| /* |
| * HP i8042 SDC + MSM-58321 BBRTC driver. |
| * |
| * Copyright (c) 2001 Brian S. Julin |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL"). |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR |
| * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * |
| * References: |
| * System Device Controller Microprocessor Firmware Theory of Operation |
| * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2 |
| * efirtc.c by Stephane Eranian/Hewlett Packard |
| * |
| */ |
| |
| #include <linux/hp_sdc.h> |
| #include <linux/errno.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/time.h> |
| #include <linux/miscdevice.h> |
| #include <linux/proc_fs.h> |
| #include <linux/poll.h> |
| #include <linux/rtc.h> |
| |
| MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>"); |
| MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| #define RTC_VERSION "1.10d" |
| |
| static unsigned long epoch = 2000; |
| |
| static struct semaphore i8042tregs; |
| |
| static hp_sdc_irqhook hp_sdc_rtc_isr; |
| |
| static struct fasync_struct *hp_sdc_rtc_async_queue; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait); |
| |
| static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos); |
| |
| static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg); |
| |
| static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait); |
| |
| static int hp_sdc_rtc_open(struct inode *inode, struct file *file); |
| static int hp_sdc_rtc_release(struct inode *inode, struct file *file); |
| static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on); |
| |
| static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off, |
| int count, int *eof, void *data); |
| |
| static void hp_sdc_rtc_isr (int irq, void *dev_id, |
| uint8_t status, uint8_t data) |
| { |
| return; |
| } |
| |
| static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm) |
| { |
| struct semaphore tsem; |
| hp_sdc_transaction t; |
| uint8_t tseq[91]; |
| int i; |
| |
| i = 0; |
| while (i < 91) { |
| tseq[i++] = HP_SDC_ACT_DATAREG | |
| HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN; |
| tseq[i++] = 0x01; /* write i8042[0x70] */ |
| tseq[i] = i / 7; /* BBRTC reg address */ |
| i++; |
| tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */ |
| tseq[i++] = 2; /* expect 1 stat/dat pair back. */ |
| i++; i++; /* buffer for stat/dat pair */ |
| } |
| tseq[84] |= HP_SDC_ACT_SEMAPHORE; |
| t.endidx = 91; |
| t.seq = tseq; |
| t.act.semaphore = &tsem; |
| init_MUTEX_LOCKED(&tsem); |
| |
| if (hp_sdc_enqueue_transaction(&t)) return -1; |
| |
| down_interruptible(&tsem); /* Put ourselves to sleep for results. */ |
| |
| /* Check for nonpresence of BBRTC */ |
| if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] | |
| tseq[55] | tseq[62] | tseq[34] | tseq[41] | |
| tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f)) |
| return -1; |
| |
| memset(rtctm, 0, sizeof(struct rtc_time)); |
| rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10; |
| rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10; |
| rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10; |
| rtctm->tm_wday = (tseq[48] & 0x0f); |
| rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10; |
| rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10; |
| rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10; |
| |
| return 0; |
| } |
| |
| static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm) |
| { |
| struct rtc_time tm, tm_last; |
| int i = 0; |
| |
| /* MSM-58321 has no read latch, so must read twice and compare. */ |
| |
| if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1; |
| if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; |
| |
| while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) { |
| if (i++ > 4) return -1; |
