Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel PRO/1000 Linux driver |
Bruce Allan | f5e261e | 2012-01-01 16:00:03 +0000 | [diff] [blame] | 4 | Copyright(c) 1999 - 2012 Intel Corporation. |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | Linux NICS <linux.nics@intel.com> |
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | #include "e1000.h" |
| 30 | |
| 31 | /** |
| 32 | * e1000_raise_eec_clk - Raise EEPROM clock |
| 33 | * @hw: pointer to the HW structure |
| 34 | * @eecd: pointer to the EEPROM |
| 35 | * |
| 36 | * Enable/Raise the EEPROM clock bit. |
| 37 | **/ |
| 38 | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| 39 | { |
| 40 | *eecd = *eecd | E1000_EECD_SK; |
| 41 | ew32(EECD, *eecd); |
| 42 | e1e_flush(); |
| 43 | udelay(hw->nvm.delay_usec); |
| 44 | } |
| 45 | |
| 46 | /** |
| 47 | * e1000_lower_eec_clk - Lower EEPROM clock |
| 48 | * @hw: pointer to the HW structure |
| 49 | * @eecd: pointer to the EEPROM |
| 50 | * |
| 51 | * Clear/Lower the EEPROM clock bit. |
| 52 | **/ |
| 53 | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| 54 | { |
| 55 | *eecd = *eecd & ~E1000_EECD_SK; |
| 56 | ew32(EECD, *eecd); |
| 57 | e1e_flush(); |
| 58 | udelay(hw->nvm.delay_usec); |
| 59 | } |
| 60 | |
| 61 | /** |
| 62 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM |
| 63 | * @hw: pointer to the HW structure |
| 64 | * @data: data to send to the EEPROM |
| 65 | * @count: number of bits to shift out |
| 66 | * |
| 67 | * We need to shift 'count' bits out to the EEPROM. So, the value in the |
| 68 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| 69 | * In order to do this, "data" must be broken down into bits. |
| 70 | **/ |
| 71 | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) |
| 72 | { |
| 73 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 74 | u32 eecd = er32(EECD); |
| 75 | u32 mask; |
| 76 | |
| 77 | mask = 0x01 << (count - 1); |
| 78 | if (nvm->type == e1000_nvm_eeprom_spi) |
| 79 | eecd |= E1000_EECD_DO; |
| 80 | |
| 81 | do { |
| 82 | eecd &= ~E1000_EECD_DI; |
| 83 | |
| 84 | if (data & mask) |
| 85 | eecd |= E1000_EECD_DI; |
| 86 | |
| 87 | ew32(EECD, eecd); |
| 88 | e1e_flush(); |
| 89 | |
| 90 | udelay(nvm->delay_usec); |
| 91 | |
| 92 | e1000_raise_eec_clk(hw, &eecd); |
| 93 | e1000_lower_eec_clk(hw, &eecd); |
| 94 | |
| 95 | mask >>= 1; |
| 96 | } while (mask); |
| 97 | |
| 98 | eecd &= ~E1000_EECD_DI; |
| 99 | ew32(EECD, eecd); |
| 100 | } |
| 101 | |
| 102 | /** |
| 103 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM |
| 104 | * @hw: pointer to the HW structure |
| 105 | * @count: number of bits to shift in |
| 106 | * |
| 107 | * In order to read a register from the EEPROM, we need to shift 'count' bits |
| 108 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| 109 | * the EEPROM (setting the SK bit), and then reading the value of the data out |
| 110 | * "DO" bit. During this "shifting in" process the data in "DI" bit should |
| 111 | * always be clear. |
| 112 | **/ |
| 113 | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) |
| 114 | { |
| 115 | u32 eecd; |
| 116 | u32 i; |
| 117 | u16 data; |
| 118 | |
| 119 | eecd = er32(EECD); |
| 120 | |
| 121 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 122 | data = 0; |
| 123 | |
| 124 | for (i = 0; i < count; i++) { |
| 125 | data <<= 1; |
| 126 | e1000_raise_eec_clk(hw, &eecd); |
| 127 | |
| 128 | eecd = er32(EECD); |
| 129 | |
| 130 | eecd &= ~E1000_EECD_DI; |
| 131 | if (eecd & E1000_EECD_DO) |
| 132 | data |= 1; |
| 133 | |
