| /* |
| * madgemc.c: Driver for the Madge Smart 16/4 MC16 MCA token ring card. |
| * |
| * Written 2000 by Adam Fritzler |
| * |
| * This software may be used and distributed according to the terms |
| * of the GNU General Public License, incorporated herein by reference. |
| * |
| * This driver module supports the following cards: |
| * - Madge Smart 16/4 Ringnode MC16 |
| * - Madge Smart 16/4 Ringnode MC32 (??) |
| * |
| * Maintainer(s): |
| * AF Adam Fritzler mid@auk.cx |
| * |
| * Modification History: |
| * 16-Jan-00 AF Created |
| * |
| */ |
| static const char version[] = "madgemc.c: v0.91 23/01/2000 by Adam Fritzler\n"; |
| |
| #include <linux/module.h> |
| #include <linux/mca.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/netdevice.h> |
| #include <linux/trdevice.h> |
| |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| |
| #include "tms380tr.h" |
| #include "madgemc.h" /* Madge-specific constants */ |
| |
| #define MADGEMC_IO_EXTENT 32 |
| #define MADGEMC_SIF_OFFSET 0x08 |
| |
| struct card_info { |
| /* |
| * These are read from the BIA ROM. |
| */ |
| unsigned int manid; |
| unsigned int cardtype; |
| unsigned int cardrev; |
| unsigned int ramsize; |
| |
| /* |
| * These are read from the MCA POS registers. |
| */ |
| unsigned int burstmode:2; |
| unsigned int fairness:1; /* 0 = Fair, 1 = Unfair */ |
| unsigned int arblevel:4; |
| unsigned int ringspeed:2; /* 0 = 4mb, 1 = 16, 2 = Auto/none */ |
| unsigned int cabletype:1; /* 0 = RJ45, 1 = DB9 */ |
| }; |
| |
| static int madgemc_open(struct net_device *dev); |
| static int madgemc_close(struct net_device *dev); |
| static int madgemc_chipset_init(struct net_device *dev); |
| static void madgemc_read_rom(struct net_device *dev, struct card_info *card); |
| static unsigned short madgemc_setnselout_pins(struct net_device *dev); |
| static void madgemc_setcabletype(struct net_device *dev, int type); |
| |
| static int madgemc_mcaproc(char *buf, int slot, void *d); |
| |
| static void madgemc_setregpage(struct net_device *dev, int page); |
| static void madgemc_setsifsel(struct net_device *dev, int val); |
| static void madgemc_setint(struct net_device *dev, int val); |
| |
| static irqreturn_t madgemc_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| |
| /* |
| * These work around paging, however they don't guarentee you're on the |
| * right page. |
| */ |
| #define SIFREADB(reg) (inb(dev->base_addr + ((reg<0x8)?reg:reg-0x8))) |
| #define SIFWRITEB(val, reg) (outb(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8))) |
| #define SIFREADW(reg) (inw(dev->base_addr + ((reg<0x8)?reg:reg-0x8))) |
| #define SIFWRITEW(val, reg) (outw(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8))) |
| |
| /* |
| * Read a byte-length value from the register. |
| */ |
| static unsigned short madgemc_sifreadb(struct net_device *dev, unsigned short reg) |
| { |
| unsigned short ret; |
| if (reg<0x8) |
| ret = SIFREADB(reg); |
| else { |
| madgemc_setregpage(dev, 1); |
| ret = SIFREADB(reg); |
| madgemc_setregpage(dev, 0); |
| } |
| return ret; |
| } |
| |
| /* |
| * Write a byte-length value to a register. |
| */ |
| static void madgemc_sifwriteb(struct net_device *dev, unsigned short val, unsigned short reg) |
| { |
| if (reg<0x8) |
| SIFWRITEB(val, reg); |
| else { |
| madgemc_setregpage(dev, 1); |
