| #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/module.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagevec.h> | 
 | #include "extent_io.h" | 
 | #include "extent_map.h" | 
 | #include "compat.h" | 
 | #include "ctree.h" | 
 | #include "btrfs_inode.h" | 
 |  | 
 | static struct kmem_cache *extent_state_cache; | 
 | static struct kmem_cache *extent_buffer_cache; | 
 |  | 
 | static LIST_HEAD(buffers); | 
 | static LIST_HEAD(states); | 
 |  | 
 | #define LEAK_DEBUG 0 | 
 | #if LEAK_DEBUG | 
 | static DEFINE_SPINLOCK(leak_lock); | 
 | #endif | 
 |  | 
 | #define BUFFER_LRU_MAX 64 | 
 |  | 
 | struct tree_entry { | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	struct rb_node rb_node; | 
 | }; | 
 |  | 
 | struct extent_page_data { | 
 | 	struct bio *bio; | 
 | 	struct extent_io_tree *tree; | 
 | 	get_extent_t *get_extent; | 
 |  | 
 | 	/* tells writepage not to lock the state bits for this range | 
 | 	 * it still does the unlocking | 
 | 	 */ | 
 | 	unsigned int extent_locked:1; | 
 |  | 
 | 	/* tells the submit_bio code to use a WRITE_SYNC */ | 
 | 	unsigned int sync_io:1; | 
 | }; | 
 |  | 
 | int __init extent_io_init(void) | 
 | { | 
 | 	extent_state_cache = kmem_cache_create("extent_state", | 
 | 			sizeof(struct extent_state), 0, | 
 | 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); | 
 | 	if (!extent_state_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	extent_buffer_cache = kmem_cache_create("extent_buffers", | 
 | 			sizeof(struct extent_buffer), 0, | 
 | 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); | 
 | 	if (!extent_buffer_cache) | 
 | 		goto free_state_cache; | 
 | 	return 0; | 
 |  | 
 | free_state_cache: | 
 | 	kmem_cache_destroy(extent_state_cache); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void extent_io_exit(void) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	while (!list_empty(&states)) { | 
 | 		state = list_entry(states.next, struct extent_state, leak_list); | 
 | 		printk(KERN_ERR "btrfs state leak: start %llu end %llu " | 
 | 		       "state %lu in tree %p refs %d\n", | 
 | 		       (unsigned long long)state->start, | 
 | 		       (unsigned long long)state->end, | 
 | 		       state->state, state->tree, atomic_read(&state->refs)); | 
 | 		list_del(&state->leak_list); | 
 | 		kmem_cache_free(extent_state_cache, state); | 
 |  | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&buffers)) { | 
 | 		eb = list_entry(buffers.next, struct extent_buffer, leak_list); | 
 | 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu " | 
 | 		       "refs %d\n", (unsigned long long)eb->start, | 
 | 		       eb->len, atomic_read(&eb->refs)); | 
 | 		list_del(&eb->leak_list); | 
 | 		kmem_cache_free(extent_buffer_cache, eb); | 
 | 	} | 
 | 	if (extent_state_cache) | 
 | 		kmem_cache_destroy(extent_state_cache); | 
 | 	if (extent_buffer_cache) | 
 | 		kmem_cache_destroy(extent_buffer_cache); | 
 | } | 
 |  | 
 | void extent_io_tree_init(struct extent_io_tree *tree, | 
 | 			  struct address_space *mapping, gfp_t mask) | 
 | { | 
 | 	tree->state = RB_ROOT; | 
 | 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); | 
 | 	tree->ops = NULL; | 
 | 	tree->dirty_bytes = 0; | 
 | 	spin_lock_init(&tree->lock); | 
 | 	spin_lock_init(&tree->buffer_lock); | 
 | 	tree->mapping = mapping; | 
 | } | 
 |  | 
 | static struct extent_state *alloc_extent_state(gfp_t mask) | 
 | { | 
 | 	struct extent_state *state; | 
 | #if LEAK_DEBUG | 
 | 	unsigned long flags; | 
 | #endif | 
 |  | 
 | 	state = kmem_cache_alloc(extent_state_cache, mask); | 
 | 	if (!state) | 
 | 		return state; | 
 | 	state->state = 0; | 
 | 	state->private = 0; | 
 | 	state->tree = NULL; | 
 | #if LEAK_DEBUG | 
 | 	spin_lock_irqsave(&leak_lock, flags); | 
