stephen hemminger | 45e1443 | 2011-02-02 15:21:10 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * net/sched/sch_choke.c CHOKE scheduler |
| 3 | * |
| 4 | * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com> |
| 5 | * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * version 2 as published by the Free Software Foundation. |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/types.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/skbuff.h> |
| 17 | #include <linux/reciprocal_div.h> |
| 18 | #include <net/pkt_sched.h> |
| 19 | #include <net/inet_ecn.h> |
| 20 | #include <net/red.h> |
| 21 | #include <linux/ip.h> |
| 22 | #include <net/ip.h> |
| 23 | #include <linux/ipv6.h> |
| 24 | #include <net/ipv6.h> |
| 25 | |
| 26 | /* |
| 27 | CHOKe stateless AQM for fair bandwidth allocation |
| 28 | ================================================= |
| 29 | |
| 30 | CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for |
| 31 | unresponsive flows) is a variant of RED that penalizes misbehaving flows but |
| 32 | maintains no flow state. The difference from RED is an additional step |
| 33 | during the enqueuing process. If average queue size is over the |
| 34 | low threshold (qmin), a packet is chosen at random from the queue. |
| 35 | If both the new and chosen packet are from the same flow, both |
| 36 | are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it |
| 37 | needs to access packets in queue randomly. It has a minimal class |
| 38 | interface to allow overriding the builtin flow classifier with |
| 39 | filters. |
| 40 | |
| 41 | Source: |
| 42 | R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless |
| 43 | Active Queue Management Scheme for Approximating Fair Bandwidth Allocation", |
| 44 | IEEE INFOCOM, 2000. |
| 45 | |
| 46 | A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial |
| 47 | Characteristics", IEEE/ACM Transactions on Networking, 2004 |
| 48 | |
| 49 | */ |
| 50 | |
| 51 | /* Upper bound on size of sk_buff table (packets) */ |
| 52 | #define CHOKE_MAX_QUEUE (128*1024 - 1) |
| 53 | |
| 54 | struct choke_sched_data { |
| 55 | /* Parameters */ |
| 56 | u32 limit; |
| 57 | unsigned char flags; |
| 58 | |
| 59 | struct red_parms parms; |
| 60 | |
| 61 | /* Variables */ |
| 62 | struct tcf_proto *filter_list; |
| 63 | struct { |
| 64 | u32 prob_drop; /* Early probability drops */ |
| 65 | u32 prob_mark; /* Early probability marks */ |
| 66 | u32 forced_drop; /* Forced drops, qavg > max_thresh */ |
| 67 | u32 forced_mark; /* Forced marks, qavg > max_thresh */ |
| 68 | u32 pdrop; /* Drops due to queue limits */ |
| 69 | u32 other; /* Drops due to drop() calls */ |
| 70 | u32 matched; /* Drops to flow match */ |
| 71 | } stats; |
| 72 | |
| 73 | unsigned int head; |
| 74 | unsigned int tail; |
| 75 | |
| 76 | unsigned int tab_mask; /* size - 1 */ |
| 77 | |
| 78 | struct sk_buff **tab; |
| 79 | }; |
| 80 | |
| 81 | /* deliver a random number between 0 and N - 1 */ |
| 82 | static u32 random_N(unsigned int N) |
| 83 | { |
| 84 | return reciprocal_divide(random32(), N); |
