blob: 6bd0581de2985b9feff5746154f69097db16bc30 [file] [log] [blame]
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001/*
2 * numa.c
3 *
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
6
Arnaldo Carvalho de Melo8a158582016-07-06 12:14:56 -03007/* For the CLR_() macros */
8#include <pthread.h>
9
Ingo Molnar1c13f3c2012-12-06 13:51:59 +010010#include "../perf.h"
11#include "../builtin.h"
12#include "../util/util.h"
Josh Poimboeuf4b6ab942015-12-15 09:39:39 -060013#include <subcmd/parse-options.h>
Arnaldo Carvalho de Melo2d8e4052015-05-18 12:24:41 -030014#include "../util/cloexec.h"
Ingo Molnar1c13f3c2012-12-06 13:51:59 +010015
16#include "bench.h"
17
18#include <errno.h>
19#include <sched.h>
20#include <stdio.h>
21#include <assert.h>
22#include <malloc.h>
23#include <signal.h>
24#include <stdlib.h>
25#include <string.h>
26#include <unistd.h>
Ingo Molnar1c13f3c2012-12-06 13:51:59 +010027#include <sys/mman.h>
28#include <sys/time.h>
Petr Holasekb64aa552015-04-16 17:38:18 +020029#include <sys/resource.h>
Ingo Molnar1c13f3c2012-12-06 13:51:59 +010030#include <sys/wait.h>
31#include <sys/prctl.h>
32#include <sys/types.h>
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -030033#include <linux/time64.h>
Ingo Molnar1c13f3c2012-12-06 13:51:59 +010034
35#include <numa.h>
36#include <numaif.h>
37
38/*
39 * Regular printout to the terminal, supressed if -q is specified:
40 */
41#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
42
43/*
44 * Debug printf:
45 */
Arnaldo Carvalho de Melo6aa4d822017-02-14 14:19:34 -030046#undef dprintf
Ingo Molnar1c13f3c2012-12-06 13:51:59 +010047#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
48
49struct thread_data {
50 int curr_cpu;
51 cpu_set_t bind_cpumask;
52 int bind_node;
53 u8 *process_data;
54 int process_nr;
55 int thread_nr;
56 int task_nr;
57 unsigned int loops_done;
58 u64 val;
59 u64 runtime_ns;
Petr Holasekb64aa552015-04-16 17:38:18 +020060 u64 system_time_ns;
61 u64 user_time_ns;
62 double speed_gbs;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +010063 pthread_mutex_t *process_lock;
64};
65
66/* Parameters set by options: */
67
68struct params {
69 /* Startup synchronization: */
70 bool serialize_startup;
71
72 /* Task hierarchy: */
73 int nr_proc;
74 int nr_threads;
75
76 /* Working set sizes: */
77 const char *mb_global_str;
78 const char *mb_proc_str;
79 const char *mb_proc_locked_str;
80 const char *mb_thread_str;
81
82 double mb_global;
83 double mb_proc;
84 double mb_proc_locked;
85 double mb_thread;
86
87 /* Access patterns to the working set: */
88 bool data_reads;
89 bool data_writes;
90 bool data_backwards;
91 bool data_zero_memset;
92 bool data_rand_walk;
93 u32 nr_loops;
94 u32 nr_secs;
95 u32 sleep_usecs;
96
97 /* Working set initialization: */
98 bool init_zero;
99 bool init_random;
100 bool init_cpu0;
101
102 /* Misc options: */
103 int show_details;
104 int run_all;
105 int thp;
106
107 long bytes_global;
108 long bytes_process;
109 long bytes_process_locked;
110 long bytes_thread;
111
112 int nr_tasks;
113 bool show_quiet;
114
115 bool show_convergence;
116 bool measure_convergence;
117
118 int perturb_secs;
119 int nr_cpus;
120 int nr_nodes;
121
122 /* Affinity options -C and -N: */
123 char *cpu_list_str;
124 char *node_list_str;
125};
126
127
128/* Global, read-writable area, accessible to all processes and threads: */
129
130struct global_info {
131 u8 *data;
132
133 pthread_mutex_t startup_mutex;
134 int nr_tasks_started;
135
136 pthread_mutex_t startup_done_mutex;
137
138 pthread_mutex_t start_work_mutex;
139 int nr_tasks_working;
140
141 pthread_mutex_t stop_work_mutex;
142 u64 bytes_done;
143
144 struct thread_data *threads;
145
146 /* Convergence latency measurement: */
147 bool all_converged;
148 bool stop_work;
149
150 int print_once;
151
152 struct params p;
153};
154
155static struct global_info *g = NULL;
156
157static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
158static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
159
160struct params p0;
161
162static const struct option options[] = {
163 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
164 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
165
166 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
167 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
168 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
169 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
170
Ingo Molnarb0d22e52015-10-19 10:04:28 +0200171 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
172 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100173 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
174
175 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
176 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
177 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
178 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
179 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
180
181
182 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
183 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
184 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
185 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
186
187 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
188 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
189 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
Jiri Olsa001916b2017-03-05 17:40:11 +0100190 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
191 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100192 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
Petr Holasek24f1ced2015-04-16 17:38:17 +0200193 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100194 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
195
196 /* Special option string parsing callbacks: */
197 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
198 "bind the first N tasks to these specific cpus (the rest is unbound)",
199 parse_cpus_opt),
200 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
201 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
202 parse_nodes_opt),
203 OPT_END()
204};
205
206static const char * const bench_numa_usage[] = {
207 "perf bench numa <options>",
208 NULL
209};
210
211static const char * const numa_usage[] = {
212 "perf bench numa mem [<options>]",
213 NULL
214};
215
216static cpu_set_t bind_to_cpu(int target_cpu)