 | 	list_add(&state->leak_list, &states); | 
 | 	spin_unlock_irqrestore(&leak_lock, flags); | 
 | #endif | 
 | 	atomic_set(&state->refs, 1); | 
 | 	init_waitqueue_head(&state->wq); | 
 | 	return state; | 
 | } | 
 |  | 
 | void free_extent_state(struct extent_state *state) | 
 | { | 
 | 	if (!state) | 
 | 		return; | 
 | 	if (atomic_dec_and_test(&state->refs)) { | 
 | #if LEAK_DEBUG | 
 | 		unsigned long flags; | 
 | #endif | 
 | 		WARN_ON(state->tree); | 
 | #if LEAK_DEBUG | 
 | 		spin_lock_irqsave(&leak_lock, flags); | 
 | 		list_del(&state->leak_list); | 
 | 		spin_unlock_irqrestore(&leak_lock, flags); | 
 | #endif | 
 | 		kmem_cache_free(extent_state_cache, state); | 
 | 	} | 
 | } | 
 |  | 
 | static struct rb_node *tree_insert(struct rb_root *root, u64 offset, | 
 | 				   struct rb_node *node) | 
 | { | 
 | 	struct rb_node **p = &root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct tree_entry *entry; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct tree_entry, rb_node); | 
 |  | 
 | 		if (offset < entry->start) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (offset > entry->end) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return parent; | 
 | 	} | 
 |  | 
 | 	entry = rb_entry(node, struct tree_entry, rb_node); | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, | 
 | 				     struct rb_node **prev_ret, | 
 | 				     struct rb_node **next_ret) | 
 | { | 
 | 	struct rb_root *root = &tree->state; | 
 | 	struct rb_node *n = root->rb_node; | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *orig_prev = NULL; | 
 | 	struct tree_entry *entry; | 
 | 	struct tree_entry *prev_entry = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct tree_entry, rb_node); | 
 | 		prev = n; | 
 | 		prev_entry = entry; | 
 |  | 
 | 		if (offset < entry->start) | 
 | 			n = n->rb_left; | 
 | 		else if (offset > entry->end) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return n; | 
 | 	} | 
 |  | 
 | 	if (prev_ret) { | 
 | 		orig_prev = prev; | 
 | 		while (prev && offset > prev_entry->end) { | 
 | 			prev = rb_next(prev); | 
 | 			prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		} | 
 | 		*prev_ret = prev; | 
 | 		prev = orig_prev; | 
 | 	} | 
 |  | 
 | 	if (next_ret) { | 
 | 		prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		while (prev && offset < prev_entry->start) { | 
 | 			prev = rb_prev(prev); | 
 | 			prev_entry = rb_entry(prev, struct tree_entry, rb_node); | 
 | 		} | 
 | 		*next_ret = prev; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct rb_node *tree_search(struct extent_io_tree *tree, | 
 | 					  u64 offset) | 
 | { | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *ret; | 
 |  | 
 | 	ret = __etree_search(tree, offset, &prev, NULL); | 
 | 	if (!ret) | 
 | 		return prev; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, | 
 | 		     struct extent_state *other) | 
 | { | 
 | 	if (tree->ops && tree->ops->merge_extent_hook) | 
 | 		tree->ops->merge_extent_hook(tree->mapping->host, new, | 
 | 					     other); | 
 | } | 
 |  | 
 | /* | 
 |  * utility function to look for merge candidates inside a given range. | 
 |  * Any extents with matching state are merged together into a single | 
 |  * extent in the tree.  Extents with EXTENT_IO in their state field | 
 |  * are not merged because the end_io handlers need to be able to do | 
 |  * operations on them without sleeping (or doing allocations/splits). | 
 |  * | 
 |  * This should be called with the tree lock held. | 
 |  */ | 
 | static int merge_state(struct extent_io_tree *tree, | 
 | 		       struct extent_state *state) | 
 | { | 
 | 	struct extent_state *other; | 
 | 	struct rb_node *other_node; | 
 |  | 
 | 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) | 