| 85 | } |
| 86 | |
| 87 | /* number of elements in queue including holes */ |
| 88 | static unsigned int choke_len(const struct choke_sched_data *q) |
| 89 | { |
| 90 | return (q->tail - q->head) & q->tab_mask; |
| 91 | } |
| 92 | |
| 93 | /* Is ECN parameter configured */ |
| 94 | static int use_ecn(const struct choke_sched_data *q) |
| 95 | { |
| 96 | return q->flags & TC_RED_ECN; |
| 97 | } |
| 98 | |
| 99 | /* Should packets over max just be dropped (versus marked) */ |
| 100 | static int use_harddrop(const struct choke_sched_data *q) |
| 101 | { |
| 102 | return q->flags & TC_RED_HARDDROP; |
| 103 | } |
| 104 | |
| 105 | /* Move head pointer forward to skip over holes */ |
| 106 | static void choke_zap_head_holes(struct choke_sched_data *q) |
| 107 | { |
| 108 | do { |
| 109 | q->head = (q->head + 1) & q->tab_mask; |
| 110 | if (q->head == q->tail) |
| 111 | break; |
| 112 | } while (q->tab[q->head] == NULL); |
| 113 | } |
| 114 | |
| 115 | /* Move tail pointer backwards to reuse holes */ |
| 116 | static void choke_zap_tail_holes(struct choke_sched_data *q) |
| 117 | { |
| 118 | do { |
| 119 | q->tail = (q->tail - 1) & q->tab_mask; |
| 120 | if (q->head == q->tail) |
| 121 | break; |
| 122 | } while (q->tab[q->tail] == NULL); |
| 123 | } |
| 124 | |
| 125 | /* Drop packet from queue array by creating a "hole" */ |
| 126 | static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx) |
| 127 | { |
| 128 | struct choke_sched_data *q = qdisc_priv(sch); |
| 129 | struct sk_buff *skb = q->tab[idx]; |
| 130 | |
| 131 | q->tab[idx] = NULL; |
| 132 | |
| 133 | if (idx == q->head) |
| 134 | choke_zap_head_holes(q); |
| 135 | if (idx == q->tail) |
| 136 | choke_zap_tail_holes(q); |
| 137 | |
| 138 | sch->qstats.backlog -= qdisc_pkt_len(skb); |
| 139 | qdisc_drop(skb, sch); |
| 140 | qdisc_tree_decrease_qlen(sch, 1); |
| 141 | --sch->q.qlen; |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * Compare flow of two packets |
| 146 | * Returns true only if source and destination address and port match. |
| 147 | * false for special cases |
| 148 | */ |
| 149 | static bool choke_match_flow(struct sk_buff *skb1, |
| 150 | struct sk_buff *skb2) |
| 151 | { |
| 152 | int off1, off2, poff; |
| 153 | const u32 *ports1, *ports2; |
| 154 | u8 ip_proto; |
| 155 | __u32 hash1; |
| 156 | |
| 157 | if (skb1->protocol != skb2->protocol) |
| 158 | return false; |
| 159 | |
| 160 | /* Use hash value as quick check |
| 161 | * Assumes that __skb_get_rxhash makes IP header and ports linear |
| 162 | */ |
| 163 | hash1 = skb_get_rxhash(skb1); |
| 164 | if (!hash1 || hash1 != skb_get_rxhash(skb2)) |
| 165 | return false; |
| 166 | |
| 167 | /* Probably match, but be sure to avoid hash collisions */ |
| 168 | off1 = skb_network_offset(skb1); |
| 169 | off2 = skb_network_offset(skb2); |
| 170 | |
| 171 | switch (skb1->protocol) { |
| 172 | case __constant_htons(ETH_P_IP): { |
| 173 | const struct iphdr *ip1, *ip2; |
| 174 | |
| 175 | ip1 = (const struct iphdr *) (skb1->data + off1); |
