blob: 5c4c53f38cf450aecf6f3799946ce8eeb964fe9a [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
Rusty Russelld7e28ff2007-07-19 01:49:23 -07009 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
16#include "lg.h"
17
Rusty Russellf56a3842007-07-26 10:41:05 -070018/*M:008 We hold reference to pages, which prevents them from being swapped.
19 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
20 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
21 * could probably consider launching Guests as non-root. :*/
22
Rusty Russellbff672e2007-07-26 10:41:04 -070023/*H:300
24 * The Page Table Code
25 *
26 * We use two-level page tables for the Guest. If you're not entirely
27 * comfortable with virtual addresses, physical addresses and page tables then
28 * I recommend you review lguest.c's "Page Table Handling" (with diagrams!).
29 *
30 * The Guest keeps page tables, but we maintain the actual ones here: these are
31 * called "shadow" page tables. Which is a very Guest-centric name: these are
32 * the real page tables the CPU uses, although we keep them up to date to
33 * reflect the Guest's. (See what I mean about weird naming? Since when do
34 * shadows reflect anything?)
35 *
36 * Anyway, this is the most complicated part of the Host code. There are seven
37 * parts to this:
38 * (i) Setting up a page table entry for the Guest when it faults,
39 * (ii) Setting up the page table entry for the Guest stack,
40 * (iii) Setting up a page table entry when the Guest tells us it has changed,
41 * (iv) Switching page tables,
42 * (v) Flushing (thowing away) page tables,
43 * (vi) Mapping the Switcher when the Guest is about to run,
44 * (vii) Setting up the page tables initially.
45 :*/
46
Rusty Russellbff672e2007-07-26 10:41:04 -070047
48/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
49 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
50 * page. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100051#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070052
Rusty Russellbff672e2007-07-26 10:41:04 -070053/* We actually need a separate PTE page for each CPU. Remember that after the
54 * Switcher code itself comes two pages for each CPU, and we don't want this
55 * CPU's guest to see the pages of any other CPU. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100056static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
Rusty Russelld7e28ff2007-07-19 01:49:23 -070057#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
58
Rusty Russellbff672e2007-07-26 10:41:04 -070059/*H:320 With our shadow and Guest types established, we need to deal with
60 * them: the page table code is curly enough to need helper functions to keep
61 * it clear and clean.
62 *
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100063 * There are two functions which return pointers to the shadow (aka "real")
Rusty Russellbff672e2007-07-26 10:41:04 -070064 * page tables.
65 *
66 * spgd_addr() takes the virtual address and returns a pointer to the top-level
67 * page directory entry for that address. Since we keep track of several page
68 * tables, the "i" argument tells us which one we're interested in (it's
69 * usually the current one). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100070static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070071{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100072 unsigned int index = pgd_index(vaddr);
Rusty Russelld7e28ff2007-07-19 01:49:23 -070073
Rusty Russellbff672e2007-07-26 10:41:04 -070074 /* We kill any Guest trying to touch the Switcher addresses. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070075 if (index >= SWITCHER_PGD_INDEX) {
76 kill_guest(lg, "attempt to access switcher pages");
77 index = 0;
78 }
Rusty Russellbff672e2007-07-26 10:41:04 -070079 /* Return a pointer index'th pgd entry for the i'th page table. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070080 return &lg->pgdirs[i].pgdir[index];
81}
82
Rusty Russellbff672e2007-07-26 10:41:04 -070083/* This routine then takes the PGD entry given above, which contains the
84 * address of the PTE page. It then returns a pointer to the PTE entry for the
85 * given address. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100086static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070087{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100088 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -070089 /* You should never call this if the PGD entry wasn't valid */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100090 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
91 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
Rusty Russelld7e28ff2007-07-19 01:49:23 -070092}
93
Rusty Russellbff672e2007-07-26 10:41:04 -070094/* These two functions just like the above two, except they access the Guest
95 * page tables. Hence they return a Guest address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070096static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
97{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100098 unsigned int index = vaddr >> (PGDIR_SHIFT);
99 return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(pgd_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700100}
101
102static unsigned long gpte_addr(struct lguest *lg,
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000103 pgd_t gpgd, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700104{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000105 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
106 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
107 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700108}
109
Rusty Russellbff672e2007-07-26 10:41:04 -0700110/*H:350 This routine takes a page number given by the Guest and converts it to
111 * an actual, physical page number. It can fail for several reasons: the
112 * virtual address might not be mapped by the Launcher, the write flag is set
113 * and the page is read-only, or the write flag was set and the page was
114 * shared so had to be copied, but we ran out of memory.