 | 		return 0; | 
 |  | 
 | 	other_node = rb_prev(&state->rb_node); | 
 | 	if (other_node) { | 
 | 		other = rb_entry(other_node, struct extent_state, rb_node); | 
 | 		if (other->end == state->start - 1 && | 
 | 		    other->state == state->state) { | 
 | 			merge_cb(tree, state, other); | 
 | 			state->start = other->start; | 
 | 			other->tree = NULL; | 
 | 			rb_erase(&other->rb_node, &tree->state); | 
 | 			free_extent_state(other); | 
 | 		} | 
 | 	} | 
 | 	other_node = rb_next(&state->rb_node); | 
 | 	if (other_node) { | 
 | 		other = rb_entry(other_node, struct extent_state, rb_node); | 
 | 		if (other->start == state->end + 1 && | 
 | 		    other->state == state->state) { | 
 | 			merge_cb(tree, state, other); | 
 | 			other->start = state->start; | 
 | 			state->tree = NULL; | 
 | 			rb_erase(&state->rb_node, &tree->state); | 
 | 			free_extent_state(state); | 
 | 			state = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_state_cb(struct extent_io_tree *tree, | 
 | 			 struct extent_state *state, int *bits) | 
 | { | 
 | 	if (tree->ops && tree->ops->set_bit_hook) { | 
 | 		return tree->ops->set_bit_hook(tree->mapping->host, | 
 | 					       state, bits); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void clear_state_cb(struct extent_io_tree *tree, | 
 | 			   struct extent_state *state, int *bits) | 
 | { | 
 | 	if (tree->ops && tree->ops->clear_bit_hook) | 
 | 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits); | 
 | } | 
 |  | 
 | /* | 
 |  * insert an extent_state struct into the tree.  'bits' are set on the | 
 |  * struct before it is inserted. | 
 |  * | 
 |  * This may return -EEXIST if the extent is already there, in which case the | 
 |  * state struct is freed. | 
 |  * | 
 |  * The tree lock is not taken internally.  This is a utility function and | 
 |  * probably isn't what you want to call (see set/clear_extent_bit). | 
 |  */ | 
 | static int insert_state(struct extent_io_tree *tree, | 
 | 			struct extent_state *state, u64 start, u64 end, | 
 | 			int *bits) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	int bits_to_set = *bits & ~EXTENT_CTLBITS; | 
 | 	int ret; | 
 |  | 
 | 	if (end < start) { | 
 | 		printk(KERN_ERR "btrfs end < start %llu %llu\n", | 
 | 		       (unsigned long long)end, | 
 | 		       (unsigned long long)start); | 
 | 		WARN_ON(1); | 
 | 	} | 
 | 	state->start = start; | 
 | 	state->end = end; | 
 | 	ret = set_state_cb(tree, state, bits); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (bits_to_set & EXTENT_DIRTY) | 
 | 		tree->dirty_bytes += end - start + 1; | 
 | 	state->state |= bits_to_set; | 
 | 	node = tree_insert(&tree->state, end, &state->rb_node); | 
 | 	if (node) { | 
 | 		struct extent_state *found; | 
 | 		found = rb_entry(node, struct extent_state, rb_node); | 
 | 		printk(KERN_ERR "btrfs found node %llu %llu on insert of " | 
 | 		       "%llu %llu\n", (unsigned long long)found->start, | 
 | 		       (unsigned long long)found->end, | 
 | 		       (unsigned long long)start, (unsigned long long)end); | 
 | 		free_extent_state(state); | 
 | 		return -EEXIST; | 
 | 	} | 
 | 	state->tree = tree; | 
 | 	merge_state(tree, state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int split_cb(struct extent_io_tree *tree, struct extent_state *orig, | 
 | 		     u64 split) | 
 | { | 
 | 	if (tree->ops && tree->ops->split_extent_hook) | 
 | 		return tree->ops->split_extent_hook(tree->mapping->host, | 
 | 						    orig, split); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * split a given extent state struct in two, inserting the preallocated | 
 |  * struct 'prealloc' as the newly created second half.  'split' indicates an | 
 |  * offset inside 'orig' where it should be split. | 
 |  * | 