| 176 | ip2 = (const struct iphdr *) (skb2->data + off2); |
| 177 | |
| 178 | ip_proto = ip1->protocol; |
| 179 | if (ip_proto != ip2->protocol || |
| 180 | ip1->saddr != ip2->saddr || ip1->daddr != ip2->daddr) |
| 181 | return false; |
| 182 | |
| 183 | if ((ip1->frag_off | ip2->frag_off) & htons(IP_MF | IP_OFFSET)) |
| 184 | ip_proto = 0; |
| 185 | off1 += ip1->ihl * 4; |
| 186 | off2 += ip2->ihl * 4; |
| 187 | break; |
| 188 | } |
| 189 | |
| 190 | case __constant_htons(ETH_P_IPV6): { |
| 191 | const struct ipv6hdr *ip1, *ip2; |
| 192 | |
| 193 | ip1 = (const struct ipv6hdr *) (skb1->data + off1); |
| 194 | ip2 = (const struct ipv6hdr *) (skb2->data + off2); |
| 195 | |
| 196 | ip_proto = ip1->nexthdr; |
| 197 | if (ip_proto != ip2->nexthdr || |
| 198 | ipv6_addr_cmp(&ip1->saddr, &ip2->saddr) || |
| 199 | ipv6_addr_cmp(&ip1->daddr, &ip2->daddr)) |
| 200 | return false; |
| 201 | off1 += 40; |
| 202 | off2 += 40; |
| 203 | } |
| 204 | |
| 205 | default: /* Maybe compare MAC header here? */ |
| 206 | return false; |
| 207 | } |
| 208 | |
| 209 | poff = proto_ports_offset(ip_proto); |
| 210 | if (poff < 0) |
| 211 | return true; |
| 212 | |
| 213 | off1 += poff; |
| 214 | off2 += poff; |
| 215 | |
| 216 | ports1 = (__force u32 *)(skb1->data + off1); |
| 217 | ports2 = (__force u32 *)(skb2->data + off2); |
| 218 | return *ports1 == *ports2; |
| 219 | } |
| 220 | |
| 221 | static inline void choke_set_classid(struct sk_buff *skb, u16 classid) |
| 222 | { |
| 223 | *(unsigned int *)(qdisc_skb_cb(skb)->data) = classid; |
| 224 | } |
| 225 | |
| 226 | static u16 choke_get_classid(const struct sk_buff *skb) |
| 227 | { |
| 228 | return *(unsigned int *)(qdisc_skb_cb(skb)->data); |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * Classify flow using either: |
| 233 | * 1. pre-existing classification result in skb |
| 234 | * 2. fast internal classification |
| 235 | * 3. use TC filter based classification |
| 236 | */ |
| 237 | static bool choke_classify(struct sk_buff *skb, |
| 238 | struct Qdisc *sch, int *qerr) |
| 239 | |
| 240 | { |
| 241 | struct choke_sched_data *q = qdisc_priv(sch); |
| 242 | struct tcf_result res; |
| 243 | int result; |
| 244 | |
| 245 | result = tc_classify(skb, q->filter_list, &res); |
| 246 | if (result >= 0) { |
| 247 | #ifdef CONFIG_NET_CLS_ACT |
| 248 | switch (result) { |
| 249 | case TC_ACT_STOLEN: |
| 250 | case TC_ACT_QUEUED: |
| 251 | *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; |
| 252 | case TC_ACT_SHOT: |
| 253 | return false; |
| 254 | } |
| 255 | #endif |
| 256 | choke_set_classid(skb, TC_H_MIN(res.classid)); |
| 257 | return true; |
| 258 | } |
| 259 | |
| 260 | return false; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * Select a packet at random from queue |
| 265 | * HACK: since queue can have holes from previous deletion; retry several |
| 266 | * times to find a random skb but then just give up and return the head |
| 267 | * Will return NULL if queue is empty (q->head == q->tail) |
| 268 | */ |
| 269 | static struct sk_buff *choke_peek_random(const struct choke_sched_data *q, |