| SIFWRITEB(val, reg); |
| madgemc_setregpage(dev, 0); |
| } |
| return; |
| } |
| |
| /* |
| * Read a word-length value from a register |
| */ |
| static unsigned short madgemc_sifreadw(struct net_device *dev, unsigned short reg) |
| { |
| unsigned short ret; |
| if (reg<0x8) |
| ret = SIFREADW(reg); |
| else { |
| madgemc_setregpage(dev, 1); |
| ret = SIFREADW(reg); |
| madgemc_setregpage(dev, 0); |
| } |
| return ret; |
| } |
| |
| /* |
| * Write a word-length value to a register. |
| */ |
| static void madgemc_sifwritew(struct net_device *dev, unsigned short val, unsigned short reg) |
| { |
| if (reg<0x8) |
| SIFWRITEW(val, reg); |
| else { |
| madgemc_setregpage(dev, 1); |
| SIFWRITEW(val, reg); |
| madgemc_setregpage(dev, 0); |
| } |
| return; |
| } |
| |
| |
| |
| static int __devinit madgemc_probe(struct device *device) |
| { |
| static int versionprinted; |
| struct net_device *dev; |
| struct net_local *tp; |
| struct card_info *card; |
| struct mca_device *mdev = to_mca_device(device); |
| int ret = 0, i = 0; |
| |
| if (versionprinted++ == 0) |
| printk("%s", version); |
| |
| if(mca_device_claimed(mdev)) |
| return -EBUSY; |
| mca_device_set_claim(mdev, 1); |
| |
| dev = alloc_trdev(sizeof(struct net_local)); |
| if (!dev) { |
| printk("madgemc: unable to allocate dev space\n"); |
| mca_device_set_claim(mdev, 0); |
| ret = -ENOMEM; |
| goto getout; |
| } |
| |
| SET_MODULE_OWNER(dev); |
| dev->dma = 0; |
| |
| card = kmalloc(sizeof(struct card_info), GFP_KERNEL); |
| if (card==NULL) { |
| printk("madgemc: unable to allocate card struct\n"); |
| ret = -ENOMEM; |
| goto getout1; |
| } |
| |
| /* |
| * Parse configuration information. This all comes |
| * directly from the publicly available @002d.ADF. |
| * Get it from Madge or your local ADF library. |
| */ |
| |
| /* |
| * Base address |
| */ |
| dev->base_addr = 0x0a20 + |
| ((mdev->pos[2] & MC16_POS2_ADDR2)?0x0400:0) + |
| ((mdev->pos[0] & MC16_POS0_ADDR1)?0x1000:0) + |
| ((mdev->pos[3] & MC16_POS3_ADDR3)?0x2000:0); |
| |
| /* |
| * Interrupt line |
| */ |
| switch(mdev->pos[0] >> 6) { /* upper two bits */ |
| case 0x1: dev->irq = 3; break; |
| case 0x2: dev->irq = 9; break; /* IRQ 2 = IRQ 9 */ |
| case 0x3: dev->irq = 10; break; |
| default: dev->irq = 0; break; |
| } |
| |
| if (dev->irq == 0) { |
| printk("%s: invalid IRQ\n", dev->name); |
| ret = -EBUSY; |
| goto getout2; |
| } |
| |
| if (!request_region(dev->base_addr, MADGEMC_IO_EXTENT, |
| "madgemc")) { |
| printk(KERN_INFO "madgemc: unable to setup Smart MC in slot %d because of I/O base conflict at 0x%04lx\n", mdev->slot, dev->base_addr); |
| dev->base_addr += MADGEMC_SIF_OFFSET; |
| ret = -EBUSY; |
| goto getout2; |
| } |
| dev->base_addr += MADGEMC_SIF_OFFSET; |
| |
| /* |
| * Arbitration Level |
| */ |
| card->arblevel = ((mdev->pos[0] >> 1) & 0x7) + 8; |
| |
| /* |
| * Burst mode and Fairness |
| */ |
| card->burstmode = ((mdev->pos[2] >> 6) & 0x3); |
| card->fairness = ((mdev->pos[2] >> 4) & 0x1); |
| |
| /* |
| * Ring Speed |
| */ |
| if ((mdev->pos[1] >> 2)&0x1) |
| card->ringspeed = 2; /* not selected */ |
| else if ((mdev->pos[2] >> 5) & 0x1) |
| card->ringspeed = 1; /* 16Mb */ |
| else |
| card->ringspeed = 0; /* 4Mb */ |
| |
| /* |
| * Cable type |
| */ |
| if ((mdev->pos[1] >> 6)&0x1) |
| card->cabletype = 1; /* STP/DB9 */ |
| else |