| 134 | e1000_lower_eec_clk(hw, &eecd); |
| 135 | } |
| 136 | |
| 137 | return data; |
| 138 | } |
| 139 | |
| 140 | /** |
| 141 | * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion |
| 142 | * @hw: pointer to the HW structure |
| 143 | * @ee_reg: EEPROM flag for polling |
| 144 | * |
| 145 | * Polls the EEPROM status bit for either read or write completion based |
| 146 | * upon the value of 'ee_reg'. |
| 147 | **/ |
| 148 | s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) |
| 149 | { |
| 150 | u32 attempts = 100000; |
| 151 | u32 i, reg = 0; |
| 152 | |
| 153 | for (i = 0; i < attempts; i++) { |
| 154 | if (ee_reg == E1000_NVM_POLL_READ) |
| 155 | reg = er32(EERD); |
| 156 | else |
| 157 | reg = er32(EEWR); |
| 158 | |
| 159 | if (reg & E1000_NVM_RW_REG_DONE) |
| 160 | return 0; |
| 161 | |
| 162 | udelay(5); |
| 163 | } |
| 164 | |
| 165 | return -E1000_ERR_NVM; |
| 166 | } |
| 167 | |
| 168 | /** |
| 169 | * e1000e_acquire_nvm - Generic request for access to EEPROM |
| 170 | * @hw: pointer to the HW structure |
| 171 | * |
| 172 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| 173 | * Return successful if access grant bit set, else clear the request for |
| 174 | * EEPROM access and return -E1000_ERR_NVM (-1). |
| 175 | **/ |
| 176 | s32 e1000e_acquire_nvm(struct e1000_hw *hw) |
| 177 | { |
| 178 | u32 eecd = er32(EECD); |
| 179 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; |
| 180 | |
| 181 | ew32(EECD, eecd | E1000_EECD_REQ); |
| 182 | eecd = er32(EECD); |
| 183 | |
| 184 | while (timeout) { |
| 185 | if (eecd & E1000_EECD_GNT) |
| 186 | break; |
| 187 | udelay(5); |
| 188 | eecd = er32(EECD); |
| 189 | timeout--; |
| 190 | } |
| 191 | |
| 192 | if (!timeout) { |
| 193 | eecd &= ~E1000_EECD_REQ; |
| 194 | ew32(EECD, eecd); |
| 195 | e_dbg("Could not acquire NVM grant\n"); |
| 196 | return -E1000_ERR_NVM; |
| 197 | } |
| 198 | |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | /** |
| 203 | * e1000_standby_nvm - Return EEPROM to standby state |
| 204 | * @hw: pointer to the HW structure |
| 205 | * |
| 206 | * Return the EEPROM to a standby state. |
| 207 | **/ |
| 208 | static void e1000_standby_nvm(struct e1000_hw *hw) |
| 209 | { |
| 210 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 211 | u32 eecd = er32(EECD); |
| 212 | |
| 213 | if (nvm->type == e1000_nvm_eeprom_spi) { |
| 214 | /* Toggle CS to flush commands */ |
| 215 | eecd |= E1000_EECD_CS; |
| 216 | ew32(EECD, eecd); |
| 217 | e1e_flush(); |
| 218 | udelay(nvm->delay_usec); |
| 219 | eecd &= ~E1000_EECD_CS; |
| 220 | ew32(EECD, eecd); |
| 221 | e1e_flush(); |
| 222 | udelay(nvm->delay_usec); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /** |
| 227 | * e1000_stop_nvm - Terminate EEPROM command |
| 228 | * @hw: pointer to the HW structure |
| 229 | * |
| 230 | * Terminates the current command by inverting the EEPROM's chip select pin. |
| 231 | **/ |
| 232 | static void e1000_stop_nvm(struct e1000_hw *hw) |
| 233 | { |
| 234 | u32 eecd; |
| 235 | |
| 236 | eecd = er32(EECD); |
| 237 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
| 238 | /* Pull CS high */ |
| 239 | eecd |= E1000_EECD_CS; |
| 240 | e1000_lower_eec_clk(hw, &eecd); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | /** |
| 245 | * e1000e_release_nvm - Release exclusive access to EEPROM |
| 246 | * @hw: pointer to the HW structure |
| 247 | * |
| 248 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
| 249 | **/ |
| 250 | void e1000e_release_nvm(struct e1000_hw *hw) |
| 251 | { |
| 252 | u32 eecd; |