| 270 | unsigned int *pidx) |
| 271 | { |
| 272 | struct sk_buff *skb; |
| 273 | int retrys = 3; |
| 274 | |
| 275 | do { |
| 276 | *pidx = (q->head + random_N(choke_len(q))) & q->tab_mask; |
| 277 | skb = q->tab[*pidx]; |
| 278 | if (skb) |
| 279 | return skb; |
| 280 | } while (--retrys > 0); |
| 281 | |
| 282 | return q->tab[*pidx = q->head]; |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * Compare new packet with random packet in queue |
| 287 | * returns true if matched and sets *pidx |
| 288 | */ |
| 289 | static bool choke_match_random(const struct choke_sched_data *q, |
| 290 | struct sk_buff *nskb, |
| 291 | unsigned int *pidx) |
| 292 | { |
| 293 | struct sk_buff *oskb; |
| 294 | |
| 295 | if (q->head == q->tail) |
| 296 | return false; |
| 297 | |
| 298 | oskb = choke_peek_random(q, pidx); |
| 299 | if (q->filter_list) |
| 300 | return choke_get_classid(nskb) == choke_get_classid(oskb); |
| 301 | |
| 302 | return choke_match_flow(oskb, nskb); |
| 303 | } |
| 304 | |
| 305 | static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| 306 | { |
| 307 | struct choke_sched_data *q = qdisc_priv(sch); |
| 308 | struct red_parms *p = &q->parms; |
| 309 | int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; |
| 310 | |
| 311 | if (q->filter_list) { |
| 312 | /* If using external classifiers, get result and record it. */ |
| 313 | if (!choke_classify(skb, sch, &ret)) |
| 314 | goto other_drop; /* Packet was eaten by filter */ |
| 315 | } |
| 316 | |
| 317 | /* Compute average queue usage (see RED) */ |
| 318 | p->qavg = red_calc_qavg(p, sch->q.qlen); |
| 319 | if (red_is_idling(p)) |
| 320 | red_end_of_idle_period(p); |
| 321 | |
| 322 | /* Is queue small? */ |
| 323 | if (p->qavg <= p->qth_min) |
| 324 | p->qcount = -1; |
| 325 | else { |
| 326 | unsigned int idx; |
| 327 | |
| 328 | /* Draw a packet at random from queue and compare flow */ |
| 329 | if (choke_match_random(q, skb, &idx)) { |
| 330 | q->stats.matched++; |
| 331 | choke_drop_by_idx(sch, idx); |
| 332 | goto congestion_drop; |
| 333 | } |
| 334 | |
| 335 | /* Queue is large, always mark/drop */ |
| 336 | if (p->qavg > p->qth_max) { |
| 337 | p->qcount = -1; |
| 338 | |
| 339 | sch->qstats.overlimits++; |
| 340 | if (use_harddrop(q) || !use_ecn(q) || |
| 341 | !INET_ECN_set_ce(skb)) { |
| 342 | q->stats.forced_drop++; |
| 343 | goto congestion_drop; |
| 344 | } |
| 345 | |
| 346 | q->stats.forced_mark++; |
| 347 | } else if (++p->qcount) { |
| 348 | if (red_mark_probability(p, p->qavg)) { |
| 349 | p->qcount = 0; |
| 350 | p->qR = red_random(p); |
| 351 | |
| 352 | sch->qstats.overlimits++; |
| 353 | if (!use_ecn(q) || !INET_ECN_set_ce(skb)) { |
| 354 | q->stats.prob_drop++; |
| 355 | goto congestion_drop; |
| 356 | } |
| 357 | |
| 358 | q->stats.prob_mark++; |
| 359 | } |
| 360 | } else |
| 361 | p->qR = red_random(p); |
| 362 | } |
| 363 | |
| 364 | /* Admit new packet */ |
| 365 | if (sch->q.qlen < q->limit) { |
| 366 | q->tab[q->tail] = skb; |
| 367 | q->tail = (q->tail + 1) & q->tab_mask; |