| card->cabletype = 0; /* UTP/RJ-45 */ |
| |
| |
| /* |
| * ROM Info. This requires us to actually twiddle |
| * bits on the card, so we must ensure above that |
| * the base address is free of conflict (request_region above). |
| */ |
| madgemc_read_rom(dev, card); |
| |
| if (card->manid != 0x4d) { /* something went wrong */ |
| printk(KERN_INFO "%s: Madge MC ROM read failed (unknown manufacturer ID %02x)\n", dev->name, card->manid); |
| goto getout3; |
| } |
| |
| if ((card->cardtype != 0x08) && (card->cardtype != 0x0d)) { |
| printk(KERN_INFO "%s: Madge MC ROM read failed (unknown card ID %02x)\n", dev->name, card->cardtype); |
| ret = -EIO; |
| goto getout3; |
| } |
| |
| /* All cards except Rev 0 and 1 MC16's have 256kb of RAM */ |
| if ((card->cardtype == 0x08) && (card->cardrev <= 0x01)) |
| card->ramsize = 128; |
| else |
| card->ramsize = 256; |
| |
| printk("%s: %s Rev %d at 0x%04lx IRQ %d\n", |
| dev->name, |
| (card->cardtype == 0x08)?MADGEMC16_CARDNAME: |
| MADGEMC32_CARDNAME, card->cardrev, |
| dev->base_addr, dev->irq); |
| |
| if (card->cardtype == 0x0d) |
| printk("%s: Warning: MC32 support is experimental and highly untested\n", dev->name); |
| |
| if (card->ringspeed==2) { /* Unknown */ |
| printk("%s: Warning: Ring speed not set in POS -- Please run the reference disk and set it!\n", dev->name); |
| card->ringspeed = 1; /* default to 16mb */ |
| } |
| |
| printk("%s: RAM Size: %dKB\n", dev->name, card->ramsize); |
| |
| printk("%s: Ring Speed: %dMb/sec on %s\n", dev->name, |
| (card->ringspeed)?16:4, |
| card->cabletype?"STP/DB9":"UTP/RJ-45"); |
| printk("%s: Arbitration Level: %d\n", dev->name, |
| card->arblevel); |
| |
| printk("%s: Burst Mode: ", dev->name); |
| switch(card->burstmode) { |
| case 0: printk("Cycle steal"); break; |
| case 1: printk("Limited burst"); break; |
| case 2: printk("Delayed release"); break; |
| case 3: printk("Immediate release"); break; |
| } |
| printk(" (%s)\n", (card->fairness)?"Unfair":"Fair"); |
| |
| |
| /* |
| * Enable SIF before we assign the interrupt handler, |
| * just in case we get spurious interrupts that need |
| * handling. |
| */ |
| outb(0, dev->base_addr + MC_CONTROL_REG0); /* sanity */ |
| madgemc_setsifsel(dev, 1); |
| if (request_irq(dev->irq, madgemc_interrupt, SA_SHIRQ, |
| "madgemc", dev)) { |
| ret = -EBUSY; |
| goto getout3; |
| } |
| |
| madgemc_chipset_init(dev); /* enables interrupts! */ |
| madgemc_setcabletype(dev, card->cabletype); |
| |
| /* Setup MCA structures */ |
| mca_device_set_name(mdev, (card->cardtype == 0x08)?MADGEMC16_CARDNAME:MADGEMC32_CARDNAME); |
| mca_set_adapter_procfn(mdev->slot, madgemc_mcaproc, dev); |
| |
| printk("%s: Ring Station Address: ", dev->name); |
| printk("%2.2x", dev->dev_addr[0]); |
| for (i = 1; i < 6; i++) |
| printk(":%2.2x", dev->dev_addr[i]); |
| printk("\n"); |
| |
| if (tmsdev_init(dev, device)) { |
| printk("%s: unable to get memory for dev->priv.\n", |
| dev->name); |
| ret = -ENOMEM; |
| goto getout4; |
| } |
| tp = netdev_priv(dev); |
| |
| /* |
| * The MC16 is physically a 32bit card. However, Madge |
| * insists on calling it 16bit, so I'll assume here that |
| * they know what they're talking about. Cut off DMA |
| * at 16mb. |
| */ |
| tp->setnselout = madgemc_setnselout_pins; |
| tp->sifwriteb = madgemc_sifwriteb; |
| tp->sifreadb = madgemc_sifreadb; |