217{
218 cpu_set_t orig_mask, mask;
219 int ret;
220
221 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
222 BUG_ON(ret);
223
224 CPU_ZERO(&mask);
225
226 if (target_cpu == -1) {
227 int cpu;
228
229 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
230 CPU_SET(cpu, &mask);
231 } else {
232 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
233 CPU_SET(target_cpu, &mask);
234 }
235
236 ret = sched_setaffinity(0, sizeof(mask), &mask);
237 BUG_ON(ret);
238
239 return orig_mask;
240}
241
242static cpu_set_t bind_to_node(int target_node)
243{
244 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
245 cpu_set_t orig_mask, mask;
246 int cpu;
247 int ret;
248
249 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
250 BUG_ON(!cpus_per_node);
251
252 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
253 BUG_ON(ret);
254
255 CPU_ZERO(&mask);
256
257 if (target_node == -1) {
258 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
259 CPU_SET(cpu, &mask);
260 } else {
261 int cpu_start = (target_node + 0) * cpus_per_node;
262 int cpu_stop = (target_node + 1) * cpus_per_node;
263
264 BUG_ON(cpu_stop > g->p.nr_cpus);
265
266 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
267 CPU_SET(cpu, &mask);
268 }
269
270 ret = sched_setaffinity(0, sizeof(mask), &mask);
271 BUG_ON(ret);
272
273 return orig_mask;
274}
275
276static void bind_to_cpumask(cpu_set_t mask)
277{
278 int ret;
279
280 ret = sched_setaffinity(0, sizeof(mask), &mask);
281 BUG_ON(ret);
282}
283
284static void mempol_restore(void)
285{
286 int ret;
287
288 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
289
290 BUG_ON(ret);
291}
292
293static void bind_to_memnode(int node)
294{
295 unsigned long nodemask;
296 int ret;
297
298 if (node == -1)
299 return;
300
Jakub Jelen3c52b652016-03-19 12:58:07 +0100301 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100302 nodemask = 1L << node;
303
304 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
305 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
306
307 BUG_ON(ret);
308}
309
310#define HPSIZE (2*1024*1024)
311
312#define set_taskname(fmt...) \
313do { \
314 char name[20]; \
315 \
316 snprintf(name, 20, fmt); \
317 prctl(PR_SET_NAME, name); \
318} while (0)
319
320static u8 *alloc_data(ssize_t bytes0, int map_flags,
321 int init_zero, int init_cpu0, int thp, int init_random)
322{
323 cpu_set_t orig_mask;
324 ssize_t bytes;
325 u8 *buf;
326 int ret;
327
328 if (!bytes0)
329 return NULL;
330
331 /* Allocate and initialize all memory on CPU#0: */
332 if (init_cpu0) {
333 orig_mask = bind_to_node(0);
334 bind_to_memnode(0);
335 }
336
337 bytes = bytes0 + HPSIZE;
338
339 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
340 BUG_ON(buf == (void *)-1);
341
342 if (map_flags == MAP_PRIVATE) {
343 if (thp > 0) {
344 ret = madvise(buf, bytes, MADV_HUGEPAGE);
345 if (ret && !g->print_once) {
346 g->print_once = 1;
347 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
348 }
349 }
350 if (thp < 0) {
351 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
352 if (ret && !g->print_once) {
353 g->print_once = 1;
354 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
355 }
356 }
357 }
358
359 if (init_zero) {
360 bzero(buf, bytes);
361 } else {
362 /* Initialize random contents, different in each word: */
363 if (init_random) {
364 u64 *wbuf = (void *)buf;
365 long off = rand();
366 long i;
367
368 for (i = 0; i < bytes/8; i++)
369 wbuf[i] = i + off;
370 }
371 }
372
373 /* Align to 2MB boundary: */
374 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
375
376 /* Restore affinity: */
377 if (init_cpu0) {
378 bind_to_cpumask(orig_mask);
379 mempol_restore();
380 }
381
382 return buf;
383}
384
385static void free_data(void *data, ssize_t bytes)
386{
387 int ret;
388
389 if (!data)
390 return;
391
392 ret = munmap(data, bytes);
393 BUG_ON(ret);
394}
395
396/*
397 * Create a shared memory buffer that can be shared between processes, zeroed:
398 */
399static void * zalloc_shared_data(ssize_t bytes)
400{
401 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
402}
403
404/*
405 * Create a shared memory buffer that can be shared between processes:
406 */
407static void * setup_shared_data(ssize_t bytes)
408{
409 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
410}
411
412/*
413 * Allocate process-local memory - this will either be shared between
414 * threads of this process, or only be accessed by this thread:
415 */
416static void * setup_private_data(ssize_t bytes)
417{
418 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
419}
420
421/*
422 * Return a process-shared (global) mutex:
423 */
424static void init_global_mutex(pthread_mutex_t *mutex)
425{
426 pthread_mutexattr_t attr;
427
428 pthread_mutexattr_init(&attr);
429 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
430 pthread_mutex_init(mutex, &attr);
431}
432
433static int parse_cpu_list(const char *arg)
434{
435 p0.cpu_list_str = strdup(arg);
436
437 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
438
439 return 0;
440}
441
Petr Holasekb81a48e2013-10-03 19:28:45 +0200442static int parse_setup_cpu_list(void)
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100443{
444 struct thread_data *td;
445 char *str0, *str;
446 int t;
447
448 if (!g->p.cpu_list_str)
Petr Holasekb81a48e2013-10-03 19:28:45 +0200449 return 0;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100450
451 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
452
453 str0 = str = strdup(g->p.cpu_list_str);
454 t = 0;
455
456 BUG_ON(!str);
457
458 tprintf("# binding tasks to CPUs:\n");
459 tprintf("# ");
460
461 while (true) {
462 int bind_cpu, bind_cpu_0, bind_cpu_1;
463 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
464 int bind_len;
465 int step;
466 int mul;
467
468 tok = strsep(&str, ",");
469 if (!tok)
470 break;
471
472 tok_end = strstr(tok, "-");
473
474 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
475 if (!tok_end) {
476 /* Single CPU specified: */
477 bind_cpu_0 = bind_cpu_1 = atol(tok);
478 } else {
479 /* CPU range specified (for example: "5-11"): */
480 bind_cpu_0 = atol(tok);
481 bind_cpu_1 = atol(tok_end + 1);
482 }
483
484 step = 1;
485 tok_step = strstr(tok, "#");
486 if (tok_step) {
487 step = atol(tok_step + 1);
488 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
489 }
490
491 /*
492 * Mask length.