 |  * Before calling, | 
 |  * the tree has 'orig' at [orig->start, orig->end].  After calling, there | 
 |  * are two extent state structs in the tree: | 
 |  * prealloc: [orig->start, split - 1] | 
 |  * orig: [ split, orig->end ] | 
 |  * | 
 |  * The tree locks are not taken by this function. They need to be held | 
 |  * by the caller. | 
 |  */ | 
 | static int split_state(struct extent_io_tree *tree, struct extent_state *orig, | 
 | 		       struct extent_state *prealloc, u64 split) | 
 | { | 
 | 	struct rb_node *node; | 
 |  | 
 | 	split_cb(tree, orig, split); | 
 |  | 
 | 	prealloc->start = orig->start; | 
 | 	prealloc->end = split - 1; | 
 | 	prealloc->state = orig->state; | 
 | 	orig->start = split; | 
 |  | 
 | 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); | 
 | 	if (node) { | 
 | 		free_extent_state(prealloc); | 
 | 		return -EEXIST; | 
 | 	} | 
 | 	prealloc->tree = tree; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * utility function to clear some bits in an extent state struct. | 
 |  * it will optionally wake up any one waiting on this state (wake == 1), or | 
 |  * forcibly remove the state from the tree (delete == 1). | 
 |  * | 
 |  * If no bits are set on the state struct after clearing things, the | 
 |  * struct is freed and removed from the tree | 
 |  */ | 
 | static int clear_state_bit(struct extent_io_tree *tree, | 
 | 			    struct extent_state *state, | 
 | 			    int *bits, int wake) | 
 | { | 
 | 	int bits_to_clear = *bits & ~EXTENT_CTLBITS; | 
 | 	int ret = state->state & bits_to_clear; | 
 |  | 
 | 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { | 
 | 		u64 range = state->end - state->start + 1; | 
 | 		WARN_ON(range > tree->dirty_bytes); | 
 | 		tree->dirty_bytes -= range; | 
 | 	} | 
 | 	clear_state_cb(tree, state, bits); | 
 | 	state->state &= ~bits_to_clear; | 
 | 	if (wake) | 
 | 		wake_up(&state->wq); | 
 | 	if (state->state == 0) { | 
 | 		if (state->tree) { | 
 | 			rb_erase(&state->rb_node, &tree->state); | 
 | 			state->tree = NULL; | 
 | 			free_extent_state(state); | 
 | 		} else { | 
 | 			WARN_ON(1); | 
 | 		} | 
 | 	} else { | 
 | 		merge_state(tree, state); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * clear some bits on a range in the tree.  This may require splitting | 
 |  * or inserting elements in the tree, so the gfp mask is used to | 
 |  * indicate which allocations or sleeping are allowed. | 
 |  * | 
 |  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove | 
 |  * the given range from the tree regardless of state (ie for truncate). | 
 |  * | 
 |  * the range [start, end] is inclusive. | 
 |  * | 
 |  * This takes the tree lock, and returns < 0 on error, > 0 if any of the | 
 |  * bits were already set, or zero if none of the bits were already set. | 
 |  */ | 
 | int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     int bits, int wake, int delete, | 
 | 		     struct extent_state **cached_state, | 
 | 		     gfp_t mask) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *cached; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *next_node; | 
 | 	struct rb_node *node; | 
 | 	u64 last_end; | 
 | 	int err; | 
 | 	int set = 0; | 
 | 	int clear = 0; | 
 |  | 
 | 	if (delete) | 
 | 		bits |= ~EXTENT_CTLBITS; | 
 | 	bits |= EXTENT_FIRST_DELALLOC; | 
 |  | 
 | 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) | 
 | 		clear = 1; | 
 | again: | 
 | 	if (!prealloc && (mask & __GFP_WAIT)) { | 
 | 		prealloc = alloc_extent_state(mask); | 
 | 		if (!prealloc) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state) { | 
 | 		cached = *cached_state; | 
 |  | 
 | 		if (clear) { | 
 | 			*cached_state = NULL; | 
 | 			cached_state = NULL; | 
 | 		} | 
 |  | 
 | 		if (cached && cached->tree && cached->start == start) { | 
