blob: 70a55dcc431d16ad0c0d9e08dcf6daae67b25b38 [file] [log] [blame]
Timur Tabib9b17de2016-08-31 18:22:08 -05001/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 */
12
13/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
14 */
15
16#include <linux/tcp.h>
17#include <linux/ip.h>
18#include <linux/ipv6.h>
19#include <linux/crc32.h>
20#include <linux/if_vlan.h>
21#include <linux/jiffies.h>
22#include <linux/phy.h>
23#include <linux/of.h>
24#include <net/ip6_checksum.h>
25#include "emac.h"
26#include "emac-sgmii.h"
27
28/* EMAC base register offsets */
29#define EMAC_MAC_CTRL 0x001480
30#define EMAC_WOL_CTRL0 0x0014a0
31#define EMAC_RSS_KEY0 0x0014b0
32#define EMAC_H1TPD_BASE_ADDR_LO 0x0014e0
33#define EMAC_H2TPD_BASE_ADDR_LO 0x0014e4
34#define EMAC_H3TPD_BASE_ADDR_LO 0x0014e8
35#define EMAC_INTER_SRAM_PART9 0x001534
36#define EMAC_DESC_CTRL_0 0x001540
37#define EMAC_DESC_CTRL_1 0x001544
38#define EMAC_DESC_CTRL_2 0x001550
39#define EMAC_DESC_CTRL_10 0x001554
40#define EMAC_DESC_CTRL_12 0x001558
41#define EMAC_DESC_CTRL_13 0x00155c
42#define EMAC_DESC_CTRL_3 0x001560
43#define EMAC_DESC_CTRL_4 0x001564
44#define EMAC_DESC_CTRL_5 0x001568
45#define EMAC_DESC_CTRL_14 0x00156c
46#define EMAC_DESC_CTRL_15 0x001570
47#define EMAC_DESC_CTRL_16 0x001574
48#define EMAC_DESC_CTRL_6 0x001578
49#define EMAC_DESC_CTRL_8 0x001580
50#define EMAC_DESC_CTRL_9 0x001584
51#define EMAC_DESC_CTRL_11 0x001588
52#define EMAC_TXQ_CTRL_0 0x001590
53#define EMAC_TXQ_CTRL_1 0x001594
54#define EMAC_TXQ_CTRL_2 0x001598
55#define EMAC_RXQ_CTRL_0 0x0015a0
56#define EMAC_RXQ_CTRL_1 0x0015a4
57#define EMAC_RXQ_CTRL_2 0x0015a8
58#define EMAC_RXQ_CTRL_3 0x0015ac
59#define EMAC_BASE_CPU_NUMBER 0x0015b8
60#define EMAC_DMA_CTRL 0x0015c0
61#define EMAC_MAILBOX_0 0x0015e0
62#define EMAC_MAILBOX_5 0x0015e4
63#define EMAC_MAILBOX_6 0x0015e8
64#define EMAC_MAILBOX_13 0x0015ec
65#define EMAC_MAILBOX_2 0x0015f4
66#define EMAC_MAILBOX_3 0x0015f8
67#define EMAC_MAILBOX_11 0x00160c
68#define EMAC_AXI_MAST_CTRL 0x001610
69#define EMAC_MAILBOX_12 0x001614
70#define EMAC_MAILBOX_9 0x001618
71#define EMAC_MAILBOX_10 0x00161c
72#define EMAC_ATHR_HEADER_CTRL 0x001620
73#define EMAC_CLK_GATE_CTRL 0x001814
74#define EMAC_MISC_CTRL 0x001990
75#define EMAC_MAILBOX_7 0x0019e0
76#define EMAC_MAILBOX_8 0x0019e4
77#define EMAC_MAILBOX_15 0x001bd4
78#define EMAC_MAILBOX_16 0x001bd8
79
80/* EMAC_MAC_CTRL */
81#define SINGLE_PAUSE_MODE 0x10000000
82#define DEBUG_MODE 0x08000000
83#define BROAD_EN 0x04000000
84#define MULTI_ALL 0x02000000
85#define RX_CHKSUM_EN 0x01000000
86#define HUGE 0x00800000
87#define SPEED(x) (((x) & 0x3) << 20)
88#define SPEED_MASK SPEED(0x3)
89#define SIMR 0x00080000
90#define TPAUSE 0x00010000
91#define PROM_MODE 0x00008000
92#define VLAN_STRIP 0x00004000
93#define PRLEN_BMSK 0x00003c00
94#define PRLEN_SHFT 10
95#define HUGEN 0x00000200
96#define FLCHK 0x00000100
97#define PCRCE 0x00000080
98#define CRCE 0x00000040
99#define FULLD 0x00000020
100#define MAC_LP_EN 0x00000010
101#define RXFC 0x00000008
102#define TXFC 0x00000004
103#define RXEN 0x00000002
104#define TXEN 0x00000001
105
106
107/* EMAC_WOL_CTRL0 */
108#define LK_CHG_PME 0x20
109#define LK_CHG_EN 0x10
110#define MG_FRAME_PME 0x8
111#define MG_FRAME_EN 0x4
112#define WK_FRAME_EN 0x1
113
114/* EMAC_DESC_CTRL_3 */
115#define RFD_RING_SIZE_BMSK 0xfff
116
117/* EMAC_DESC_CTRL_4 */
118#define RX_BUFFER_SIZE_BMSK 0xffff
119
120/* EMAC_DESC_CTRL_6 */
121#define RRD_RING_SIZE_BMSK 0xfff
122
123/* EMAC_DESC_CTRL_9 */
124#define TPD_RING_SIZE_BMSK 0xffff
125
126/* EMAC_TXQ_CTRL_0 */
127#define NUM_TXF_BURST_PREF_BMSK 0xffff0000
128#define NUM_TXF_BURST_PREF_SHFT 16
129#define LS_8023_SP 0x80
130#define TXQ_MODE 0x40
131#define TXQ_EN 0x20
132#define IP_OP_SP 0x10
133#define NUM_TPD_BURST_PREF_BMSK 0xf
134#define NUM_TPD_BURST_PREF_SHFT 0
135
136/* EMAC_TXQ_CTRL_1 */
137#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff
138
139/* EMAC_TXQ_CTRL_2 */
140#define TXF_HWM_BMSK 0xfff0000
141#define TXF_LWM_BMSK 0xfff
142
143/* EMAC_RXQ_CTRL_0 */
144#define RXQ_EN BIT(31)
145#define CUT_THRU_EN BIT(30)
146#define RSS_HASH_EN BIT(29)
147#define NUM_RFD_BURST_PREF_BMSK 0x3f00000
148#define NUM_RFD_BURST_PREF_SHFT 20
149#define IDT_TABLE_SIZE_BMSK 0x1ff00
150#define IDT_TABLE_SIZE_SHFT 8
151#define SP_IPV6 0x80
152
153/* EMAC_RXQ_CTRL_1 */
154#define JUMBO_1KAH_BMSK 0xf000
155#define JUMBO_1KAH_SHFT 12
156#define RFD_PREF_LOW_TH 0x10
157#define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0
158#define RFD_PREF_LOW_THRESHOLD_SHFT 6
159#define RFD_PREF_UP_TH 0x10
160#define RFD_PREF_UP_THRESHOLD_BMSK 0x3f
161#define RFD_PREF_UP_THRESHOLD_SHFT 0
162
163/* EMAC_RXQ_CTRL_2 */
164#define RXF_DOF_THRESFHOLD 0x1a0
165#define RXF_DOF_THRESHOLD_BMSK 0xfff0000
