve(table_min[pdg],
2912 table_max[pdg],
2913 pdg_R->pd_pwr,
2914 pdg_R->pd_step,
2915 pdg_R->pd_points, tmpR, type);
2916 break;
2917 default:
2918 return -EINVAL;
2919 }
2920
2921 /* Interpolate between curves
2922 * of surounding freq piers to
2923 * get the final curve for this
2924 * pd gain. Re-use tmpL for interpolation
2925 * output */
2926 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2927 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2928 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2929 (s16) pcinfo_L->freq,
2930 (s16) pcinfo_R->freq,
2931 (s16) tmpL[i],
2932 (s16) tmpR[i]);
2933 }
2934 }
2935
2936 /* Now we have a set of curves for this
2937 * channel on tmpL (x range is table_max - table_min
2938 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002939 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002940 * So for RF5112 it's from higher power to lower power
2941 * and for RF2413 it's from lower power to higher power.
2942 * For RF5111 we only have one curve. */
2943
2944 /* Fill min and max power levels for this
2945 * channel by interpolating the values on
2946 * surounding channels to complete the dataset */
2947 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2948 (s16) pcinfo_L->freq,
2949 (s16) pcinfo_R->freq,
2950 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2951
2952 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2953 (s16) pcinfo_L->freq,
2954 (s16) pcinfo_R->freq,
2955 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2956
2957 /* We are ready to go, fill PCDAC/PDADC
2958 * table and write settings on hardware */
2959 switch (type) {
2960 case AR5K_PWRTABLE_LINEAR_PCDAC:
2961 /* For RF5112 we can have one or two curves
2962 * and each curve covers a certain power lvl
2963 * range so we need to do some more processing */
2964 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2965 ee->ee_pd_gains[ee_mode]);
2966
2967 /* Set txp.offset so that we can
2968 * match max power value with max
2969 * table index */
2970 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2971
2972 /* Write settings on hw */
2973 ath5k_setup_pcdac_table(ah);
2974 break;
2975 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2976 /* We are done for RF5111 since it has only
2977 * one curve, just fit the curve on the table */
2978 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2979
2980 /* No rate powertable adjustment for RF5111 */
2981 ah->ah_txpower.txp_min_idx = 0;
2982 ah->ah_txpower.txp_offset = 0;
2983
2984 /* Write settings on hw */
2985 ath5k_setup_pcdac_table(ah);
2986 break;
2987 case AR5K_PWRTABLE_PWR_TO_PDADC:
2988 /* Set PDADC boundaries and fill
2989 * final PDADC table */
2990 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2991 ee->ee_pd_gains[ee_mode]);
2992
2993 /* Write settings on hw */
2994 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2995
2996 /* Set txp.offset, note that table_min
2997 * can be negative */
2998 ah->ah_txpower.txp_offset = table_min[0];
2999 break;
3000 default:
3001 return -EINVAL;
3002 }
3003
3004 return 0;
3005}
3006
3007
3008/*
3009 * Per-rate tx power setting
3010 *
3011 * This is the code that sets the desired tx power (below
3012 * maximum) on hw for each rate (we also have TPC that sets
3013 * power per packet). We do that by providing an index on the
3014 * PCDAC/PDADC table we set up.
3015 */
3016
3017/*
3018 * Set rate power table
3019 *
3020 * For now we only limit txpower based on maximum tx power
3021 * supported by hw (what's inside rate_info). We need to limit
3022 * this even more, based on regulatory domain etc.