 | 			if (clear) | 
 | 				atomic_dec(&cached->refs); | 
 | 			state = cached; | 
 | 			goto hit_next; | 
 | 		} | 
 | 		if (clear) | 
 | 			free_extent_state(cached); | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find the extents that end after | 
 | 	 * our range starts | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) | 
 | 		goto out; | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	if (state->start > end) | 
 | 		goto out; | 
 | 	WARN_ON(state->end < start); | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 *  | state | or | 
 | 	 *  | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip | 
 | 	 * bits on second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our range, we | 
 | 	 * just split and search again.  It'll get split again | 
 | 	 * the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we clear | 
 | 	 * the desired bit on it. | 
 | 	 */ | 
 |  | 
 | 	if (state->start < start) { | 
 | 		if (!prealloc) | 
 | 			prealloc = alloc_extent_state(GFP_ATOMIC); | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		BUG_ON(err == -EEXIST); | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			set |= clear_state_bit(tree, state, &bits, wake); | 
 | 			if (last_end == (u64)-1) | 
 | 				goto out; | 
 | 			start = last_end + 1; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and clear the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		if (!prealloc) | 
 | 			prealloc = alloc_extent_state(GFP_ATOMIC); | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		BUG_ON(err == -EEXIST); | 
 | 		if (wake) | 
 | 			wake_up(&state->wq); | 
 |  | 
 | 		set |= clear_state_bit(tree, prealloc, &bits, wake); | 
 |  | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (state->end < end && prealloc && !need_resched()) | 
 | 		next_node = rb_next(&state->rb_node); | 
 | 	else | 
 | 		next_node = NULL; | 
 |  | 
 | 	set |= clear_state_bit(tree, state, &bits, wake); | 
 | 	if (last_end == (u64)-1) | 
 | 		goto out; | 
 | 	start = last_end + 1; | 
 | 	if (start <= end && next_node) { | 
 | 		state = rb_entry(next_node, struct extent_state, | 
 | 				 rb_node); | 
 | 		if (state->start == start) | 
 | 			goto hit_next; | 
 | 	} | 
 | 	goto search_again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return set; | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (mask & __GFP_WAIT) | 
 | 		cond_resched(); | 
 | 	goto again; | 
 | } | 
 |  | 
 | static int wait_on_state(struct extent_io_tree *tree, | 
 | 			 struct extent_state *state) | 
 | 		__releases(tree->lock) | 
 | 		__acquires(tree->lock) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); | 
 | 	spin_unlock(&tree->lock); | 
 | 	schedule(); | 
 | 	spin_lock(&tree->lock); | 
 | 	finish_wait(&state->wq, &wait); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * waits for one or more bits to clear on a range in the state tree. | 
 |  * The range [start, end] is inclusive. | 
 |  * The tree lock is taken by this function | 
 |  */ | 
 | int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | again: | 
 | 	while (1) { | 
 | 		/* | 
 | 		 * this search will find all the extents that end after | 
 | 		 * our range starts | 
 | 		 */ | 
 | 		node = tree_search(tree, start); | 
 | 		if (!node) | 
 | 			break; | 
 |  | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 |  | 
 | 		if (state->start > end) | 
 | 			goto out; | 
 |  | 
 | 		if (state->state & bits) { | 
 | 			start = state->start; | 
 | 			atomic_inc(&state->refs); | 
 | 			wait_on_state(tree, state); | 
 | 			free_extent_state(state); | 
 | 			goto again; | 
 | 		} | 
 | 		start = state->end + 1; | 
 |  | 
 | 		if (start > end) | 
 | 			break; | 
 |  | 
 | 		if (need_resched()) { | 