| 368 | ++sch->q.qlen; |
| 369 | sch->qstats.backlog += qdisc_pkt_len(skb); |
| 370 | return NET_XMIT_SUCCESS; |
| 371 | } |
| 372 | |
| 373 | q->stats.pdrop++; |
| 374 | sch->qstats.drops++; |
| 375 | kfree_skb(skb); |
| 376 | return NET_XMIT_DROP; |
| 377 | |
| 378 | congestion_drop: |
| 379 | qdisc_drop(skb, sch); |
| 380 | return NET_XMIT_CN; |
| 381 | |
| 382 | other_drop: |
| 383 | if (ret & __NET_XMIT_BYPASS) |
| 384 | sch->qstats.drops++; |
| 385 | kfree_skb(skb); |
| 386 | return ret; |
| 387 | } |
| 388 | |
| 389 | static struct sk_buff *choke_dequeue(struct Qdisc *sch) |
| 390 | { |
| 391 | struct choke_sched_data *q = qdisc_priv(sch); |
| 392 | struct sk_buff *skb; |
| 393 | |
| 394 | if (q->head == q->tail) { |
| 395 | if (!red_is_idling(&q->parms)) |
| 396 | red_start_of_idle_period(&q->parms); |
| 397 | return NULL; |
| 398 | } |
| 399 | |
| 400 | skb = q->tab[q->head]; |
| 401 | q->tab[q->head] = NULL; |
| 402 | choke_zap_head_holes(q); |
| 403 | --sch->q.qlen; |
| 404 | sch->qstats.backlog -= qdisc_pkt_len(skb); |
| 405 | qdisc_bstats_update(sch, skb); |
| 406 | |
| 407 | return skb; |
| 408 | } |
| 409 | |
| 410 | static unsigned int choke_drop(struct Qdisc *sch) |
| 411 | { |
| 412 | struct choke_sched_data *q = qdisc_priv(sch); |
| 413 | unsigned int len; |
| 414 | |
| 415 | len = qdisc_queue_drop(sch); |
| 416 | if (len > 0) |
| 417 | q->stats.other++; |
| 418 | else { |
| 419 | if (!red_is_idling(&q->parms)) |
| 420 | red_start_of_idle_period(&q->parms); |
| 421 | } |
| 422 | |
| 423 | return len; |
| 424 | } |
| 425 | |
| 426 | static void choke_reset(struct Qdisc *sch) |
| 427 | { |
| 428 | struct choke_sched_data *q = qdisc_priv(sch); |
| 429 | |
| 430 | red_restart(&q->parms); |
| 431 | } |
| 432 | |
| 433 | static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = { |
| 434 | [TCA_CHOKE_PARMS] = { .len = sizeof(struct tc_red_qopt) }, |
| 435 | [TCA_CHOKE_STAB] = { .len = RED_STAB_SIZE }, |
| 436 | }; |
| 437 | |
| 438 | |
| 439 | static void choke_free(void *addr) |
| 440 | { |
| 441 | if (addr) { |
| 442 | if (is_vmalloc_addr(addr)) |
| 443 | vfree(addr); |
| 444 | else |
| 445 | kfree(addr); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | static int choke_change(struct Qdisc *sch, struct nlattr *opt) |
| 450 | { |
| 451 | struct choke_sched_data *q = qdisc_priv(sch); |
| 452 | struct nlattr *tb[TCA_CHOKE_MAX + 1]; |
| 453 | const struct tc_red_qopt *ctl; |
| 454 | int err; |
| 455 | struct sk_buff **old = NULL; |
| 456 | unsigned int mask; |
| 457 | |
| 458 | if (opt == NULL) |
| 459 | return -EINVAL; |
| 460 | |
| 461 | err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy); |
| 462 | if (err < 0) |
| 463 | return err; |
| 464 | |
| 465 | if (tb[TCA_CHOKE_PARMS] == NULL || |
| 466 | tb[TCA_CHOKE_STAB] == NULL) |
| 467 | return -EINVAL; |
| 468 | |
| 469 | ctl = nla_data(tb[TCA_CHOKE_PARMS]); |
| 470 | |
| 471 | if (ctl->limit > CHOKE_MAX_QUEUE) |
| 472 | return -EINVAL; |
| 473 | |
| 474 | mask = roundup_pow_of_two(ctl->limit + 1) - 1; |