| memcpy(&tm_last, &tm, sizeof(struct rtc_time)); |
| if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; |
| } |
| |
| memcpy(rtctm, &tm, sizeof(struct rtc_time)); |
| |
| return 0; |
| } |
| |
| |
| static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg) |
| { |
| hp_sdc_transaction t; |
| uint8_t tseq[26] = { |
| HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, |
| 0, |
| HP_SDC_CMD_READ_T1, 2, 0, 0, |
| HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, |
| HP_SDC_CMD_READ_T2, 2, 0, 0, |
| HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, |
| HP_SDC_CMD_READ_T3, 2, 0, 0, |
| HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, |
| HP_SDC_CMD_READ_T4, 2, 0, 0, |
| HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, |
| HP_SDC_CMD_READ_T5, 2, 0, 0 |
| }; |
| |
| t.endidx = numreg * 5; |
| |
| tseq[1] = loadcmd; |
| tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */ |
| |
| t.seq = tseq; |
| t.act.semaphore = &i8042tregs; |
| |
| down_interruptible(&i8042tregs); /* Sleep if output regs in use. */ |
| |
| if (hp_sdc_enqueue_transaction(&t)) return -1; |
| |
| down_interruptible(&i8042tregs); /* Sleep until results come back. */ |
| up(&i8042tregs); |
| |
| return (tseq[5] | |
| ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) | |
| ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32)); |
| } |
| |
| |
| /* Read the i8042 real-time clock */ |
| static inline int hp_sdc_rtc_read_rt(struct timeval *res) { |
| int64_t raw; |
| uint32_t tenms; |
| unsigned int days; |
| |
| raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5); |
| if (raw < 0) return -1; |
| |
| tenms = (uint32_t)raw & 0xffffff; |
| days = (unsigned int)(raw >> 24) & 0xffff; |
| |
| res->tv_usec = (suseconds_t)(tenms % 100) * 10000; |
| res->tv_sec = (time_t)(tenms / 100) + days * 86400; |
| |
| return 0; |
| } |
| |
| |
| /* Read the i8042 fast handshake timer */ |
| static inline int hp_sdc_rtc_read_fhs(struct timeval *res) { |
| uint64_t raw; |
| unsigned int tenms; |
| |
| raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2); |
| if (raw < 0) return -1; |
| |
| tenms = (unsigned int)raw & 0xffff; |
| |
| res->tv_usec = (suseconds_t)(tenms % 100) * 10000; |
| res->tv_sec = (time_t)(tenms / 100); |
| |
| return 0; |
| } |
| |
| |
| /* Read the i8042 match timer (a.k.a. alarm) */ |
| static inline int hp_sdc_rtc_read_mt(struct timeval *res) { |
| int64_t raw; |
| uint32_t tenms; |
| |
| raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3); |
| if (raw < 0) return -1; |
| |
| tenms = (uint32_t)raw & 0xffffff; |
| |
| res->tv_usec = (suseconds_t)(tenms % 100) * 10000; |
| res->tv_sec = (time_t)(tenms / 100); |
| |
| return 0; |
| } |
| |
| |
| /* Read the i8042 delay timer */ |
| static inline int hp_sdc_rtc_read_dt(struct timeval *res) { |
| int64_t raw; |
| uint32_t tenms; |
| |
| raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3); |
| if (raw < 0) return -1; |
| |
| tenms = (uint32_t)raw & 0xffffff; |
| |
| res->tv_usec = (suseconds_t)(tenms % 100) * 10000; |
| res->tv_sec = (time_t)(tenms / 100); |
| |
| return 0; |
| } |
| |
| |
| /* Read the i8042 cycle timer (a.k.a. periodic) */ |
| static inline int hp_sdc_rtc_read_ct(struct timeval *res) { |
| int64_t raw; |
| uint32_t tenms; |
| |
| raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3); |
| if (raw < 0) return -1; |
| |
| tenms = (uint32_t)raw & 0xffffff; |
| |
| res->tv_usec = (suseconds_t)(tenms % 100) * 10000; |
| res->tv_sec = (time_t)(tenms / 100); |
| |
| return 0; |
| } |
| |
| |
| /* Set the i8042 real-time clock */ |
| static int hp_sdc_rtc_set_rt (struct timeval *setto) |
| { |
| uint32_t tenms; |
| unsigned int days; |
| hp_sdc_transaction t; |
| uint8_t tseq[11] = { |
| HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, |
| HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0, |
| HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, |
| HP_SDC_CMD_SET_RTD, 2, 0, 0 |
| }; |
| |
| t.endidx = 10; |
| |
| if (0xffff < setto->tv_sec / 86400) return -1; |
| days = setto->tv_sec / 86400; |
| if (0xffff < setto->tv_usec / 1000000 / 86400) return -1; |
| days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400; |
| if (days > 0xffff) return -1; |
| |
| if (0xffffff < setto->tv_sec) return -1; |
| tenms = setto->tv_sec * 100; |
| if (0xffffff < setto->tv_usec / 10000) return -1; |
| tenms += setto->tv_usec / 10000; |
| if (tenms > 0xffffff) return -1; |
| |
| tseq[3] = (uint8_t)(tenms & 0xff); |
| tseq[4] = (uint8_t)((tenms >> 8) & 0xff); |
| tseq[5] = (uint8_t)((tenms >> 16) & 0xff); |
| |
| tseq[9] = (uint8_t)(days & 0xff); |
| tseq[10] = (uint8_t)((days >> 8) & 0xff); |
| |
| t.seq = tseq; |
| |
| if (hp_sdc_enqueue_transaction(&t)) return -1; |
| return 0; |
| } |
| |
| /* Set the i8042 fast handshake timer */ |
| static int hp_sdc_rtc_set_fhs (struct timeval *setto) |
| { |
| uint32_t tenms; |
| hp_sdc_transaction t; |
| uint8_t tseq[5] = { |
| HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, |
| HP_SDC_CMD_SET_FHS, 2, 0, 0 |
| }; |
| |
| t.endidx = 4; |
| |
| if (0xffff < setto->tv_sec) return -1; |
| tenms = setto->tv_sec * 100; |
| if (0xffff < setto->tv_usec / 10000) return -1; |
| tenms += setto->tv_usec / 10000; |
| if (tenms > 0xffff) return -1; |
| |
| tseq[3] = (uint8_t)(tenms & 0xff); |
| tseq[4] = (uint8_t)((tenms >> 8) & 0xff); |
| |
| t.seq = tseq; |
| |
| if (hp_sdc_enqueue_transaction(&t)) return -1; |
| return 0; |
| } |
| |
| |
| /* Set the i8042 match timer (a.k.a. alarm) */ |
| #define hp_sdc_rtc_set_mt (setto) \ |
| hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT) |
| |
| /* Set the i8042 delay timer */ |
| #define hp_sdc_rtc_set_dt (setto) \ |
| hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT) |
| |
| /* Set the i8042 cycle timer (a.k.a. periodic) */ |
| #define hp_sdc_rtc_set_ct (setto) \ |
| hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT) |
| |
| /* Set one of the i8042 3-byte wide timers */ |
| static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd) |
| { |
| uint32_t tenms; |
| hp_sdc_transaction t; |
| uint8_t tseq[6] = { |
| HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, |
| 0, 3, 0, 0, 0 |
| }; |
| |
| t.endidx = 6; |
| |
| if (0xffffff < setto->tv_sec) return -1; |
| tenms = setto->tv_sec * 100; |
| if (0xffffff < setto->tv_usec / 10000) return -1; |
| tenms += setto->tv_usec / 10000; |
| if (tenms > 0xffffff) return -1; |
| |
| tseq[1] = setcmd; |
| tseq[3] = (uint8_t)(tenms & 0xff); |
| tseq[4] = (uint8_t)((tenms >> 8) & 0xff); |
| tseq[5] = (uint8_t)((tenms >> 16) & 0xff); |
| |
| t.seq = tseq; |
| |
| if (hp_sdc_enqueue_transaction(&t)) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) { |
| ssize_t retval; |
| |
| if (count < sizeof(unsigned long)) |
| return -EINVAL; |
| |
| retval = put_user(68, (unsigned long __user *)buf); |
| return retval; |
| } |
| |
| static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait) |
| { |
| unsigned long l; |
| |
| l = 0; |
| if (l != 0) |
| return POLLIN | POLLRDNORM; |
| return 0; |
| } |
| |
| static int hp_sdc_rtc_open(struct inode *inode, struct file *file) |
| { |
| return 0; |
| } |
| |
| static int hp_sdc_rtc_release(struct inode *inode, struct file *file) |
| { |
| /* Turn off interrupts? */ |
| |
| if (file->f_flags & FASYNC) { |
| hp_sdc_rtc_fasync (-1, file, 0); |
| } |
| |
| return 0; |
| } |
| |
| static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on) |
| { |
| return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue); |
| } |
| |
| static int hp_sdc_rtc_proc_output (char *buf) |