| tp->sifwritew = madgemc_sifwritew; |
| tp->sifreadw = madgemc_sifreadw; |
| tp->DataRate = (card->ringspeed)?SPEED_16:SPEED_4; |
| |
| memcpy(tp->ProductID, "Madge MCA 16/4 ", PROD_ID_SIZE + 1); |
| |
| dev->open = madgemc_open; |
| dev->stop = madgemc_close; |
| |
| tp->tmspriv = card; |
| dev_set_drvdata(device, dev); |
| |
| if (register_netdev(dev) == 0) |
| return 0; |
| |
| dev_set_drvdata(device, NULL); |
| ret = -ENOMEM; |
| getout4: |
| free_irq(dev->irq, dev); |
| getout3: |
| release_region(dev->base_addr-MADGEMC_SIF_OFFSET, |
| MADGEMC_IO_EXTENT); |
| getout2: |
| kfree(card); |
| getout1: |
| free_netdev(dev); |
| getout: |
| mca_device_set_claim(mdev, 0); |
| return ret; |
| } |
| |
| /* |
| * Handle interrupts generated by the card |
| * |
| * The MicroChannel Madge cards need slightly more handling |
| * after an interrupt than other TMS380 cards do. |
| * |
| * First we must make sure it was this card that generated the |
| * interrupt (since interrupt sharing is allowed). Then, |
| * because we're using level-triggered interrupts (as is |
| * standard on MCA), we must toggle the interrupt line |
| * on the card in order to claim and acknowledge the interrupt. |
| * Once that is done, the interrupt should be handlable in |
| * the normal tms380tr_interrupt() routine. |
| * |
| * There's two ways we can check to see if the interrupt is ours, |
| * both with their own disadvantages... |
| * |
| * 1) Read in the SIFSTS register from the TMS controller. This |
| * is guarenteed to be accurate, however, there's a fairly |
| * large performance penalty for doing so: the Madge chips |
| * must request the register from the Eagle, the Eagle must |
| * read them from its internal bus, and then take the route |
| * back out again, for a 16bit read. |
| * |
| * 2) Use the MC_CONTROL_REG0_SINTR bit from the Madge ASICs. |
| * The major disadvantage here is that the accuracy of the |
| * bit is in question. However, it cuts out the extra read |
| * cycles it takes to read the Eagle's SIF, as its only an |
| * 8bit read, and theoretically the Madge bit is directly |
| * connected to the interrupt latch coming out of the Eagle |
| * hardware (that statement is not verified). |
| * |
| * I can't determine which of these methods has the best win. For now, |
| * we make a compromise. Use the Madge way for the first interrupt, |
| * which should be the fast-path, and then once we hit the first |
| * interrupt, keep on trying using the SIF method until we've |
| * exhausted all contiguous interrupts. |
| * |
| */ |
| static irqreturn_t madgemc_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| int pending,reg1; |
| struct net_device *dev; |
| |
| if (!dev_id) { |
| printk("madgemc_interrupt: was not passed a dev_id!\n"); |
| return IRQ_NONE; |
| } |
| |
| dev = (struct net_device *)dev_id; |
| |
| /* Make sure its really us. -- the Madge way */ |
| pending = inb(dev->base_addr + MC_CONTROL_REG0); |
| if (!(pending & MC_CONTROL_REG0_SINTR)) |
| return IRQ_NONE; /* not our interrupt */ |
| |
| /* |
| * Since we're level-triggered, we may miss the rising edge |
| * of the next interrupt while we're off handling this one, |
| * so keep checking until the SIF verifies that it has nothing |
| * left for us to do. |
| */ |
| pending = STS_SYSTEM_IRQ; |
| do { |
