blob: 146dc0b040c4f35fa8dc91a57aa80f1898a55e7c [file] [log] [blame]
/* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/cpuidle.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ktime.h>
#include <linux/pm.h>
#include <linux/pm_qos.h>
#include <linux/smp.h>
#include <linux/suspend.h>
#include <linux/tick.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/regulator/krait-regulator.h>
#include <linux/cpu.h>
#include <linux/clk.h>
#include <mach/msm_iomap.h>
#include <mach/socinfo.h>
#include <mach/system.h>
#include <mach/scm.h>
#include <mach/socinfo.h>
#define CREATE_TRACE_POINTS
#include <mach/trace_msm_low_power.h>
#include <mach/msm-krait-l2-accessors.h>
#include <mach/msm_bus.h>
#include <asm/cacheflush.h>
#include <asm/hardware/gic.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/outercache.h>
#ifdef CONFIG_VFP
#include <asm/vfp.h>
#endif
#include "acpuclock.h"
#include "clock.h"
#include "avs.h"
#include <mach/cpuidle.h>
#include "idle.h"
#include "pm.h"
#include "scm-boot.h"
#include "spm.h"
#include "timer.h"
#include "pm-boot.h"
#include <mach/event_timer.h>
#include <linux/cpu_pm.h>
#define SCM_L2_RETENTION (0x2)
#define SCM_CMD_TERMINATE_PC (0x2)
#define GET_CPU_OF_ATTR(attr) \
(container_of(attr, struct msm_pm_kobj_attribute, ka)->cpu)
#define SCLK_HZ (32768)
#define NUM_OF_COUNTERS 3
#define MAX_BUF_SIZE 512
static int msm_pm_debug_mask = 1;
module_param_named(
debug_mask, msm_pm_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP
);
static int msm_pm_sleep_time_override;
module_param_named(sleep_time_override,
msm_pm_sleep_time_override, int, S_IRUGO | S_IWUSR | S_IWGRP);
enum {
MSM_PM_DEBUG_SUSPEND = BIT(0),
MSM_PM_DEBUG_POWER_COLLAPSE = BIT(1),
MSM_PM_DEBUG_SUSPEND_LIMITS = BIT(2),
MSM_PM_DEBUG_CLOCK = BIT(3),
MSM_PM_DEBUG_RESET_VECTOR = BIT(4),
MSM_PM_DEBUG_IDLE_CLK = BIT(5),
MSM_PM_DEBUG_IDLE = BIT(6),
MSM_PM_DEBUG_IDLE_LIMITS = BIT(7),
MSM_PM_DEBUG_HOTPLUG = BIT(8),
};
enum {
MSM_PM_MODE_ATTR_SUSPEND,
MSM_PM_MODE_ATTR_IDLE,
MSM_PM_MODE_ATTR_NR,
};
static char *msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_NR] = {
[MSM_PM_MODE_ATTR_SUSPEND] = "suspend_enabled",
[MSM_PM_MODE_ATTR_IDLE] = "idle_enabled",
};
struct msm_pm_kobj_attribute {
unsigned int cpu;
struct kobj_attribute ka;
};
struct msm_pm_sysfs_sleep_mode {
struct kobject *kobj;
struct attribute_group attr_group;
struct attribute *attrs[MSM_PM_MODE_ATTR_NR + 1];
struct msm_pm_kobj_attribute kas[MSM_PM_MODE_ATTR_NR];
};
static char *msm_pm_sleep_mode_labels[MSM_PM_SLEEP_MODE_NR] = {
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE] = "power_collapse",
[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT] = "wfi",
[MSM_PM_SLEEP_MODE_RETENTION] = "retention",
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE] =
"standalone_power_collapse",
};
static struct hrtimer pm_hrtimer;
static struct msm_pm_sleep_ops pm_sleep_ops;
static bool msm_pm_ldo_retention_enabled = true;
static bool msm_pm_use_sync_timer;
static struct msm_pm_cp15_save_data cp15_data;
static bool msm_pm_retention_calls_tz;
static bool msm_no_ramp_down_pc;
static struct msm_pm_sleep_status_data *msm_pm_slp_sts;
static bool msm_pm_pc_reset_timer;
static struct clk *pnoc_clk;
static int msm_pm_get_pc_mode(struct device_node *node,
const char *key, uint32_t *pc_mode_val)
{
struct pc_mode_of {
uint32_t mode;
char *mode_name;
};
int i;
struct pc_mode_of pc_modes[] = {
{MSM_PM_PC_TZ_L2_INT, "tz_l2_int"},
{MSM_PM_PC_NOTZ_L2_EXT, "no_tz_l2_ext"},
{MSM_PM_PC_TZ_L2_EXT , "tz_l2_ext"} };
int ret;
const char *pc_mode_str;
ret = of_property_read_string(node, key, &pc_mode_str);
if (ret) {
pr_debug("%s: Cannot read %s,defaulting to 0", __func__, key);
pc_mode_val = MSM_PM_PC_TZ_L2_INT;
ret = 0;
} else {
ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(pc_modes); i++) {
if (!strncmp(pc_mode_str, pc_modes[i].mode_name,
strlen(pc_modes[i].mode_name))) {
*pc_mode_val = pc_modes[i].mode;
ret = 0;
break;
}
}
}
return ret;
}
/*
* Write out the attribute.