115 *
116 * This holds a reference to the page, so release_pte() is careful to
117 * put that back. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700118static unsigned long get_pfn(unsigned long virtpfn, int write)
119{
120 struct page *page;
Rusty Russellbff672e2007-07-26 10:41:04 -0700121 /* This value indicates failure. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700122 unsigned long ret = -1UL;
123
Rusty Russellbff672e2007-07-26 10:41:04 -0700124 /* get_user_pages() is a complex interface: it gets the "struct
125 * vm_area_struct" and "struct page" assocated with a range of pages.
126 * It also needs the task's mmap_sem held, and is not very quick.
127 * It returns the number of pages it got. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700128 down_read(&current->mm->mmap_sem);
129 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
130 1, write, 1, &page, NULL) == 1)
131 ret = page_to_pfn(page);
132 up_read(&current->mm->mmap_sem);
133 return ret;
134}
135
Rusty Russellbff672e2007-07-26 10:41:04 -0700136/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
137 * entry can be a little tricky. The flags are (almost) the same, but the
138 * Guest PTE contains a virtual page number: the CPU needs the real page
139 * number. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000140static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700141{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000142 unsigned long pfn, base, flags;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700143
Rusty Russellbff672e2007-07-26 10:41:04 -0700144 /* The Guest sets the global flag, because it thinks that it is using
145 * PGE. We only told it to use PGE so it would tell us whether it was
146 * flushing a kernel mapping or a userspace mapping. We don't actually
147 * use the global bit, so throw it away. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000148 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700149
Rusty Russell3c6b5bf2007-10-22 11:03:26 +1000150 /* The Guest's pages are offset inside the Launcher. */
151 base = (unsigned long)lg->mem_base / PAGE_SIZE;
152
Rusty Russellbff672e2007-07-26 10:41:04 -0700153 /* We need a temporary "unsigned long" variable to hold the answer from
154 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
155 * fit in spte.pfn. get_pfn() finds the real physical number of the
156 * page, given the virtual number. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000157 pfn = get_pfn(base + pte_pfn(gpte), write);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700158 if (pfn == -1UL) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000159 kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
Rusty Russellbff672e2007-07-26 10:41:04 -0700160 /* When we destroy the Guest, we'll go through the shadow page
161 * tables and release_pte() them. Make sure we don't think
162 * this one is valid! */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000163 flags = 0;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700164 }
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000165 /* Now we assemble our shadow PTE from the page number and flags. */
166 return pfn_pte(pfn, __pgprot(flags));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700167}
168
Rusty Russellbff672e2007-07-26 10:41:04 -0700169/*H:460 And to complete the chain, release_pte() looks like this: */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000170static void release_pte(pte_t pte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700171{
Rusty Russellbff672e2007-07-26 10:41:04 -0700172 /* Remember that get_user_pages() took a reference to the page, in
173 * get_pfn()? We have to put it back now. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000174 if (pte_flags(pte) & _PAGE_PRESENT)
175 put_page(pfn_to_page(pte_pfn(pte)));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700176}
Rusty Russellbff672e2007-07-26 10:41:04 -0700177/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700178
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000179static void check_gpte(struct lguest *lg, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700180{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000181 if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
182 || pte_pfn(gpte) >= lg->pfn_limit)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700183 kill_guest(lg, "bad page table entry");
184}
185
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000186static void check_gpgd(struct lguest *lg, pgd_t gpgd)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700187{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000188 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700189 kill_guest(lg, "bad page directory entry");
190}
191
Rusty Russellbff672e2007-07-26 10:41:04 -0700192/*H:330
193 * (i) Setting up a page table entry for the Guest when it faults
194 *
195 * We saw this call in run_guest(): when we see a page fault in the Guest, we
196 * come here. That's because we only set up the shadow page tables lazily as
197 * they're needed, so we get page faults all the time and quietly fix them up
198 * and return to the Guest without it knowing.
