Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/include/asm-sh/io.h b/include/asm-sh/io.h
new file mode 100644
index 0000000..6bc343f
--- /dev/null
+++ b/include/asm-sh/io.h
@@ -0,0 +1,311 @@
+#ifndef __ASM_SH_IO_H
+#define __ASM_SH_IO_H
+
+/*
+ * Convention:
+ *    read{b,w,l}/write{b,w,l} are for PCI,
+ *    while in{b,w,l}/out{b,w,l} are for ISA
+ * These may (will) be platform specific function.
+ * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
+ * and 'string' versions: ins{b,w,l}/outs{b,w,l}
+ * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
+ * do not have a memory barrier after them.
+ *
+ * In addition, we have 
+ *   ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
+ *   which are processor specific.
+ */
+
+/*
+ * We follow the Alpha convention here:
+ *  __inb expands to an inline function call (which calls via the mv)
+ *  _inb  is a real function call (note ___raw fns are _ version of __raw)
+ *  inb   by default expands to _inb, but the machine specific code may
+ *        define it to __inb if it chooses.
+ */
+
+#include <asm/cache.h>
+#include <asm/system.h>
+#include <asm/addrspace.h>
+#include <asm/machvec.h>
+#include <linux/config.h>
+
+/*
+ * Depending on which platform we are running on, we need different
+ * I/O functions.
+ */
+
+#ifdef __KERNEL__
+/*
+ * Since boards are able to define their own set of I/O routines through
+ * their respective machine vector, we always wrap through the mv.
+ *
+ * Also, in the event that a board hasn't provided its own definition for
+ * a given routine, it will be wrapped to generic code at run-time.
+ */
+
+# define __inb(p)	sh_mv.mv_inb((p))
+# define __inw(p)	sh_mv.mv_inw((p))
+# define __inl(p)	sh_mv.mv_inl((p))
+# define __outb(x,p)	sh_mv.mv_outb((x),(p))
+# define __outw(x,p)	sh_mv.mv_outw((x),(p))
+# define __outl(x,p)	sh_mv.mv_outl((x),(p))
+
+# define __inb_p(p)	sh_mv.mv_inb_p((p))
+# define __inw_p(p)	sh_mv.mv_inw_p((p))
+# define __inl_p(p)	sh_mv.mv_inl_p((p))
+# define __outb_p(x,p)	sh_mv.mv_outb_p((x),(p))
+# define __outw_p(x,p)	sh_mv.mv_outw_p((x),(p))
+# define __outl_p(x,p)	sh_mv.mv_outl_p((x),(p))
+
+# define __insb(p,b,c)	sh_mv.mv_insb((p), (b), (c))
+# define __insw(p,b,c)	sh_mv.mv_insw((p), (b), (c))
+# define __insl(p,b,c)	sh_mv.mv_insl((p), (b), (c))
+# define __outsb(p,b,c)	sh_mv.mv_outsb((p), (b), (c))
+# define __outsw(p,b,c)	sh_mv.mv_outsw((p), (b), (c))
+# define __outsl(p,b,c)	sh_mv.mv_outsl((p), (b), (c))
+
+# define __readb(a)	sh_mv.mv_readb((a))
+# define __readw(a)	sh_mv.mv_readw((a))
+# define __readl(a)	sh_mv.mv_readl((a))
+# define __writeb(v,a)	sh_mv.mv_writeb((v),(a))
+# define __writew(v,a)	sh_mv.mv_writew((v),(a))
+# define __writel(v,a)	sh_mv.mv_writel((v),(a))
+
+# define __ioremap(a,s)	sh_mv.mv_ioremap((a), (s))
+# define __iounmap(a)	sh_mv.mv_iounmap((a))
+
+# define __isa_port2addr(a)	sh_mv.mv_isa_port2addr(a)
+
+# define inb		__inb
+# define inw		__inw
+# define inl		__inl
+# define outb		__outb
+# define outw		__outw
+# define outl		__outl
+
+# define inb_p		__inb_p
+# define inw_p		__inw_p
+# define inl_p		__inl_p
+# define outb_p		__outb_p
+# define outw_p		__outw_p
+# define outl_p		__outl_p
+
+# define insb		__insb
+# define insw		__insw
+# define insl		__insl
+# define outsb		__outsb
+# define outsw		__outsw
+# define outsl		__outsl
+
+# define __raw_readb	__readb
+# define __raw_readw	__readw
+# define __raw_readl	__readl
+# define __raw_writeb	__writeb
+# define __raw_writew	__writew
+# define __raw_writel	__writel
+
+/*
+ * The platform header files may define some of these macros to use
+ * the inlined versions where appropriate.  These macros may also be
+ * redefined by userlevel programs.