*/
static ssize_t msm_pm_mode_attr_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
int ret = -EINVAL;
int i;
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct kernel_param kp;
unsigned int cpu;
struct msm_pm_platform_data *mode;
if (msm_pm_sleep_mode_labels[i] == NULL)
continue;
if (strcmp(kobj->name, msm_pm_sleep_mode_labels[i]))
continue;
cpu = GET_CPU_OF_ATTR(attr);
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_SUSPEND])) {
u32 arg = mode->suspend_enabled;
kp.arg = &arg;
ret = param_get_ulong(buf, &kp);
} else if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_IDLE])) {
u32 arg = mode->idle_enabled;
kp.arg = &arg;
ret = param_get_ulong(buf, &kp);
}
break;
}
if (ret > 0) {
strlcat(buf, "\n", PAGE_SIZE);
ret++;
}
return ret;
}
static ssize_t msm_pm_mode_attr_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = -EINVAL;
int i;
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct kernel_param kp;
unsigned int cpu;
struct msm_pm_platform_data *mode;
if (msm_pm_sleep_mode_labels[i] == NULL)
continue;
if (strcmp(kobj->name, msm_pm_sleep_mode_labels[i]))
continue;
cpu = GET_CPU_OF_ATTR(attr);
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_SUSPEND])) {
kp.arg = &mode->suspend_enabled;
ret = param_set_byte(buf, &kp);
} else if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_IDLE])) {
kp.arg = &mode->idle_enabled;
ret = param_set_byte(buf, &kp);
}
break;
}
return ret ? ret : count;
}
static int __devinit msm_pm_mode_sysfs_add_cpu(
unsigned int cpu, struct kobject *modes_kobj)
{
char cpu_name[8];
struct kobject *cpu_kobj;
struct msm_pm_sysfs_sleep_mode *mode = NULL;
int i, j, k;
int ret;
snprintf(cpu_name, sizeof(cpu_name), "cpu%u", cpu);
cpu_kobj = kobject_create_and_add(cpu_name, modes_kobj);
if (!cpu_kobj) {
pr_err("%s: cannot create %s kobject\n", __func__, cpu_name);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
int idx = MSM_PM_MODE(cpu, i);
if ((!msm_pm_sleep_modes[idx].suspend_supported)
&& (!msm_pm_sleep_modes[idx].idle_supported))
continue;
if (!msm_pm_sleep_mode_labels[i] ||
!msm_pm_sleep_mode_labels[i][0])
continue;
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode) {
pr_err("%s: cannot allocate memory for attributes\n",
__func__);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
mode->kobj = kobject_create_and_add(
msm_pm_sleep_mode_labels[i], cpu_kobj);
if (!mode->kobj) {
pr_err("%s: cannot create kobject\n", __func__);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
for (k = 0, j = 0; k < MSM_PM_MODE_ATTR_NR; k++) {
if ((k == MSM_PM_MODE_ATTR_IDLE) &&
!msm_pm_sleep_modes[idx].idle_supported)
continue;
if ((k == MSM_PM_MODE_ATTR_SUSPEND) &&
!msm_pm_sleep_modes[idx].suspend_supported)
continue;
sysfs_attr_init(&mode->kas[j].ka.attr);
mode->kas[j].cpu = cpu;
mode->kas[j].ka.attr.mode = 0644;
mode->kas[j].ka.show = msm_pm_mode_attr_show;
mode->kas[j].ka.store = msm_pm_mode_attr_store;
mode->kas[j].ka.attr.name = msm_pm_mode_attr_labels[k];
mode->attrs[j] = &mode->kas[j].ka.attr;
j++;
}
mode->attrs[j] = NULL;
mode->attr_group.attrs = mode->attrs;
ret = sysfs_create_group(mode->kobj, &mode->attr_group);
if (ret) {
pr_err("%s: cannot create kobject attribute group\n",
__func__);
goto mode_sysfs_add_cpu_exit;
}
}
ret = 0;
mode_sysfs_add_cpu_exit:
if (ret) {
if (mode && mode->kobj)
kobject_del(mode->kobj);
kfree(mode);
}
return ret;
}
int __devinit msm_pm_mode_sysfs_add(void)
{
struct kobject *module_kobj;
struct kobject *modes_kobj;
unsigned int cpu;
int ret;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("%s: cannot find kobject for module %s\n",
__func__, KBUILD_MODNAME);
ret = -ENOENT;
goto mode_sysfs_add_exit;
}
modes_kobj = kobject_create_and_add("modes", module_kobj);
if (!modes_kobj) {
pr_err("%s: cannot create modes kobject\n", __func__);
ret = -ENOMEM;
goto mode_sysfs_add_exit;
}
for_each_possible_cpu(cpu) {
ret = msm_pm_mode_sysfs_add_cpu(cpu, modes_kobj);
if (ret)
goto mode_sysfs_add_exit;
}
ret = 0;
mode_sysfs_add_exit:
return ret;
}
/*
* Configure hardware registers in preparation for Apps power down.
*/
static void msm_pm_config_hw_before_power_down(void)
{
return;
}
/*
* Clear hardware registers after Apps powers up.
*/
static void msm_pm_config_hw_after_power_up(void)
{
}
/*
* Configure hardware registers in preparation for SWFI.
*/
static void msm_pm_config_hw_before_swfi(void)
{
return;
}
/*
* Configure/Restore hardware registers in preparation for Retention.
*/
static void msm_pm_config_hw_after_retention(void)
{
int ret;
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_CLOCK_GATING, false);
WARN_ON(ret);
}
static void msm_pm_config_hw_before_retention(void)
{
return;
}
static void msm_pm_save_cpu_reg(void)
{
int i;
/* Only on core0 */
if (smp_processor_id())
return;
/**
* On some targets, L2 PC will turn off may reset the core
* configuration for the mux and the default may not make the core
* happy when it resumes.
* Save the active vdd, and set the core vdd to QSB max vdd, so that
* when the core resumes, it is capable of supporting the current QSB
* rate. Then restore the active vdd before switching the acpuclk rate.