199 *
200 * If we fixed up the fault (ie. we mapped the address), this routine returns
201 * true. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700202int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
203{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000204 pgd_t gpgd;
205 pgd_t *spgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700206 unsigned long gpte_ptr;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000207 pte_t gpte;
208 pte_t *spte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700209
Rusty Russellbff672e2007-07-26 10:41:04 -0700210 /* First step: get the top-level Guest page table entry. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000211 gpgd = __pgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
Rusty Russellbff672e2007-07-26 10:41:04 -0700212 /* Toplevel not present? We can't map it in. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000213 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700214 return 0;
215
Rusty Russellbff672e2007-07-26 10:41:04 -0700216 /* Now look at the matching shadow entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700217 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000218 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700219 /* No shadow entry: allocate a new shadow PTE page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700220 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700221 /* This is not really the Guest's fault, but killing it is
222 * simple for this corner case. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700223 if (!ptepage) {
224 kill_guest(lg, "out of memory allocating pte page");
225 return 0;
226 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700227 /* We check that the Guest pgd is OK. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700228 check_gpgd(lg, gpgd);
Rusty Russellbff672e2007-07-26 10:41:04 -0700229 /* And we copy the flags to the shadow PGD entry. The page
230 * number in the shadow PGD is the page we just allocated. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000231 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700232 }
233
Rusty Russellbff672e2007-07-26 10:41:04 -0700234 /* OK, now we look at the lower level in the Guest page table: keep its
235 * address, because we might update it later. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700236 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000237 gpte = __pte(lgread_u32(lg, gpte_ptr));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700238
Rusty Russellbff672e2007-07-26 10:41:04 -0700239 /* If this page isn't in the Guest page tables, we can't page it in. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000240 if (!(pte_flags(gpte) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700241 return 0;
242
Rusty Russellbff672e2007-07-26 10:41:04 -0700243 /* Check they're not trying to write to a page the Guest wants
244 * read-only (bit 2 of errcode == write). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000245 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700246 return 0;
247
Rusty Russellbff672e2007-07-26 10:41:04 -0700248 /* User access to a kernel page? (bit 3 == user access) */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000249 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700250 return 0;
251
Rusty Russellbff672e2007-07-26 10:41:04 -0700252 /* Check that the Guest PTE flags are OK, and the page number is below
253 * the pfn_limit (ie. not mapping the Launcher binary). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700254 check_gpte(lg, gpte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700255 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000256 gpte = pte_mkyoung(gpte);
257
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700258 if (errcode & 2)
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000259 gpte = pte_mkdirty(gpte);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700260
Rusty Russellbff672e2007-07-26 10:41:04 -0700261 /* Get the pointer to the shadow PTE entry we're going to set. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700262 spte = spte_addr(lg, *spgd, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700263 /* If there was a valid shadow PTE entry here before, we release it.
264 * This can happen with a write to a previously read-only entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700265 release_pte(*spte);
266
Rusty Russellbff672e2007-07-26 10:41:04 -0700267 /* If this is a write, we insist that the Guest page is writable (the
268 * final arg to gpte_to_spte()). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000269 if (pte_dirty(gpte))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700270 *spte = gpte_to_spte(lg, gpte, 1);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000271 else
Rusty Russellbff672e2007-07-26 10:41:04 -0700272 /* If this is a read, don't set the "writable" bit in the page
273 * table entry, even if the Guest says it's writable. That way
274 * we come back here when a write does actually ocur, so we can
275 * update the Guest's _PAGE_DIRTY flag. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000276 *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700277
Rusty Russellbff672e2007-07-26 10:41:04 -0700278 /* Finally, we write the Guest PTE entry back: we've set the
279 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000280 lgwrite_u32(lg, gpte_ptr, pte_val(gpte));
Rusty Russellbff672e2007-07-26 10:41:04 -0700281
282 /* We succeeded in mapping the page! */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700283 return 1;
284}
285
Rusty Russellbff672e2007-07-26 10:41:04 -0700286/*H:360 (ii) Setting up the page table entry for the Guest stack.