| if (pending & STS_SYSTEM_IRQ) { |
| |
| /* Toggle the interrupt to reset the latch on card */ |
| reg1 = inb(dev->base_addr + MC_CONTROL_REG1); |
| outb(reg1 ^ MC_CONTROL_REG1_SINTEN, |
| dev->base_addr + MC_CONTROL_REG1); |
| outb(reg1, dev->base_addr + MC_CONTROL_REG1); |
| |
| /* Continue handling as normal */ |
| tms380tr_interrupt(irq, dev_id, regs); |
| |
| pending = SIFREADW(SIFSTS); /* restart - the SIF way */ |
| |
| } else |
| return IRQ_HANDLED; |
| } while (1); |
| |
| return IRQ_HANDLED; /* not reachable */ |
| } |
| |
| /* |
| * Set the card to the prefered ring speed. |
| * |
| * Unlike newer cards, the MC16/32 have their speed selection |
| * circuit connected to the Madge ASICs and not to the TMS380 |
| * NSELOUT pins. Set the ASIC bits correctly here, and return |
| * zero to leave the TMS NSELOUT bits unaffected. |
| * |
| */ |
| unsigned short madgemc_setnselout_pins(struct net_device *dev) |
| { |
| unsigned char reg1; |
| struct net_local *tp = netdev_priv(dev); |
| |
| reg1 = inb(dev->base_addr + MC_CONTROL_REG1); |
| |
| if(tp->DataRate == SPEED_16) |
| reg1 |= MC_CONTROL_REG1_SPEED_SEL; /* add for 16mb */ |
| else if (reg1 & MC_CONTROL_REG1_SPEED_SEL) |
| reg1 ^= MC_CONTROL_REG1_SPEED_SEL; /* remove for 4mb */ |
| outb(reg1, dev->base_addr + MC_CONTROL_REG1); |
| |
| return 0; /* no change */ |
| } |
| |
| /* |
| * Set the register page. This equates to the SRSX line |
| * on the TMS380Cx6. |
| * |
| * Register selection is normally done via three contiguous |
| * bits. However, some boards (such as the MC16/32) use only |
| * two bits, plus a separate bit in the glue chip. This |
| * sets the SRSX bit (the top bit). See page 4-17 in the |
| * Yellow Book for which registers are affected. |
| * |
| */ |
| static void madgemc_setregpage(struct net_device *dev, int page) |
| { |
| static int reg1; |
| |
| reg1 = inb(dev->base_addr + MC_CONTROL_REG1); |
| if ((page == 0) && (reg1 & MC_CONTROL_REG1_SRSX)) { |
| outb(reg1 ^ MC_CONTROL_REG1_SRSX, |
| dev->base_addr + MC_CONTROL_REG1); |
| } |
| else if (page == 1) { |
| outb(reg1 | MC_CONTROL_REG1_SRSX, |
| dev->base_addr + MC_CONTROL_REG1); |
| } |
| reg1 = inb(dev->base_addr + MC_CONTROL_REG1); |
| |
| return; |
| } |
| |
| /* |
| * The SIF registers are not mapped into register space by default |
| * Set this to 1 to map them, 0 to map the BIA ROM. |
| * |
| */ |
| static void madgemc_setsifsel(struct net_device *dev, int val) |
| { |
| unsigned int reg0; |
| |
| reg0 = inb(dev->base_addr + MC_CONTROL_REG0); |
| if ((val == 0) && (reg0 & MC_CONTROL_REG0_SIFSEL)) { |
| outb(reg0 ^ MC_CONTROL_REG0_SIFSEL, |
| dev->base_addr + MC_CONTROL_REG0); |
| } else if (val == 1) { |
| outb(reg0 | MC_CONTROL_REG0_SIFSEL, |
| dev->base_addr + MC_CONTROL_REG0); |
| } |
| reg0 = inb(dev->base_addr + MC_CONTROL_REG0); |
| |
| return; |
| } |
| |
| /* |
| * Enable SIF interrupts |
| * |
| * This does not enable interrupts in the SIF, but rather |
| * enables SIF interrupts to be passed onto the host. |
| * |
| */ |
| static void madgemc_setint(struct net_device *dev, int val) |
| { |
| unsigned int reg1; |
| |
| reg1 = inb(dev->base_addr + MC_CONTROL_REG1); |
| if ((val == 0) && (reg1 & MC_CONTROL_REG1_SINTEN)) { |
| outb(reg1 ^ MC_CONTROL_REG1_SINTEN, |
| dev->base_addr + MC_CONTROL_REG1); |
| } else if (val == 1) { |