| 475 | if (mask != q->tab_mask) { |
| 476 | struct sk_buff **ntab; |
| 477 | |
| 478 | ntab = kcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL); |
| 479 | if (!ntab) |
| 480 | ntab = vzalloc((mask + 1) * sizeof(struct sk_buff *)); |
| 481 | if (!ntab) |
| 482 | return -ENOMEM; |
| 483 | |
| 484 | sch_tree_lock(sch); |
| 485 | old = q->tab; |
| 486 | if (old) { |
| 487 | unsigned int oqlen = sch->q.qlen, tail = 0; |
| 488 | |
| 489 | while (q->head != q->tail) { |
| 490 | struct sk_buff *skb = q->tab[q->head]; |
| 491 | |
| 492 | q->head = (q->head + 1) & q->tab_mask; |
| 493 | if (!skb) |
| 494 | continue; |
| 495 | if (tail < mask) { |
| 496 | ntab[tail++] = skb; |
| 497 | continue; |
| 498 | } |
| 499 | sch->qstats.backlog -= qdisc_pkt_len(skb); |
| 500 | --sch->q.qlen; |
| 501 | qdisc_drop(skb, sch); |
| 502 | } |
| 503 | qdisc_tree_decrease_qlen(sch, oqlen - sch->q.qlen); |
| 504 | q->head = 0; |
| 505 | q->tail = tail; |
| 506 | } |
| 507 | |
| 508 | q->tab_mask = mask; |
| 509 | q->tab = ntab; |
| 510 | } else |
| 511 | sch_tree_lock(sch); |
| 512 | |
| 513 | q->flags = ctl->flags; |
| 514 | q->limit = ctl->limit; |
| 515 | |
| 516 | red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog, |
| 517 | ctl->Plog, ctl->Scell_log, |
| 518 | nla_data(tb[TCA_CHOKE_STAB])); |
| 519 | |
| 520 | if (q->head == q->tail) |
| 521 | red_end_of_idle_period(&q->parms); |
| 522 | |
| 523 | sch_tree_unlock(sch); |
| 524 | choke_free(old); |
| 525 | return 0; |
| 526 | } |
| 527 | |
| 528 | static int choke_init(struct Qdisc *sch, struct nlattr *opt) |
| 529 | { |
| 530 | return choke_change(sch, opt); |
| 531 | } |
| 532 | |
| 533 | static int choke_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 534 | { |
| 535 | struct choke_sched_data *q = qdisc_priv(sch); |
| 536 | struct nlattr *opts = NULL; |
| 537 | struct tc_red_qopt opt = { |
| 538 | .limit = q->limit, |
| 539 | .flags = q->flags, |
| 540 | .qth_min = q->parms.qth_min >> q->parms.Wlog, |
| 541 | .qth_max = q->parms.qth_max >> q->parms.Wlog, |
| 542 | .Wlog = q->parms.Wlog, |
| 543 | .Plog = q->parms.Plog, |
| 544 | .Scell_log = q->parms.Scell_log, |
| 545 | }; |
| 546 | |
| 547 | opts = nla_nest_start(skb, TCA_OPTIONS); |
| 548 | if (opts == NULL) |
| 549 | goto nla_put_failure; |
| 550 | |
| 551 | NLA_PUT(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt); |
| 552 | return nla_nest_end(skb, opts); |
| 553 | |
| 554 | nla_put_failure: |
| 555 | nla_nest_cancel(skb, opts); |
| 556 | return -EMSGSIZE; |
| 557 | } |
| 558 | |
| 559 | static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| 560 | { |
| 561 | struct choke_sched_data *q = qdisc_priv(sch); |
| 562 | struct tc_choke_xstats st = { |
| 563 | .early = q->stats.prob_drop + q->stats.forced_drop, |
| 564 | .marked = q->stats.prob_mark + q->stats.forced_mark, |
| 565 | .pdrop = q->stats.pdrop, |
| 566 | .other = q->stats.other, |
| 567 | .matched = q->stats.matched, |
| 568 | }; |
| 569 | |
| 570 | return gnet_stats_copy_app(d, &st, sizeof(st)); |
| 571 | } |
| 572 | |