3023 *
3024 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3025 * and is indexed as follows:
3026 * rates[0] - rates[7] -> OFDM rates
3027 * rates[8] - rates[14] -> CCK rates
3028 * rates[15] -> XR rates (they all have the same power)
3029 */
3030static void
3031ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3032 struct ath5k_rate_pcal_info *rate_info,
3033 u8 ee_mode)
3034{
3035 unsigned int i;
3036 u16 *rates;
3037
3038 /* max_pwr is power level we got from driver/user in 0.5dB
3039 * units, switch to 0.25dB units so we can compare */
3040 max_pwr *= 2;
3041 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3042
3043 /* apply rate limits */
3044 rates = ah->ah_txpower.txp_rates_power_table;
3045
3046 /* OFDM rates 6 to 24Mb/s */
3047 for (i = 0; i < 5; i++)
3048 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3049
3050 /* Rest OFDM rates */
3051 rates[5] = min(rates[0], rate_info->target_power_36);
3052 rates[6] = min(rates[0], rate_info->target_power_48);
3053 rates[7] = min(rates[0], rate_info->target_power_54);
3054
3055 /* CCK rates */
3056 /* 1L */
3057 rates[8] = min(rates[0], rate_info->target_power_6to24);
3058 /* 2L */
3059 rates[9] = min(rates[0], rate_info->target_power_36);
3060 /* 2S */
3061 rates[10] = min(rates[0], rate_info->target_power_36);
3062 /* 5L */
3063 rates[11] = min(rates[0], rate_info->target_power_48);
3064 /* 5S */
3065 rates[12] = min(rates[0], rate_info->target_power_48);
3066 /* 11L */
3067 rates[13] = min(rates[0], rate_info->target_power_54);
3068 /* 11S */
3069 rates[14] = min(rates[0], rate_info->target_power_54);
3070
3071 /* XR rates */
3072 rates[15] = min(rates[0], rate_info->target_power_6to24);
3073
3074 /* CCK rates have different peak to average ratio
3075 * so we have to tweak their power so that gainf
3076 * correction works ok. For this we use OFDM to
3077 * CCK delta from eeprom */
3078 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3079 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3080 for (i = 8; i <= 15; i++)
3081 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3082
Nick Kossifidisa0823812009-04-30 15:55:44 -04003083 /* Now that we have all rates setup use table offset to
3084 * match the power range set by user with the power indices
3085 * on PCDAC/PDADC table */
3086 for (i = 0; i < 16; i++) {
3087 rates[i] += ah->ah_txpower.txp_offset;
3088 /* Don't get out of bounds */
3089 if (rates[i] > 63)
3090 rates[i] = 63;
3091 }
3092
3093 /* Min/max in 0.25dB units */
3094 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3095 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003096 ah->ah_txpower.txp_ofdm = rates[7];
3097}
3098
3099
3100/*
Bob Copeland8801df82010-08-21 16:39:02 -04003101 * Set transmission power
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003102 */
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003103static int
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003104ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Nick Kossifidis4c575812010-11-23 21:37:30 +02003105 u8 ee_mode, u8 txpower, bool fast)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003106{
3107 struct ath5k_rate_pcal_info rate_info;
3108 u8 type;
3109 int ret;
3110
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003111 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3112 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3113 return -EINVAL;
3114 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003115
3116 /* Reset TX power values */
3117 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3118 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3119 ah->ah_txpower.txp_min_pwr = 0;
3120 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3121
3122 /* Initialize TX power table */
3123 switch (ah->ah_radio) {
Nick Kossifidis3bb17652010-11-23 21:45:21 +02003124 case AR5K_RF5110:
3125 /* TODO */
3126 return 0;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003127 case AR5K_RF5111:
3128 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3129 break;
3130 case AR5K_RF5112:
3131 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3132 break;
3133 case AR5K_RF2413:
3134 case AR5K_RF5413:
3135 case AR5K_RF2316:
3136 case AR5K_RF2317:
3137 case AR5K_RF2425:
3138 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3139 break;
3140 default:
3141 return -EINVAL;
3142 }
3143
Nick Kossifidis4c575812010-11-23 21:37:30 +02003144 /* If fast is set it means we are on the same channel/mode
3145 * so there is no need to recalculate the powertable, we 'll
3146 * just use the cached one */
3147 if (!fast) {
3148 ret = ath5k_setup_channel_powertable(ah, channel,
3149 ee_mode, type);
3150 if (ret)
3151 return ret;
3152 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003153
3154 /* Limit max power if we have a CTL available */
3155 ath5k_get_max_ctl_power(ah, channel);
3156
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003157 /* FIXME: Antenna reduction stuff */
3158
