Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/arm/vfp/vfp.h b/arch/arm/vfp/vfp.h
new file mode 100644
index 0000000..55a02bc
--- /dev/null
+++ b/arch/arm/vfp/vfp.h
@@ -0,0 +1,344 @@
+/*
+ *  linux/arch/arm/vfp/vfp.h
+ *
+ *  Copyright (C) 2004 ARM Limited.
+ *  Written by Deep Blue Solutions Limited.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
+{
+	if (shift) {
+		if (shift < 32)
+			val = val >> shift | ((val << (32 - shift)) != 0);
+		else
+			val = val != 0;
+	}
+	return val;
+}
+
+static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
+{
+	if (shift) {
+		if (shift < 64)
+			val = val >> shift | ((val << (64 - shift)) != 0);
+		else
+			val = val != 0;
+	}
+	return val;
+}
+
+static inline u32 vfp_hi64to32jamming(u64 val)
+{
+	u32 v;
+
+	asm(
+	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"
+	"movcc	%0, %R1\n\t"
+	"orrcs	%0, %R1, #1"
+	: "=r" (v) : "r" (val) : "cc");
+
+	return v;
+}
+
+static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
+{
+	asm(	"adds	%Q0, %Q2, %Q4\n\t"
+		"adcs	%R0, %R2, %R4\n\t"
+		"adcs	%Q1, %Q3, %Q5\n\t"
+		"adc	%R1, %R3, %R5"
+	    : "=r" (nl), "=r" (nh)
+	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
+	    : "cc");
+	*resh = nh;
+	*resl = nl;
+}
+
+static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
+{
+	asm(	"subs	%Q0, %Q2, %Q4\n\t"
+		"sbcs	%R0, %R2, %R4\n\t"
+		"sbcs	%Q1, %Q3, %Q5\n\t"
+		"sbc	%R1, %R3, %R5\n\t"
+	    : "=r" (nl), "=r" (nh)
+	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
+	    : "cc");
+	*resh = nh;
+	*resl = nl;
+}
+
+static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
+{
+	u32 nh, nl, mh, ml;
+	u64 rh, rma, rmb, rl;
+
+	nl = n;
+	ml = m;
+	rl = (u64)nl * ml;
+
+	nh = n >> 32;
+	rma = (u64)nh * ml;
+
+	mh = m >> 32;
+	rmb = (u64)nl * mh;
+	rma += rmb;
+
+	rh = (u64)nh * mh;
+	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
+
+	rma <<= 32;
+	rl += rma;
+	rh += (rl < rma);
+
+	*resl = rl;
+	*resh = rh;
+}
+
+static inline void shift64left(u64 *resh, u64 *resl, u64 n)
+{
+	*resh = n >> 63;
+	*resl = n << 1;
+}
+
+static inline u64 vfp_hi64multiply64(u64 n, u64 m)
+{
+	u64 rh, rl;
+	mul64to128(&rh, &rl, n, m);
+	return rh | (rl != 0);
+}
+
+static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
+{
+	u64 mh, ml, remh, reml, termh, terml, z;
+
+	if (nh >= m)
+		return ~0ULL;
+	mh = m >> 32;
+	z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32;
+	mul64to128(&termh, &terml, m, z);
+	sub128(&remh, &reml, nh, nl, termh, terml);
+	ml = m << 32;
+	while ((s64)remh < 0) {
+		z -= 0x100000000ULL;
+		add128(&remh, &reml, remh, reml, mh, ml);
+	}
+	remh = (remh << 32) | (reml >> 32);
+	z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh;
+	return z;
+}
+
+/*
+ * Operations on unpacked elements
+ */
+#define vfp_sign_negate(sign)	(sign ^ 0x8000)
+
+/*
+ * Single-precision
+ */
+struct vfp_single {
+	s16	exponent;
+	u16	sign;
+	u32	significand;
+};
+
+extern s32 vfp_get_float(unsigned int reg);
+extern void vfp_put_float(unsigned int reg, s32 val);
+
+/*
+ * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
+ * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
+ * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
+ *  which are not propagated to the float upon packing.
+ */
+#define VFP_SINGLE_MANTISSA_BITS	(23)
+#define VFP_SINGLE_EXPONENT_BITS	(8)
+#define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
+#define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
+
+/*
+ * The bit in an unpacked float which indicates that it is a quiet NaN
+ */
+#define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
+
+/*
+ * Operations on packed single-precision numbers
+ */
+#define vfp_single_packed_sign(v)	((v) & 0x80000000)
+#define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
+#define vfp_single_packed_abs(v)	((v) & ~0x80000000)
+#define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
+#define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
+
+/*
+ * Unpack a single-precision float.  Note that this returns the magnitude
+ * of the single-precision float mantissa with the 1. if necessary,
+ * aligned to bit 30.