*/
if (msm_pm_get_l2_flush_flag() == 1) {
cp15_data.active_vdd = msm_spm_get_vdd(0);
for (i = 0; i < cp15_data.reg_saved_state_size; i++)
cp15_data.reg_val[i] =
get_l2_indirect_reg(
cp15_data.reg_data[i]);
msm_spm_set_vdd(0, cp15_data.qsb_pc_vdd);
}
}
static void msm_pm_restore_cpu_reg(void)
{
int i;
/* Only on core0 */
if (smp_processor_id())
return;
if (msm_pm_get_l2_flush_flag() == 1) {
for (i = 0; i < cp15_data.reg_saved_state_size; i++)
set_l2_indirect_reg(
cp15_data.reg_data[i],
cp15_data.reg_val[i]);
msm_spm_set_vdd(0, cp15_data.active_vdd);
}
}
static void msm_pm_swfi(void)
{
msm_pm_config_hw_before_swfi();
msm_arch_idle();
}
static void msm_pm_retention(void)
{
int ret = 0;
msm_pm_config_hw_before_retention();
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_POWER_RETENTION, false);
WARN_ON(ret);
if (msm_pm_retention_calls_tz)
scm_call_atomic1(SCM_SVC_BOOT, SCM_CMD_TERMINATE_PC,
SCM_L2_RETENTION);
else
msm_arch_idle();
msm_pm_config_hw_after_retention();
}
static bool __ref msm_pm_spm_power_collapse(
unsigned int cpu, bool from_idle, bool notify_rpm)
{
void *entry;
bool collapsed = 0;
int ret;
bool save_cpu_regs = !cpu || from_idle;
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: notify_rpm %d\n",
cpu, __func__, (int) notify_rpm);
if (from_idle == true)
cpu_pm_enter();
ret = msm_spm_set_low_power_mode(
MSM_SPM_MODE_POWER_COLLAPSE, notify_rpm);
WARN_ON(ret);
entry = save_cpu_regs ? msm_pm_collapse_exit : msm_secondary_startup;
msm_pm_boot_config_before_pc(cpu, virt_to_phys(entry));
if (MSM_PM_DEBUG_RESET_VECTOR & msm_pm_debug_mask)
pr_info("CPU%u: %s: program vector to %p\n",
cpu, __func__, entry);
if (from_idle && msm_pm_pc_reset_timer)
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
collapsed = save_cpu_regs ? msm_pm_collapse() : msm_pm_pc_hotplug();
if (from_idle && msm_pm_pc_reset_timer)
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
msm_pm_boot_config_after_pc(cpu);
if (collapsed) {
cpu_init();
local_fiq_enable();
}
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: msm_pm_collapse returned, collapsed %d\n",
cpu, __func__, collapsed);
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_CLOCK_GATING, false);
WARN_ON(ret);
if (from_idle == true)
cpu_pm_exit();
return collapsed;
}
static bool msm_pm_power_collapse_standalone(bool from_idle)
{
unsigned int cpu = smp_processor_id();
unsigned int avsdscr;
unsigned int avscsr;
bool collapsed;
avsdscr = avs_get_avsdscr();
avscsr = avs_get_avscsr();
avs_set_avscsr(0); /* Disable AVS */
collapsed = msm_pm_spm_power_collapse(cpu, from_idle, false);
avs_set_avsdscr(avsdscr);
avs_set_avscsr(avscsr);
return collapsed;
}
static bool msm_pm_power_collapse(bool from_idle)
{
unsigned int cpu = smp_processor_id();
unsigned long saved_acpuclk_rate = 0;
unsigned int avsdscr;
unsigned int avscsr;
bool collapsed;
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: idle %d\n",
cpu, __func__, (int)from_idle);
msm_pm_config_hw_before_power_down();
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: pre power down\n", cpu, __func__);
avsdscr = avs_get_avsdscr();
avscsr = avs_get_avscsr();
avs_set_avscsr(0); /* Disable AVS */
if (cpu_online(cpu) && !msm_no_ramp_down_pc)
saved_acpuclk_rate = acpuclk_power_collapse();
if (MSM_PM_DEBUG_CLOCK & msm_pm_debug_mask)
pr_info("CPU%u: %s: change clock rate (old rate = %lu)\n",
cpu, __func__, saved_acpuclk_rate);
if (cp15_data.save_cp15)
msm_pm_save_cpu_reg();
collapsed = msm_pm_spm_power_collapse(cpu, from_idle, true);
if (cp15_data.save_cp15)
msm_pm_restore_cpu_reg();
if (cpu_online(cpu)) {
if (MSM_PM_DEBUG_CLOCK & msm_pm_debug_mask)
pr_info("CPU%u: %s: restore clock rate to %lu\n",
cpu, __func__, saved_acpuclk_rate);
if (!msm_no_ramp_down_pc &&
acpuclk_set_rate(cpu, saved_acpuclk_rate, SETRATE_PC)
< 0)
pr_err("CPU%u: %s: failed to restore clock rate(%lu)\n",
cpu, __func__, saved_acpuclk_rate);
} else {
unsigned int gic_dist_enabled;
unsigned int gic_dist_pending;
gic_dist_enabled = readl_relaxed(
MSM_QGIC_DIST_BASE + GIC_DIST_ENABLE_CLEAR);
gic_dist_pending = readl_relaxed(
MSM_QGIC_DIST_BASE + GIC_DIST_PENDING_SET);
mb();
gic_dist_pending &= gic_dist_enabled;
if (gic_dist_pending)
pr_err("CPU %d interrupted during hotplug.Pending int 0x%x\n",
cpu, gic_dist_pending);
}
avs_set_avsdscr(avsdscr);
avs_set_avscsr(avscsr);
msm_pm_config_hw_after_power_up();
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: post power up\n", cpu, __func__);
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: return\n", cpu, __func__);
return collapsed;
}
static int64_t msm_pm_timer_enter_idle(void)
{
if (msm_pm_use_sync_timer)
return ktime_to_ns(tick_nohz_get_sleep_length());
return msm_timer_enter_idle();
}
static void msm_pm_timer_exit_idle(bool timer_halted)
{
if (msm_pm_use_sync_timer)
return;
msm_timer_exit_idle((int) timer_halted);
}
static int64_t msm_pm_timer_enter_suspend(int64_t *period)
{
int64_t time = 0;
if (msm_pm_use_sync_timer)
return sched_clock();
time = msm_timer_get_sclk_time(period);
if (!time)
pr_err("%s: Unable to read sclk.\n", __func__);
return time;
}
static int64_t msm_pm_timer_exit_suspend(int64_t time, int64_t period)
{
if (msm_pm_use_sync_timer)
return sched_clock() - time;
if (time != 0) {
int64_t end_time = msm_timer_get_sclk_time(NULL);
if (end_time != 0) {
time = end_time - time;
if (time < 0)
time += period;
} else
time = 0;
}
return time;
}
/**
* pm_hrtimer_cb() : Callback function for hrtimer created if the
* core needs to be awake to handle an event.