493 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
494 * where the _4 means the next 4 CPUs are allowed.
495 */
496 bind_len = 1;
497 tok_len = strstr(tok, "_");
498 if (tok_len) {
499 bind_len = atol(tok_len + 1);
500 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
501 }
502
503 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
504 mul = 1;
505 tok_mul = strstr(tok, "x");
506 if (tok_mul) {
507 mul = atol(tok_mul + 1);
508 BUG_ON(mul <= 0);
509 }
510
511 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
512
Petr Holasekb81a48e2013-10-03 19:28:45 +0200513 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
514 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
515 return -1;
516 }
517
518 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100519 BUG_ON(bind_cpu_0 > bind_cpu_1);
520
521 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
522 int i;
523
524 for (i = 0; i < mul; i++) {
525 int cpu;
526
527 if (t >= g->p.nr_tasks) {
528 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
529 goto out;
530 }
531 td = g->threads + t;
532
533 if (t)
534 tprintf(",");
535 if (bind_len > 1) {
536 tprintf("%2d/%d", bind_cpu, bind_len);
537 } else {
538 tprintf("%2d", bind_cpu);
539 }
540
541 CPU_ZERO(&td->bind_cpumask);
542 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
543 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
544 CPU_SET(cpu, &td->bind_cpumask);
545 }
546 t++;
547 }
548 }
549 }
550out:
551
552 tprintf("\n");
553
554 if (t < g->p.nr_tasks)
555 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
556
557 free(str0);
Petr Holasekb81a48e2013-10-03 19:28:45 +0200558 return 0;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100559}
560
561static int parse_cpus_opt(const struct option *opt __maybe_unused,
562 const char *arg, int unset __maybe_unused)
563{
564 if (!arg)
565 return -1;
566
567 return parse_cpu_list(arg);
568}
569
570static int parse_node_list(const char *arg)
571{
572 p0.node_list_str = strdup(arg);
573
574 dprintf("got NODE list: {%s}\n", p0.node_list_str);
575
576 return 0;
577}
578
Petr Holasekb81a48e2013-10-03 19:28:45 +0200579static int parse_setup_node_list(void)
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100580{
581 struct thread_data *td;
582 char *str0, *str;
583 int t;
584
585 if (!g->p.node_list_str)
Petr Holasekb81a48e2013-10-03 19:28:45 +0200586 return 0;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100587
588 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
589
590 str0 = str = strdup(g->p.node_list_str);
591 t = 0;
592
593 BUG_ON(!str);
594
595 tprintf("# binding tasks to NODEs:\n");
596 tprintf("# ");
597
598 while (true) {
599 int bind_node, bind_node_0, bind_node_1;
600 char *tok, *tok_end, *tok_step, *tok_mul;
601 int step;
602 int mul;
603
604 tok = strsep(&str, ",");
605 if (!tok)
606 break;
607
608 tok_end = strstr(tok, "-");
609
610 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
611 if (!tok_end) {
612 /* Single NODE specified: */
613 bind_node_0 = bind_node_1 = atol(tok);
614 } else {
615 /* NODE range specified (for example: "5-11"): */
616 bind_node_0 = atol(tok);
617 bind_node_1 = atol(tok_end + 1);
618 }
619
620 step = 1;
621 tok_step = strstr(tok, "#");
622 if (tok_step) {
623 step = atol(tok_step + 1);
624 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
625 }
626
627 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
628 mul = 1;
629 tok_mul = strstr(tok, "x");
630 if (tok_mul) {
631 mul = atol(tok_mul + 1);
632 BUG_ON(mul <= 0);
633 }
634
635 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
636
Petr Holasekb81a48e2013-10-03 19:28:45 +0200637 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
638 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
639 return -1;
640 }
641
642 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100643 BUG_ON(bind_node_0 > bind_node_1);
644
645 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
646 int i;
647
648 for (i = 0; i < mul; i++) {
649 if (t >= g->p.nr_tasks) {
650 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
651 goto out;
652 }
653 td = g->threads + t;
654
655 if (!t)
656 tprintf(" %2d", bind_node);
657 else
658 tprintf(",%2d", bind_node);
659
660 td->bind_node = bind_node;
661 t++;
662 }
663 }
664 }
665out:
666
667 tprintf("\n");
668
669 if (t < g->p.nr_tasks)
670 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
671
672 free(str0);
Petr Holasekb81a48e2013-10-03 19:28:45 +0200673 return 0;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100674}
675
676static int parse_nodes_opt(const struct option *opt __maybe_unused,
677 const char *arg, int unset __maybe_unused)
678{
679 if (!arg)
680 return -1;
681
682 return parse_node_list(arg);
683
684 return 0;
685}
686
687#define BIT(x) (1ul << x)
688
689static inline uint32_t lfsr_32(uint32_t lfsr)
690{
691 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
692 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
693}
694
695/*
696 * Make sure there's real data dependency to RAM (when read
697 * accesses are enabled), so the compiler, the CPU and the
698 * kernel (KSM, zero page, etc.) cannot optimize away RAM
699 * accesses:
700 */
701static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
702{
703 if (g->p.data_reads)
704 val += *data;
705 if (g->p.data_writes)
706 *data = val + 1;
707 return val;
708}
709
710/*
711 * The worker process does two types of work, a forwards going
712 * loop and a backwards going loop.
713 *
714 * We do this so that on multiprocessor systems we do not create
715 * a 'train' of processing, with highly synchronized processes,
716 * skewing the whole benchmark.