| 253 | |
| 254 | e1000_stop_nvm(hw); |
| 255 | |
| 256 | eecd = er32(EECD); |
| 257 | eecd &= ~E1000_EECD_REQ; |
| 258 | ew32(EECD, eecd); |
| 259 | } |
| 260 | |
| 261 | /** |
| 262 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write |
| 263 | * @hw: pointer to the HW structure |
| 264 | * |
| 265 | * Setups the EEPROM for reading and writing. |
| 266 | **/ |
| 267 | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) |
| 268 | { |
| 269 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 270 | u32 eecd = er32(EECD); |
| 271 | u8 spi_stat_reg; |
| 272 | |
| 273 | if (nvm->type == e1000_nvm_eeprom_spi) { |
| 274 | u16 timeout = NVM_MAX_RETRY_SPI; |
| 275 | |
| 276 | /* Clear SK and CS */ |
| 277 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 278 | ew32(EECD, eecd); |
| 279 | e1e_flush(); |
| 280 | udelay(1); |
| 281 | |
| 282 | /* |
| 283 | * Read "Status Register" repeatedly until the LSB is cleared. |
| 284 | * The EEPROM will signal that the command has been completed |
| 285 | * by clearing bit 0 of the internal status register. If it's |
| 286 | * not cleared within 'timeout', then error out. |
| 287 | */ |
| 288 | while (timeout) { |
| 289 | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, |
| 290 | hw->nvm.opcode_bits); |
| 291 | spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); |
| 292 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) |
| 293 | break; |
| 294 | |
| 295 | udelay(5); |
| 296 | e1000_standby_nvm(hw); |
| 297 | timeout--; |
| 298 | } |
| 299 | |
| 300 | if (!timeout) { |
| 301 | e_dbg("SPI NVM Status error\n"); |
| 302 | return -E1000_ERR_NVM; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | return 0; |
| 307 | } |
| 308 | |
| 309 | /** |
| 310 | * e1000e_read_nvm_eerd - Reads EEPROM using EERD register |
| 311 | * @hw: pointer to the HW structure |
| 312 | * @offset: offset of word in the EEPROM to read |
| 313 | * @words: number of words to read |
| 314 | * @data: word read from the EEPROM |
| 315 | * |
| 316 | * Reads a 16 bit word from the EEPROM using the EERD register. |
| 317 | **/ |
| 318 | s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| 319 | { |
| 320 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 321 | u32 i, eerd = 0; |
| 322 | s32 ret_val = 0; |
| 323 | |
| 324 | /* |
| 325 | * A check for invalid values: offset too large, too many words, |
| 326 | * too many words for the offset, and not enough words. |
| 327 | */ |
| 328 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 329 | (words == 0)) { |
| 330 | e_dbg("nvm parameter(s) out of bounds\n"); |
| 331 | return -E1000_ERR_NVM; |
| 332 | } |
| 333 | |
| 334 | for (i = 0; i < words; i++) { |
| 335 | eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + |
| 336 | E1000_NVM_RW_REG_START; |
| 337 | |
| 338 | ew32(EERD, eerd); |
| 339 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); |
| 340 | if (ret_val) |
| 341 | break; |
| 342 | |
| 343 | data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); |
| 344 | } |
| 345 | |
| 346 | return ret_val; |
| 347 | } |
| 348 | |
| 349 | /** |
| 350 | * e1000e_write_nvm_spi - Write to EEPROM using SPI |
| 351 | * @hw: pointer to the HW structure |
| 352 | * @offset: offset within the EEPROM to be written to |
| 353 | * @words: number of words to write |
| 354 | * @data: 16 bit word(s) to be written to the EEPROM |
| 355 | * |
| 356 | * Writes data to EEPROM at offset using SPI interface. |
| 357 | * |
| 358 | * If e1000e_update_nvm_checksum is not called after this function , the |