* @hrtimer : Pointer to hrtimer
*/
static enum hrtimer_restart pm_hrtimer_cb(struct hrtimer *hrtimer)
{
return HRTIMER_NORESTART;
}
/**
* msm_pm_set_timer() : Set an hrtimer to wakeup the core in time
* to handle an event.
*/
static void msm_pm_set_timer(uint32_t modified_time_us)
{
u64 modified_time_ns = modified_time_us * NSEC_PER_USEC;
ktime_t modified_ktime = ns_to_ktime(modified_time_ns);
pm_hrtimer.function = pm_hrtimer_cb;
hrtimer_start(&pm_hrtimer, modified_ktime, HRTIMER_MODE_REL);
}
/******************************************************************************
* External Idle/Suspend Functions
*****************************************************************************/
void arch_idle(void)
{
return;
}
static inline void msm_pm_ftrace_lpm_enter(unsigned int cpu,
uint32_t latency, uint32_t sleep_us,
uint32_t wake_up,
enum msm_pm_sleep_mode mode)
{
switch (mode) {
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
trace_msm_pm_enter_wfi(cpu, latency, sleep_us, wake_up);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
trace_msm_pm_enter_spc(cpu, latency, sleep_us, wake_up);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE:
trace_msm_pm_enter_pc(cpu, latency, sleep_us, wake_up);
break;
case MSM_PM_SLEEP_MODE_RETENTION:
trace_msm_pm_enter_ret(cpu, latency, sleep_us, wake_up);
break;
default:
break;
}
}
static inline void msm_pm_ftrace_lpm_exit(unsigned int cpu,
enum msm_pm_sleep_mode mode,
bool success)
{
switch (mode) {
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
trace_msm_pm_exit_wfi(cpu, success);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
trace_msm_pm_exit_spc(cpu, success);
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE:
trace_msm_pm_exit_pc(cpu, success);
break;
case MSM_PM_SLEEP_MODE_RETENTION:
trace_msm_pm_exit_ret(cpu, success);
break;
default:
break;
}
}
static int msm_pm_idle_prepare(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index,
void **msm_pm_idle_rs_limits)
{
int i;
unsigned int power_usage = -1;
int ret = MSM_PM_SLEEP_MODE_NOT_SELECTED;
uint32_t modified_time_us = 0;
struct msm_pm_time_params time_param;
time_param.latency_us =
(uint32_t) pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
time_param.sleep_us =
(uint32_t) (ktime_to_us(tick_nohz_get_sleep_length())
& UINT_MAX);
time_param.modified_time_us = 0;
if (!dev->cpu)
time_param.next_event_us =
(uint32_t) (ktime_to_us(get_next_event_time())
& UINT_MAX);
else
time_param.next_event_us = 0;
for (i = 0; i < dev->state_count; i++) {
struct cpuidle_state *state = &drv->states[i];
struct cpuidle_state_usage *st_usage = &dev->states_usage[i];
enum msm_pm_sleep_mode mode;
bool allow;
uint32_t power;
int idx;
void *rs_limits = NULL;
mode = (enum msm_pm_sleep_mode) cpuidle_get_statedata(st_usage);
idx = MSM_PM_MODE(dev->cpu, mode);
allow = msm_pm_sleep_modes[idx].idle_enabled &&
msm_pm_sleep_modes[idx].idle_supported;
switch (mode) {
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE:
if (num_online_cpus() > 1)
allow = false;
break;
case MSM_PM_SLEEP_MODE_RETENTION:
/*
* The Krait BHS regulator doesn't have enough head
* room to drive the retention voltage on LDO and so
* has disabled retention
*/
if (!msm_pm_ldo_retention_enabled)
allow = false;
if (msm_pm_retention_calls_tz && num_online_cpus() > 1)
allow = false;
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
break;
default:
allow = false;
break;
}
if (!allow)
continue;
if (pm_sleep_ops.lowest_limits)
rs_limits = pm_sleep_ops.lowest_limits(true,
mode, &time_param, &power);
if (MSM_PM_DEBUG_IDLE & msm_pm_debug_mask)
pr_info("CPU%u:%s:%s, latency %uus, slp %uus, lim %p\n",
dev->cpu, __func__, state->desc,
time_param.latency_us,
time_param.sleep_us, rs_limits);
if (!rs_limits)
continue;
if (power < power_usage) {
power_usage = power;
modified_time_us = time_param.modified_time_us;
ret = mode;
*msm_pm_idle_rs_limits = rs_limits;
}
}
if (modified_time_us && !dev->cpu)
msm_pm_set_timer(modified_time_us);
msm_pm_ftrace_lpm_enter(dev->cpu, time_param.latency_us,