+ */
+static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
+{
+	u32 significand;
+
+	s->sign = vfp_single_packed_sign(val) >> 16,
+	s->exponent = vfp_single_packed_exponent(val);
+
+	significand = (u32) val;
+	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
+	if (s->exponent && s->exponent != 255)
+		significand |= 0x40000000;
+	s->significand = significand;
+}
+
+/*
+ * Re-pack a single-precision float.  This assumes that the float is
+ * already normalised such that the MSB is bit 30, _not_ bit 31.
+ */
+static inline s32 vfp_single_pack(struct vfp_single *s)
+{
+	u32 val;
+	val = (s->sign << 16) +
+	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
+	      (s->significand >> VFP_SINGLE_LOW_BITS);
+	return (s32)val;
+}
+
+#define VFP_NUMBER		(1<<0)
+#define VFP_ZERO		(1<<1)
+#define VFP_DENORMAL		(1<<2)
+#define VFP_INFINITY		(1<<3)
+#define VFP_NAN			(1<<4)
+#define VFP_NAN_SIGNAL		(1<<5)
+
+#define VFP_QNAN		(VFP_NAN)
+#define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
+
+static inline int vfp_single_type(struct vfp_single *s)
+{
+	int type = VFP_NUMBER;
+	if (s->exponent == 255) {
+		if (s->significand == 0)
+			type = VFP_INFINITY;
+		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
+			type = VFP_QNAN;
+		else
+			type = VFP_SNAN;
+	} else if (s->exponent == 0) {
+		if (s->significand == 0)
+			type |= VFP_ZERO;
+		else
+			type |= VFP_DENORMAL;
+	}
+	return type;
+}
+
+#ifndef DEBUG
+#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
+u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
+#else
+u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
+#endif
+
+/*
+ * Double-precision
+ */
+struct vfp_double {
+	s16	exponent;
+	u16	sign;
+	u64	significand;
+};
+
+/*
+ * VFP_REG_ZERO is a special register number for vfp_get_double
+ * which returns (double)0.0.  This is useful for the compare with
+ * zero instructions.
+ */
+#define VFP_REG_ZERO	16
+extern u64 vfp_get_double(unsigned int reg);
+extern void vfp_put_double(unsigned int reg, u64 val);
+
+#define VFP_DOUBLE_MANTISSA_BITS	(52)
+#define VFP_DOUBLE_EXPONENT_BITS	(11)
+#define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
+#define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
+
+/*
+ * The bit in an unpacked double which indicates that it is a quiet NaN
+ */
+#define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
+
+/*
+ * Operations on packed single-precision numbers
+ */
+#define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
+#define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
+#define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
+#define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
+#define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
+
+/*
+ * Unpack a double-precision float.  Note that this returns the magnitude
+ * of the double-precision float mantissa with the 1. if necessary,
+ * aligned to bit 62.
+ */
+static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
+{
+	u64 significand;
+
+	s->sign = vfp_double_packed_sign(val) >> 48;
+	s->exponent = vfp_double_packed_exponent(val);
+
+	significand = (u64) val;
+	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
+	if (s->exponent && s->exponent != 2047)
+		significand |= (1ULL << 62);
+	s->significand = significand;
+}
+
+/*
+ * Re-pack a double-precision float.  This assumes that the float is
+ * already normalised such that the MSB is bit 30, _not_ bit 31.
+ */
+static inline s64 vfp_double_pack(struct vfp_double *s)
+{
+	u64 val;
+	val = ((u64)s->sign << 48) +
+	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
+	      (s->significand >> VFP_DOUBLE_LOW_BITS);
+	return (s64)val;
+}
+
+static inline int vfp_double_type(struct vfp_double *s)
+{
+	int type = VFP_NUMBER;
+	if (s->exponent == 2047) {
+		if (s->significand == 0)
+			type = VFP_INFINITY;
+		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
+			type = VFP_QNAN;
+		else
+			type = VFP_SNAN;
+	} else if (s->exponent == 0) {
+		if (s->significand == 0)
+			type |= VFP_ZERO;
+		else
+			type |= VFP_DENORMAL;
+	}
+	return type;
+}
+
+u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
+
+/*
+ * System registers
+ */
+extern u32 vfp_get_sys(unsigned int reg);
+extern void vfp_put_sys(unsigned int reg, u32 val);
+
+u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
+
+/*
+ * A special flag to tell the normalisation code not to normalise.
+ */
+#define VFP_NAN_FLAG	0x100