3159 /* FIXME: Limit power on turbo modes */
3160
3161 /* FIXME: TPC scale reduction */
3162
3163 /* Get surounding channels for per-rate power table
3164 * calibration */
3165 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3166
3167 /* Setup rate power table */
3168 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3169
3170 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003171 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3172 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3173 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3174
3175 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3176 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3177 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3178
3179 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3180 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3181 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3182
3183 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3184 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3185 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3186
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003187 /* FIXME: TPC support */
3188 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003189 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3190 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003191
3192 ath5k_hw_reg_write(ah,
3193 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3194 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3195 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3196 AR5K_TPC);
3197 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003198 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3199 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003200 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003201
3202 return 0;
3203}
3204
Nick Kossifidisa0823812009-04-30 15:55:44 -04003205int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003206{
3207 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003208 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003209 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003210
Nick Kossifidisa0823812009-04-30 15:55:44 -04003211 switch (channel->hw_value & CHANNEL_MODES) {
3212 case CHANNEL_A:
3213 case CHANNEL_T:
3214 case CHANNEL_XR:
3215 ee_mode = AR5K_EEPROM_MODE_11A;
3216 break;
3217 case CHANNEL_G:
3218 case CHANNEL_TG:
3219 ee_mode = AR5K_EEPROM_MODE_11G;
3220 break;
3221 case CHANNEL_B:
3222 ee_mode = AR5K_EEPROM_MODE_11B;
3223 break;
3224 default:
3225 ATH5K_ERR(ah->ah_sc,
3226 "invalid channel: %d\n", channel->center_freq);
3227 return -EINVAL;
3228 }
3229
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003230 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003231 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003232
Nick Kossifidis4c575812010-11-23 21:37:30 +02003233 return ath5k_hw_txpower(ah, channel, ee_mode, txpower, true);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003234}
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003235
3236/*************\
3237 Init function
3238\*************/
3239
3240int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003241 u8 mode, u8 ee_mode, u8 freq, bool fast)
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003242{
Nick Kossifidis4c575812010-11-23 21:37:30 +02003243 struct ieee80211_channel *curr_channel;
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003244 int ret, i;
3245 u32 phy_tst1;
Nick Kossifidis4c575812010-11-23 21:37:30 +02003246 bool fast_txp;
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003247 ret = 0;
3248
3249 /*
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003250 * Sanity check for fast flag
3251 * Don't try fast channel change when changing modulation
3252 * mode/band. We check for chip compatibility on
3253 * ath5k_hw_reset.
3254 */
3255 curr_channel = ah->ah_current_channel;
3256 if (fast && (channel->hw_value != curr_channel->hw_value))
3257 return -EINVAL;
3258
3259 /*
3260 * On fast channel change we only set the synth parameters
3261 * while PHY is running, enable calibration and skip the rest.
3262 */
3263 if (fast) {
3264 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3265 AR5K_PHY_RFBUS_REQ_REQUEST);
3266 for (i = 0; i < 100; i++) {
3267 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3268 break;
3269 udelay(5);
3270 }
3271 /* Failed */
3272 if (i >= 100)
3273 return -EIO;
3274 }
3275
3276 /*
Nick Kossifidis4c575812010-11-23 21:37:30 +02003277 * If we don't change channel/mode skip
3278 * tx powertable calculation and use the
3279 * cached one.
3280 */
Nick Kossifidis4c575812010-11-23 21:37:30 +02003281 if ((channel->hw_value == curr_channel->hw_value) &&
3282 (channel->center_freq == curr_channel->center_freq))
3283 fast_txp = true;
3284 else
3285 fast_txp = false;
3286
3287 /*
3288 * Set TX power
3289 *
3290 * Note: We need to do that before we set
3291 * RF buffer settings on 5211/5212+ so that we
3292 * properly set curve indices.