time_param.sleep_us, time_param.next_event_us,
ret);
return ret;
}
enum msm_pm_sleep_mode msm_pm_idle_enter(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
int64_t time;
bool collapsed = 1;
int exit_stat = -1;
enum msm_pm_sleep_mode sleep_mode;
void *msm_pm_idle_rs_limits = NULL;
uint32_t sleep_delay = 1;
int ret = -ENODEV;
int notify_rpm = false;
bool timer_halted = false;
sleep_mode = msm_pm_idle_prepare(dev, drv, index,
&msm_pm_idle_rs_limits);
if (!msm_pm_idle_rs_limits) {
sleep_mode = MSM_PM_SLEEP_MODE_NOT_SELECTED;
goto cpuidle_enter_bail;
}
if (MSM_PM_DEBUG_IDLE & msm_pm_debug_mask)
pr_info("CPU%u: %s: mode %d\n",
smp_processor_id(), __func__, sleep_mode);
time = ktime_to_ns(ktime_get());
if (sleep_mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE) {
int64_t ns = msm_pm_timer_enter_idle();
notify_rpm = true;
do_div(ns, NSEC_PER_SEC / SCLK_HZ);
sleep_delay = (uint32_t)ns;
if (sleep_delay == 0) /* 0 would mean infinite time */
sleep_delay = 1;
}
if (pm_sleep_ops.enter_sleep)
ret = pm_sleep_ops.enter_sleep(sleep_delay,
msm_pm_idle_rs_limits, true, notify_rpm);
if (ret)
goto cpuidle_enter_bail;
switch (sleep_mode) {
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
msm_pm_swfi();
exit_stat = MSM_PM_STAT_IDLE_WFI;
break;
case MSM_PM_SLEEP_MODE_RETENTION:
msm_pm_retention();
exit_stat = MSM_PM_STAT_RETENTION;
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
collapsed = msm_pm_power_collapse_standalone(true);
if (collapsed)
exit_stat = MSM_PM_STAT_IDLE_STANDALONE_POWER_COLLAPSE;
else
exit_stat
= MSM_PM_STAT_IDLE_FAILED_STANDALONE_POWER_COLLAPSE;
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE:
if (MSM_PM_DEBUG_IDLE_CLK & msm_pm_debug_mask)
clock_debug_print_enabled();
collapsed = msm_pm_power_collapse(true);
timer_halted = true;
if (collapsed)
exit_stat = MSM_PM_STAT_IDLE_POWER_COLLAPSE;
else
exit_stat = MSM_PM_STAT_IDLE_FAILED_POWER_COLLAPSE;
msm_pm_timer_exit_idle(timer_halted);
break;
case MSM_PM_SLEEP_MODE_NOT_SELECTED:
goto cpuidle_enter_bail;
break;
default:
__WARN();
goto cpuidle_enter_bail;
break;
}
if (pm_sleep_ops.exit_sleep)
pm_sleep_ops.exit_sleep(msm_pm_idle_rs_limits, true,
notify_rpm, collapsed);
time = ktime_to_ns(ktime_get()) - time;
msm_pm_ftrace_lpm_exit(smp_processor_id(), sleep_mode, collapsed);
if (exit_stat >= 0)
msm_pm_add_stat(exit_stat, time);
do_div(time, 1000);
dev->last_residency = (int) time;
return sleep_mode;
cpuidle_enter_bail:
dev->last_residency = 0;
if (sleep_mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE)
msm_pm_timer_exit_idle(timer_halted);
sleep_mode = MSM_PM_SLEEP_MODE_NOT_SELECTED;
return sleep_mode;
}
int msm_pm_wait_cpu_shutdown(unsigned int cpu)
{
int timeout = 0;
if (!msm_pm_slp_sts)
return 0;
if (!msm_pm_slp_sts[cpu].base_addr)
return 0;
while (1) {
/*
* Check for the SPM of the core being hotplugged to set
* its sleep state.The SPM sleep state indicates that the
* core has been power collapsed.
*/
int acc_sts = __raw_readl(msm_pm_slp_sts[cpu].base_addr);
if (acc_sts & msm_pm_slp_sts[cpu].mask)
return 0;
udelay(100);
WARN(++timeout == 20, "CPU%u didn't collape within 2ms\n",
cpu);
}
return -EBUSY;
}
void msm_pm_cpu_enter_lowpower(unsigned int cpu)
{
int i;
bool allow[MSM_PM_SLEEP_MODE_NR];
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct msm_pm_platform_data *mode;
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
allow[i] = mode->suspend_supported && mode->suspend_enabled;
}
if (MSM_PM_DEBUG_HOTPLUG & msm_pm_debug_mask)
pr_notice("CPU%u: %s: shutting down cpu\n", cpu, __func__);
if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE])
msm_pm_power_collapse(false);
else if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE])
msm_pm_power_collapse_standalone(false);
else if (allow[MSM_PM_SLEEP_MODE_RETENTION])
msm_pm_retention();
else
msm_pm_swfi();
}
static void msm_pm_ack_retention_disable(void *data)
{
/*
* This is a NULL function to ensure that the core has woken up
* and is safe to disable retention.