| { |
| #define YN(bit) ("no") |
| #define NY(bit) ("yes") |
| char *p; |
| struct rtc_time tm; |
| struct timeval tv; |
| |
| memset(&tm, 0, sizeof(struct rtc_time)); |
| |
| p = buf; |
| |
| if (hp_sdc_rtc_read_bbrtc(&tm)) { |
| p += sprintf(p, "BBRTC\t\t: READ FAILED!\n"); |
| } else { |
| p += sprintf(p, |
| "rtc_time\t: %02d:%02d:%02d\n" |
| "rtc_date\t: %04d-%02d-%02d\n" |
| "rtc_epoch\t: %04lu\n", |
| tm.tm_hour, tm.tm_min, tm.tm_sec, |
| tm.tm_year + 1900, tm.tm_mon + 1, |
| tm.tm_mday, epoch); |
| } |
| |
| if (hp_sdc_rtc_read_rt(&tv)) { |
| p += sprintf(p, "i8042 rtc\t: READ FAILED!\n"); |
| } else { |
| p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n", |
| tv.tv_sec, tv.tv_usec/1000); |
| } |
| |
| if (hp_sdc_rtc_read_fhs(&tv)) { |
| p += sprintf(p, "handshake\t: READ FAILED!\n"); |
| } else { |
| p += sprintf(p, "handshake\t: %ld.%02d seconds\n", |
| tv.tv_sec, tv.tv_usec/1000); |
| } |
| |
| if (hp_sdc_rtc_read_mt(&tv)) { |
| p += sprintf(p, "alarm\t\t: READ FAILED!\n"); |
| } else { |
| p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n", |
| tv.tv_sec, tv.tv_usec/1000); |
| } |
| |
| if (hp_sdc_rtc_read_dt(&tv)) { |
| p += sprintf(p, "delay\t\t: READ FAILED!\n"); |
| } else { |
| p += sprintf(p, "delay\t\t: %ld.%02d seconds\n", |
| tv.tv_sec, tv.tv_usec/1000); |
| } |
| |
| if (hp_sdc_rtc_read_ct(&tv)) { |
| p += sprintf(p, "periodic\t: READ FAILED!\n"); |
| } else { |
| p += sprintf(p, "periodic\t: %ld.%02d seconds\n", |
| tv.tv_sec, tv.tv_usec/1000); |
| } |
| |
| p += sprintf(p, |
| "DST_enable\t: %s\n" |
| "BCD\t\t: %s\n" |
| "24hr\t\t: %s\n" |
| "square_wave\t: %s\n" |
| "alarm_IRQ\t: %s\n" |
| "update_IRQ\t: %s\n" |
| "periodic_IRQ\t: %s\n" |
| "periodic_freq\t: %ld\n" |
| "batt_status\t: %s\n", |
| YN(RTC_DST_EN), |
| NY(RTC_DM_BINARY), |
| YN(RTC_24H), |
| YN(RTC_SQWE), |
| YN(RTC_AIE), |
| YN(RTC_UIE), |
| YN(RTC_PIE), |
| 1UL, |
| 1 ? "okay" : "dead"); |
| |
| return p - buf; |
| #undef YN |
| #undef NY |
| } |
| |
| static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off, |
| int count, int *eof, void *data) |
| { |
| int len = hp_sdc_rtc_proc_output (page); |
| if (len <= off+count) *eof = 1; |
| *start = page + off; |
| len -= off; |
| if (len>count) len = count; |
| if (len<0) len = 0; |
| return len; |
| } |
| |
| static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| #if 1 |
| return -EINVAL; |
| #else |
| |
| struct rtc_time wtime; |
| struct timeval ttime; |
| int use_wtime = 0; |
| |
| /* This needs major work. */ |
| |
| switch (cmd) { |
| |
| case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ |
| case RTC_AIE_ON: /* Allow alarm interrupts. */ |
| case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ |
| case RTC_PIE_ON: /* Allow periodic ints */ |
| case RTC_UIE_ON: /* Allow ints for RTC updates. */ |
| case RTC_UIE_OFF: /* Allow ints for RTC updates. */ |
| { |
| /* We cannot mask individual user timers and we |
| cannot tell them apart when they occur, so it |
| would be disingenuous to succeed these IOCTLs */ |
| return -EINVAL; |
| } |
| case RTC_ALM_READ: /* Read the present alarm time */ |
| { |
| if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT; |
| if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; |
| |
| wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600; |
| wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60; |
| wtime.tm_sec = ttime.tv_sec; |
| |
| break; |
| } |
| case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ |
| { |
| return put_user(hp_sdc_rtc_freq, (unsigned long *)arg); |
| } |
| case RTC_IRQP_SET: /* Set periodic IRQ rate. */ |
| { |
| /* |
| * The max we can do is 100Hz. |
| */ |
| |
| if ((arg < 1) || (arg > 100)) return -EINVAL; |
| ttime.tv_sec = 0; |