| outb(reg1 | MC_CONTROL_REG1_SINTEN, |
| dev->base_addr + MC_CONTROL_REG1); |
| } |
| |
| return; |
| } |
| |
| /* |
| * Cable type is set via control register 7. Bit zero high |
| * for UTP, low for STP. |
| */ |
| static void madgemc_setcabletype(struct net_device *dev, int type) |
| { |
| outb((type==0)?MC_CONTROL_REG7_CABLEUTP:MC_CONTROL_REG7_CABLESTP, |
| dev->base_addr + MC_CONTROL_REG7); |
| } |
| |
| /* |
| * Enable the functions of the Madge chipset needed for |
| * full working order. |
| */ |
| static int madgemc_chipset_init(struct net_device *dev) |
| { |
| outb(0, dev->base_addr + MC_CONTROL_REG1); /* pull SRESET low */ |
| tms380tr_wait(100); /* wait for card to reset */ |
| |
| /* bring back into normal operating mode */ |
| outb(MC_CONTROL_REG1_NSRESET, dev->base_addr + MC_CONTROL_REG1); |
| |
| /* map SIF registers */ |
| madgemc_setsifsel(dev, 1); |
| |
| /* enable SIF interrupts */ |
| madgemc_setint(dev, 1); |
| |
| return 0; |
| } |
| |
| /* |
| * Disable the board, and put back into power-up state. |
| */ |
| static void madgemc_chipset_close(struct net_device *dev) |
| { |
| /* disable interrupts */ |
| madgemc_setint(dev, 0); |
| /* unmap SIF registers */ |
| madgemc_setsifsel(dev, 0); |
| |
| return; |
| } |
| |
| /* |
| * Read the card type (MC16 or MC32) from the card. |
| * |
| * The configuration registers are stored in two separate |
| * pages. Pages are flipped by clearing bit 3 of CONTROL_REG0 (PAGE) |
| * for page zero, or setting bit 3 for page one. |
| * |
| * Page zero contains the following data: |
| * Byte 0: Manufacturer ID (0x4D -- ASCII "M") |
| * Byte 1: Card type: |
| * 0x08 for MC16 |
| * 0x0D for MC32 |
| * Byte 2: Card revision |
| * Byte 3: Mirror of POS config register 0 |
| * Byte 4: Mirror of POS 1 |
| * Byte 5: Mirror of POS 2 |
| * |
| * Page one contains the following data: |
| * Byte 0: Unused |
| * Byte 1-6: BIA, MSB to LSB. |
| * |
| * Note that to read the BIA, we must unmap the SIF registers |
| * by clearing bit 2 of CONTROL_REG0 (SIFSEL), as the data |
| * will reside in the same logical location. For this reason, |
| * _never_ read the BIA while the Eagle processor is running! |
| * The SIF will be completely inaccessible until the BIA operation |
| * is complete. |
| * |
| */ |
| static void madgemc_read_rom(struct net_device *dev, struct card_info *card) |
| { |
| unsigned long ioaddr; |
| unsigned char reg0, reg1, tmpreg0, i; |
| |
| ioaddr = dev->base_addr; |
| |
| reg0 = inb(ioaddr + MC_CONTROL_REG0); |
| reg1 = inb(ioaddr + MC_CONTROL_REG1); |
| |
| /* Switch to page zero and unmap SIF */ |
| tmpreg0 = reg0 & ~(MC_CONTROL_REG0_PAGE + MC_CONTROL_REG0_SIFSEL); |
| outb(tmpreg0, ioaddr + MC_CONTROL_REG0); |
| |
| card->manid = inb(ioaddr + MC_ROM_MANUFACTURERID); |
| card->cardtype = inb(ioaddr + MC_ROM_ADAPTERID); |
| card->cardrev = inb(ioaddr + MC_ROM_REVISION); |
| |
| /* Switch to rom page one */ |
| outb(tmpreg0 | MC_CONTROL_REG0_PAGE, ioaddr + MC_CONTROL_REG0); |
| |
| /* Read BIA */ |
| dev->addr_len = 6; |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = inb(ioaddr + MC_ROM_BIA_START + i); |
| |
| /* Restore original register values */ |
| outb(reg0, ioaddr + MC_CONTROL_REG0); |
| outb(reg1, ioaddr + MC_CONTROL_REG1); |
| |
| return; |
| } |
| |
| static int madgemc_open(struct net_device *dev) |