166#define RXF_DOF_THRESHOLD_SHFT 16
167#define RXF_UOF_THRESFHOLD 0xbe
168#define RXF_UOF_THRESHOLD_BMSK 0xfff
169#define RXF_UOF_THRESHOLD_SHFT 0
170
171/* EMAC_RXQ_CTRL_3 */
172#define RXD_TIMER_BMSK 0xffff0000
173#define RXD_THRESHOLD_BMSK 0xfff
174#define RXD_THRESHOLD_SHFT 0
175
176/* EMAC_DMA_CTRL */
177#define DMAW_DLY_CNT_BMSK 0xf0000
178#define DMAW_DLY_CNT_SHFT 16
179#define DMAR_DLY_CNT_BMSK 0xf800
180#define DMAR_DLY_CNT_SHFT 11
181#define DMAR_REQ_PRI 0x400
182#define REGWRBLEN_BMSK 0x380
183#define REGWRBLEN_SHFT 7
184#define REGRDBLEN_BMSK 0x70
185#define REGRDBLEN_SHFT 4
186#define OUT_ORDER_MODE 0x4
187#define ENH_ORDER_MODE 0x2
188#define IN_ORDER_MODE 0x1
189
190/* EMAC_MAILBOX_13 */
191#define RFD3_PROC_IDX_BMSK 0xfff0000
192#define RFD3_PROC_IDX_SHFT 16
193#define RFD3_PROD_IDX_BMSK 0xfff
194#define RFD3_PROD_IDX_SHFT 0
195
196/* EMAC_MAILBOX_2 */
197#define NTPD_CONS_IDX_BMSK 0xffff0000
198#define NTPD_CONS_IDX_SHFT 16
199
200/* EMAC_MAILBOX_3 */
201#define RFD0_CONS_IDX_BMSK 0xfff
202#define RFD0_CONS_IDX_SHFT 0
203
204/* EMAC_MAILBOX_11 */
205#define H3TPD_PROD_IDX_BMSK 0xffff0000
206#define H3TPD_PROD_IDX_SHFT 16
207
208/* EMAC_AXI_MAST_CTRL */
209#define DATA_BYTE_SWAP 0x8
210#define MAX_BOUND 0x2
211#define MAX_BTYPE 0x1
212
213/* EMAC_MAILBOX_12 */
214#define H3TPD_CONS_IDX_BMSK 0xffff0000
215#define H3TPD_CONS_IDX_SHFT 16
216
217/* EMAC_MAILBOX_9 */
218#define H2TPD_PROD_IDX_BMSK 0xffff
219#define H2TPD_PROD_IDX_SHFT 0
220
221/* EMAC_MAILBOX_10 */
222#define H1TPD_CONS_IDX_BMSK 0xffff0000
223#define H1TPD_CONS_IDX_SHFT 16
224#define H2TPD_CONS_IDX_BMSK 0xffff
225#define H2TPD_CONS_IDX_SHFT 0
226
227/* EMAC_ATHR_HEADER_CTRL */
228#define HEADER_CNT_EN 0x2
229#define HEADER_ENABLE 0x1
230
231/* EMAC_MAILBOX_0 */
232#define RFD0_PROC_IDX_BMSK 0xfff0000
233#define RFD0_PROC_IDX_SHFT 16
234#define RFD0_PROD_IDX_BMSK 0xfff
235#define RFD0_PROD_IDX_SHFT 0
236
237/* EMAC_MAILBOX_5 */
238#define RFD1_PROC_IDX_BMSK 0xfff0000
239#define RFD1_PROC_IDX_SHFT 16
240#define RFD1_PROD_IDX_BMSK 0xfff
241#define RFD1_PROD_IDX_SHFT 0
242
243/* EMAC_MISC_CTRL */
244#define RX_UNCPL_INT_EN 0x1
245
246/* EMAC_MAILBOX_7 */
247#define RFD2_CONS_IDX_BMSK 0xfff0000
248#define RFD2_CONS_IDX_SHFT 16
249#define RFD1_CONS_IDX_BMSK 0xfff
250#define RFD1_CONS_IDX_SHFT 0
251
252/* EMAC_MAILBOX_8 */
253#define RFD3_CONS_IDX_BMSK 0xfff
254#define RFD3_CONS_IDX_SHFT 0
255
256/* EMAC_MAILBOX_15 */
257#define NTPD_PROD_IDX_BMSK 0xffff
258#define NTPD_PROD_IDX_SHFT 0
259
260/* EMAC_MAILBOX_16 */
261#define H1TPD_PROD_IDX_BMSK 0xffff
262#define H1TPD_PROD_IDX_SHFT 0
263
264#define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20
265#define RXQ0_RSS_HSTYP_IPV6_EN 0x10
266#define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8
267#define RXQ0_RSS_HSTYP_IPV4_EN 0x4
268
269/* EMAC_EMAC_WRAPPER_TX_TS_INX */
270#define EMAC_WRAPPER_TX_TS_EMPTY BIT(31)
271#define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff
272
273struct emac_skb_cb {
274 u32 tpd_idx;
275 unsigned long jiffies;
276};
277
278#define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb)
279#define EMAC_RSS_IDT_SIZE 256
280#define JUMBO_1KAH 0x4
281#define RXD_TH 0x100
282#define EMAC_TPD_LAST_FRAGMENT 0x80000000
283#define EMAC_TPD_TSTAMP_SAVE 0x80000000
284
285/* EMAC Errors in emac_rrd.word[3] */
286#define EMAC_RRD_L4F BIT(14)
287#define EMAC_RRD_IPF BIT(15)
288#define EMAC_RRD_CRC BIT(21)
289#define EMAC_RRD_FAE BIT(22)
290#define EMAC_RRD_TRN BIT(23)
291#define EMAC_RRD_RNT BIT(24)
292#define EMAC_RRD_INC BIT(25)
293#define EMAC_RRD_FOV BIT(29)
294#define EMAC_RRD_LEN BIT(30)
295
296/* Error bits that will result in a received frame being discarded */
297#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
298 EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
299 EMAC_RRD_FOV | EMAC_RRD_LEN)
300#define EMAC_RRD_STATS_DW_IDX 3
301
302#define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
303#define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
304#define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
305
306#define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)]))
307#define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)]))
308
309#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8
310
311#define ISR_RX_PKT (\
312 RX_PKT_INT0 |\
313 RX_PKT_INT1 |\
314 RX_PKT_INT2 |\
315 RX_PKT_INT3)
316
317#define EMAC_MAC_IRQ_RES "core0"
318
319void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
320{
321 u32 crc32, bit, reg, mta;
322
323 /* Calculate the CRC of the MAC address */
324 crc32 = ether_crc(ETH_ALEN, addr);
325
326 /* The HASH Table is an array of 2 32-bit registers. It is
327 * treated like an array of 64 bits (BitArray[hash_value]).
