blob: 958b148d8f50e5cdfa3cd1eb5b6cf4cbf3619bab [file] [log] [blame]
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt2500pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt2500pci.h"
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58{
59 u32 reg;
60 unsigned int i;
61
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
67 }
68
69 return reg;
70}
71
72static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
74{
75 u32 reg;
76
77 /*
78 * Wait until the BBP becomes ready.
79 */
80 reg = rt2500pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
84 }
85
86 /*
87 * Write the data into the BBP.
88 */
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96}
97
98static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
100{
101 u32 reg;
102
103 /*
104 * Wait until the BBP becomes ready.
105 */
106 reg = rt2500pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
110 }
111
112 /*
113 * Write the request into the BBP.
114 */
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122 /*
123 * Wait until the BBP becomes ready.
124 */
125 reg = rt2500pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
130 }
131
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133}
134
135static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
137{
138 u32 reg;
139 unsigned int i;
140
141 if (!word)
142 return;
143
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
149 }
150
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
153
154rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
163}
164
165static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166{
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178}
179
180static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181{
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
184
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
191
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193}
194
195#ifdef CONFIG_RT2X00_LIB_DEBUGFS
196#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
200{
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202}
203
204static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
206{
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208}
209
210static const struct rt2x00debug rt2500pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2500pci_read_csr,
214 .write = rt2500pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt2500pci_bbp_read,
226 .write = rt2500pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2500pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236};
237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239#ifdef CONFIG_RT2500PCI_RFKILL
240static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241{
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246}
Ivo van Doorn81873e92007-10-06 14:14:06 +0200247#else
248#define rt2500pci_rfkill_poll NULL
Ivo van Doorndcf54752007-09-25 20:57:25 +0200249#endif /* CONFIG_RT2500PCI_RFKILL */
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700250
251/*
252 * Configuration handlers.
253 */
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200254static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255 __le32 *mac)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700256{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200257 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700259}
260
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200261static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262 __le32 *bssid)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700263{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200264 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700266}
267
Ivo van Doornfeb24692007-10-06 14:14:29 +0200268static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
269 const int tsf_sync)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700270{
271 u32 reg;
272
273 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700276 * Enable beacon config
277 */
278 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
Ivo van Doorna137e202007-10-06 14:14:58 +0200280 PREAMBLE + get_duration(IEEE80211_HEADER, 20));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700281 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
282 rt2x00lib_get_ring(rt2x00dev,
283 IEEE80211_TX_QUEUE_BEACON)
284 ->tx_params.cw_min);
285 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
286
287 /*
288 * Enable synchronisation.
289 */
290 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
Johannes Berg4150c572007-09-17 01:29:23 -0400291 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
292 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700293 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
Ivo van Doornfeb24692007-10-06 14:14:29 +0200294 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700295 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
296}
297
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200298static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
299 const int short_preamble,
300 const int ack_timeout,
301 const int ack_consume_time)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700302{
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200303 int preamble_mask;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700304 u32 reg;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700305
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200306 /*
307 * When short preamble is enabled, we should set bit 0x08
308 */
309 preamble_mask = short_preamble << 3;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700310
311 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200312 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
313 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700314 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
315
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700316 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200317 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700318 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
319 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
320 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
321
322 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200323 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700324 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
325 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
326 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
327
328 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200329 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700330 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
331 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
332 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
333
334 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200335 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700336 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
337 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
338 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
339}
340
341static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200342 const int basic_rate_mask)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700343{
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200344 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700345}
346
347static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200348 struct rf_channel *rf, const int txpower)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700349{
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700350 u8 r70;
351
352 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700353 * Set TXpower.
354 */
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200355 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700356
357 /*
358 * Switch on tuning bits.
359 * For RT2523 devices we do not need to update the R1 register.
360 */
361 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200362 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
363 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700364
365 /*
366 * For RT2525 we should first set the channel to half band higher.
367 */
368 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
369 static const u32 vals[] = {
370 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
371 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
372 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
373 0x00080d2e, 0x00080d3a
374 };
375
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200376 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
377 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
378 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
379 if (rf->rf4)
380 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700381 }
382
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200383 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
384 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
385 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
386 if (rf->rf4)
387 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700388
389 /*
390 * Channel 14 requires the Japan filter bit to be set.
391 */
392 r70 = 0x46;
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200393 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700394 rt2500pci_bbp_write(rt2x00dev, 70, r70);
395
396 msleep(1);
397
398 /*
399 * Switch off tuning bits.
400 * For RT2523 devices we do not need to update the R1 register.
401 */
402 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200403 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
404 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700405 }
406
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200407 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
408 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700409
410 /*
411 * Clear false CRC during channel switch.
412 */
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200413 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700414}
415
416static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
417 const int txpower)
418{
419 u32 rf3;
420
421 rt2x00_rf_read(rt2x00dev, 3, &rf3);
422 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
423 rt2500pci_rf_write(rt2x00dev, 3, rf3);
424}
425
426static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200427 struct antenna_setup *ant)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700428{
429 u32 reg;
430 u8 r14;
431 u8 r2;
432
433 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
434 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
435 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
436
437 /*
438 * Configure the TX antenna.