287 *
288 * Remember pin_stack_pages() which makes sure the stack is mapped? It could
289 * simply call demand_page(), but as we've seen that logic is quite long, and
290 * usually the stack pages are already mapped anyway, so it's not required.
291 *
292 * This is a quick version which answers the question: is this virtual address
293 * mapped by the shadow page tables, and is it writable? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700294static int page_writable(struct lguest *lg, unsigned long vaddr)
295{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000296 pgd_t *spgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700297 unsigned long flags;
298
Rusty Russellbff672e2007-07-26 10:41:04 -0700299 /* Look at the top level entry: is it present? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700300 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000301 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700302 return 0;
303
Rusty Russellbff672e2007-07-26 10:41:04 -0700304 /* Check the flags on the pte entry itself: it must be present and
305 * writable. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000306 flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
307
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700308 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
309}
310
Rusty Russellbff672e2007-07-26 10:41:04 -0700311/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
312 * in the page tables, and if not, we call demand_page() with error code 2
313 * (meaning "write"). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700314void pin_page(struct lguest *lg, unsigned long vaddr)
315{
316 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
317 kill_guest(lg, "bad stack page %#lx", vaddr);
318}
319
Rusty Russellbff672e2007-07-26 10:41:04 -0700320/*H:450 If we chase down the release_pgd() code, it looks like this: */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000321static void release_pgd(struct lguest *lg, pgd_t *spgd)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700322{
Rusty Russellbff672e2007-07-26 10:41:04 -0700323 /* If the entry's not present, there's nothing to release. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000324 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700325 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700326 /* Converting the pfn to find the actual PTE page is easy: turn
327 * the page number into a physical address, then convert to a
328 * virtual address (easy for kernel pages like this one). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000329 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -0700330 /* For each entry in the page, we might need to release it. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000331 for (i = 0; i < PTRS_PER_PTE; i++)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700332 release_pte(ptepage[i]);
Rusty Russellbff672e2007-07-26 10:41:04 -0700333 /* Now we can free the page of PTEs */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700334 free_page((long)ptepage);
Rusty Russellbff672e2007-07-26 10:41:04 -0700335 /* And zero out the PGD entry we we never release it twice. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000336 *spgd = __pgd(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700337 }
338}
339
Rusty Russellbff672e2007-07-26 10:41:04 -0700340/*H:440 (v) Flushing (thowing away) page tables,
341 *
342 * We saw flush_user_mappings() called when we re-used a top-level pgdir page.
343 * It simply releases every PTE page from 0 up to the kernel address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700344static void flush_user_mappings(struct lguest *lg, int idx)
345{
346 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700347 /* Release every pgd entry up to the kernel's address. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000348 for (i = 0; i < pgd_index(lg->page_offset); i++)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700349 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
350}
351
Rusty Russellbff672e2007-07-26 10:41:04 -0700352/* The Guest also has a hypercall to do this manually: it's used when a large
353 * number of mappings have been changed. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700354void guest_pagetable_flush_user(struct lguest *lg)
355{
Rusty Russellbff672e2007-07-26 10:41:04 -0700356 /* Drop the userspace part of the current page table. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700357 flush_user_mappings(lg, lg->pgdidx);
358}
Rusty Russellbff672e2007-07-26 10:41:04 -0700359/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700360
Rusty Russellbff672e2007-07-26 10:41:04 -0700361/* We keep several page tables. This is a simple routine to find the page
362 * table (if any) corresponding to this top-level address the Guest has given
363 * us. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700364static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
365{
366 unsigned int i;