| 359 | * EEPROM will most likely contain an invalid checksum. |
| 360 | **/ |
| 361 | s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| 362 | { |
| 363 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 364 | s32 ret_val; |
| 365 | u16 widx = 0; |
| 366 | |
| 367 | /* |
| 368 | * A check for invalid values: offset too large, too many words, |
| 369 | * and not enough words. |
| 370 | */ |
| 371 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 372 | (words == 0)) { |
| 373 | e_dbg("nvm parameter(s) out of bounds\n"); |
| 374 | return -E1000_ERR_NVM; |
| 375 | } |
| 376 | |
| 377 | ret_val = nvm->ops.acquire(hw); |
| 378 | if (ret_val) |
| 379 | return ret_val; |
| 380 | |
| 381 | while (widx < words) { |
| 382 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; |
| 383 | |
| 384 | ret_val = e1000_ready_nvm_eeprom(hw); |
Bruce Allan | ffacd47 | 2012-02-08 02:54:42 +0000 | [diff] [blame] | 385 | if (ret_val) |
| 386 | goto release; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 387 | |
| 388 | e1000_standby_nvm(hw); |
| 389 | |
| 390 | /* Send the WRITE ENABLE command (8 bit opcode) */ |
| 391 | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, |
| 392 | nvm->opcode_bits); |
| 393 | |
| 394 | e1000_standby_nvm(hw); |
| 395 | |
| 396 | /* |
| 397 | * Some SPI eeproms use the 8th address bit embedded in the |
| 398 | * opcode |
| 399 | */ |
| 400 | if ((nvm->address_bits == 8) && (offset >= 128)) |
| 401 | write_opcode |= NVM_A8_OPCODE_SPI; |
| 402 | |
| 403 | /* Send the Write command (8-bit opcode + addr) */ |
| 404 | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); |
| 405 | e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), |
| 406 | nvm->address_bits); |
| 407 | |
| 408 | /* Loop to allow for up to whole page write of eeprom */ |
| 409 | while (widx < words) { |
| 410 | u16 word_out = data[widx]; |
| 411 | word_out = (word_out >> 8) | (word_out << 8); |
| 412 | e1000_shift_out_eec_bits(hw, word_out, 16); |
| 413 | widx++; |
| 414 | |
| 415 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { |
| 416 | e1000_standby_nvm(hw); |
| 417 | break; |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | usleep_range(10000, 20000); |
Bruce Allan | ffacd47 | 2012-02-08 02:54:42 +0000 | [diff] [blame] | 423 | release: |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 424 | nvm->ops.release(hw); |
Bruce Allan | ffacd47 | 2012-02-08 02:54:42 +0000 | [diff] [blame] | 425 | |
| 426 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 427 | } |
| 428 | |
| 429 | /** |
| 430 | * e1000_read_pba_string_generic - Read device part number |
| 431 | * @hw: pointer to the HW structure |
| 432 | * @pba_num: pointer to device part number |
| 433 | * @pba_num_size: size of part number buffer |
| 434 | * |
| 435 | * Reads the product board assembly (PBA) number from the EEPROM and stores |
| 436 | * the value in pba_num. |
| 437 | **/ |
| 438 | s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, |
| 439 | u32 pba_num_size) |
| 440 | { |
| 441 | s32 ret_val; |
| 442 | u16 nvm_data; |
| 443 | u16 pba_ptr; |
| 444 | u16 offset; |
| 445 | u16 length; |
| 446 | |
| 447 | if (pba_num == NULL) { |
| 448 | e_dbg("PBA string buffer was null\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 449 | return -E1000_ERR_INVALID_ARGUMENT; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 450 | } |
| 451 | |
| 452 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); |
| 453 | if (ret_val) { |
| 454 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 455 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 456 | } |