439 */
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200440 switch (ant->tx) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700441 case ANTENNA_A:
442 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
443 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
444 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
445 break;
Ivo van Doorn39e75852007-10-13 16:26:27 +0200446 case ANTENNA_HW_DIVERSITY:
447 case ANTENNA_SW_DIVERSITY:
448 /*
449 * NOTE: We should never come here because rt2x00lib is
450 * supposed to catch this and send us the correct antenna
451 * explicitely. However we are nog going to bug about this.
452 * Instead, just default to antenna B.
453 */
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700454 case ANTENNA_B:
455 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
456 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
457 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
458 break;
459 }
460
461 /*
462 * Configure the RX antenna.
463 */
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200464 switch (ant->rx) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700465 case ANTENNA_A:
466 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
467 break;
Ivo van Doorn39e75852007-10-13 16:26:27 +0200468 case ANTENNA_HW_DIVERSITY:
469 case ANTENNA_SW_DIVERSITY:
470 /*
471 * NOTE: We should never come here because rt2x00lib is
472 * supposed to catch this and send us the correct antenna
473 * explicitely. However we are nog going to bug about this.
474 * Instead, just default to antenna B.
475 */
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700476 case ANTENNA_B:
477 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
478 break;
479 }
480
481 /*
482 * RT2525E and RT5222 need to flip TX I/Q
483 */
484 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
485 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
486 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
487 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
488 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
489
490 /*
491 * RT2525E does not need RX I/Q Flip.
492 */
493 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
494 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
495 } else {
496 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
497 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
498 }
499
500 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
501 rt2500pci_bbp_write(rt2x00dev, 14, r14);
502 rt2500pci_bbp_write(rt2x00dev, 2, r2);
503}
504
505static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200506 struct rt2x00lib_conf *libconf)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700507{
508 u32 reg;
509
510 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200511 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700512 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
513
514 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200515 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
516 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700517 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
518
519 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200520 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
521 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700522 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
523
524 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
525 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
526 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
527 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
528
529 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200530 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
531 libconf->conf->beacon_int * 16);
532 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
533 libconf->conf->beacon_int * 16);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700534 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
535}
536
537static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
538 const unsigned int flags,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200539 struct rt2x00lib_conf *libconf)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700540{
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700541 if (flags & CONFIG_UPDATE_PHYMODE)
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200542 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700543 if (flags & CONFIG_UPDATE_CHANNEL)
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200544 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
545 libconf->conf->power_level);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700546 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200547 rt2500pci_config_txpower(rt2x00dev,
548 libconf->conf->power_level);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700549 if (flags & CONFIG_UPDATE_ANTENNA)
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200550 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700551 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200552 rt2500pci_config_duration(rt2x00dev, libconf);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700553}
554
555/*
556 * LED functions.
557 */
558static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
559{
560 u32 reg;
561
562 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
563
564 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
565 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
566
567 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
568 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
569 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
570 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
571 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
572 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
573 } else {
574 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
575 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
576 }
577
578 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
579}
580
581static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
582{
583 u32 reg;
584
585 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
586 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
587 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
588 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
589}
590
591/*
592 * Link tuning
593 */
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200594static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
595 struct link_qual *qual)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700596{
597 u32 reg;
598
599 /*
600 * Update FCS error count from register.
601 */
602 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200603 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700604
605 /*
606 * Update False CCA count from register.
607 */
608 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200609 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700610}
611
612static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
613{
614 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
615 rt2x00dev->link.vgc_level = 0x48;
616}
617
618static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
619{
620 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
621 u8 r17;
622
623 /*
624 * To prevent collisions with MAC ASIC on chipsets
625 * up to version C the link tuning should halt after 20
626 * seconds.
627 */
Ivo van Doorn755a9572007-11-12 15:02:22 +0100628 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700629 rt2x00dev->link.count > 20)
630 return;
631
632 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
633
634 /*
635 * Chipset versions C and lower should directly continue
636 * to the dynamic CCA tuning.
637 */
Ivo van Doorn755a9572007-11-12 15:02:22 +0100638 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700639 goto dynamic_cca_tune;
640
641 /*
642 * A too low RSSI will cause too much false CCA which will
643 * then corrupt the R17 tuning. To remidy this the tuning should
644 * be stopped (While making sure the R17 value will not exceed limits)
645 */
646 if (rssi < -80 && rt2x00dev->link.count > 20) {
647 if (r17 >= 0x41) {
648 r17 = rt2x00dev->link.vgc_level;
649 rt2500pci_bbp_write(rt2x00dev, 17, r17);
650 }
651 return;
652 }
653
654 /*
655 * Special big-R17 for short distance
656 */
657 if (rssi >= -58) {
658 if (r17 != 0x50)
659 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
660 return;
661 }
662
663 /*
664 * Special mid-R17 for middle distance
665 */
666 if (rssi >= -74) {
667 if (r17 != 0x41)
668 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
669 return;
670 }
671
672 /*
673 * Leave short or middle distance condition, restore r17
674 * to the dynamic tuning range.