367 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
368 if (lg->pgdirs[i].cr3 == pgtable)
369 break;
370 return i;
371}
372
Rusty Russellbff672e2007-07-26 10:41:04 -0700373/*H:435 And this is us, creating the new page directory. If we really do
374 * allocate a new one (and so the kernel parts are not there), we set
375 * blank_pgdir. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700376static unsigned int new_pgdir(struct lguest *lg,
377 unsigned long cr3,
378 int *blank_pgdir)
379{
380 unsigned int next;
381
Rusty Russellbff672e2007-07-26 10:41:04 -0700382 /* We pick one entry at random to throw out. Choosing the Least
383 * Recently Used might be better, but this is easy. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700384 next = random32() % ARRAY_SIZE(lg->pgdirs);
Rusty Russellbff672e2007-07-26 10:41:04 -0700385 /* If it's never been allocated at all before, try now. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700386 if (!lg->pgdirs[next].pgdir) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000387 lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700388 /* If the allocation fails, just keep using the one we have */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700389 if (!lg->pgdirs[next].pgdir)
390 next = lg->pgdidx;
391 else
Rusty Russellbff672e2007-07-26 10:41:04 -0700392 /* This is a blank page, so there are no kernel
393 * mappings: caller must map the stack! */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700394 *blank_pgdir = 1;
395 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700396 /* Record which Guest toplevel this shadows. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700397 lg->pgdirs[next].cr3 = cr3;
398 /* Release all the non-kernel mappings. */
399 flush_user_mappings(lg, next);
400
401 return next;
402}
403
Rusty Russellbff672e2007-07-26 10:41:04 -0700404/*H:430 (iv) Switching page tables
405 *
406 * This is what happens when the Guest changes page tables (ie. changes the
407 * top-level pgdir). This happens on almost every context switch. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700408void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
409{
410 int newpgdir, repin = 0;
411
Rusty Russellbff672e2007-07-26 10:41:04 -0700412 /* Look to see if we have this one already. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700413 newpgdir = find_pgdir(lg, pgtable);
Rusty Russellbff672e2007-07-26 10:41:04 -0700414 /* If not, we allocate or mug an existing one: if it's a fresh one,
415 * repin gets set to 1. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700416 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
417 newpgdir = new_pgdir(lg, pgtable, &repin);
Rusty Russellbff672e2007-07-26 10:41:04 -0700418 /* Change the current pgd index to the new one. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700419 lg->pgdidx = newpgdir;
Rusty Russellbff672e2007-07-26 10:41:04 -0700420 /* If it was completely blank, we map in the Guest kernel stack */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700421 if (repin)
422 pin_stack_pages(lg);
423}
424
Rusty Russellbff672e2007-07-26 10:41:04 -0700425/*H:470 Finally, a routine which throws away everything: all PGD entries in all
426 * the shadow page tables. This is used when we destroy the Guest. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700427static void release_all_pagetables(struct lguest *lg)
428{
429 unsigned int i, j;
430
Rusty Russellbff672e2007-07-26 10:41:04 -0700431 /* Every shadow pagetable this Guest has */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700432 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
433 if (lg->pgdirs[i].pgdir)
Rusty Russellbff672e2007-07-26 10:41:04 -0700434 /* Every PGD entry except the Switcher at the top */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700435 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
436 release_pgd(lg, lg->pgdirs[i].pgdir + j);
437}
438
Rusty Russellbff672e2007-07-26 10:41:04 -0700439/* We also throw away everything when a Guest tells us it's changed a kernel
440 * mapping. Since kernel mappings are in every page table, it's easiest to
441 * throw them all away. This is amazingly slow, but thankfully rare. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700442void guest_pagetable_clear_all(struct lguest *lg)
443{
444 release_all_pagetables(lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700445 /* We need the Guest kernel stack mapped again. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700446 pin_stack_pages(lg);
447}
448
Rusty Russellbff672e2007-07-26 10:41:04 -0700449/*H:420 This is the routine which actually sets the page table entry for then
450 * "idx"'th shadow page table.
451 *
452 * Normally, we can just throw out the old entry and replace it with 0: if they
453 * use it demand_page() will put the new entry in. We need to do this anyway:
454 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
455 * is read from, and _PAGE_DIRTY when it's written to.