328 * Use the upper 6 bits of the above CRC as the hash value.
329 */
330 reg = (crc32 >> 31) & 0x1;
331 bit = (crc32 >> 26) & 0x1F;
332
333 mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
334 mta |= BIT(bit);
335 writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
336}
337
338void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
339{
340 writel(0, adpt->base + EMAC_HASH_TAB_REG0);
341 writel(0, adpt->base + EMAC_HASH_TAB_REG1);
342}
343
344/* definitions for RSS */
345#define EMAC_RSS_KEY(_i, _type) \
346 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
347#define EMAC_RSS_TBL(_i, _type) \
348 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
349
350/* Config MAC modes */
351void emac_mac_mode_config(struct emac_adapter *adpt)
352{
353 struct net_device *netdev = adpt->netdev;
354 u32 mac;
355
356 mac = readl(adpt->base + EMAC_MAC_CTRL);
357 mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
358
359 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
360 mac |= VLAN_STRIP;
361
362 if (netdev->flags & IFF_PROMISC)
363 mac |= PROM_MODE;
364
365 if (netdev->flags & IFF_ALLMULTI)
366 mac |= MULTI_ALL;
367
368 writel(mac, adpt->base + EMAC_MAC_CTRL);
369}
370
371/* Config descriptor rings */
372static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
373{
374 static const unsigned short tpd_q_offset[] = {
375 EMAC_DESC_CTRL_8, EMAC_H1TPD_BASE_ADDR_LO,
376 EMAC_H2TPD_BASE_ADDR_LO, EMAC_H3TPD_BASE_ADDR_LO};
377 static const unsigned short rfd_q_offset[] = {
378 EMAC_DESC_CTRL_2, EMAC_DESC_CTRL_10,
379 EMAC_DESC_CTRL_12, EMAC_DESC_CTRL_13};
380 static const unsigned short rrd_q_offset[] = {
381 EMAC_DESC_CTRL_5, EMAC_DESC_CTRL_14,
382 EMAC_DESC_CTRL_15, EMAC_DESC_CTRL_16};
383
384 /* TPD (Transmit Packet Descriptor) */
385 writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
386 adpt->base + EMAC_DESC_CTRL_1);
387
388 writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
389 adpt->base + tpd_q_offset[0]);
390
391 writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
392 adpt->base + EMAC_DESC_CTRL_9);
393
394 /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
395 writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
396 adpt->base + EMAC_DESC_CTRL_0);
397
398 writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
399 adpt->base + rfd_q_offset[0]);
400 writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
401 adpt->base + rrd_q_offset[0]);
402
403 writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
404 adpt->base + EMAC_DESC_CTRL_3);
405 writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
406 adpt->base + EMAC_DESC_CTRL_6);
407
408 writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
409 adpt->base + EMAC_DESC_CTRL_4);
410
411 writel(0, adpt->base + EMAC_DESC_CTRL_11);
412
413 /* Load all of the base addresses above and ensure that triggering HW to
414 * read ring pointers is flushed
415 */
416 writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
417}
418
419/* Config transmit parameters */
420static void emac_mac_tx_config(struct emac_adapter *adpt)
421{
422 u32 val;
423
424 writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
425 JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
426
427 val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
428 NUM_TPD_BURST_PREF_BMSK;
429
430 val |= TXQ_MODE | LS_8023_SP;
431 val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
432 NUM_TXF_BURST_PREF_BMSK;
433
434 writel(val, adpt->base + EMAC_TXQ_CTRL_0);
435 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
436 (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
437}
438
439/* Config receive parameters */
440static void emac_mac_rx_config(struct emac_adapter *adpt)
441{
442 u32 val;
443
444 val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
445 NUM_RFD_BURST_PREF_BMSK;
446 val |= (SP_IPV6 | CUT_THRU_EN);
447
448 writel(val, adpt->base + EMAC_RXQ_CTRL_0);
449
450 val = readl(adpt->base + EMAC_RXQ_CTRL_1);
451 val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
452 RFD_PREF_UP_THRESHOLD_BMSK);
453 val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
454 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
455 (RFD_PREF_UP_TH << RFD_PREF_UP_THRESHOLD_SHFT);
456 writel(val, adpt->base + EMAC_RXQ_CTRL_1);
457
458 val = readl(adpt->base + EMAC_RXQ_CTRL_2);
459 val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
460 val |= (RXF_DOF_THRESFHOLD << RXF_DOF_THRESHOLD_SHFT) |
461 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
462 writel(val, adpt->base + EMAC_RXQ_CTRL_2);
463
464 val = readl(adpt->base + EMAC_RXQ_CTRL_3);
465 val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
466 val |= RXD_TH << RXD_THRESHOLD_SHFT;
467 writel(val, adpt->base + EMAC_RXQ_CTRL_3);
468}
469
470/* Config dma */
471static void emac_mac_dma_config(struct emac_adapter *adpt)
472{
473 u32 dma_ctrl = DMAR_REQ_PRI;
474
475 switch (adpt->dma_order) {
476 case emac_dma_ord_in:
477 dma_ctrl |= IN_ORDER_MODE;
478 break;
479 case emac_dma_ord_enh:
480 dma_ctrl |= ENH_ORDER_MODE;
481 break;
482 case emac_dma_ord_out:
483 dma_ctrl |= OUT_ORDER_MODE;
484 break;
485 default:
486 break;
487 }
488
489 dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
490 REGRDBLEN_BMSK;
491 dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
492 REGWRBLEN_BMSK;
493 dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
494 DMAR_DLY_CNT_BMSK;
495 dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
496 DMAW_DLY_CNT_BMSK;
497
498 /* config DMA and ensure that configuration is flushed to HW */
499 writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
500}
501
502/* set MAC address */
503static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
504{
505 u32 sta;
506
507 /* for example: 00-A0-C6-11-22-33
508 * 0<-->C6112233, 1<-->00A0.