675 */
676 if (r17 >= 0x41) {
677 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
678 return;
679 }
680
681dynamic_cca_tune:
682
683 /*
684 * R17 is inside the dynamic tuning range,
685 * start tuning the link based on the false cca counter.
686 */
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200687 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700688 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
689 rt2x00dev->link.vgc_level = r17;
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200690 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700691 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
692 rt2x00dev->link.vgc_level = r17;
693 }
694}
695
696/*
697 * Initialization functions.
698 */
699static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
700{
701 struct data_ring *ring = rt2x00dev->rx;
702 struct data_desc *rxd;
703 unsigned int i;
704 u32 word;
705
706 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
707
708 for (i = 0; i < ring->stats.limit; i++) {
709 rxd = ring->entry[i].priv;
710
711 rt2x00_desc_read(rxd, 1, &word);
712 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
713 ring->entry[i].data_dma);
714 rt2x00_desc_write(rxd, 1, word);
715
716 rt2x00_desc_read(rxd, 0, &word);
717 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
718 rt2x00_desc_write(rxd, 0, word);
719 }
720
721 rt2x00_ring_index_clear(rt2x00dev->rx);
722}
723
724static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
725{
726 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
727 struct data_desc *txd;
728 unsigned int i;
729 u32 word;
730
731 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
732
733 for (i = 0; i < ring->stats.limit; i++) {
734 txd = ring->entry[i].priv;
735
736 rt2x00_desc_read(txd, 1, &word);
737 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
738 ring->entry[i].data_dma);
739 rt2x00_desc_write(txd, 1, word);
740
741 rt2x00_desc_read(txd, 0, &word);
742 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
743 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
744 rt2x00_desc_write(txd, 0, word);
745 }
746
747 rt2x00_ring_index_clear(ring);
748}
749
750static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
751{
752 u32 reg;
753
754 /*
755 * Initialize rings.
756 */
757 rt2500pci_init_rxring(rt2x00dev);
758 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
759 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
760 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
761 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
762
763 /*
764 * Initialize registers.
765 */
766 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
767 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
768 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
769 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
770 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
771 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
772 rt2x00dev->bcn[1].stats.limit);
773 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
774 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
775 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
776
777 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
778 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
779 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
780 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
781
782 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
783 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
784 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
785 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
786
787 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
788 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
789 rt2x00dev->bcn[1].data_dma);
790 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
791
792 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
793 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
794 rt2x00dev->bcn[0].data_dma);
795 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
796
797 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
798 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
799 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
800 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
801
802 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
803 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
804 rt2x00dev->rx->data_dma);
805 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
806
807 return 0;
808}
809
810static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
811{
812 u32 reg;
813
814 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
815 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
816 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
817 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
818
819 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
820 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
821 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
822 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
823 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
824
825 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
826 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
827 rt2x00dev->rx->data_size / 128);
828 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
829
830 /*
831 * Always use CWmin and CWmax set in descriptor.
832 */
833 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
834 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
835 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
836
837 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
838
839 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
840 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
841 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
842 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
843 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
844 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
845 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
846 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
847 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
848 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
849
850 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
851 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
852 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
853 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
854 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
855 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
856
857 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
858 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
859 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
860 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
861 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
862 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
863
864 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
865 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
866 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
867 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
868 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
869 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
870
871 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
872 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
873 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
874 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
875 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
876 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
877 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
878 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
879 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
880 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
881
882 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
883 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
884 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
885 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
886 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
887 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
888 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
889 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
890 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
891
892 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
893
894 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
895 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
896
897 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
898 return -EBUSY;
899
900 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
901 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
902
903 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
904 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
905 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
906
907 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
908 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
909 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
910 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
911 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
912 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
913 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
914 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
915
916 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
917
918 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
919
920 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
921 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
922 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
923 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
924 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
925
926 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
927 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
928 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
929 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
930
931 /*
932 * We must clear the FCS and FIFO error count.
933 * These registers are cleared on read,
934 * so we may pass a useless variable to store the value.
935 */
936 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
937 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
938
939 return 0;
940}
941
942static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
943{
944 unsigned int i;
945 u16 eeprom;
946 u8 reg_id;
947 u8 value;
948
949 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
950 rt2500pci_bbp_read(rt2x00dev, 0, &value);
951 if ((value != 0xff) && (value != 0x00))
952 goto continue_csr_init;
953 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
954 udelay(REGISTER_BUSY_DELAY);
955 }
956
957 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
958 return -EACCES;
959
960continue_csr_init:
961 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
962 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
963 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
964 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
965 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
966 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
967 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
968 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
969 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
970 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
971 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
972 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
973 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
974 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
975 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
976 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
977 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
978 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
979 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
980 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
981 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
982 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
983 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
984 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
985 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
986 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
987 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
988 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
989 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
990 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
991
992 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
993 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
994 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
995
996 if (eeprom != 0xffff && eeprom != 0x0000) {
997 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
998 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
999 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1000 reg_id, value);
1001 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1002 }
1003 }
1004 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1005
1006 return 0;
1007}
1008
1009/*
1010 * Device state switch handlers.