456 *
457 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
458 * these bits on PTEs immediately anyway. This is done to save the CPU from
459 * having to update them, but it helps us the same way: if they set
460 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
461 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
462 */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700463static void do_set_pte(struct lguest *lg, int idx,
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000464 unsigned long vaddr, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700465{
Rusty Russellbff672e2007-07-26 10:41:04 -0700466 /* Look up the matching shadow page directot entry. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000467 pgd_t *spgd = spgd_addr(lg, idx, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700468
469 /* If the top level isn't present, there's no entry to update. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000470 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700471 /* Otherwise, we start by releasing the existing entry. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000472 pte_t *spte = spte_addr(lg, *spgd, vaddr);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700473 release_pte(*spte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700474
475 /* If they're setting this entry as dirty or accessed, we might
476 * as well put that entry they've given us in now. This shaves
477 * 10% off a copy-on-write micro-benchmark. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000478 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700479 check_gpte(lg, gpte);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000480 *spte = gpte_to_spte(lg, gpte,
481 pte_flags(gpte) & _PAGE_DIRTY);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700482 } else
Rusty Russellbff672e2007-07-26 10:41:04 -0700483 /* Otherwise we can demand_page() it in later. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000484 *spte = __pte(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700485 }
486}
487
Rusty Russellbff672e2007-07-26 10:41:04 -0700488/*H:410 Updating a PTE entry is a little trickier.
489 *
490 * We keep track of several different page tables (the Guest uses one for each
491 * process, so it makes sense to cache at least a few). Each of these have
492 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
493 * all processes. So when the page table above that address changes, we update
494 * all the page tables, not just the current one. This is rare.
495 *
496 * The benefit is that when we have to track a new page table, we can copy keep
497 * all the kernel mappings. This speeds up context switch immensely. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700498void guest_set_pte(struct lguest *lg,
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000499 unsigned long cr3, unsigned long vaddr, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700500{
Rusty Russellbff672e2007-07-26 10:41:04 -0700501 /* Kernel mappings must be changed on all top levels. Slow, but
502 * doesn't happen often. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700503 if (vaddr >= lg->page_offset) {
504 unsigned int i;
505 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
506 if (lg->pgdirs[i].pgdir)
507 do_set_pte(lg, i, vaddr, gpte);
508 } else {
Rusty Russellbff672e2007-07-26 10:41:04 -0700509 /* Is this page table one we have a shadow for? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700510 int pgdir = find_pgdir(lg, cr3);
511 if (pgdir != ARRAY_SIZE(lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700512 /* If so, do the update. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700513 do_set_pte(lg, pgdir, vaddr, gpte);
514 }
515}
516
Rusty Russellbff672e2007-07-26 10:41:04 -0700517/*H:400
518 * (iii) Setting up a page table entry when the Guest tells us it has changed.
519 *
520 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
521 * with the other side of page tables while we're here: what happens when the
522 * Guest asks for a page table to be updated?
523 *
524 * We already saw that demand_page() will fill in the shadow page tables when
525 * needed, so we can simply remove shadow page table entries whenever the Guest
526 * tells us they've changed. When the Guest tries to use the new entry it will
527 * fault and demand_page() will fix it up.
528 *
529 * So with that in mind here's our code to to update a (top-level) PGD entry:
530 */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700531void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx)
532{
533 int pgdir;
534
Rusty Russellbff672e2007-07-26 10:41:04 -0700535 /* The kernel seems to try to initialize this early on: we ignore its
536 * attempts to map over the Switcher. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700537 if (idx >= SWITCHER_PGD_INDEX)
538 return;
539
Rusty Russellbff672e2007-07-26 10:41:04 -0700540 /* If they're talking about a page table we have a shadow for... */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700541 pgdir = find_pgdir(lg, cr3);
542 if (pgdir < ARRAY_SIZE(lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700543 /* ... throw it away. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700544 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
545}
546
Rusty Russellbff672e2007-07-26 10:41:04 -0700547/*H:500 (vii) Setting up the page tables initially.