| ttime.tv_usec = 1000000 / arg; |
| if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT; |
| hp_sdc_rtc_freq = arg; |
| return 0; |
| } |
| case RTC_ALM_SET: /* Store a time into the alarm */ |
| { |
| /* |
| * This expects a struct hp_sdc_rtc_time. Writing 0xff means |
| * "don't care" or "match all" for PC timers. The HP SDC |
| * does not support that perk, but it could be emulated fairly |
| * easily. Only the tm_hour, tm_min and tm_sec are used. |
| * We could do it with 10ms accuracy with the HP SDC, if the |
| * rtc interface left us a way to do that. |
| */ |
| struct hp_sdc_rtc_time alm_tm; |
| |
| if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg, |
| sizeof(struct hp_sdc_rtc_time))) |
| return -EFAULT; |
| |
| if (alm_tm.tm_hour > 23) return -EINVAL; |
| if (alm_tm.tm_min > 59) return -EINVAL; |
| if (alm_tm.tm_sec > 59) return -EINVAL; |
| |
| ttime.sec = alm_tm.tm_hour * 3600 + |
| alm_tm.tm_min * 60 + alm_tm.tm_sec; |
| ttime.usec = 0; |
| if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT; |
| return 0; |
| } |
| case RTC_RD_TIME: /* Read the time/date from RTC */ |
| { |
| if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; |
| break; |
| } |
| case RTC_SET_TIME: /* Set the RTC */ |
| { |
| struct rtc_time hp_sdc_rtc_tm; |
| unsigned char mon, day, hrs, min, sec, leap_yr; |
| unsigned int yrs; |
| |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg, |
| sizeof(struct rtc_time))) |
| return -EFAULT; |
| |
| yrs = hp_sdc_rtc_tm.tm_year + 1900; |
| mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ |
| day = hp_sdc_rtc_tm.tm_mday; |
| hrs = hp_sdc_rtc_tm.tm_hour; |
| min = hp_sdc_rtc_tm.tm_min; |
| sec = hp_sdc_rtc_tm.tm_sec; |
| |
| if (yrs < 1970) |
| return -EINVAL; |
| |
| leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); |
| |
| if ((mon > 12) || (day == 0)) |
| return -EINVAL; |
| if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) |
| return -EINVAL; |
| if ((hrs >= 24) || (min >= 60) || (sec >= 60)) |
| return -EINVAL; |
| |
| if ((yrs -= eH) > 255) /* They are unsigned */ |
| return -EINVAL; |
| |
| |
| return 0; |
| } |
| case RTC_EPOCH_READ: /* Read the epoch. */ |
| { |
| return put_user (epoch, (unsigned long *)arg); |
| } |
| case RTC_EPOCH_SET: /* Set the epoch. */ |
| { |
| /* |
| * There were no RTC clocks before 1900. |
| */ |
| if (arg < 1900) |
| return -EINVAL; |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| |
| epoch = arg; |
| return 0; |
| } |
| default: |
| return -EINVAL; |
| } |
| return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; |
| #endif |
| } |
| |
| static struct file_operations hp_sdc_rtc_fops = { |
| .owner = THIS_MODULE, |
| .llseek = no_llseek, |
| .read = hp_sdc_rtc_read, |
| .poll = hp_sdc_rtc_poll, |
| .ioctl = hp_sdc_rtc_ioctl, |
| .open = hp_sdc_rtc_open, |
| .release = hp_sdc_rtc_release, |
| .fasync = hp_sdc_rtc_fasync, |
| }; |
| |
| static struct miscdevice hp_sdc_rtc_dev = { |
| .minor = RTC_MINOR, |
| .name = "rtc_HIL", |
| .fops = &hp_sdc_rtc_fops |
| }; |
| |
| static int __init hp_sdc_rtc_init(void) |
| { |
| int ret; |
| |
| init_MUTEX(&i8042tregs); |
| |
| if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr))) |
| return ret; |
| misc_register(&hp_sdc_rtc_dev); |
| create_proc_read_entry ("driver/rtc", 0, NULL, |
| hp_sdc_rtc_read_proc, NULL); |
| |
| printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded " |
| "(RTC v " RTC_VERSION ")\n"); |
| |
| return 0; |
| } |
| |
| static void __exit hp_sdc_rtc_exit(void) |
| { |
| remove_proc_entry ("driver/rtc", NULL); |
| misc_deregister(&hp_sdc_rtc_dev); |
| hp_sdc_release_timer_irq(hp_sdc_rtc_isr); |
| printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n"); |
| } |
| |
| module_init(hp_sdc_rtc_init); |
| module_exit(hp_sdc_rtc_exit); |