509 */
510
511 /* low 32bit word */
512 sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
513 (((u32)addr[4]) << 8) | (((u32)addr[5]));
514 writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
515
516 /* hight 32bit word */
517 sta = (((u32)addr[0]) << 8) | (u32)addr[1];
518 writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
519}
520
521static void emac_mac_config(struct emac_adapter *adpt)
522{
523 struct net_device *netdev = adpt->netdev;
524 unsigned int max_frame;
525 u32 val;
526
527 emac_set_mac_address(adpt, netdev->dev_addr);
528
529 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
530 adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
531 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
532
533 emac_mac_dma_rings_config(adpt);
534
535 writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
536 adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
537
538 emac_mac_tx_config(adpt);
539 emac_mac_rx_config(adpt);
540 emac_mac_dma_config(adpt);
541
542 val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
543 val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
544 val |= MAX_BTYPE;
545 writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
546 writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
547 writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
548}
549
550void emac_mac_reset(struct emac_adapter *adpt)
551{
552 emac_mac_stop(adpt);
553
554 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
555 usleep_range(100, 150); /* reset may take up to 100usec */
556
557 /* interrupt clear-on-read */
558 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
559}
560
561void emac_mac_start(struct emac_adapter *adpt)
562{
563 struct phy_device *phydev = adpt->phydev;
564 u32 mac, csr1;
565
566 /* enable tx queue */
567 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
568
569 /* enable rx queue */
570 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
571
572 /* enable mac control */
573 mac = readl(adpt->base + EMAC_MAC_CTRL);
574 csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
575
576 mac |= TXEN | RXEN; /* enable RX/TX */
577
578 /* We don't have ethtool support yet, so force flow-control mode
579 * to 'full' always.
580 */
581 mac |= TXFC | RXFC;
582
583 /* setup link speed */
584 mac &= ~SPEED_MASK;
585 if (phydev->speed == SPEED_1000) {
586 mac |= SPEED(2);
587 csr1 |= FREQ_MODE;
588 } else {
589 mac |= SPEED(1);
590 csr1 &= ~FREQ_MODE;
591 }
592
593 if (phydev->duplex == DUPLEX_FULL)
594 mac |= FULLD;
595 else
596 mac &= ~FULLD;
597
598 /* other parameters */
599 mac |= (CRCE | PCRCE);
600 mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
601 mac |= BROAD_EN;
602 mac |= FLCHK;
603 mac &= ~RX_CHKSUM_EN;
604 mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
605 DEBUG_MODE | SINGLE_PAUSE_MODE);
606
607 writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
608
609 writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
610
611 /* enable interrupt read clear, low power sleep mode and
612 * the irq moderators
613 */
614
615 writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
616 writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
617 IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
618
619 emac_mac_mode_config(adpt);
620
621 emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
622 (HEADER_ENABLE | HEADER_CNT_EN), 0);
623
624 emac_reg_update32(adpt->csr + EMAC_EMAC_WRAPPER_CSR2, 0, WOL_EN);
625}
626
627void emac_mac_stop(struct emac_adapter *adpt)
628{
629 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
630 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
631 emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
632 usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
633}
634
635/* Free all descriptors of given transmit queue */
636static void emac_tx_q_descs_free(struct emac_adapter *adpt)
637{
638 struct emac_tx_queue *tx_q = &adpt->tx_q;
639 unsigned int i;
640 size_t size;
641
642 /* ring already cleared, nothing to do */
643 if (!tx_q->tpd.tpbuff)
644 return;
645
646 for (i = 0; i < tx_q->tpd.count; i++) {
647 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
648
649 if (tpbuf->dma_addr) {
650 dma_unmap_single(adpt->netdev->dev.parent,
651 tpbuf->dma_addr, tpbuf->length,
652 DMA_TO_DEVICE);
653 tpbuf->dma_addr = 0;
654 }
655 if (tpbuf->skb) {
656 dev_kfree_skb_any(tpbuf->skb);
657 tpbuf->skb = NULL;
658 }
659 }
660
661 size = sizeof(struct emac_buffer) * tx_q->tpd.count;
662 memset(tx_q->tpd.tpbuff, 0, size);
663
664 /* clear the descriptor ring */
665 memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
666
667 tx_q->tpd.consume_idx = 0;
668 tx_q->tpd.produce_idx = 0;
669}
670
671/* Free all descriptors of given receive queue */
672static void emac_rx_q_free_descs(struct emac_adapter *adpt)
673{
674 struct device *dev = adpt->netdev->dev.parent;
675 struct emac_rx_queue *rx_q = &adpt->rx_q;
676 unsigned int i;
677 size_t size;
678
679 /* ring already cleared, nothing to do */
680 if (!rx_q->rfd.rfbuff)
681 return;
682
683 for (i = 0; i < rx_q->rfd.count; i++) {
684 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
685
686 if (rfbuf->dma_addr) {
687 dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
688 DMA_FROM_DEVICE);
689 rfbuf->dma_addr = 0;
690 }
691 if (rfbuf->skb) {
692 dev_kfree_skb(rfbuf->skb);
693 rfbuf->skb = NULL;
694 }
695 }
696
697 size = sizeof(struct emac_buffer) * rx_q->rfd.count;
698 memset(rx_q->rfd.rfbuff, 0, size);
699
700 /* clear the descriptor rings */
701 memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
702 rx_q->rrd.produce_idx = 0;
703 rx_q->rrd.consume_idx = 0;
704
705 memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
706 rx_q->rfd.produce_idx = 0;
707 rx_q->rfd.consume_idx = 0;
708}
709
710/* Free all buffers associated with given transmit queue */
711static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
712{
713 struct emac_tx_queue *tx_q = &adpt->tx_q;
714
715 emac_tx_q_descs_free(adpt);
716
717 kfree(tx_q->tpd.tpbuff);
718 tx_q->tpd.tpbuff = NULL;
719 tx_q->tpd.v_addr = NULL;
720 tx_q->tpd.dma_addr = 0;
721 tx_q->tpd.size = 0;
722}
723