+ */
+#ifdef __raw_readb
+# define readb(a)	({ unsigned long r_ = __raw_readb((unsigned long)a); mb(); r_; })
+#endif
+#ifdef __raw_readw
+# define readw(a)	({ unsigned long r_ = __raw_readw((unsigned long)a); mb(); r_; })
+#endif
+#ifdef __raw_readl
+# define readl(a)	({ unsigned long r_ = __raw_readl((unsigned long)a); mb(); r_; })
+#endif
+
+#ifdef __raw_writeb
+# define writeb(v,a)	({ __raw_writeb((v),(unsigned long)(a)); mb(); })
+#endif
+#ifdef __raw_writew
+# define writew(v,a)	({ __raw_writew((v),(unsigned long)(a)); mb(); })
+#endif
+#ifdef __raw_writel
+# define writel(v,a)	({ __raw_writel((v),(unsigned long)(a)); mb(); })
+#endif
+
+#define readb_relaxed(a) readb(a)
+#define readw_relaxed(a) readw(a)
+#define readl_relaxed(a) readl(a)
+
+#define mmiowb()
+
+/*
+ * If the platform has PC-like I/O, this function converts the offset into
+ * an address.
+ */
+static __inline__ unsigned long isa_port2addr(unsigned long offset)
+{
+	return __isa_port2addr(offset);
+}
+
+/*
+ * This function provides a method for the generic case where a board-specific
+ * isa_port2addr simply needs to return the port + some arbitrary port base.
+ *
+ * We use this at board setup time to implicitly set the port base, and
+ * as a result, we can use the generic isa_port2addr.
+ */
+static inline void __set_io_port_base(unsigned long pbase)
+{
+	extern unsigned long generic_io_base;
+
+	generic_io_base = pbase;
+}
+
+#define isa_readb(a) readb(isa_port2addr(a))
+#define isa_readw(a) readw(isa_port2addr(a))
+#define isa_readl(a) readl(isa_port2addr(a))
+#define isa_writeb(b,a) writeb(b,isa_port2addr(a))
+#define isa_writew(w,a) writew(w,isa_port2addr(a))
+#define isa_writel(l,a) writel(l,isa_port2addr(a))
+#define isa_memset_io(a,b,c) \
+  memset((void *)(isa_port2addr((unsigned long)a)),(b),(c))
+#define isa_memcpy_fromio(a,b,c) \
+  memcpy((a),(void *)(isa_port2addr((unsigned long)(b))),(c))
+#define isa_memcpy_toio(a,b,c) \
+  memcpy((void *)(isa_port2addr((unsigned long)(a))),(b),(c))
+
+/* We really want to try and get these to memcpy etc */
+extern void memcpy_fromio(void *, unsigned long, unsigned long);
+extern void memcpy_toio(unsigned long, const void *, unsigned long);
+extern void memset_io(unsigned long, int, unsigned long);
+
+/* SuperH on-chip I/O functions */
+static __inline__ unsigned char ctrl_inb(unsigned long addr)
+{
+	return *(volatile unsigned char*)addr;
+}
+
+static __inline__ unsigned short ctrl_inw(unsigned long addr)
+{
+	return *(volatile unsigned short*)addr;
+}
+
+static __inline__ unsigned int ctrl_inl(unsigned long addr)
+{
+	return *(volatile unsigned long*)addr;
+}
+
+static __inline__ void ctrl_outb(unsigned char b, unsigned long addr)
+{
+	*(volatile unsigned char*)addr = b;
+}
+
+static __inline__ void ctrl_outw(unsigned short b, unsigned long addr)
+{
+	*(volatile unsigned short*)addr = b;
+}
+
+static __inline__ void ctrl_outl(unsigned int b, unsigned long addr)
+{
+        *(volatile unsigned long*)addr = b;
+}
+
+#define IO_SPACE_LIMIT 0xffffffff
+
+/*
+ * Change virtual addresses to physical addresses and vv.