| 573 | static void choke_destroy(struct Qdisc *sch) |
| 574 | { |
| 575 | struct choke_sched_data *q = qdisc_priv(sch); |
| 576 | |
| 577 | tcf_destroy_chain(&q->filter_list); |
| 578 | choke_free(q->tab); |
| 579 | } |
| 580 | |
| 581 | static struct Qdisc *choke_leaf(struct Qdisc *sch, unsigned long arg) |
| 582 | { |
| 583 | return NULL; |
| 584 | } |
| 585 | |
| 586 | static unsigned long choke_get(struct Qdisc *sch, u32 classid) |
| 587 | { |
| 588 | return 0; |
| 589 | } |
| 590 | |
| 591 | static void choke_put(struct Qdisc *q, unsigned long cl) |
| 592 | { |
| 593 | } |
| 594 | |
| 595 | static unsigned long choke_bind(struct Qdisc *sch, unsigned long parent, |
| 596 | u32 classid) |
| 597 | { |
| 598 | return 0; |
| 599 | } |
| 600 | |
| 601 | static struct tcf_proto **choke_find_tcf(struct Qdisc *sch, unsigned long cl) |
| 602 | { |
| 603 | struct choke_sched_data *q = qdisc_priv(sch); |
| 604 | |
| 605 | if (cl) |
| 606 | return NULL; |
| 607 | return &q->filter_list; |
| 608 | } |
| 609 | |
| 610 | static int choke_dump_class(struct Qdisc *sch, unsigned long cl, |
| 611 | struct sk_buff *skb, struct tcmsg *tcm) |
| 612 | { |
| 613 | tcm->tcm_handle |= TC_H_MIN(cl); |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | static void choke_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| 618 | { |
| 619 | if (!arg->stop) { |
| 620 | if (arg->fn(sch, 1, arg) < 0) { |
| 621 | arg->stop = 1; |
| 622 | return; |
| 623 | } |
| 624 | arg->count++; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | static const struct Qdisc_class_ops choke_class_ops = { |
| 629 | .leaf = choke_leaf, |
| 630 | .get = choke_get, |
| 631 | .put = choke_put, |
| 632 | .tcf_chain = choke_find_tcf, |
| 633 | .bind_tcf = choke_bind, |
| 634 | .unbind_tcf = choke_put, |
| 635 | .dump = choke_dump_class, |
| 636 | .walk = choke_walk, |
| 637 | }; |
| 638 | |
| 639 | static struct sk_buff *choke_peek_head(struct Qdisc *sch) |
| 640 | { |
| 641 | struct choke_sched_data *q = qdisc_priv(sch); |
| 642 | |
| 643 | return (q->head != q->tail) ? q->tab[q->head] : NULL; |
| 644 | } |
| 645 | |
| 646 | static struct Qdisc_ops choke_qdisc_ops __read_mostly = { |
| 647 | .id = "choke", |
| 648 | .priv_size = sizeof(struct choke_sched_data), |
| 649 | |
| 650 | .enqueue = choke_enqueue, |
| 651 | .dequeue = choke_dequeue, |
| 652 | .peek = choke_peek_head, |
| 653 | .drop = choke_drop, |
| 654 | .init = choke_init, |
| 655 | .destroy = choke_destroy, |
| 656 | .reset = choke_reset, |
| 657 | .change = choke_change, |
| 658 | .dump = choke_dump, |
| 659 | .dump_stats = choke_dump_stats, |
| 660 | .owner = THIS_MODULE, |
| 661 | }; |
| 662 | |
| 663 | static int __init choke_module_init(void) |
| 664 | { |
| 665 | return register_qdisc(&choke_qdisc_ops); |
| 666 | } |
| 667 | |
| 668 | static void __exit choke_module_exit(void) |
| 669 | { |
| 670 | unregister_qdisc(&choke_qdisc_ops); |
| 671 | } |
| 672 | |
| 673 | module_init(choke_module_init) |
| 674 | module_exit(choke_module_exit) |
| 675 | |
| 676 | MODULE_LICENSE("GPL"); |