| 457 | |
| 458 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); |
| 459 | if (ret_val) { |
| 460 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 461 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 462 | } |
| 463 | |
| 464 | /* |
| 465 | * if nvm_data is not ptr guard the PBA must be in legacy format which |
| 466 | * means pba_ptr is actually our second data word for the PBA number |
| 467 | * and we can decode it into an ascii string |
| 468 | */ |
| 469 | if (nvm_data != NVM_PBA_PTR_GUARD) { |
| 470 | e_dbg("NVM PBA number is not stored as string\n"); |
| 471 | |
| 472 | /* we will need 11 characters to store the PBA */ |
| 473 | if (pba_num_size < 11) { |
| 474 | e_dbg("PBA string buffer too small\n"); |
| 475 | return E1000_ERR_NO_SPACE; |
| 476 | } |
| 477 | |
| 478 | /* extract hex string from data and pba_ptr */ |
| 479 | pba_num[0] = (nvm_data >> 12) & 0xF; |
| 480 | pba_num[1] = (nvm_data >> 8) & 0xF; |
| 481 | pba_num[2] = (nvm_data >> 4) & 0xF; |
| 482 | pba_num[3] = nvm_data & 0xF; |
| 483 | pba_num[4] = (pba_ptr >> 12) & 0xF; |
| 484 | pba_num[5] = (pba_ptr >> 8) & 0xF; |
| 485 | pba_num[6] = '-'; |
| 486 | pba_num[7] = 0; |
| 487 | pba_num[8] = (pba_ptr >> 4) & 0xF; |
| 488 | pba_num[9] = pba_ptr & 0xF; |
| 489 | |
| 490 | /* put a null character on the end of our string */ |
| 491 | pba_num[10] = '\0'; |
| 492 | |
| 493 | /* switch all the data but the '-' to hex char */ |
| 494 | for (offset = 0; offset < 10; offset++) { |
| 495 | if (pba_num[offset] < 0xA) |
| 496 | pba_num[offset] += '0'; |
| 497 | else if (pba_num[offset] < 0x10) |
| 498 | pba_num[offset] += 'A' - 0xA; |
| 499 | } |
| 500 | |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 501 | return 0; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 502 | } |
| 503 | |
| 504 | ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); |
| 505 | if (ret_val) { |
| 506 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 507 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 508 | } |
| 509 | |
| 510 | if (length == 0xFFFF || length == 0) { |
| 511 | e_dbg("NVM PBA number section invalid length\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 512 | return -E1000_ERR_NVM_PBA_SECTION; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 513 | } |
| 514 | /* check if pba_num buffer is big enough */ |
| 515 | if (pba_num_size < (((u32)length * 2) - 1)) { |
| 516 | e_dbg("PBA string buffer too small\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 517 | return -E1000_ERR_NO_SPACE; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 518 | } |
| 519 | |
| 520 | /* trim pba length from start of string */ |
| 521 | pba_ptr++; |
| 522 | length--; |
| 523 | |
| 524 | for (offset = 0; offset < length; offset++) { |
| 525 | ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); |
| 526 | if (ret_val) { |
| 527 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 528 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 529 | } |
| 530 | pba_num[offset * 2] = (u8)(nvm_data >> 8); |
| 531 | pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); |
| 532 | } |
| 533 | pba_num[offset * 2] = '\0'; |
| 534 | |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 535 | return 0; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 536 | } |
| 537 | |
| 538 | /** |
| 539 | * e1000_read_mac_addr_generic - Read device MAC address |
| 540 | * @hw: pointer to the HW structure |
| 541 | * |
| 542 | * Reads the device MAC address from the EEPROM and stores the value. |