*/
}
/**
* msm_pm_enable_retention() - Disable/Enable retention on all cores
* @enable: Enable/Disable retention
*
*/
void msm_pm_enable_retention(bool enable)
{
if (enable == msm_pm_ldo_retention_enabled)
return;
msm_pm_ldo_retention_enabled = enable;
/*
* If retention is being disabled, wakeup all online core to ensure
* that it isn't executing retention. Offlined cores need not be woken
* up as they enter the deepest sleep mode, namely RPM assited power
* collapse
*/
if (!enable) {
preempt_disable();
smp_call_function_many(cpu_online_mask,
msm_pm_ack_retention_disable,
NULL, true);
preempt_enable();
}
}
EXPORT_SYMBOL(msm_pm_enable_retention);
static int msm_pm_enter(suspend_state_t state)
{
bool allow[MSM_PM_SLEEP_MODE_NR];
int i;
int64_t period = 0;
int64_t time = msm_pm_timer_enter_suspend(&period);
struct msm_pm_time_params time_param;
time_param.latency_us = -1;
time_param.sleep_us = -1;
time_param.next_event_us = 0;
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s\n", __func__);
if (smp_processor_id()) {
__WARN();
goto enter_exit;
}
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct msm_pm_platform_data *mode;
mode = &msm_pm_sleep_modes[MSM_PM_MODE(0, i)];
allow[i] = mode->suspend_supported && mode->suspend_enabled;
}
if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE]) {
void *rs_limits = NULL;
int ret = -ENODEV;
uint32_t power;
uint32_t msm_pm_max_sleep_time = 0;
int collapsed = 0;
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: power collapse\n", __func__);
clock_debug_print_enabled();
if (msm_pm_sleep_time_override > 0) {
int64_t ns = NSEC_PER_SEC *
(int64_t) msm_pm_sleep_time_override;
do_div(ns, NSEC_PER_SEC / SCLK_HZ);
msm_pm_max_sleep_time = (uint32_t) ns;
}
if (pm_sleep_ops.lowest_limits)
rs_limits = pm_sleep_ops.lowest_limits(false,
MSM_PM_SLEEP_MODE_POWER_COLLAPSE, &time_param, &power);
if (rs_limits) {
if (pm_sleep_ops.enter_sleep)
ret = pm_sleep_ops.enter_sleep(
msm_pm_max_sleep_time,
rs_limits, false, true);
if (!ret) {
collapsed = msm_pm_power_collapse(false);
if (pm_sleep_ops.exit_sleep) {
pm_sleep_ops.exit_sleep(rs_limits,
false, true, collapsed);
}
}
} else {
pr_err("%s: cannot find the lowest power limit\n",
__func__);
}
time = msm_pm_timer_exit_suspend(time, period);
if (collapsed)
msm_pm_add_stat(MSM_PM_STAT_SUSPEND, time);
else
msm_pm_add_stat(MSM_PM_STAT_FAILED_SUSPEND, time);
} else if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE]) {
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: standalone power collapse\n", __func__);
msm_pm_power_collapse_standalone(false);
} else if (allow[MSM_PM_SLEEP_MODE_RETENTION]) {
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: retention\n", __func__);
msm_pm_retention();
} else if (allow[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT]) {
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: swfi\n", __func__);
msm_pm_swfi();
}
enter_exit:
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: return\n", __func__);
return 0;
}
void msm_pm_set_sleep_ops(struct msm_pm_sleep_ops *ops)
{
if (ops)
pm_sleep_ops = *ops;
}
int msm_suspend_prepare(void)
{
if (pnoc_clk != NULL)
clk_disable_unprepare(pnoc_clk);
return 0;
}
void msm_suspend_wake(void)
{
if (pnoc_clk != NULL)
clk_prepare_enable(pnoc_clk);
}
static const struct platform_suspend_ops msm_pm_ops = {
.enter = msm_pm_enter,
.valid = suspend_valid_only_mem,
.prepare_late = msm_suspend_prepare,
.wake = msm_suspend_wake,
};
static int __devinit msm_pm_snoc_client_probe(struct platform_device *pdev)
{
int rc = 0;
static struct msm_bus_scale_pdata *msm_pm_bus_pdata;
static uint32_t msm_pm_bus_client;
msm_pm_bus_pdata = msm_bus_cl_get_pdata(pdev);
if (msm_pm_bus_pdata) {
msm_pm_bus_client =
msm_bus_scale_register_client(msm_pm_bus_pdata);
if (!msm_pm_bus_client) {
pr_err("%s: Failed to register SNOC client",
__func__);
rc = -ENXIO;
goto snoc_cl_probe_done;
}
rc = msm_bus_scale_client_update_request(msm_pm_bus_client, 1);
if (rc)
pr_err("%s: Error setting bus rate", __func__);
}
snoc_cl_probe_done:
return rc;
}
static int __devinit msm_cpu_status_probe(struct platform_device *pdev)
{
struct msm_pm_sleep_status_data *pdata;
char *key;
u32 cpu;
if (!pdev)
return -EFAULT;
msm_pm_slp_sts =
kzalloc(sizeof(*msm_pm_slp_sts) * num_possible_cpus(),
GFP_KERNEL);
if (!msm_pm_slp_sts)
return -ENOMEM;
if (pdev->dev.of_node) {
struct resource *res;
u32 offset;
int rc;
u32 mask;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
goto fail_free_mem;
key = "qcom,cpu-alias-addr";
rc = of_property_read_u32(pdev->dev.of_node, key, &offset);
if (rc)
goto fail_free_mem;
key = "qcom,sleep-status-mask";
rc = of_property_read_u32(pdev->dev.of_node, key,
&mask);
if (rc)
goto fail_free_mem;
for_each_possible_cpu(cpu) {