717 */
718static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
719{
720 long words = bytes/sizeof(u64);
721 u64 *data = (void *)__data;
722 long chunk_0, chunk_1;
723 u64 *d0, *d, *d1;
724 long off;
725 long i;
726
727 BUG_ON(!data && words);
728 BUG_ON(data && !words);
729
730 if (!data)
731 return val;
732
733 /* Very simple memset() work variant: */
734 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
735 bzero(data, bytes);
736 return val;
737 }
738
739 /* Spread out by PID/TID nr and by loop nr: */
740 chunk_0 = words/nr_max;
741 chunk_1 = words/g->p.nr_loops;
742 off = nr*chunk_0 + loop*chunk_1;
743
744 while (off >= words)
745 off -= words;
746
747 if (g->p.data_rand_walk) {
748 u32 lfsr = nr + loop + val;
749 int j;
750
751 for (i = 0; i < words/1024; i++) {
752 long start, end;
753
754 lfsr = lfsr_32(lfsr);
755
756 start = lfsr % words;
757 end = min(start + 1024, words-1);
758
759 if (g->p.data_zero_memset) {
760 bzero(data + start, (end-start) * sizeof(u64));
761 } else {
762 for (j = start; j < end; j++)
763 val = access_data(data + j, val);
764 }
765 }
766 } else if (!g->p.data_backwards || (nr + loop) & 1) {
767
768 d0 = data + off;
769 d = data + off + 1;
770 d1 = data + words;
771
772 /* Process data forwards: */
773 for (;;) {
774 if (unlikely(d >= d1))
775 d = data;
776 if (unlikely(d == d0))
777 break;
778
779 val = access_data(d, val);
780
781 d++;
782 }
783 } else {
784 /* Process data backwards: */
785
786 d0 = data + off;
787 d = data + off - 1;
788 d1 = data + words;
789
790 /* Process data forwards: */
791 for (;;) {
792 if (unlikely(d < data))
793 d = data + words-1;
794 if (unlikely(d == d0))
795 break;
796
797 val = access_data(d, val);
798
799 d--;
800 }
801 }
802
803 return val;
804}
805
806static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
807{
808 unsigned int cpu;
809
810 cpu = sched_getcpu();
811
812 g->threads[task_nr].curr_cpu = cpu;
813 prctl(0, bytes_worked);
814}
815
816#define MAX_NR_NODES 64
817
818/*
819 * Count the number of nodes a process's threads
820 * are spread out on.
821 *
822 * A count of 1 means that the process is compressed
823 * to a single node. A count of g->p.nr_nodes means it's
824 * spread out on the whole system.
825 */
826static int count_process_nodes(int process_nr)
827{
828 char node_present[MAX_NR_NODES] = { 0, };
829 int nodes;
830 int n, t;
831
832 for (t = 0; t < g->p.nr_threads; t++) {
833 struct thread_data *td;
834 int task_nr;
835 int node;
836
837 task_nr = process_nr*g->p.nr_threads + t;
838 td = g->threads + task_nr;
839
840 node = numa_node_of_cpu(td->curr_cpu);
Petr Holasek1d90a682015-04-16 17:38:19 +0200841 if (node < 0) /* curr_cpu was likely still -1 */
842 return 0;
843
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100844 node_present[node] = 1;
845 }
846
847 nodes = 0;
848
849 for (n = 0; n < MAX_NR_NODES; n++)
850 nodes += node_present[n];
851
852 return nodes;
853}
854
855/*
856 * Count the number of distinct process-threads a node contains.
857 *
858 * A count of 1 means that the node contains only a single
859 * process. If all nodes on the system contain at most one
860 * process then we are well-converged.
861 */
862static int count_node_processes(int node)
863{
864 int processes = 0;
865 int t, p;
866
867 for (p = 0; p < g->p.nr_proc; p++) {
868 for (t = 0; t < g->p.nr_threads; t++) {
869 struct thread_data *td;
870 int task_nr;
871 int n;
872
873 task_nr = p*g->p.nr_threads + t;
874 td = g->threads + task_nr;
875
876 n = numa_node_of_cpu(td->curr_cpu);
877 if (n == node) {
878 processes++;
879 break;
880 }
881 }
882 }
883
884 return processes;
885}
886
887static void calc_convergence_compression(int *strong)
888{
889 unsigned int nodes_min, nodes_max;
890 int p;
891
892 nodes_min = -1;
893 nodes_max = 0;
894
895 for (p = 0; p < g->p.nr_proc; p++) {
896 unsigned int nodes = count_process_nodes(p);
897
Petr Holasek1d90a682015-04-16 17:38:19 +0200898 if (!nodes) {
899 *strong = 0;
900 return;
901 }
902
Ingo Molnar1c13f3c2012-12-06 13:51:59 +0100903 nodes_min = min(nodes, nodes_min);
904 nodes_max = max(nodes, nodes_max);
905 }
906
907 /* Strong convergence: all threads compress on a single node: */
908 if (nodes_min == 1 && nodes_max == 1) {
909 *strong = 1;
910 } else {
911 *strong = 0;
912 tprintf(" {%d-%d}", nodes_min, nodes_max);
913 }
914}
915
916static void calc_convergence(double runtime_ns_max, double *convergence)
917{
918 unsigned int loops_done_min, loops_done_max;
919 int process_groups;
920 int nodes[MAX_NR_NODES];
921 int distance;
922 int nr_min;
923 int nr_max;
924 int strong;
925 int sum;
926 int nr;
927 int node;
928 int cpu;
929 int t;
930
931 if (!g->p.show_convergence && !g->p.measure_convergence)
932 return;
933
934 for (node = 0; node < g->p.nr_nodes; node++)
935 nodes[node] = 0;
936
937 loops_done_min = -1;
938 loops_done_max = 0;
939
940 for (t = 0; t < g->p.nr_tasks; t++) {
941 struct thread_data *td = g->threads + t;
942 unsigned int loops_done;
943
944 cpu = td->curr_cpu;
945
946 /* Not all threads have written it yet: */
947 if (cpu < 0)
948 continue;
949
950 node = numa_node_of_cpu(cpu);
951
952 nodes[node]++;
953
954 loops_done = td->loops_done;
955 loops_done_min = min(loops_done, loops_done_min);
956 loops_done_max = max(loops_done, loops_done_max);
957 }
958
959 nr_max = 0;
960 nr_min = g->p.nr_tasks;
961 sum = 0;
962
963 for (node = 0; node < g->p.nr_nodes; node++) {
964 nr = nodes[node];
965 nr_min = min(nr, nr_min);
966 nr_max = max(nr, nr_max);
967 sum += nr;
968 }
969 BUG_ON(nr_min > nr_max);
970
971 BUG_ON(sum > g->p.nr_tasks);
972
973 if (0 && (sum < g->p.nr_tasks))
974 return;
975
976 /*
977 * Count the number of distinct process groups present
978 * on nodes - when we are converged this will decrease
979 * to g->p.nr_proc:
980 */
981 process_groups = 0;
982
983 for (node = 0; node < g->p.nr_nodes; node++) {
984 int processes = count_node_processes(node);
985
986 nr = nodes[node];
987 tprintf(" %2d/%-2d", nr, processes);
988
989 process_groups += processes;
990 }
991
992 distance = nr_max - nr_min;
993
994 tprintf(" [%2d/%-2d]", distance, process_groups);
995
996 tprintf(" l:%3d-%-3d (%3d)",
997 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
998
999 if (loops_done_min && loops_done_max) {