| 543 | * Since devices with two ports use the same EEPROM, we increment the |
| 544 | * last bit in the MAC address for the second port. |
| 545 | **/ |
| 546 | s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) |
| 547 | { |
| 548 | u32 rar_high; |
| 549 | u32 rar_low; |
| 550 | u16 i; |
| 551 | |
| 552 | rar_high = er32(RAH(0)); |
| 553 | rar_low = er32(RAL(0)); |
| 554 | |
| 555 | for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) |
| 556 | hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8)); |
| 557 | |
| 558 | for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) |
| 559 | hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8)); |
| 560 | |
| 561 | for (i = 0; i < ETH_ALEN; i++) |
| 562 | hw->mac.addr[i] = hw->mac.perm_addr[i]; |
| 563 | |
| 564 | return 0; |
| 565 | } |
| 566 | |
| 567 | /** |
| 568 | * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum |
| 569 | * @hw: pointer to the HW structure |
| 570 | * |
| 571 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| 572 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| 573 | **/ |
| 574 | s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) |
| 575 | { |
| 576 | s32 ret_val; |
| 577 | u16 checksum = 0; |
| 578 | u16 i, nvm_data; |
| 579 | |
| 580 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| 581 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
| 582 | if (ret_val) { |
| 583 | e_dbg("NVM Read Error\n"); |
| 584 | return ret_val; |
| 585 | } |
| 586 | checksum += nvm_data; |
| 587 | } |
| 588 | |
| 589 | if (checksum != (u16)NVM_SUM) { |
| 590 | e_dbg("NVM Checksum Invalid\n"); |
| 591 | return -E1000_ERR_NVM; |
| 592 | } |
| 593 | |
| 594 | return 0; |
| 595 | } |
| 596 | |
| 597 | /** |
| 598 | * e1000e_update_nvm_checksum_generic - Update EEPROM checksum |
| 599 | * @hw: pointer to the HW structure |
| 600 | * |
| 601 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| 602 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
| 603 | * value to the EEPROM. |
| 604 | **/ |
| 605 | s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) |
| 606 | { |
| 607 | s32 ret_val; |
| 608 | u16 checksum = 0; |
| 609 | u16 i, nvm_data; |
| 610 | |
| 611 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| 612 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
| 613 | if (ret_val) { |
| 614 | e_dbg("NVM Read Error while updating checksum.\n"); |
| 615 | return ret_val; |
| 616 | } |
| 617 | checksum += nvm_data; |
| 618 | } |
| 619 | checksum = (u16)NVM_SUM - checksum; |
| 620 | ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); |
| 621 | if (ret_val) |
| 622 | e_dbg("NVM Write Error while updating checksum.\n"); |
| 623 | |
| 624 | return ret_val; |
| 625 | } |
| 626 | |
| 627 | /** |
Bruce Allan | e85e363 | 2012-02-22 09:03:14 +0000 | [diff] [blame] | 628 | * e1000e_reload_nvm_generic - Reloads EEPROM |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 629 | * @hw: pointer to the HW structure |
| 630 | * |
| 631 | * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the |
| 632 | * extended control register. |
| 633 | **/ |
Bruce Allan | e85e363 | 2012-02-22 09:03:14 +0000 | [diff] [blame] | 634 | void e1000e_reload_nvm_generic(struct e1000_hw *hw) |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 635 | { |
| 636 | u32 ctrl_ext; |
| 637 | |
| 638 | udelay(10); |
| 639 | ctrl_ext = er32(CTRL_EXT); |
| 640 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 641 | ew32(CTRL_EXT, ctrl_ext); |
| 642 | e1e_flush(); |
| 643 | } |