 | 			spin_unlock(&tree->lock); | 
 | 			cond_resched(); | 
 | 			spin_lock(&tree->lock); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_state_bits(struct extent_io_tree *tree, | 
 | 			   struct extent_state *state, | 
 | 			   int *bits) | 
 | { | 
 | 	int ret; | 
 | 	int bits_to_set = *bits & ~EXTENT_CTLBITS; | 
 |  | 
 | 	ret = set_state_cb(tree, state, bits); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { | 
 | 		u64 range = state->end - state->start + 1; | 
 | 		tree->dirty_bytes += range; | 
 | 	} | 
 | 	state->state |= bits_to_set; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cache_state(struct extent_state *state, | 
 | 			struct extent_state **cached_ptr) | 
 | { | 
 | 	if (cached_ptr && !(*cached_ptr)) { | 
 | 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { | 
 | 			*cached_ptr = state; | 
 | 			atomic_inc(&state->refs); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * set some bits on a range in the tree.  This may require allocations or | 
 |  * sleeping, so the gfp mask is used to indicate what is allowed. | 
 |  * | 
 |  * If any of the exclusive bits are set, this will fail with -EEXIST if some | 
 |  * part of the range already has the desired bits set.  The start of the | 
 |  * existing range is returned in failed_start in this case. | 
 |  * | 
 |  * [start, end] is inclusive This takes the tree lock. | 
 |  */ | 
 |  | 
 | int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		   int bits, int exclusive_bits, u64 *failed_start, | 
 | 		   struct extent_state **cached_state, gfp_t mask) | 
 | { | 
 | 	struct extent_state *state; | 
 | 	struct extent_state *prealloc = NULL; | 
 | 	struct rb_node *node; | 
 | 	int err = 0; | 
 | 	u64 last_start; | 
 | 	u64 last_end; | 
 |  | 
 | 	bits |= EXTENT_FIRST_DELALLOC; | 
 | again: | 
 | 	if (!prealloc && (mask & __GFP_WAIT)) { | 
 | 		prealloc = alloc_extent_state(mask); | 
 | 		if (!prealloc) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached_state && *cached_state) { | 
 | 		state = *cached_state; | 
 | 		if (state->start == start && state->tree) { | 
 | 			node = &state->rb_node; | 
 | 			goto hit_next; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) { | 
 | 		err = insert_state(tree, prealloc, start, end, &bits); | 
 | 		prealloc = NULL; | 
 | 		BUG_ON(err == -EEXIST); | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | hit_next: | 
 | 	last_start = state->start; | 
 | 	last_end = state->end; | 
 |  | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 * | 
 | 	 * Just lock what we found and keep going | 
 | 	 */ | 
 | 	if (state->start == start && state->end <= end) { | 
 | 		struct rb_node *next_node; | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = state->start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		err = set_state_bits(tree, state, &bits); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		cache_state(state, cached_state); | 
 | 		merge_state(tree, state); | 
 | 		if (last_end == (u64)-1) | 
 | 			goto out; | 
 |  | 
 | 		start = last_end + 1; | 
 | 		if (start < end && prealloc && !need_resched()) { | 
 | 			next_node = rb_next(node); | 
 | 			if (next_node) { | 
 | 				state = rb_entry(next_node, struct extent_state, | 
 | 						 rb_node); | 
 | 				if (state->start == start) | 
 | 					goto hit_next; | 
 | 			} | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *     | ---- desired range ---- | | 
 | 	 * | state | | 
 | 	 *   or | 
 | 	 * | ------------- state -------------- | | 
 | 	 * | 
 | 	 * We need to split the extent we found, and may flip bits on | 
 | 	 * second half. | 
 | 	 * | 
 | 	 * If the extent we found extends past our | 
 | 	 * range, we just split and search again.  It'll get split | 
 | 	 * again the next time though. | 