724/* Allocate TX descriptor ring for the given transmit queue */
725static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
726 struct emac_tx_queue *tx_q)
727{
728 struct emac_ring_header *ring_header = &adpt->ring_header;
729 size_t size;
730
731 size = sizeof(struct emac_buffer) * tx_q->tpd.count;
732 tx_q->tpd.tpbuff = kzalloc(size, GFP_KERNEL);
733 if (!tx_q->tpd.tpbuff)
734 return -ENOMEM;
735
736 tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
737 tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
738 tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
739 ring_header->used += ALIGN(tx_q->tpd.size, 8);
740 tx_q->tpd.produce_idx = 0;
741 tx_q->tpd.consume_idx = 0;
742
743 return 0;
744}
745
746/* Free all buffers associated with given transmit queue */
747static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
748{
749 struct emac_rx_queue *rx_q = &adpt->rx_q;
750
751 emac_rx_q_free_descs(adpt);
752
753 kfree(rx_q->rfd.rfbuff);
754 rx_q->rfd.rfbuff = NULL;
755
756 rx_q->rfd.v_addr = NULL;
757 rx_q->rfd.dma_addr = 0;
758 rx_q->rfd.size = 0;
759
760 rx_q->rrd.v_addr = NULL;
761 rx_q->rrd.dma_addr = 0;
762 rx_q->rrd.size = 0;
763}
764
765/* Allocate RX descriptor rings for the given receive queue */
766static int emac_rx_descs_alloc(struct emac_adapter *adpt)
767{
768 struct emac_ring_header *ring_header = &adpt->ring_header;
769 struct emac_rx_queue *rx_q = &adpt->rx_q;
770 size_t size;
771
772 size = sizeof(struct emac_buffer) * rx_q->rfd.count;
773 rx_q->rfd.rfbuff = kzalloc(size, GFP_KERNEL);
774 if (!rx_q->rfd.rfbuff)
775 return -ENOMEM;
776
777 rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
778 rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
779
780 rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
781 rx_q->rrd.v_addr = ring_header->v_addr + ring_header->used;
782 ring_header->used += ALIGN(rx_q->rrd.size, 8);
783
784 rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
785 rx_q->rfd.v_addr = ring_header->v_addr + ring_header->used;
786 ring_header->used += ALIGN(rx_q->rfd.size, 8);
787
788 rx_q->rrd.produce_idx = 0;
789 rx_q->rrd.consume_idx = 0;
790
791 rx_q->rfd.produce_idx = 0;
792 rx_q->rfd.consume_idx = 0;
793
794 return 0;
795}
796
797/* Allocate all TX and RX descriptor rings */
798int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
799{
800 struct emac_ring_header *ring_header = &adpt->ring_header;
801 struct device *dev = adpt->netdev->dev.parent;
802 unsigned int num_tx_descs = adpt->tx_desc_cnt;
803 unsigned int num_rx_descs = adpt->rx_desc_cnt;
804 int ret;
805
806 adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
807
808 adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
809 adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
810
811 /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
812 * hence the additional padding bytes are allocated.
813 */
814 ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
815 num_rx_descs * (adpt->rfd_size * 4) +
816 num_rx_descs * (adpt->rrd_size * 4) +
817 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
818
819 ring_header->used = 0;
820 ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
821 &ring_header->dma_addr,
822 GFP_KERNEL);
823 if (!ring_header->v_addr)
824 return -ENOMEM;
825
826 ring_header->used = ALIGN(ring_header->dma_addr, 8) -
827 ring_header->dma_addr;
828
829 ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
830 if (ret) {
831 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
832 goto err_alloc_tx;
833 }
834
835 ret = emac_rx_descs_alloc(adpt);
836 if (ret) {
837 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
838 goto err_alloc_rx;
839 }
840
841 return 0;
842
843err_alloc_rx:
844 emac_tx_q_bufs_free(adpt);
845err_alloc_tx:
846 dma_free_coherent(dev, ring_header->size,
847 ring_header->v_addr, ring_header->dma_addr);
848
849 ring_header->v_addr = NULL;
850 ring_header->dma_addr = 0;
851 ring_header->size = 0;
852 ring_header->used = 0;
853
854 return ret;
855}
856
857/* Free all TX and RX descriptor rings */
858void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
859{
860 struct emac_ring_header *ring_header = &adpt->ring_header;
861 struct device *dev = adpt->netdev->dev.parent;
862
863 emac_tx_q_bufs_free(adpt);
864 emac_rx_q_bufs_free(adpt);
865
866 dma_free_coherent(dev, ring_header->size,
867 ring_header->v_addr, ring_header->dma_addr);
868
869 ring_header->v_addr = NULL;
870 ring_header->dma_addr = 0;
871 ring_header->size = 0;
872 ring_header->used = 0;
873}
874
875/* Initialize descriptor rings */
876static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
877{
878 unsigned int i;
879
880 adpt->tx_q.tpd.produce_idx = 0;
881 adpt->tx_q.tpd.consume_idx = 0;
882 for (i = 0; i < adpt->tx_q.tpd.count; i++)
883 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
884
885 adpt->rx_q.rrd.produce_idx = 0;
886 adpt->rx_q.rrd.consume_idx = 0;
887 adpt->rx_q.rfd.produce_idx = 0;
888 adpt->rx_q.rfd.consume_idx = 0;
889 for (i = 0; i < adpt->rx_q.rfd.count; i++)
890 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
891}
892
893/* Produce new receive free descriptor */
894static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
895 struct emac_rx_queue *rx_q,
896 dma_addr_t addr)
897{
898 u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
899
900 *(hw_rfd++) = lower_32_bits(addr);
901 *hw_rfd = upper_32_bits(addr);
902
903 if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
904 rx_q->rfd.produce_idx = 0;
905}
906
907/* Fill up receive queue's RFD with preallocated receive buffers */
908static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
909 struct emac_rx_queue *rx_q)
910{
911 struct emac_buffer *curr_rxbuf;
912 struct emac_buffer *next_rxbuf;
913 unsigned int count = 0;
914 u32 next_produce_idx;
915
916 next_produce_idx = rx_q->rfd.produce_idx + 1;
917 if (next_produce_idx == rx_q->rfd.count)
918 next_produce_idx = 0;
919
920 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
921 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
922
923 /* this always has a blank rx_buffer*/
924 while (!next_rxbuf->dma_addr) {
925 struct sk_buff *skb;