1000 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1001
1002 tprintf(" [%4.1f%%]", skew * 100.0);
1003 }
1004
1005 calc_convergence_compression(&strong);
1006
1007 if (strong && process_groups == g->p.nr_proc) {
1008 if (!*convergence) {
1009 *convergence = runtime_ns_max;
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001010 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001011 if (g->p.measure_convergence) {
1012 g->all_converged = true;
1013 g->stop_work = true;
1014 }
1015 }
1016 } else {
1017 if (*convergence) {
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001018 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001019 *convergence = 0;
1020 }
1021 tprintf("\n");
1022 }
1023}
1024
1025static void show_summary(double runtime_ns_max, int l, double *convergence)
1026{
1027 tprintf("\r # %5.1f%% [%.1f mins]",
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001028 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001029
1030 calc_convergence(runtime_ns_max, convergence);
1031
1032 if (g->p.show_details >= 0)
1033 fflush(stdout);
1034}
1035
1036static void *worker_thread(void *__tdata)
1037{
1038 struct thread_data *td = __tdata;
1039 struct timeval start0, start, stop, diff;
1040 int process_nr = td->process_nr;
1041 int thread_nr = td->thread_nr;
1042 unsigned long last_perturbance;
1043 int task_nr = td->task_nr;
1044 int details = g->p.show_details;
1045 int first_task, last_task;
1046 double convergence = 0;
1047 u64 val = td->val;
1048 double runtime_ns_max;
1049 u8 *global_data;
1050 u8 *process_data;
1051 u8 *thread_data;
1052 u64 bytes_done;
1053 long work_done;
1054 u32 l;
Petr Holasekb64aa552015-04-16 17:38:18 +02001055 struct rusage rusage;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001056
1057 bind_to_cpumask(td->bind_cpumask);
1058 bind_to_memnode(td->bind_node);
1059
1060 set_taskname("thread %d/%d", process_nr, thread_nr);
1061
1062 global_data = g->data;
1063 process_data = td->process_data;
1064 thread_data = setup_private_data(g->p.bytes_thread);
1065
1066 bytes_done = 0;
1067
1068 last_task = 0;
1069 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1070 last_task = 1;
1071
1072 first_task = 0;
1073 if (process_nr == 0 && thread_nr == 0)
1074 first_task = 1;
1075
1076 if (details >= 2) {
1077 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1078 process_nr, thread_nr, global_data, process_data, thread_data);
1079 }
1080
1081 if (g->p.serialize_startup) {
1082 pthread_mutex_lock(&g->startup_mutex);
1083 g->nr_tasks_started++;
1084 pthread_mutex_unlock(&g->startup_mutex);
1085
1086 /* Here we will wait for the main process to start us all at once: */
1087 pthread_mutex_lock(&g->start_work_mutex);
1088 g->nr_tasks_working++;
1089
1090 /* Last one wake the main process: */
1091 if (g->nr_tasks_working == g->p.nr_tasks)
1092 pthread_mutex_unlock(&g->startup_done_mutex);
1093
1094 pthread_mutex_unlock(&g->start_work_mutex);
1095 }
1096
1097 gettimeofday(&start0, NULL);
1098
1099 start = stop = start0;
1100 last_perturbance = start.tv_sec;
1101
1102 for (l = 0; l < g->p.nr_loops; l++) {
1103 start = stop;
1104
1105 if (g->stop_work)
1106 break;
1107
1108 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1109 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1110 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1111
1112 if (g->p.sleep_usecs) {
1113 pthread_mutex_lock(td->process_lock);
1114 usleep(g->p.sleep_usecs);
1115 pthread_mutex_unlock(td->process_lock);
1116 }
1117 /*
1118 * Amount of work to be done under a process-global lock:
1119 */
1120 if (g->p.bytes_process_locked) {
1121 pthread_mutex_lock(td->process_lock);
1122 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1123 pthread_mutex_unlock(td->process_lock);
1124 }
1125
1126 work_done = g->p.bytes_global + g->p.bytes_process +
1127 g->p.bytes_process_locked + g->p.bytes_thread;
1128
1129 update_curr_cpu(task_nr, work_done);
1130 bytes_done += work_done;
1131
1132 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1133 continue;
1134
1135 td->loops_done = l;
1136
1137 gettimeofday(&stop, NULL);
1138
1139 /* Check whether our max runtime timed out: */
1140 if (g->p.nr_secs) {
1141 timersub(&stop, &start0, &diff);
Adrian Hunter2100f772013-10-18 15:29:09 +03001142 if ((u32)diff.tv_sec >= g->p.nr_secs) {
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001143 g->stop_work = true;
1144 break;
1145 }
1146 }
1147
1148 /* Update the summary at most once per second: */
1149 if (start.tv_sec == stop.tv_sec)
1150 continue;
1151
1152 /*
1153 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1154 * by migrating to CPU#0:
1155 */
1156 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1157 cpu_set_t orig_mask;
1158 int target_cpu;
1159 int this_cpu;
1160
1161 last_perturbance = stop.tv_sec;
1162
1163 /*
1164 * Depending on where we are running, move into
1165 * the other half of the system, to create some
1166 * real disturbance:
1167 */
1168 this_cpu = g->threads[task_nr].curr_cpu;
1169 if (this_cpu < g->p.nr_cpus/2)
1170 target_cpu = g->p.nr_cpus-1;
1171 else
1172 target_cpu = 0;
1173
1174 orig_mask = bind_to_cpu(target_cpu);
1175
1176 /* Here we are running on the target CPU already */
1177 if (details >= 1)
1178 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1179
1180 bind_to_cpumask(orig_mask);
1181 }
1182
1183 if (details >= 3) {
1184 timersub(&stop, &start, &diff);
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001185 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1186 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001187
1188 if (details >= 0) {
Adrian Hunter2100f772013-10-18 15:29:09 +03001189 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001190 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1191 }
1192 fflush(stdout);
1193 }
1194 if (!last_task)
1195 continue;
1196
1197 timersub(&stop, &start0, &diff);
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001198 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1199 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001200
1201 show_summary(runtime_ns_max, l, &convergence);
1202 }
1203
1204 gettimeofday(&stop, NULL);
1205 timersub(&stop, &start0, &diff);