 | 	 * | 
 | 	 * If the extent we found is inside our range, we set the | 
 | 	 * desired bit on it. | 
 | 	 */ | 
 | 	if (state->start < start) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 | 		err = split_state(tree, state, prealloc, start); | 
 | 		BUG_ON(err == -EEXIST); | 
 | 		prealloc = NULL; | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (state->end <= end) { | 
 | 			err = set_state_bits(tree, state, &bits); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			cache_state(state, cached_state); | 
 | 			merge_state(tree, state); | 
 | 			if (last_end == (u64)-1) | 
 | 				goto out; | 
 | 			start = last_end + 1; | 
 | 		} | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *     | state | or               | state | | 
 | 	 * | 
 | 	 * There's a hole, we need to insert something in it and | 
 | 	 * ignore the extent we found. | 
 | 	 */ | 
 | 	if (state->start > start) { | 
 | 		u64 this_end; | 
 | 		if (end < last_start) | 
 | 			this_end = end; | 
 | 		else | 
 | 			this_end = last_start - 1; | 
 | 		err = insert_state(tree, prealloc, start, this_end, | 
 | 				   &bits); | 
 | 		BUG_ON(err == -EEXIST); | 
 | 		if (err) { | 
 | 			prealloc = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		cache_state(prealloc, cached_state); | 
 | 		prealloc = NULL; | 
 | 		start = this_end + 1; | 
 | 		goto search_again; | 
 | 	} | 
 | 	/* | 
 | 	 * | ---- desired range ---- | | 
 | 	 *                        | state | | 
 | 	 * We need to split the extent, and set the bit | 
 | 	 * on the first half | 
 | 	 */ | 
 | 	if (state->start <= end && state->end > end) { | 
 | 		if (state->state & exclusive_bits) { | 
 | 			*failed_start = start; | 
 | 			err = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 | 		err = split_state(tree, state, prealloc, end + 1); | 
 | 		BUG_ON(err == -EEXIST); | 
 |  | 
 | 		err = set_state_bits(tree, prealloc, &bits); | 
 | 		if (err) { | 
 | 			prealloc = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		cache_state(prealloc, cached_state); | 
 | 		merge_state(tree, prealloc); | 
 | 		prealloc = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	goto search_again; | 
 |  | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (prealloc) | 
 | 		free_extent_state(prealloc); | 
 |  | 
 | 	return err; | 
 |  | 
 | search_again: | 
 | 	if (start > end) | 
 | 		goto out; | 
 | 	spin_unlock(&tree->lock); | 
 | 	if (mask & __GFP_WAIT) | 
 | 		cond_resched(); | 
 | 	goto again; | 
 | } | 
 |  | 
 | /* wrappers around set/clear extent bit */ | 
 | int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     gfp_t mask) | 
 | { | 
 | 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, | 
 | 			      NULL, mask); | 
 | } | 
 |  | 
 | int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		    int bits, gfp_t mask) | 
 | { | 
 | 	return set_extent_bit(tree, start, end, bits, 0, NULL, | 
 | 			      NULL, mask); | 
 | } | 
 |  | 
 | int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		      int bits, gfp_t mask) | 
 | { | 
 | 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); | 
 | } | 
 |  | 
 | int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			struct extent_state **cached_state, gfp_t mask) | 
 | { | 
 | 	return set_extent_bit(tree, start, end, | 
 | 			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE, | 
 | 			      0, NULL, cached_state, mask); | 
 | } | 
 |  | 
 | int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		       gfp_t mask) | 
 | { | 
 | 	return clear_extent_bit(tree, start, end, | 
 | 				EXTENT_DIRTY | EXTENT_DELALLOC | | 
 | 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); | 
 | } | 
 |  | 
 | int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     gfp_t mask) | 
 | { | 