msm_pm_slp_sts[cpu].base_addr =
ioremap(res->start + cpu * offset,
resource_size(res));
msm_pm_slp_sts[cpu].mask = mask;
if (!msm_pm_slp_sts[cpu].base_addr)
goto failed_of_node;
}
} else {
pdata = pdev->dev.platform_data;
if (!pdev->dev.platform_data)
goto fail_free_mem;
for_each_possible_cpu(cpu) {
msm_pm_slp_sts[cpu].base_addr =
pdata->base_addr + cpu * pdata->cpu_offset;
msm_pm_slp_sts[cpu].mask = pdata->mask;
}
}
return 0;
failed_of_node:
pr_info("%s(): Failed to key=%s\n", __func__, key);
for_each_possible_cpu(cpu) {
if (msm_pm_slp_sts[cpu].base_addr)
iounmap(msm_pm_slp_sts[cpu].base_addr);
}
fail_free_mem:
kfree(msm_pm_slp_sts);
return -EINVAL;
};
static struct of_device_id msm_slp_sts_match_tbl[] = {
{.compatible = "qcom,cpu-sleep-status"},
{},
};
static struct platform_driver msm_cpu_status_driver = {
.probe = msm_cpu_status_probe,
.driver = {
.name = "cpu_slp_status",
.owner = THIS_MODULE,
.of_match_table = msm_slp_sts_match_tbl,
},
};
static struct of_device_id msm_snoc_clnt_match_tbl[] = {
{.compatible = "qcom,pm-snoc-client"},
{},
};
static struct platform_driver msm_cpu_pm_snoc_client_driver = {
.probe = msm_pm_snoc_client_probe,
.driver = {
.name = "pm_snoc_client",
.owner = THIS_MODULE,
.of_match_table = msm_snoc_clnt_match_tbl,
},
};
static int __init msm_pm_setup_saved_state(void)
{
pgd_t *pc_pgd;
pmd_t *pmd;
unsigned long pmdval;
unsigned long exit_phys;
dma_addr_t temp_phys;
/* Page table for cores to come back up safely. */
pc_pgd = pgd_alloc(&init_mm);
if (!pc_pgd)
return -ENOMEM;
exit_phys = virt_to_phys(msm_pm_collapse_exit);
pmd = pmd_offset(pud_offset(pc_pgd + pgd_index(exit_phys),exit_phys),
exit_phys);
pmdval = (exit_phys & PGDIR_MASK) |
PMD_TYPE_SECT | PMD_SECT_AP_WRITE;
pmd[0] = __pmd(pmdval);
pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
msm_saved_state = dma_zalloc_coherent(NULL, CPU_SAVED_STATE_SIZE *
num_possible_cpus(),
&temp_phys, 0);
if (!msm_saved_state)
return -ENOMEM;
/*
* Explicitly cast here since msm_saved_state_phys is defined
* in assembly and we want to avoid any kind of truncation
* or endian problems.
*/
msm_saved_state_phys = (unsigned long)temp_phys;
/* It is remotely possible that the code in msm_pm_collapse_exit()
* which turns on the MMU with this mapping is in the
* next even-numbered megabyte beyond the
* start of msm_pm_collapse_exit().
* Map this megabyte in as well.
*/
pmd[2] = __pmd(pmdval + (2 << (PGDIR_SHIFT - 1)));
flush_pmd_entry(pmd);
msm_pm_pc_pgd = virt_to_phys(pc_pgd);
clean_caches((unsigned long)&msm_pm_pc_pgd, sizeof(msm_pm_pc_pgd),
virt_to_phys(&msm_pm_pc_pgd));
return 0;
}
arch_initcall(msm_pm_setup_saved_state);
static void setup_broadcast_timer(void *arg)
{
int cpu = smp_processor_id();
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ON, &cpu);
}
static int setup_broadcast_cpuhp_notify(struct notifier_block *n,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
smp_call_function_single(cpu, setup_broadcast_timer, NULL, 1);
break;
}
return NOTIFY_OK;
}
static struct notifier_block setup_broadcast_notifier = {
.notifier_call = setup_broadcast_cpuhp_notify,
};
static int __init msm_pm_init(void)
{
enum msm_pm_time_stats_id enable_stats[] = {
MSM_PM_STAT_IDLE_WFI,
MSM_PM_STAT_RETENTION,
MSM_PM_STAT_IDLE_STANDALONE_POWER_COLLAPSE,
MSM_PM_STAT_IDLE_POWER_COLLAPSE,
MSM_PM_STAT_SUSPEND,
};
msm_pm_mode_sysfs_add();
msm_pm_add_stats(enable_stats, ARRAY_SIZE(enable_stats));
suspend_set_ops(&msm_pm_ops);
hrtimer_init(&pm_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
msm_cpuidle_init();
if (msm_pm_pc_reset_timer) {
on_each_cpu(setup_broadcast_timer, NULL, 1);
register_cpu_notifier(&setup_broadcast_notifier);
}
return 0;
}
static void __devinit msm_pm_set_flush_fn(uint32_t pc_mode)
{
msm_pm_disable_l2_fn = NULL;
msm_pm_enable_l2_fn = NULL;
msm_pm_flush_l2_fn = outer_flush_all;
if (pc_mode == MSM_PM_PC_NOTZ_L2_EXT) {
msm_pm_disable_l2_fn = outer_disable;
msm_pm_enable_l2_fn = outer_resume;
}
}
struct msm_pc_debug_counters_buffer {
void __iomem *reg;
u32 len;
char buf[MAX_BUF_SIZE];
};
static inline u32 msm_pc_debug_counters_read_register(
void __iomem *reg, int index , int offset)
{
return readl_relaxed(reg + (index * 4 + offset) * 4);
}
static char *counter_name[] = {
"PC Entry Counter",
"Warmboot Entry Counter",
"PC Bailout Counter"
};
static int msm_pc_debug_counters_copy(
struct msm_pc_debug_counters_buffer *data)
{
int j;
u32 stat;
unsigned int cpu;
for_each_possible_cpu(cpu) {
data->len += scnprintf(data->buf + data->len,
sizeof(data->buf)-data->len,
"CPU%d\n", cpu);
for (j = 0; j < NUM_OF_COUNTERS; j++) {
stat = msm_pc_debug_counters_read_register(
data->reg, cpu, j);
data->len += scnprintf(data->buf + data->len,
sizeof(data->buf)-data->len,