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001206 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1207 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1208 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
Petr Holasekb64aa552015-04-16 17:38:18 +02001209
1210 getrusage(RUSAGE_THREAD, &rusage);
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001211 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1212 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1213 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1214 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001215
1216 free_data(thread_data, g->p.bytes_thread);
1217
1218 pthread_mutex_lock(&g->stop_work_mutex);
1219 g->bytes_done += bytes_done;
1220 pthread_mutex_unlock(&g->stop_work_mutex);
1221
1222 return NULL;
1223}
1224
1225/*
1226 * A worker process starts a couple of threads:
1227 */
1228static void worker_process(int process_nr)
1229{
1230 pthread_mutex_t process_lock;
1231 struct thread_data *td;
1232 pthread_t *pthreads;
1233 u8 *process_data;
1234 int task_nr;
1235 int ret;
1236 int t;
1237
1238 pthread_mutex_init(&process_lock, NULL);
1239 set_taskname("process %d", process_nr);
1240
1241 /*
1242 * Pick up the memory policy and the CPU binding of our first thread,
1243 * so that we initialize memory accordingly:
1244 */
1245 task_nr = process_nr*g->p.nr_threads;
1246 td = g->threads + task_nr;
1247
1248 bind_to_memnode(td->bind_node);
1249 bind_to_cpumask(td->bind_cpumask);
1250
1251 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1252 process_data = setup_private_data(g->p.bytes_process);
1253
1254 if (g->p.show_details >= 3) {
1255 printf(" # process %2d global mem: %p, process mem: %p\n",
1256 process_nr, g->data, process_data);
1257 }
1258
1259 for (t = 0; t < g->p.nr_threads; t++) {
1260 task_nr = process_nr*g->p.nr_threads + t;
1261 td = g->threads + task_nr;
1262
1263 td->process_data = process_data;
1264 td->process_nr = process_nr;
1265 td->thread_nr = t;
1266 td->task_nr = task_nr;
1267 td->val = rand();
1268 td->curr_cpu = -1;
1269 td->process_lock = &process_lock;
1270
1271 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1272 BUG_ON(ret);
1273 }
1274
1275 for (t = 0; t < g->p.nr_threads; t++) {
1276 ret = pthread_join(pthreads[t], NULL);
1277 BUG_ON(ret);
1278 }
1279
1280 free_data(process_data, g->p.bytes_process);
1281 free(pthreads);
1282}
1283
1284static void print_summary(void)
1285{
1286 if (g->p.show_details < 0)
1287 return;
1288
1289 printf("\n ###\n");
1290 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1291 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1292 printf(" # %5dx %5ldMB global shared mem operations\n",
1293 g->p.nr_loops, g->p.bytes_global/1024/1024);
1294 printf(" # %5dx %5ldMB process shared mem operations\n",
1295 g->p.nr_loops, g->p.bytes_process/1024/1024);
1296 printf(" # %5dx %5ldMB thread local mem operations\n",
1297 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1298
1299 printf(" ###\n");
1300
1301 printf("\n ###\n"); fflush(stdout);
1302}
1303
1304static void init_thread_data(void)
1305{
1306 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1307 int t;
1308
1309 g->threads = zalloc_shared_data(size);
1310
1311 for (t = 0; t < g->p.nr_tasks; t++) {
1312 struct thread_data *td = g->threads + t;
1313 int cpu;
1314
1315 /* Allow all nodes by default: */
1316 td->bind_node = -1;
1317
1318 /* Allow all CPUs by default: */
1319 CPU_ZERO(&td->bind_cpumask);
1320 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1321 CPU_SET(cpu, &td->bind_cpumask);
1322 }
1323}
1324
1325static void deinit_thread_data(void)
1326{
1327 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1328
1329 free_data(g->threads, size);
1330}
1331
1332static int init(void)
1333{
1334 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1335
1336 /* Copy over options: */
1337 g->p = p0;
1338
1339 g->p.nr_cpus = numa_num_configured_cpus();
1340
1341 g->p.nr_nodes = numa_max_node() + 1;
1342
1343 /* char array in count_process_nodes(): */
1344 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1345
1346 if (g->p.show_quiet && !g->p.show_details)
1347 g->p.show_details = -1;
1348
1349 /* Some memory should be specified: */
1350 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1351 return -1;
1352
1353 if (g->p.mb_global_str) {
1354 g->p.mb_global = atof(g->p.mb_global_str);
1355 BUG_ON(g->p.mb_global < 0);
1356 }
1357
1358 if (g->p.mb_proc_str) {
1359 g->p.mb_proc = atof(g->p.mb_proc_str);
1360 BUG_ON(g->p.mb_proc < 0);
1361 }
1362
1363 if (g->p.mb_proc_locked_str) {
1364 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1365 BUG_ON(g->p.mb_proc_locked < 0);
1366 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1367 }
1368
1369 if (g->p.mb_thread_str) {
1370 g->p.mb_thread = atof(g->p.mb_thread_str);
1371 BUG_ON(g->p.mb_thread < 0);
1372 }
1373
1374 BUG_ON(g->p.nr_threads <= 0);
1375 BUG_ON(g->p.nr_proc <= 0);
1376
1377 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1378
1379 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1380 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1381 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1382 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1383
1384 g->data = setup_shared_data(g->p.bytes_global);
1385
1386 /* Startup serialization: */
1387 init_global_mutex(&g->start_work_mutex);
1388 init_global_mutex(&g->startup_mutex);
1389 init_global_mutex(&g->startup_done_mutex);
1390 init_global_mutex(&g->stop_work_mutex);
1391
1392 init_thread_data();
1393
1394 tprintf("#\n");
Petr Holasekb81a48e2013-10-03 19:28:45 +02001395 if (parse_setup_cpu_list() || parse_setup_node_list())
1396 return -1;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001397 tprintf("#\n");
1398
1399 print_summary();
1400
1401 return 0;
1402}
1403
1404static void deinit(void)
1405{
1406 free_data(g->data, g->p.bytes_global);
1407 g->data = NULL;
1408
1409 deinit_thread_data();
1410
1411 free_data(g, sizeof(*g));
1412 g = NULL;
1413}
1414
1415/*
1416 * Print a short or long result, depending on the verbosity setting:
1417 */
1418static void print_res(const char *name, double val,
1419 const char *txt_unit, const char *txt_short, const char *txt_long)
1420{
1421 if (!name)
1422 name = "main,";
1423
Petr Holasek24f1ced2015-04-16 17:38:17 +02001424 if (!g->p.show_quiet)