548 *
549 * When a Guest is first created, the Launcher tells us where the toplevel of
550 * its first page table is. We set some things up here: */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700551int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
552{
Rusty Russellbff672e2007-07-26 10:41:04 -0700553 /* In flush_user_mappings() we loop from 0 to
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000554 * "pgd_index(lg->page_offset)". This assumes it won't hit
Rusty Russellbff672e2007-07-26 10:41:04 -0700555 * the Switcher mappings, so check that now. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000556 if (pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700557 return -EINVAL;
Rusty Russellbff672e2007-07-26 10:41:04 -0700558 /* We start on the first shadow page table, and give it a blank PGD
559 * page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700560 lg->pgdidx = 0;
561 lg->pgdirs[lg->pgdidx].cr3 = pgtable;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000562 lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700563 if (!lg->pgdirs[lg->pgdidx].pgdir)
564 return -ENOMEM;
565 return 0;
566}
567
Rusty Russellbff672e2007-07-26 10:41:04 -0700568/* When a Guest dies, our cleanup is fairly simple. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700569void free_guest_pagetable(struct lguest *lg)
570{
571 unsigned int i;
572
Rusty Russellbff672e2007-07-26 10:41:04 -0700573 /* Throw away all page table pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700574 release_all_pagetables(lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700575 /* Now free the top levels: free_page() can handle 0 just fine. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700576 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
577 free_page((long)lg->pgdirs[i].pgdir);
578}
579
Rusty Russellbff672e2007-07-26 10:41:04 -0700580/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
581 *
582 * The Switcher and the two pages for this CPU need to be available to the
583 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
584 * for each CPU already set up, we just need to hook them in. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700585void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
586{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000587 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
588 pgd_t switcher_pgd;
589 pte_t regs_pte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700590
Rusty Russellbff672e2007-07-26 10:41:04 -0700591 /* Make the last PGD entry for this Guest point to the Switcher's PTE
592 * page for this CPU (with appropriate flags). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000593 switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
594
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700595 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
596
Rusty Russellbff672e2007-07-26 10:41:04 -0700597 /* We also change the Switcher PTE page. When we're running the Guest,
598 * we want the Guest's "regs" page to appear where the first Switcher
599 * page for this CPU is. This is an optimization: when the Switcher
600 * saves the Guest registers, it saves them into the first page of this
601 * CPU's "struct lguest_pages": if we make sure the Guest's register
602 * page is already mapped there, we don't have to copy them out
603 * again. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000604 regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
605 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700606}
Rusty Russellbff672e2007-07-26 10:41:04 -0700607/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700608
609static void free_switcher_pte_pages(void)
610{
611 unsigned int i;
612
613 for_each_possible_cpu(i)
614 free_page((long)switcher_pte_page(i));
615}
616
Rusty Russellbff672e2007-07-26 10:41:04 -0700617/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
618 * the CPU number and the "struct page"s for the Switcher code itself.
619 *
620 * Currently the Switcher is less than a page long, so "pages" is always 1. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700621static __init void populate_switcher_pte_page(unsigned int cpu,
622 struct page *switcher_page[],
623 unsigned int pages)
624{
625 unsigned int i;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000626 pte_t *pte = switcher_pte_page(cpu);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700627
Rusty Russellbff672e2007-07-26 10:41:04 -0700628 /* The first entries are easy: they map the Switcher code. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700629 for (i = 0; i < pages; i++) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000630 pte[i] = mk_pte(switcher_page[i],
631 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700632 }
633
Rusty Russellbff672e2007-07-26 10:41:04 -0700634 /* The only other thing we map is this CPU's pair of pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700635 i = pages + cpu*2;
636
Rusty Russellbff672e2007-07-26 10:41:04 -0700637 /* First page (Guest registers) is writable from the Guest */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000638 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
639 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
640
Rusty Russellbff672e2007-07-26 10:41:04 -0700641 /* The second page contains the "struct lguest_ro_state", and is
642 * read-only. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000643 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
644 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700645}
646
Rusty Russellbff672e2007-07-26 10:41:04 -0700647/*H:510 At boot or module load time, init_pagetables() allocates and populates
648 * the Switcher PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700649__init int init_pagetables(struct page **switcher_page, unsigned int pages)
650{
651 unsigned int i;
652
653 for_each_possible_cpu(i) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000654 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700655 if (!switcher_pte_page(i)) {
656 free_switcher_pte_pages();
657 return -ENOMEM;
658 }
659 populate_switcher_pte_page(i, switcher_page, pages);
660 }
661 return 0;
662}
Rusty Russellbff672e2007-07-26 10:41:04 -0700663/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700664
Rusty Russellbff672e2007-07-26 10:41:04 -0700665/* Cleaning up simply involves freeing the PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700666void free_pagetables(void)
667{
668 free_switcher_pte_pages();
669}