"\t%s : %d\n", counter_name[j],
stat);
}
}
return data->len;
}
static int msm_pc_debug_counters_file_read(struct file *file,
char __user *bufu, size_t count, loff_t *ppos)
{
struct msm_pc_debug_counters_buffer *data;
data = file->private_data;
if (!data)
return -EINVAL;
if (!bufu)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, bufu, count))
return -EFAULT;
if (*ppos >= data->len && data->len == 0)
data->len = msm_pc_debug_counters_copy(data);
return simple_read_from_buffer(bufu, count, ppos,
data->buf, data->len);
}
static int msm_pc_debug_counters_file_open(struct inode *inode,
struct file *file)
{
struct msm_pc_debug_counters_buffer *buf;
void __iomem *msm_pc_debug_counters_reg;
msm_pc_debug_counters_reg = inode->i_private;
if (!msm_pc_debug_counters_reg)
return -EINVAL;
file->private_data = kzalloc(
sizeof(struct msm_pc_debug_counters_buffer), GFP_KERNEL);
if (!file->private_data) {
pr_err("%s: ERROR kmalloc failed to allocate %d bytes\n",
__func__, sizeof(struct msm_pc_debug_counters_buffer));
return -ENOMEM;
}
buf = file->private_data;
buf->reg = msm_pc_debug_counters_reg;
return 0;
}
static int msm_pc_debug_counters_file_close(struct inode *inode,
struct file *file)
{
kfree(file->private_data);
return 0;
}
static const struct file_operations msm_pc_debug_counters_fops = {
.open = msm_pc_debug_counters_file_open,
.read = msm_pc_debug_counters_file_read,
.release = msm_pc_debug_counters_file_close,
.llseek = no_llseek,
};
static int __devinit msm_pm_8x60_probe(struct platform_device *pdev)
{
char *key = NULL;
struct dentry *dent = NULL;
struct resource *res = NULL;
int i ;
struct msm_pm_init_data_type pdata_local;
int ret = 0;
memset(&pdata_local, 0, sizeof(struct msm_pm_init_data_type));
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res) {
msm_pc_debug_counters_phys = res->start;
WARN_ON(resource_size(res) < SZ_64);
msm_pc_debug_counters = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (msm_pc_debug_counters)
for (i = 0; i < resource_size(res)/4; i++)
__raw_writel(0, msm_pc_debug_counters + i * 4);
}
if (!msm_pc_debug_counters) {
msm_pc_debug_counters = 0;
msm_pc_debug_counters_phys = 0;
} else {
dent = debugfs_create_file("pc_debug_counter", S_IRUGO, NULL,
msm_pc_debug_counters,
&msm_pc_debug_counters_fops);
if (!dent)
pr_err("%s: ERROR debugfs_create_file failed\n",
__func__);
}
if (!pdev->dev.of_node) {
struct msm_pm_init_data_type *d = pdev->dev.platform_data;
if (!d)
goto pm_8x60_probe_done;
memcpy(&pdata_local, d, sizeof(struct msm_pm_init_data_type));
} else {
key = "qcom,pc-mode";
ret = msm_pm_get_pc_mode(pdev->dev.of_node,
key,
&pdata_local.pc_mode);
if (ret) {
pr_debug("%s: Error reading key %s",
__func__, key);
return -EINVAL;
}
key = "qcom,use-sync-timer";
pdata_local.use_sync_timer =
of_property_read_bool(pdev->dev.of_node, key);
key = "qcom,saw-turns-off-pll";
msm_no_ramp_down_pc = of_property_read_bool(pdev->dev.of_node,
key);
key = "qcom,pc-resets-timer";
msm_pm_pc_reset_timer = of_property_read_bool(
pdev->dev.of_node, key);
}
if (pdata_local.cp15_data.reg_data &&
pdata_local.cp15_data.reg_saved_state_size > 0) {
cp15_data.reg_data = kzalloc(sizeof(uint32_t) *
pdata_local.cp15_data.reg_saved_state_size,
GFP_KERNEL);
if (!cp15_data.reg_data)
return -ENOMEM;
cp15_data.reg_val = kzalloc(sizeof(uint32_t) *
pdata_local.cp15_data.reg_saved_state_size,
GFP_KERNEL);
if (cp15_data.reg_val)
return -ENOMEM;
memcpy(cp15_data.reg_data, pdata_local.cp15_data.reg_data,
pdata_local.cp15_data.reg_saved_state_size *
sizeof(uint32_t));
}
msm_pm_set_flush_fn(pdata_local.pc_mode);
msm_pm_use_sync_timer = pdata_local.use_sync_timer;
msm_pm_retention_calls_tz = pdata_local.retention_calls_tz;
pm_8x60_probe_done:
msm_pm_init();
if (pdev->dev.of_node)
of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
return ret;
}
static struct of_device_id msm_pm_8x60_table[] = {
{.compatible = "qcom,pm-8x60"},
{},
};
static struct platform_driver msm_pm_8x60_driver = {
.probe = msm_pm_8x60_probe,
.driver = {
.name = "pm-8x60",
.owner = THIS_MODULE,
.of_match_table = msm_pm_8x60_table,
},
};
static int __init msm_pm_8x60_init(void)
{
int rc;
rc = platform_driver_register(&msm_cpu_pm_snoc_client_driver);
if (rc) {
pr_err("%s(): failed to register driver %s\n", __func__,
msm_cpu_pm_snoc_client_driver.driver.name);
return rc;
}
pnoc_clk = clk_get_sys("pm_8x60", "bus_clk");
if (IS_ERR(pnoc_clk))
pnoc_clk = NULL;
else {
clk_set_rate(pnoc_clk, 19200000);
rc = clk_prepare_enable(pnoc_clk);
if (rc)
pr_err("%s: PNOC clock enable failed\n", __func__);
}
return platform_driver_register(&msm_pm_8x60_driver);
}
device_initcall(msm_pm_8x60_init);
void __init msm_pm_sleep_status_init(void)
{
platform_driver_register(&msm_cpu_status_driver);
}