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001425 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1426 else
1427 printf(" %14.3f %s\n", val, txt_long);
1428}
1429
1430static int __bench_numa(const char *name)
1431{
1432 struct timeval start, stop, diff;
1433 u64 runtime_ns_min, runtime_ns_sum;
1434 pid_t *pids, pid, wpid;
1435 double delta_runtime;
1436 double runtime_avg;
1437 double runtime_sec_max;
1438 double runtime_sec_min;
1439 int wait_stat;
1440 double bytes;
Petr Holasekb64aa552015-04-16 17:38:18 +02001441 int i, t, p;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001442
1443 if (init())
1444 return -1;
1445
1446 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1447 pid = -1;
1448
1449 /* All threads try to acquire it, this way we can wait for them to start up: */
1450 pthread_mutex_lock(&g->start_work_mutex);
1451
1452 if (g->p.serialize_startup) {
1453 tprintf(" #\n");
1454 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1455 }
1456
1457 gettimeofday(&start, NULL);
1458
1459 for (i = 0; i < g->p.nr_proc; i++) {
1460 pid = fork();
1461 dprintf(" # process %2d: PID %d\n", i, pid);
1462
1463 BUG_ON(pid < 0);
1464 if (!pid) {
1465 /* Child process: */
1466 worker_process(i);
1467
1468 exit(0);
1469 }
1470 pids[i] = pid;
1471
1472 }
1473 /* Wait for all the threads to start up: */
1474 while (g->nr_tasks_started != g->p.nr_tasks)
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001475 usleep(USEC_PER_MSEC);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001476
1477 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1478
1479 if (g->p.serialize_startup) {
1480 double startup_sec;
1481
1482 pthread_mutex_lock(&g->startup_done_mutex);
1483
1484 /* This will start all threads: */
1485 pthread_mutex_unlock(&g->start_work_mutex);
1486
1487 /* This mutex is locked - the last started thread will wake us: */
1488 pthread_mutex_lock(&g->startup_done_mutex);
1489
1490 gettimeofday(&stop, NULL);
1491
1492 timersub(&stop, &start, &diff);
1493
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001494 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1495 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1496 startup_sec /= NSEC_PER_SEC;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001497
1498 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1499 tprintf(" #\n");
1500
1501 start = stop;
1502 pthread_mutex_unlock(&g->startup_done_mutex);
1503 } else {
1504 gettimeofday(&start, NULL);
1505 }
1506
1507 /* Parent process: */
1508
1509
1510 for (i = 0; i < g->p.nr_proc; i++) {
1511 wpid = waitpid(pids[i], &wait_stat, 0);
1512 BUG_ON(wpid < 0);
1513 BUG_ON(!WIFEXITED(wait_stat));
1514
1515 }
1516
1517 runtime_ns_sum = 0;
1518 runtime_ns_min = -1LL;
1519
1520 for (t = 0; t < g->p.nr_tasks; t++) {
1521 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1522
1523 runtime_ns_sum += thread_runtime_ns;
1524 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1525 }
1526
1527 gettimeofday(&stop, NULL);
1528 timersub(&stop, &start, &diff);
1529
1530 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1531
1532 tprintf("\n ###\n");
1533 tprintf("\n");
1534
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001535 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1536 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1537 runtime_sec_max /= NSEC_PER_SEC;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001538
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001539 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001540
1541 bytes = g->bytes_done;
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001542 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001543
1544 if (g->p.measure_convergence) {
1545 print_res(name, runtime_sec_max,
1546 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1547 }
1548
1549 print_res(name, runtime_sec_max,
1550 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1551
1552 print_res(name, runtime_sec_min,
1553 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1554
1555 print_res(name, runtime_avg,
1556 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1557
1558 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1559 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1560 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1561
1562 print_res(name, bytes / g->p.nr_tasks / 1e9,
1563 "GB,", "data/thread", "GB data processed, per thread");
1564
1565 print_res(name, bytes / 1e9,
1566 "GB,", "data-total", "GB data processed, total");
1567
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001568 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001569 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1570
1571 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1572 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1573
1574 print_res(name, bytes / runtime_sec_max / 1e9,
1575 "GB/sec,", "total-speed", "GB/sec total speed");
1576
Petr Holasekb64aa552015-04-16 17:38:18 +02001577 if (g->p.show_details >= 2) {
Arnaldo Carvalho de Melo3aff8ba2017-02-09 14:39:42 -03001578 char tname[14 + 2 * 10 + 1];
Petr Holasekb64aa552015-04-16 17:38:18 +02001579 struct thread_data *td;
1580 for (p = 0; p < g->p.nr_proc; p++) {
1581 for (t = 0; t < g->p.nr_threads; t++) {
Arnaldo Carvalho de Melo3aff8ba2017-02-09 14:39:42 -03001582 memset(tname, 0, sizeof(tname));
Petr Holasekb64aa552015-04-16 17:38:18 +02001583 td = g->threads + p*g->p.nr_threads + t;
Arnaldo Carvalho de Melo3aff8ba2017-02-09 14:39:42 -03001584 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
Petr Holasekb64aa552015-04-16 17:38:18 +02001585 print_res(tname, td->speed_gbs,
1586 "GB/sec", "thread-speed", "GB/sec/thread speed");
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001587 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
Petr Holasekb64aa552015-04-16 17:38:18 +02001588 "secs", "thread-system-time", "system CPU time/thread");
Arnaldo Carvalho de Meloa8ad8322016-08-08 11:55:38 -03001589 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
Petr Holasekb64aa552015-04-16 17:38:18 +02001590 "secs", "thread-user-time", "user CPU time/thread");
1591 }
1592 }
1593 }
1594
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001595 free(pids);
1596
1597 deinit();
1598
1599 return 0;
1600}
1601