1011 */
1012static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1013 enum dev_state state)
1014{
1015 u32 reg;
1016
1017 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1018 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1019 state == STATE_RADIO_RX_OFF);
1020 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1021}
1022
1023static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1024 enum dev_state state)
1025{
1026 int mask = (state == STATE_RADIO_IRQ_OFF);
1027 u32 reg;
1028
1029 /*
1030 * When interrupts are being enabled, the interrupt registers
1031 * should clear the register to assure a clean state.
1032 */
1033 if (state == STATE_RADIO_IRQ_ON) {
1034 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1035 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1036 }
1037
1038 /*
1039 * Only toggle the interrupts bits we are going to use.
1040 * Non-checked interrupt bits are disabled by default.
1041 */
1042 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1043 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1044 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1045 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1046 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1047 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1048 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1049}
1050
1051static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1052{
1053 /*
1054 * Initialize all registers.
1055 */
1056 if (rt2500pci_init_rings(rt2x00dev) ||
1057 rt2500pci_init_registers(rt2x00dev) ||
1058 rt2500pci_init_bbp(rt2x00dev)) {
1059 ERROR(rt2x00dev, "Register initialization failed.\n");
1060 return -EIO;
1061 }
1062
1063 /*
1064 * Enable interrupts.
1065 */
1066 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1067
1068 /*
1069 * Enable LED
1070 */
1071 rt2500pci_enable_led(rt2x00dev);
1072
1073 return 0;
1074}
1075
1076static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1077{
1078 u32 reg;
1079
1080 /*
1081 * Disable LED
1082 */
1083 rt2500pci_disable_led(rt2x00dev);
1084
1085 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1086
1087 /*
1088 * Disable synchronisation.
1089 */
1090 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1091
1092 /*
1093 * Cancel RX and TX.
1094 */
1095 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1096 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1097 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1098
1099 /*
1100 * Disable interrupts.
1101 */
1102 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1103}
1104
1105static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1106 enum dev_state state)
1107{
1108 u32 reg;
1109 unsigned int i;
1110 char put_to_sleep;
1111 char bbp_state;
1112 char rf_state;
1113
1114 put_to_sleep = (state != STATE_AWAKE);
1115
1116 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1117 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1118 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1119 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1120 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1121 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1122
1123 /*
1124 * Device is not guaranteed to be in the requested state yet.
1125 * We must wait until the register indicates that the
1126 * device has entered the correct state.
1127 */
1128 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1129 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1130 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1131 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1132 if (bbp_state == state && rf_state == state)
1133 return 0;
1134 msleep(10);
1135 }
1136
1137 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1138 "current device state: bbp %d and rf %d.\n",
1139 state, bbp_state, rf_state);
1140
1141 return -EBUSY;
1142}
1143
1144static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1145 enum dev_state state)
1146{
1147 int retval = 0;
1148
1149 switch (state) {
1150 case STATE_RADIO_ON:
1151 retval = rt2500pci_enable_radio(rt2x00dev);
1152 break;
1153 case STATE_RADIO_OFF:
1154 rt2500pci_disable_radio(rt2x00dev);
1155 break;
1156 case STATE_RADIO_RX_ON:
1157 case STATE_RADIO_RX_OFF:
1158 rt2500pci_toggle_rx(rt2x00dev, state);
1159 break;
1160 case STATE_DEEP_SLEEP:
1161 case STATE_SLEEP:
1162 case STATE_STANDBY:
1163 case STATE_AWAKE:
1164 retval = rt2500pci_set_state(rt2x00dev, state);
1165 break;
1166 default:
1167 retval = -ENOTSUPP;
1168 break;
1169 }
1170
1171 return retval;
1172}
1173
1174/*
1175 * TX descriptor initialization
1176 */
1177static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1178 struct data_desc *txd,
Johannes Berg4150c572007-09-17 01:29:23 -04001179 struct txdata_entry_desc *desc,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001180 struct ieee80211_hdr *ieee80211hdr,
1181 unsigned int length,
1182 struct ieee80211_tx_control *control)
1183{
1184 u32 word;
1185
1186 /*
1187 * Start writing the descriptor words.