926 int ret;
927
928 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
929 if (!skb)
930 break;
931
932 curr_rxbuf->dma_addr =
933 dma_map_single(adpt->netdev->dev.parent, skb->data,
934 curr_rxbuf->length, DMA_FROM_DEVICE);
935 ret = dma_mapping_error(adpt->netdev->dev.parent,
936 curr_rxbuf->dma_addr);
937 if (ret) {
938 dev_kfree_skb(skb);
939 break;
940 }
941 curr_rxbuf->skb = skb;
942 curr_rxbuf->length = adpt->rxbuf_size;
943
944 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
945 next_produce_idx = rx_q->rfd.produce_idx + 1;
946 if (next_produce_idx == rx_q->rfd.count)
947 next_produce_idx = 0;
948
949 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
950 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
951 count++;
952 }
953
954 if (count) {
955 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
956 rx_q->produce_mask;
957 emac_reg_update32(adpt->base + rx_q->produce_reg,
958 rx_q->produce_mask, prod_idx);
959 }
960}
961
962static void emac_adjust_link(struct net_device *netdev)
963{
964 struct emac_adapter *adpt = netdev_priv(netdev);
965 struct phy_device *phydev = netdev->phydev;
966
967 if (phydev->link)
968 emac_mac_start(adpt);
969 else
970 emac_mac_stop(adpt);
971
972 phy_print_status(phydev);
973}
974
975/* Bringup the interface/HW */
976int emac_mac_up(struct emac_adapter *adpt)
977{
978 struct net_device *netdev = adpt->netdev;
979 struct emac_irq *irq = &adpt->irq;
980 int ret;
981
982 emac_mac_rx_tx_ring_reset_all(adpt);
983 emac_mac_config(adpt);
984
985 ret = request_irq(irq->irq, emac_isr, 0, EMAC_MAC_IRQ_RES, irq);
986 if (ret) {
987 netdev_err(adpt->netdev, "could not request %s irq\n",
988 EMAC_MAC_IRQ_RES);
989 return ret;
990 }
991
992 emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
993
994 ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
995 PHY_INTERFACE_MODE_SGMII);
996 if (ret) {
997 netdev_err(adpt->netdev, "could not connect phy\n");
998 free_irq(irq->irq, irq);
999 return ret;
1000 }
1001
1002 /* enable mac irq */
1003 writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
1004 writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
1005
Timur Tabi3e884492016-11-07 10:51:40 -06001006 /* Enable pause frames. Without this feature, the EMAC has been shown
1007 * to receive (and drop) frames with FCS errors at gigabit connections.
1008 */
1009 adpt->phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1010 adpt->phydev->advertising |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1011
Timur Tabib9b17de2016-08-31 18:22:08 -05001012 adpt->phydev->irq = PHY_IGNORE_INTERRUPT;
1013 phy_start(adpt->phydev);
1014
1015 napi_enable(&adpt->rx_q.napi);
1016 netif_start_queue(netdev);
1017
1018 return 0;
1019}
1020
1021/* Bring down the interface/HW */
1022void emac_mac_down(struct emac_adapter *adpt)
1023{
1024 struct net_device *netdev = adpt->netdev;
1025
1026 netif_stop_queue(netdev);
1027 napi_disable(&adpt->rx_q.napi);
1028
1029 phy_stop(adpt->phydev);
Timur Tabib9b17de2016-08-31 18:22:08 -05001030
Timur Tabi93966b72016-10-14 14:14:35 -05001031 /* Interrupts must be disabled before the PHY is disconnected, to
1032 * avoid a race condition where adjust_link is null when we get
1033 * an interrupt.
1034 */
Timur Tabib9b17de2016-08-31 18:22:08 -05001035 writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
1036 writel(0, adpt->base + EMAC_INT_MASK);
1037 synchronize_irq(adpt->irq.irq);
1038 free_irq(adpt->irq.irq, &adpt->irq);
1039
Timur Tabi93966b72016-10-14 14:14:35 -05001040 phy_disconnect(adpt->phydev);
1041
Timur Tabib9b17de2016-08-31 18:22:08 -05001042 emac_mac_reset(adpt);
1043
1044 emac_tx_q_descs_free(adpt);
1045 netdev_reset_queue(adpt->netdev);
1046 emac_rx_q_free_descs(adpt);
1047}
1048
1049/* Consume next received packet descriptor */
1050static bool emac_rx_process_rrd(struct emac_adapter *adpt,
1051 struct emac_rx_queue *rx_q,
1052 struct emac_rrd *rrd)
1053{
1054 u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
1055
1056 rrd->word[3] = *(hw_rrd + 3);
1057
1058 if (!RRD_UPDT(rrd))
1059 return false;
1060
1061 rrd->word[4] = 0;
1062 rrd->word[5] = 0;
1063
1064 rrd->word[0] = *(hw_rrd++);
1065 rrd->word[1] = *(hw_rrd++);
1066 rrd->word[2] = *(hw_rrd++);
1067
1068 if (unlikely(RRD_NOR(rrd) != 1)) {
1069 netdev_err(adpt->netdev,
1070 "error: multi-RFD not support yet! nor:%lu\n",
1071 RRD_NOR(rrd));
1072 }
1073
1074 /* mark rrd as processed */
1075 RRD_UPDT_SET(rrd, 0);
1076 *hw_rrd = rrd->word[3];
1077
1078 if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1079 rx_q->rrd.consume_idx = 0;
1080
1081 return true;
1082}
1083
1084/* Produce new transmit descriptor */
1085static void emac_tx_tpd_create(struct emac_adapter *adpt,
1086 struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1087{
1088 u32 *hw_tpd;
1089
1090 tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1091 hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1092
1093 if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1094 tx_q->tpd.produce_idx = 0;
1095
1096 *(hw_tpd++) = tpd->word[0];
1097 *(hw_tpd++) = tpd->word[1];
1098 *(hw_tpd++) = tpd->word[2];
1099 *hw_tpd = tpd->word[3];
1100}
1101
1102/* Mark the last transmit descriptor as such (for the transmit packet) */
1103static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1104 struct emac_tx_queue *tx_q)
1105{
1106 u32 *hw_tpd =
1107 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1108 u32 tmp_tpd;
1109
1110 tmp_tpd = *(hw_tpd + 1);
1111 tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1112 *(hw_tpd + 1) = tmp_tpd;
1113}
1114
1115static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1116{
1117 struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1118 u32 consume_idx = RRD_SI(rrd);
1119 unsigned int i;
1120
1121 for (i = 0; i < RRD_NOR(rrd); i++) {
1122 rfbuf[consume_idx].skb = NULL;
1123 if (++consume_idx == rx_q->rfd.count)
1124 consume_idx = 0;
1125 }
1126
1127 rx_q->rfd.consume_idx = consume_idx;
1128 rx_q->rfd.process_idx = consume_idx;
1129}
1130
1131/* Push the received skb to upper layers */
1132static void emac_receive_skb(struct emac_rx_queue *rx_q,
1133 struct sk_buff *skb,