1602#define MAX_ARGS 50
1603
1604static int command_size(const char **argv)
1605{
1606 int size = 0;
1607
1608 while (*argv) {
1609 size++;
1610 argv++;
1611 }
1612
1613 BUG_ON(size >= MAX_ARGS);
1614
1615 return size;
1616}
1617
1618static void init_params(struct params *p, const char *name, int argc, const char **argv)
1619{
1620 int i;
1621
1622 printf("\n # Running %s \"perf bench numa", name);
1623
1624 for (i = 0; i < argc; i++)
1625 printf(" %s", argv[i]);
1626
1627 printf("\"\n");
1628
1629 memset(p, 0, sizeof(*p));
1630
1631 /* Initialize nonzero defaults: */
1632
1633 p->serialize_startup = 1;
1634 p->data_reads = true;
1635 p->data_writes = true;
1636 p->data_backwards = true;
1637 p->data_rand_walk = true;
1638 p->nr_loops = -1;
1639 p->init_random = true;
Ramkumar Ramachandra40ba93e2014-03-27 19:50:17 -04001640 p->mb_global_str = "1";
1641 p->nr_proc = 1;
1642 p->nr_threads = 1;
1643 p->nr_secs = 5;
Arnaldo Carvalho de Melo0fae7992014-03-13 16:54:03 -03001644 p->run_all = argc == 1;
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001645}
1646
1647static int run_bench_numa(const char *name, const char **argv)
1648{
1649 int argc = command_size(argv);
1650
1651 init_params(&p0, name, argc, argv);
1652 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1653 if (argc)
1654 goto err;
1655
1656 if (__bench_numa(name))
1657 goto err;
1658
1659 return 0;
1660
1661err:
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001662 return -1;
1663}
1664
1665#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1666#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1667
1668#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1669#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1670
1671#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1672#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1673
1674/*
1675 * The built-in test-suite executed by "perf bench numa -a".
1676 *
1677 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1678 */
1679static const char *tests[][MAX_ARGS] = {
1680 /* Basic single-stream NUMA bandwidth measurements: */
1681 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1682 "-C" , "0", "-M", "0", OPT_BW_RAM },
1683 { "RAM-bw-local-NOTHP,",
1684 "mem", "-p", "1", "-t", "1", "-P", "1024",
1685 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1686 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1687 "-C" , "0", "-M", "1", OPT_BW_RAM },
1688
1689 /* 2-stream NUMA bandwidth measurements: */
1690 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1691 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1692 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1693 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1694
1695 /* Cross-stream NUMA bandwidth measurement: */
1696 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1697 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1698
1699 /* Convergence latency measurements: */
1700 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1701 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1702 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1703 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1704 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1705 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1706 { " 4x4-convergence-NOTHP,",
1707 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1708 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1709 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1710 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1711 { " 8x4-convergence-NOTHP,",
1712 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1713 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1714 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1715 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1716 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1717 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1718
1719 /* Various NUMA process/thread layout bandwidth measurements: */
1720 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1721 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1722 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1723 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1724 { " 8x1-bw-process-NOTHP,",
1725 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1726 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1727
1728 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1729 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1730 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1731 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1732
1733 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1734 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1735 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1736 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1737 { " 4x8-bw-thread-NOTHP,",
1738 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1739 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1740 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1741
1742 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1743 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1744
1745 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1746 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1747 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1748 { "numa01-bw-thread-NOTHP,",
1749 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1750};
1751
1752static int bench_all(void)
1753{
1754 int nr = ARRAY_SIZE(tests);
1755 int ret;
1756 int i;
1757
1758 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1759 BUG_ON(ret < 0);
1760
1761 for (i = 0; i < nr; i++) {
Petr Holasekb81a48e2013-10-03 19:28:45 +02001762 run_bench_numa(tests[i][0], tests[i] + 1);
Ingo Molnar1c13f3c2012-12-06 13:51:59 +01001763 }
1764
1765 printf("\n");
1766
1767 return 0;
1768}
1769
1770int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1771{
1772 init_params(&p0, "main,", argc, argv);
1773 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1774 if (argc)
1775 goto err;
1776
1777 if (p0.run_all)
1778 return bench_all();
1779
1780 if (__bench_numa(NULL))
1781 goto err;
1782
1783 return 0;
1784
1785err:
1786 usage_with_options(numa_usage, options);
1787 return -1;
1788}