1188 */
1189 rt2x00_desc_read(txd, 2, &word);
1190 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1191 rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1192 rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1193 rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1194 rt2x00_desc_write(txd, 2, word);
1195
1196 rt2x00_desc_read(txd, 3, &word);
1197 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1198 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1199 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1200 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1201 rt2x00_desc_write(txd, 3, word);
1202
1203 rt2x00_desc_read(txd, 10, &word);
1204 rt2x00_set_field32(&word, TXD_W10_RTS,
1205 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1206 rt2x00_desc_write(txd, 10, word);
1207
1208 rt2x00_desc_read(txd, 0, &word);
1209 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1210 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1211 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1212 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1213 rt2x00_set_field32(&word, TXD_W0_ACK,
1214 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1215 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1216 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1217 rt2x00_set_field32(&word, TXD_W0_OFDM,
1218 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1219 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1220 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1221 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1222 !!(control->flags &
1223 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1224 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1225 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1226 rt2x00_desc_write(txd, 0, word);
1227}
1228
1229/*
1230 * TX data initialization
1231 */
1232static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1233 unsigned int queue)
1234{
1235 u32 reg;
1236
1237 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1238 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1239 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1240 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1241 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1242 }
1243 return;
1244 }
1245
1246 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1247 if (queue == IEEE80211_TX_QUEUE_DATA0)
1248 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1249 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1250 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1251 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1252 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1253 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1254}
1255
1256/*
1257 * RX control handlers
1258 */
Johannes Berg4150c572007-09-17 01:29:23 -04001259static void rt2500pci_fill_rxdone(struct data_entry *entry,
1260 struct rxdata_entry_desc *desc)
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001261{
1262 struct data_desc *rxd = entry->priv;
1263 u32 word0;
1264 u32 word2;
1265
1266 rt2x00_desc_read(rxd, 0, &word0);
1267 rt2x00_desc_read(rxd, 2, &word2);
1268
Johannes Berg4150c572007-09-17 01:29:23 -04001269 desc->flags = 0;
1270 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1271 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1272 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1273 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001274
Johannes Berg4150c572007-09-17 01:29:23 -04001275 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1276 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001277 entry->ring->rt2x00dev->rssi_offset;
Johannes Berg4150c572007-09-17 01:29:23 -04001278 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1279 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001280}
1281
1282/*
1283 * Interrupt functions.
1284 */
1285static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1286{
1287 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1288 struct data_entry *entry;
1289 struct data_desc *txd;
1290 u32 word;
1291 int tx_status;
1292 int retry;
1293
1294 while (!rt2x00_ring_empty(ring)) {
1295 entry = rt2x00_get_data_entry_done(ring);
1296 txd = entry->priv;
1297 rt2x00_desc_read(txd, 0, &word);
1298
1299 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1300 !rt2x00_get_field32(word, TXD_W0_VALID))
1301 break;
1302
1303 /*
1304 * Obtain the status about this packet.
1305 */
1306 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1307 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1308
1309 rt2x00lib_txdone(entry, tx_status, retry);
1310
1311 /*
1312 * Make this entry available for reuse.
1313 */
1314 entry->flags = 0;
1315 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1316 rt2x00_desc_write(txd, 0, word);
1317 rt2x00_ring_index_done_inc(ring);
1318 }
1319
1320 /*
1321 * If the data ring was full before the txdone handler
1322 * we must make sure the packet queue in the mac80211 stack
1323 * is reenabled when the txdone handler has finished.
1324 */
1325 entry = ring->entry;
1326 if (!rt2x00_ring_full(ring))
1327 ieee80211_wake_queue(rt2x00dev->hw,
1328 entry->tx_status.control.queue);
1329}
1330
1331static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1332{
1333 struct rt2x00_dev *rt2x00dev = dev_instance;
1334 u32 reg;
1335
1336 /*
1337 * Get the interrupt sources & saved to local variable.
1338 * Write register value back to clear pending interrupts.
1339 */
1340 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1341 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1342
1343 if (!reg)
1344 return IRQ_NONE;
1345
1346 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1347 return IRQ_HANDLED;
1348
1349 /*
1350 * Handle interrupts, walk through all bits
1351 * and run the tasks, the bits are checked in order of
1352 * priority.
1353 */
1354
1355 /*
1356 * 1 - Beacon timer expired interrupt.
1357 */
1358 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1359 rt2x00lib_beacondone(rt2x00dev);
1360
1361 /*
1362 * 2 - Rx ring done interrupt.
1363 */
1364 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1365 rt2x00pci_rxdone(rt2x00dev);
1366
1367 /*
1368 * 3 - Atim ring transmit done interrupt.
1369 */
1370 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1371 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1372
1373 /*
1374 * 4 - Priority ring transmit done interrupt.
1375 */
1376 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1377 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1378
1379 /*
1380 * 5 - Tx ring transmit done interrupt.
1381 */
1382 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1383 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1384
1385 return IRQ_HANDLED;
1386}
1387
1388/*
1389 * Device probe functions.
1390 */
1391static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1392{
1393 struct eeprom_93cx6 eeprom;
1394 u32 reg;
1395 u16 word;
1396 u8 *mac;
1397
1398 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1399
1400 eeprom.data = rt2x00dev;
1401 eeprom.register_read = rt2500pci_eepromregister_read;
1402 eeprom.register_write = rt2500pci_eepromregister_write;
1403 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1404 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1405 eeprom.reg_data_in = 0;
1406 eeprom.reg_data_out = 0;
1407 eeprom.reg_data_clock = 0;
1408 eeprom.reg_chip_select = 0;
1409
1410 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1411 EEPROM_SIZE / sizeof(u16));
1412
1413 /*
1414 * Start validation of the data that has been read.