+ * These are trivial on the 1:1 Linux/SuperH mapping
+ */
+static __inline__ unsigned long virt_to_phys(volatile void * address)
+{
+	return PHYSADDR(address);
+}
+
+static __inline__ void * phys_to_virt(unsigned long address)
+{
+	return (void *)P1SEGADDR(address);
+}
+
+#define virt_to_bus virt_to_phys
+#define bus_to_virt phys_to_virt
+#define page_to_bus page_to_phys
+
+/*
+ * readX/writeX() are used to access memory mapped devices. On some
+ * architectures the memory mapped IO stuff needs to be accessed
+ * differently. On the x86 architecture, we just read/write the
+ * memory location directly.
+ *
+ * On SH, we have the whole physical address space mapped at all times
+ * (as MIPS does), so "ioremap()" and "iounmap()" do not need to do
+ * anything.  (This isn't true for all machines but we still handle
+ * these cases with wired TLB entries anyway ...)
+ *
+ * We cheat a bit and always return uncachable areas until we've fixed
+ * the drivers to handle caching properly.  
+ */
+static __inline__ void * ioremap(unsigned long offset, unsigned long size)
+{
+	return __ioremap(offset, size);
+}
+
+static __inline__ void iounmap(void *addr)
+{
+	return __iounmap(addr);
+}
+
+#define ioremap_nocache(off,size) ioremap(off,size)
+
+static __inline__ int check_signature(unsigned long io_addr,
+			const unsigned char *signature, int length)
+{
+	int retval = 0;
+	do {
+		if (readb(io_addr) != *signature)
+			goto out;
+		io_addr++;
+		signature++;
+		length--;
+	} while (length);
+	retval = 1;
+out:
+	return retval;
+}
+
+/*
+ * The caches on some architectures aren't dma-coherent and have need to
+ * handle this in software.  There are three types of operations that
+ * can be applied to dma buffers.
+ *
+ *  - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
+ *    writing the content of the caches back to memory, if necessary.
+ *    The function also invalidates the affected part of the caches as
+ *    necessary before DMA transfers from outside to memory.
+ *  - dma_cache_inv(start, size) invalidates the affected parts of the
+ *    caches.  Dirty lines of the caches may be written back or simply
+ *    be discarded.  This operation is necessary before dma operations
+ *    to the memory.
+ *  - dma_cache_wback(start, size) writes back any dirty lines but does
+ *    not invalidate the cache.  This can be used before DMA reads from
+ *    memory,
+ */
+
+#define dma_cache_wback_inv(_start,_size) \
+    __flush_purge_region(_start,_size)
+#define dma_cache_inv(_start,_size) \
+    __flush_invalidate_region(_start,_size)
+#define dma_cache_wback(_start,_size) \
+    __flush_wback_region(_start,_size)
+
+/*
+ * Convert a physical pointer to a virtual kernel pointer for /dev/mem
+ * access
+ */
+#define xlate_dev_mem_ptr(p)	__va(p)
+
+/*
+ * Convert a virtual cached pointer to an uncached pointer
+ */
+#define xlate_dev_kmem_ptr(p)	p
+
+#endif /* __KERNEL__ */
+
+#endif /* __ASM_SH_IO_H */