3293 */
3294 ret = ath5k_hw_txpower(ah, channel, ee_mode,
3295 ah->ah_txpower.txp_max_pwr / 2,
3296 fast_txp);
3297 if (ret)
3298 return ret;
3299
3300 /*
3301 * For 5210 we do all initialization using
3302 * initvals, so we don't have to modify
3303 * any settings (5210 also only supports
3304 * a/aturbo modes)
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003305 */
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003306 if ((ah->ah_version != AR5K_AR5210) && !fast) {
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003307
3308 /*
3309 * Write initial RF gain settings
3310 * This should work for both 5111/5112
3311 */
3312 ret = ath5k_hw_rfgain_init(ah, freq);
3313 if (ret)
3314 return ret;
3315
3316 mdelay(1);
3317
3318 /*
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003319 * Write RF buffer
3320 */
3321 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3322 if (ret)
3323 return ret;
3324
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003325 /* Write OFDM timings on 5212*/
3326 if (ah->ah_version == AR5K_AR5212 &&
3327 channel->hw_value & CHANNEL_OFDM) {
3328
3329 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3330 if (ret)
3331 return ret;
3332
3333 /* Spur info is available only from EEPROM versions
3334 * greater than 5.3, but the EEPROM routines will use
3335 * static values for older versions */
3336 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3337 ath5k_hw_set_spur_mitigation_filter(ah,
3338 channel);
3339 }
3340
3341 /*Enable/disable 802.11b mode on 5111
3342 (enable 2111 frequency converter + CCK)*/
3343 if (ah->ah_radio == AR5K_RF5111) {
3344 if (mode == AR5K_MODE_11B)
3345 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3346 AR5K_TXCFG_B_MODE);
3347 else
3348 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3349 AR5K_TXCFG_B_MODE);
3350 }
3351
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003352 } else if (ah->ah_version == AR5K_AR5210) {
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003353 mdelay(1);
3354 /* Disable phy and wait */
3355 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3356 mdelay(1);
3357 }
3358
3359 /* Set channel on PHY */
3360 ret = ath5k_hw_channel(ah, channel);
3361 if (ret)
3362 return ret;
3363
3364 /*
3365 * Enable the PHY and wait until completion
3366 * This includes BaseBand and Synthesizer
3367 * activation.
3368 */
3369 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3370
3371 /*
3372 * On 5211+ read activation -> rx delay
3373 * and use it.
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003374 */
3375 if (ah->ah_version != AR5K_AR5210) {
3376 u32 delay;
3377 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3378 AR5K_PHY_RX_DELAY_M;
3379 delay = (channel->hw_value & CHANNEL_CCK) ?
3380 ((delay << 2) / 22) : (delay / 10);
Nick Kossifidisb02f5d12010-11-23 21:44:02 +02003381 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3382 delay = delay << 1;
3383 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3384 delay = delay << 2;
3385 /* XXX: /2 on turbo ? Let's be safe
3386 * for now */
3387 udelay(100 + delay);
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003388 } else {
3389 mdelay(1);
3390 }
3391
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003392 if (fast)
3393 /*
3394 * Release RF Bus grant
3395 */
3396 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3397 AR5K_PHY_RFBUS_REQ_REQUEST);
3398 else {
3399 /*
3400 * Perform ADC test to see if baseband is ready
3401 * Set tx hold and check adc test register
3402 */
3403 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3404 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3405 for (i = 0; i <= 20; i++) {
3406 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3407 break;
3408 udelay(200);
3409 }
3410 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003411 }
Nick Kossifidis9320b5c42010-11-23 20:36:45 +02003412
3413 /*
3414 * Start automatic gain control calibration
3415 *
3416 * During AGC calibration RX path is re-routed to
3417 * a power detector so we don't receive anything.
3418 *
3419 * This method is used to calibrate some static offsets
3420 * used together with on-the fly I/Q calibration (the
3421 * one performed via ath5k_hw_phy_calibrate), which doesn't
3422 * interrupt rx path.
3423 *
3424 * While rx path is re-routed to the power detector we also
3425 * start a noise floor calibration to measure the
3426 * card's noise floor (the noise we measure when we are not
3427 * transmitting or receiving anything).
3428 *
3429 * If we are in a noisy environment, AGC calibration may time
3430 * out and/or noise floor calibration might timeout.
3431 */
3432 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3433 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3434
3435 /* At the same time start I/Q calibration for QAM constellation
3436 * -no need for CCK- */
3437 ah->ah_calibration = false;
3438 if (!(mode == AR5K_MODE_11B)) {
3439 ah->ah_calibration = true;
3440 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3441 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3442 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3443 AR5K_PHY_IQ_RUN);
3444 }
3445
3446 /* Wait for gain calibration to finish (we check for I/Q calibration
3447 * during ath5k_phy_calibrate) */
3448 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3449 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3450 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3451 channel->center_freq);
3452 }
3453
3454 /* Restore antenna mode */
3455 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3456
3457 return ret;
3458}