1415 */
1416 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1417 if (!is_valid_ether_addr(mac)) {
Joe Perches0795af52007-10-03 17:59:30 -07001418 DECLARE_MAC_BUF(macbuf);
1419
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001420 random_ether_addr(mac);
Joe Perches0795af52007-10-03 17:59:30 -07001421 EEPROM(rt2x00dev, "MAC: %s\n",
1422 print_mac(macbuf, mac));
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001423 }
1424
1425 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1426 if (word == 0xffff) {
1427 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
Ivo van Doorn362f3b62007-10-13 16:26:18 +02001428 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1429 ANTENNA_SW_DIVERSITY);
1430 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1431 ANTENNA_SW_DIVERSITY);
1432 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1433 LED_MODE_DEFAULT);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001434 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1435 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1436 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1437 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1438 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1439 }
1440
1441 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1442 if (word == 0xffff) {
1443 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1444 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1445 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1446 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1447 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1448 }
1449
1450 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1451 if (word == 0xffff) {
1452 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1453 DEFAULT_RSSI_OFFSET);
1454 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1455 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1456 }
1457
1458 return 0;
1459}
1460
1461static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1462{
1463 u32 reg;
1464 u16 value;
1465 u16 eeprom;
1466
1467 /*
1468 * Read EEPROM word for configuration.
1469 */
1470 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1471
1472 /*
1473 * Identify RF chipset.
1474 */
1475 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1476 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1477 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1478
1479 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1480 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1481 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1482 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1483 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1484 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1485 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1486 return -ENODEV;
1487 }
1488
1489 /*
1490 * Identify default antenna configuration.
1491 */
Ivo van Doornaddc81bd2007-10-13 16:26:23 +02001492 rt2x00dev->default_ant.tx =
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001493 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
Ivo van Doornaddc81bd2007-10-13 16:26:23 +02001494 rt2x00dev->default_ant.rx =
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001495 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1496
1497 /*
1498 * Store led mode, for correct led behaviour.
1499 */
1500 rt2x00dev->led_mode =
1501 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1502
1503 /*
1504 * Detect if this device has an hardware controlled radio.
1505 */
Ivo van Doorn81873e92007-10-06 14:14:06 +02001506#ifdef CONFIG_RT2500PCI_RFKILL
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001507 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
Ivo van Doorn066cb632007-09-25 20:55:39 +02001508 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
Ivo van Doorn81873e92007-10-06 14:14:06 +02001509#endif /* CONFIG_RT2500PCI_RFKILL */
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001510
1511 /*
1512 * Check if the BBP tuning should be enabled.
1513 */
1514 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1515
1516 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1517 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1518
1519 /*
1520 * Read the RSSI <-> dBm offset information.
1521 */
1522 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1523 rt2x00dev->rssi_offset =
1524 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1525
1526 return 0;
1527}
1528
1529/*
1530 * RF value list for RF2522
1531 * Supports: 2.4 GHz
1532 */
1533static const struct rf_channel rf_vals_bg_2522[] = {
1534 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1535 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1536 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1537 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1538 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1539 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1540 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1541 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1542 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1543 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1544 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1545 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1546 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1547 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1548};
1549
1550/*
1551 * RF value list for RF2523
1552 * Supports: 2.4 GHz
1553 */
1554static const struct rf_channel rf_vals_bg_2523[] = {
1555 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1556 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1557 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1558 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1559 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1560 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1561 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1562 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1563 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1564 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1565 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1566 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1567 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1568 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1569};
1570
1571/*
1572 * RF value list for RF2524
1573 * Supports: 2.4 GHz
1574 */
1575static const struct rf_channel rf_vals_bg_2524[] = {
1576 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1577 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1578 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1579 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1580 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1581 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1582 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1583 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1584 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1585 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1586 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1587 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1588 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1589 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1590};
1591
1592/*
1593 * RF value list for RF2525
1594 * Supports: 2.4 GHz
1595 */
1596static const struct rf_channel rf_vals_bg_2525[] = {
1597 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1598 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1599 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1600 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1601 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1602 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1603 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1604 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1605 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1606 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1607 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1608 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1609 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1610 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1611};
1612
1613/*
1614 * RF value list for RF2525e
1615 * Supports: 2.4 GHz
1616 */
1617static const struct rf_channel rf_vals_bg_2525e[] = {
1618 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1619 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1620 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1621 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1622 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1623 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1624 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1625 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1626 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1627 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1628 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1629 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1630 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1631 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1632};
1633
1634/*
1635 * RF value list for RF5222
1636 * Supports: 2.4 GHz & 5.2 GHz
1637 */
1638static const struct rf_channel rf_vals_5222[] = {
1639 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1640 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1641 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1642 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1643 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1644 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1645 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1646 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1647 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1648 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1649 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1650 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1651 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1652 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1653
1654 /* 802.11 UNI / HyperLan 2 */
1655 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1656 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1657 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1658 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1659 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1660 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1661 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1662 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1663
1664 /* 802.11 HyperLan 2 */
1665 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1666 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1667 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1668 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1669 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1670 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1671 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1672 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1673 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1674 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1675
1676 /* 802.11 UNII */
1677 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1678 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1679 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1680 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1681 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1682};
1683
1684static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1685{
1686 struct hw_mode_spec *spec = &rt2x00dev->spec;
1687 u8 *txpower;
1688 unsigned int i;
1689
1690 /*
1691 * Initialize all hw fields.