1134 u16 vlan_tag, bool vlan_flag)
1135{
1136 if (vlan_flag) {
1137 u16 vlan;
1138
1139 EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1140 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1141 }
1142
1143 napi_gro_receive(&rx_q->napi, skb);
1144}
1145
1146/* Process receive event */
1147void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1148 int *num_pkts, int max_pkts)
1149{
1150 u32 proc_idx, hw_consume_idx, num_consume_pkts;
1151 struct net_device *netdev = adpt->netdev;
1152 struct emac_buffer *rfbuf;
1153 unsigned int count = 0;
1154 struct emac_rrd rrd;
1155 struct sk_buff *skb;
1156 u32 reg;
1157
1158 reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1159
1160 hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1161 num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1162 (hw_consume_idx - rx_q->rrd.consume_idx) :
1163 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1164
1165 do {
1166 if (!num_consume_pkts)
1167 break;
1168
1169 if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1170 break;
1171
1172 if (likely(RRD_NOR(&rrd) == 1)) {
1173 /* good receive */
1174 rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1175 dma_unmap_single(adpt->netdev->dev.parent,
1176 rfbuf->dma_addr, rfbuf->length,
1177 DMA_FROM_DEVICE);
1178 rfbuf->dma_addr = 0;
1179 skb = rfbuf->skb;
1180 } else {
1181 netdev_err(adpt->netdev,
1182 "error: multi-RFD not support yet!\n");
1183 break;
1184 }
1185 emac_rx_rfd_clean(rx_q, &rrd);
1186 num_consume_pkts--;
1187 count++;
1188
1189 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1190 * with DF set are marked as error), drop packets based on the
1191 * error mask rather than the summary bit (ignoring L4F errors)
1192 */
1193 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1194 netif_dbg(adpt, rx_status, adpt->netdev,
1195 "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1196 rrd.word[0], rrd.word[1],
1197 rrd.word[2], rrd.word[3]);
1198
1199 dev_kfree_skb(skb);
1200 continue;
1201 }
1202
1203 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1204 skb->dev = netdev;
1205 skb->protocol = eth_type_trans(skb, skb->dev);
1206 if (netdev->features & NETIF_F_RXCSUM)
1207 skb->ip_summed = RRD_L4F(&rrd) ?
1208 CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1209 else
1210 skb_checksum_none_assert(skb);
1211
1212 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1213 (bool)RRD_CVTAG(&rrd));
1214
1215 netdev->last_rx = jiffies;
1216 (*num_pkts)++;
1217 } while (*num_pkts < max_pkts);
1218
1219 if (count) {
1220 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1221 rx_q->process_mask;
1222 emac_reg_update32(adpt->base + rx_q->process_reg,
1223 rx_q->process_mask, proc_idx);
1224 emac_mac_rx_descs_refill(adpt, rx_q);
1225 }
1226}
1227
1228/* get the number of free transmit descriptors */
1229static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1230{
1231 u32 produce_idx = tx_q->tpd.produce_idx;
1232 u32 consume_idx = tx_q->tpd.consume_idx;
1233
1234 return (consume_idx > produce_idx) ?
1235 (consume_idx - produce_idx - 1) :
1236 (tx_q->tpd.count + consume_idx - produce_idx - 1);
1237}
1238
1239/* Process transmit event */
1240void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1241{
1242 u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1243 u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1244 struct emac_buffer *tpbuf;
1245
1246 hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1247
1248 while (tx_q->tpd.consume_idx != hw_consume_idx) {
1249 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1250 if (tpbuf->dma_addr) {
1251 dma_unmap_single(adpt->netdev->dev.parent,
1252 tpbuf->dma_addr, tpbuf->length,
1253 DMA_TO_DEVICE);
1254 tpbuf->dma_addr = 0;
1255 }
1256
1257 if (tpbuf->skb) {
1258 pkts_compl++;
1259 bytes_compl += tpbuf->skb->len;
1260 dev_kfree_skb_irq(tpbuf->skb);
1261 tpbuf->skb = NULL;
1262 }
1263
1264 if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1265 tx_q->tpd.consume_idx = 0;
1266 }
1267
1268 netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1269
1270 if (netif_queue_stopped(adpt->netdev))
1271 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1272 netif_wake_queue(adpt->netdev);
1273}
1274
1275/* Initialize all queue data structures */
1276void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1277 struct emac_adapter *adpt)
1278{
1279 adpt->rx_q.netdev = adpt->netdev;
1280
1281 adpt->rx_q.produce_reg = EMAC_MAILBOX_0;
1282 adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1283 adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1284
1285 adpt->rx_q.process_reg = EMAC_MAILBOX_0;
1286 adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1287 adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1288
1289 adpt->rx_q.consume_reg = EMAC_MAILBOX_3;
1290 adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1291 adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1292
1293 adpt->rx_q.irq = &adpt->irq;
1294 adpt->rx_q.intr = adpt->irq.mask & ISR_RX_PKT;
1295
1296 adpt->tx_q.produce_reg = EMAC_MAILBOX_15;
1297 adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1298 adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1299
1300 adpt->tx_q.consume_reg = EMAC_MAILBOX_2;
1301 adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1302 adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1303}
1304
1305/* Fill up transmit descriptors with TSO and Checksum offload information */
1306static int emac_tso_csum(struct emac_adapter *adpt,
1307 struct emac_tx_queue *tx_q,
1308 struct sk_buff *skb,
1309 struct emac_tpd *tpd)
1310{
1311 unsigned int hdr_len;
1312 int ret;
1313
1314 if (skb_is_gso(skb)) {
1315 if (skb_header_cloned(skb)) {
1316 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1317 if (unlikely(ret))
1318 return ret;
1319 }
1320
1321 if (skb->protocol == htons(ETH_P_IP)) {
1322 u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1323 + ntohs(ip_hdr(skb)->tot_len);
1324 if (skb->len > pkt_len)
1325 pskb_trim(skb, pkt_len);
1326 }
1327
1328 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1329 if (unlikely(skb->len == hdr_len)) {
1330 /* we only need to do csum */