| { |
| /* |
| * Go ahead and reinitialize the chipset again, just to |
| * make sure we didn't get left in a bad state. |
| */ |
| madgemc_chipset_init(dev); |
| tms380tr_open(dev); |
| return 0; |
| } |
| |
| static int madgemc_close(struct net_device *dev) |
| { |
| tms380tr_close(dev); |
| madgemc_chipset_close(dev); |
| return 0; |
| } |
| |
| /* |
| * Give some details available from /proc/mca/slotX |
| */ |
| static int madgemc_mcaproc(char *buf, int slot, void *d) |
| { |
| struct net_device *dev = (struct net_device *)d; |
| struct net_local *tp = dev->priv; |
| struct card_info *curcard = tp->tmspriv; |
| int len = 0; |
| |
| len += sprintf(buf+len, "-------\n"); |
| if (curcard) { |
| struct net_local *tp = netdev_priv(dev); |
| int i; |
| |
| len += sprintf(buf+len, "Card Revision: %d\n", curcard->cardrev); |
| len += sprintf(buf+len, "RAM Size: %dkb\n", curcard->ramsize); |
| len += sprintf(buf+len, "Cable type: %s\n", (curcard->cabletype)?"STP/DB9":"UTP/RJ-45"); |
| len += sprintf(buf+len, "Configured ring speed: %dMb/sec\n", (curcard->ringspeed)?16:4); |
| len += sprintf(buf+len, "Running ring speed: %dMb/sec\n", (tp->DataRate==SPEED_16)?16:4); |
| len += sprintf(buf+len, "Device: %s\n", dev->name); |
| len += sprintf(buf+len, "IO Port: 0x%04lx\n", dev->base_addr); |
| len += sprintf(buf+len, "IRQ: %d\n", dev->irq); |
| len += sprintf(buf+len, "Arbitration Level: %d\n", curcard->arblevel); |
| len += sprintf(buf+len, "Burst Mode: "); |
| switch(curcard->burstmode) { |
| case 0: len += sprintf(buf+len, "Cycle steal"); break; |
| case 1: len += sprintf(buf+len, "Limited burst"); break; |
| case 2: len += sprintf(buf+len, "Delayed release"); break; |
| case 3: len += sprintf(buf+len, "Immediate release"); break; |
| } |
| len += sprintf(buf+len, " (%s)\n", (curcard->fairness)?"Unfair":"Fair"); |
| |
| len += sprintf(buf+len, "Ring Station Address: "); |
| len += sprintf(buf+len, "%2.2x", dev->dev_addr[0]); |
| for (i = 1; i < 6; i++) |
| len += sprintf(buf+len, " %2.2x", dev->dev_addr[i]); |
| len += sprintf(buf+len, "\n"); |
| } else |
| len += sprintf(buf+len, "Card not configured\n"); |
| |
| return len; |
| } |
| |
| static int __devexit madgemc_remove(struct device *device) |
| { |
| struct net_device *dev = dev_get_drvdata(device); |
| struct net_local *tp; |
| struct card_info *card; |
| |
| BUG_ON(!dev); |
| |
| tp = dev->priv; |
| card = tp->tmspriv; |
| kfree(card); |
| tp->tmspriv = NULL; |
| |
| unregister_netdev(dev); |
| release_region(dev->base_addr-MADGEMC_SIF_OFFSET, MADGEMC_IO_EXTENT); |
| free_irq(dev->irq, dev); |
| tmsdev_term(dev); |
| free_netdev(dev); |
| dev_set_drvdata(device, NULL); |
| |
| return 0; |
| } |
| |
| static short madgemc_adapter_ids[] __initdata = { |
| 0x002d, |
| 0x0000 |
| }; |
| |
| static struct mca_driver madgemc_driver = { |
| .id_table = madgemc_adapter_ids, |
| .driver = { |
| .name = "madgemc", |
| .bus = &mca_bus_type, |
| .probe = madgemc_probe, |
| .remove = __devexit_p(madgemc_remove), |
| }, |
| }; |
| |
| static int __init madgemc_init (void) |
| { |
| return mca_register_driver (&madgemc_driver); |
| } |
| |
| static void __exit madgemc_exit (void) |
| { |
| mca_unregister_driver (&madgemc_driver); |
| } |
| |
| module_init(madgemc_init); |
| module_exit(madgemc_exit); |
| |
| MODULE_LICENSE("GPL"); |
| |