1692 */
Johannes Berg4150c572007-09-17 01:29:23 -04001693 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001694 rt2x00dev->hw->extra_tx_headroom = 0;
1695 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1696 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1697 rt2x00dev->hw->queues = 2;
1698
1699 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1700 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1701 rt2x00_eeprom_addr(rt2x00dev,
1702 EEPROM_MAC_ADDR_0));
1703
1704 /*
1705 * Convert tx_power array in eeprom.
1706 */
1707 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1708 for (i = 0; i < 14; i++)
1709 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1710
1711 /*
1712 * Initialize hw_mode information.
1713 */
1714 spec->num_modes = 2;
1715 spec->num_rates = 12;
1716 spec->tx_power_a = NULL;
1717 spec->tx_power_bg = txpower;
1718 spec->tx_power_default = DEFAULT_TXPOWER;
1719
1720 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1721 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1722 spec->channels = rf_vals_bg_2522;
1723 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1724 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1725 spec->channels = rf_vals_bg_2523;
1726 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1727 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1728 spec->channels = rf_vals_bg_2524;
1729 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1730 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1731 spec->channels = rf_vals_bg_2525;
1732 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1733 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1734 spec->channels = rf_vals_bg_2525e;
1735 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1736 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1737 spec->channels = rf_vals_5222;
1738 spec->num_modes = 3;
1739 }
1740}
1741
1742static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1743{
1744 int retval;
1745
1746 /*
1747 * Allocate eeprom data.
1748 */
1749 retval = rt2500pci_validate_eeprom(rt2x00dev);
1750 if (retval)
1751 return retval;
1752
1753 retval = rt2500pci_init_eeprom(rt2x00dev);
1754 if (retval)
1755 return retval;
1756
1757 /*
1758 * Initialize hw specifications.
1759 */
1760 rt2500pci_probe_hw_mode(rt2x00dev);
1761
1762 /*
1763 * This device requires the beacon ring
1764 */
Ivo van Doorn066cb632007-09-25 20:55:39 +02001765 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001766
1767 /*
1768 * Set the rssi offset.
1769 */
1770 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1771
1772 return 0;
1773}
1774
1775/*
1776 * IEEE80211 stack callback functions.
1777 */
Johannes Berg4150c572007-09-17 01:29:23 -04001778static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1779 unsigned int changed_flags,
1780 unsigned int *total_flags,
1781 int mc_count,
1782 struct dev_addr_list *mc_list)
1783{
1784 struct rt2x00_dev *rt2x00dev = hw->priv;
1785 struct interface *intf = &rt2x00dev->interface;
1786 u32 reg;
1787
1788 /*
1789 * Mask off any flags we are going to ignore from
1790 * the total_flags field.
1791 */
1792 *total_flags &=
1793 FIF_ALLMULTI |
1794 FIF_FCSFAIL |
1795 FIF_PLCPFAIL |
1796 FIF_CONTROL |
1797 FIF_OTHER_BSS |
1798 FIF_PROMISC_IN_BSS;
1799
1800 /*
1801 * Apply some rules to the filters:
1802 * - Some filters imply different filters to be set.
1803 * - Some things we can't filter out at all.
1804 * - Some filters are set based on interface type.
1805 */
1806 if (mc_count)
1807 *total_flags |= FIF_ALLMULTI;
Ivo van Doorn5886d0d2007-10-06 14:13:38 +02001808 if (*total_flags & FIF_OTHER_BSS ||
1809 *total_flags & FIF_PROMISC_IN_BSS)
Johannes Berg4150c572007-09-17 01:29:23 -04001810 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1811 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1812 *total_flags |= FIF_PROMISC_IN_BSS;
1813
1814 /*
1815 * Check if there is any work left for us.
1816 */
1817 if (intf->filter == *total_flags)
1818 return;
1819 intf->filter = *total_flags;
1820
1821 /*
1822 * Start configuration steps.
1823 * Note that the version error will always be dropped
1824 * and broadcast frames will always be accepted since
1825 * there is no filter for it at this time.