1331 netif_warn(adpt, tx_err, adpt->netdev,
1332 "tso not needed for packet with 0 data\n");
1333 goto do_csum;
1334 }
1335
1336 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1337 ip_hdr(skb)->check = 0;
1338 tcp_hdr(skb)->check =
1339 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1340 ip_hdr(skb)->daddr,
1341 0, IPPROTO_TCP, 0);
1342 TPD_IPV4_SET(tpd, 1);
1343 }
1344
1345 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1346 /* ipv6 tso need an extra tpd */
1347 struct emac_tpd extra_tpd;
1348
1349 memset(tpd, 0, sizeof(*tpd));
1350 memset(&extra_tpd, 0, sizeof(extra_tpd));
1351
1352 ipv6_hdr(skb)->payload_len = 0;
1353 tcp_hdr(skb)->check =
1354 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1355 &ipv6_hdr(skb)->daddr,
1356 0, IPPROTO_TCP, 0);
1357 TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1358 TPD_LSO_SET(&extra_tpd, 1);
1359 TPD_LSOV_SET(&extra_tpd, 1);
1360 emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1361 TPD_LSOV_SET(tpd, 1);
1362 }
1363
1364 TPD_LSO_SET(tpd, 1);
1365 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1366 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1367 return 0;
1368 }
1369
1370do_csum:
1371 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1372 unsigned int css, cso;
1373
1374 cso = skb_transport_offset(skb);
1375 if (unlikely(cso & 0x1)) {
1376 netdev_err(adpt->netdev,
1377 "error: payload offset should be even\n");
1378 return -EINVAL;
1379 }
1380 css = cso + skb->csum_offset;
1381
1382 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1383 TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1384 TPD_CSX_SET(tpd, 1);
1385 }
1386
1387 return 0;
1388}
1389
1390/* Fill up transmit descriptors */
1391static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1392 struct emac_tx_queue *tx_q, struct sk_buff *skb,
1393 struct emac_tpd *tpd)
1394{
1395 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1396 unsigned int first = tx_q->tpd.produce_idx;
1397 unsigned int len = skb_headlen(skb);
1398 struct emac_buffer *tpbuf = NULL;
1399 unsigned int mapped_len = 0;
1400 unsigned int i;
1401 int count = 0;
1402 int ret;
1403
1404 /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1405 if (TPD_LSO(tpd)) {
1406 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1407
1408 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1409 tpbuf->length = mapped_len;
1410 tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1411 skb->data, tpbuf->length,
1412 DMA_TO_DEVICE);
1413 ret = dma_mapping_error(adpt->netdev->dev.parent,
1414 tpbuf->dma_addr);
1415 if (ret)
1416 goto error;
1417
1418 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1419 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1420 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1421 emac_tx_tpd_create(adpt, tx_q, tpd);
1422 count++;
1423 }
1424
1425 if (mapped_len < len) {
1426 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1427 tpbuf->length = len - mapped_len;
1428 tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1429 skb->data + mapped_len,
1430 tpbuf->length, DMA_TO_DEVICE);
1431 ret = dma_mapping_error(adpt->netdev->dev.parent,
1432 tpbuf->dma_addr);
1433 if (ret)
1434 goto error;
1435
1436 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1437 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1438 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1439 emac_tx_tpd_create(adpt, tx_q, tpd);
1440 count++;
1441 }
1442
1443 for (i = 0; i < nr_frags; i++) {
1444 struct skb_frag_struct *frag;
1445
1446 frag = &skb_shinfo(skb)->frags[i];
1447
1448 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1449 tpbuf->length = frag->size;
1450 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1451 frag->page.p, frag->page_offset,
1452 tpbuf->length, DMA_TO_DEVICE);
1453 ret = dma_mapping_error(adpt->netdev->dev.parent,
1454 tpbuf->dma_addr);
1455 if (ret)
1456 goto error;
1457
1458 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1459 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1460 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1461 emac_tx_tpd_create(adpt, tx_q, tpd);
1462 count++;
1463 }
1464
1465 /* The last tpd */
1466 wmb();
1467 emac_tx_tpd_mark_last(adpt, tx_q);
1468
1469 /* The last buffer info contain the skb address,
1470 * so it will be freed after unmap
1471 */
1472 tpbuf->skb = skb;
1473
1474 return;
1475
1476error:
1477 /* One of the memory mappings failed, so undo everything */
1478 tx_q->tpd.produce_idx = first;
1479
1480 while (count--) {
1481 tpbuf = GET_TPD_BUFFER(tx_q, first);
1482 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1483 tpbuf->length, DMA_TO_DEVICE);
1484 tpbuf->dma_addr = 0;
1485 tpbuf->length = 0;
1486
1487 if (++first == tx_q->tpd.count)
1488 first = 0;
1489 }
1490
1491 dev_kfree_skb(skb);
1492}
1493
1494/* Transmit the packet using specified transmit queue */
1495int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1496 struct sk_buff *skb)
1497{
1498 struct emac_tpd tpd;
1499 u32 prod_idx;
1500
1501 memset(&tpd, 0, sizeof(tpd));
1502
1503 if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1504 dev_kfree_skb_any(skb);
1505 return NETDEV_TX_OK;
1506 }
1507
1508 if (skb_vlan_tag_present(skb)) {
1509 u16 tag;
1510
1511 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1512 TPD_CVLAN_TAG_SET(&tpd, tag);
1513 TPD_INSTC_SET(&tpd, 1);
1514 }
1515
1516 if (skb_network_offset(skb) != ETH_HLEN)
1517 TPD_TYP_SET(&tpd, 1);
1518
1519 emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1520
1521 netdev_sent_queue(adpt->netdev, skb->len);
1522
1523 /* Make sure the are enough free descriptors to hold one
1524 * maximum-sized SKB. We need one desc for each fragment,
1525 * one for the checksum (emac_tso_csum), one for TSO, and
1526 * and one for the SKB header.
1527 */
1528 if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1529 netif_stop_queue(adpt->netdev);
1530
1531 /* update produce idx */
1532 prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1533 tx_q->produce_mask;
1534 emac_reg_update32(adpt->base + tx_q->produce_reg,
1535 tx_q->produce_mask, prod_idx);
1536
1537 return NETDEV_TX_OK;
1538}