1826 */
1827 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1828 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1829 !(*total_flags & FIF_FCSFAIL));
1830 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1831 !(*total_flags & FIF_PLCPFAIL));
1832 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1833 !(*total_flags & FIF_CONTROL));
1834 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1835 !(*total_flags & FIF_PROMISC_IN_BSS));
1836 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1837 !(*total_flags & FIF_PROMISC_IN_BSS));
1838 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1839 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1840 !(*total_flags & FIF_ALLMULTI));
1841 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1842 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1843}
1844
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001845static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1846 u32 short_retry, u32 long_retry)
1847{
1848 struct rt2x00_dev *rt2x00dev = hw->priv;
1849 u32 reg;
1850
1851 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1852 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1853 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1854 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1855
1856 return 0;
1857}
1858
1859static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1860{
1861 struct rt2x00_dev *rt2x00dev = hw->priv;
1862 u64 tsf;
1863 u32 reg;
1864
1865 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1866 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1867 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1868 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1869
1870 return tsf;
1871}
1872
1873static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1874{
1875 struct rt2x00_dev *rt2x00dev = hw->priv;
1876
1877 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1878 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1879}
1880
1881static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1882{
1883 struct rt2x00_dev *rt2x00dev = hw->priv;
1884 u32 reg;
1885
1886 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1887 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1888}
1889
1890static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1891 .tx = rt2x00mac_tx,
Johannes Berg4150c572007-09-17 01:29:23 -04001892 .start = rt2x00mac_start,
1893 .stop = rt2x00mac_stop,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001894 .add_interface = rt2x00mac_add_interface,
1895 .remove_interface = rt2x00mac_remove_interface,
1896 .config = rt2x00mac_config,
1897 .config_interface = rt2x00mac_config_interface,
Johannes Berg4150c572007-09-17 01:29:23 -04001898 .configure_filter = rt2500pci_configure_filter,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001899 .get_stats = rt2x00mac_get_stats,
1900 .set_retry_limit = rt2500pci_set_retry_limit,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +02001901 .erp_ie_changed = rt2x00mac_erp_ie_changed,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001902 .conf_tx = rt2x00mac_conf_tx,
1903 .get_tx_stats = rt2x00mac_get_tx_stats,
1904 .get_tsf = rt2500pci_get_tsf,
1905 .reset_tsf = rt2500pci_reset_tsf,
1906 .beacon_update = rt2x00pci_beacon_update,
1907 .tx_last_beacon = rt2500pci_tx_last_beacon,
1908};
1909
1910static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1911 .irq_handler = rt2500pci_interrupt,
1912 .probe_hw = rt2500pci_probe_hw,
1913 .initialize = rt2x00pci_initialize,
1914 .uninitialize = rt2x00pci_uninitialize,
1915 .set_device_state = rt2500pci_set_device_state,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001916 .rfkill_poll = rt2500pci_rfkill_poll,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001917 .link_stats = rt2500pci_link_stats,
1918 .reset_tuner = rt2500pci_reset_tuner,
1919 .link_tuner = rt2500pci_link_tuner,
1920 .write_tx_desc = rt2500pci_write_tx_desc,
1921 .write_tx_data = rt2x00pci_write_tx_data,
1922 .kick_tx_queue = rt2500pci_kick_tx_queue,
1923 .fill_rxdone = rt2500pci_fill_rxdone,
1924 .config_mac_addr = rt2500pci_config_mac_addr,
1925 .config_bssid = rt2500pci_config_bssid,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001926 .config_type = rt2500pci_config_type,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +02001927 .config_preamble = rt2500pci_config_preamble,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001928 .config = rt2500pci_config,
1929};
1930
1931static const struct rt2x00_ops rt2500pci_ops = {
1932 .name = DRV_NAME,
1933 .rxd_size = RXD_DESC_SIZE,
1934 .txd_size = TXD_DESC_SIZE,
1935 .eeprom_size = EEPROM_SIZE,
1936 .rf_size = RF_SIZE,
1937 .lib = &rt2500pci_rt2x00_ops,
1938 .hw = &rt2500pci_mac80211_ops,
1939#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1940 .debugfs = &rt2500pci_rt2x00debug,
1941#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1942};
1943
1944/*
1945 * RT2500pci module information.
1946 */
1947static struct pci_device_id rt2500pci_device_table[] = {
1948 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1949 { 0, }
1950};
1951
1952MODULE_AUTHOR(DRV_PROJECT);
1953MODULE_VERSION(DRV_VERSION);
1954MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1955MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1956MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1957MODULE_LICENSE("GPL");
1958
1959static struct pci_driver rt2500pci_driver = {
1960 .name = DRV_NAME,
1961 .id_table = rt2500pci_device_table,
1962 .probe = rt2x00pci_probe,
1963 .remove = __devexit_p(rt2x00pci_remove),
1964 .suspend = rt2x00pci_suspend,
1965 .resume = rt2x00pci_resume,
1966};
1967
1968static int __init rt2500pci_init(void)
1969{
1970 return pci_register_driver(&rt2500pci_driver);
1971}
1972
1973static void __exit rt2500pci_exit(void)
1974{
1975 pci_unregister_driver(&rt2500pci_driver);
1976}
1977
1978module_init(rt2500pci_init);
1979module_exit(rt2500pci_exit);