 | 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, | 
 | 			      NULL, mask); | 
 | } | 
 |  | 
 | static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		       gfp_t mask) | 
 | { | 
 | 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, | 
 | 				NULL, mask); | 
 | } | 
 |  | 
 | int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			gfp_t mask) | 
 | { | 
 | 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, | 
 | 			      NULL, mask); | 
 | } | 
 |  | 
 | static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, | 
 | 				 u64 end, struct extent_state **cached_state, | 
 | 				 gfp_t mask) | 
 | { | 
 | 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, | 
 | 				cached_state, mask); | 
 | } | 
 |  | 
 | int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); | 
 | } | 
 |  | 
 | /* | 
 |  * either insert or lock state struct between start and end use mask to tell | 
 |  * us if waiting is desired. | 
 |  */ | 
 | int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		     int bits, struct extent_state **cached_state, gfp_t mask) | 
 | { | 
 | 	int err; | 
 | 	u64 failed_start; | 
 | 	while (1) { | 
 | 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, | 
 | 				     EXTENT_LOCKED, &failed_start, | 
 | 				     cached_state, mask); | 
 | 		if (err == -EEXIST && (mask & __GFP_WAIT)) { | 
 | 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); | 
 | 			start = failed_start; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 		WARN_ON(start > end); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) | 
 | { | 
 | 	return lock_extent_bits(tree, start, end, 0, NULL, mask); | 
 | } | 
 |  | 
 | int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		    gfp_t mask) | 
 | { | 
 | 	int err; | 
 | 	u64 failed_start; | 
 |  | 
 | 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, | 
 | 			     &failed_start, NULL, mask); | 
 | 	if (err == -EEXIST) { | 
 | 		if (failed_start > start) | 
 | 			clear_extent_bit(tree, start, failed_start - 1, | 
 | 					 EXTENT_LOCKED, 1, 0, NULL, mask); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 			 struct extent_state **cached, gfp_t mask) | 
 | { | 
 | 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, | 
 | 				mask); | 
 | } | 
 |  | 
 | int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		  gfp_t mask) | 
 | { | 
 | 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, | 
 | 				mask); | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to set pages and extents in the tree dirty | 
 |  */ | 
 | int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_CACHE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(tree->mapping, index); | 
 | 		BUG_ON(!page); | 
 | 		__set_page_dirty_nobuffers(page); | 
 | 		page_cache_release(page); | 
 | 		index++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to set both pages and extents in the tree writeback | 
 |  */ | 
 | static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	unsigned long index = start >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_CACHE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(tree->mapping, index); | 
 | 		BUG_ON(!page); | 
 | 		set_page_writeback(page); | 
 | 		page_cache_release(page); | 
 | 		index++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * find the first offset in the io tree with 'bits' set. zero is | 
 |  * returned if we find something, and *start_ret and *end_ret are | 
 |  * set to reflect the state struct that was found. | 
 |  * | 
 |  * If nothing was found, 1 is returned, < 0 on error | 
 |  */ | 
 | int find_first_extent_bit(struct extent_io_tree *tree, u64 start, | 
 | 			  u64 *start_ret, u64 *end_ret, int bits) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->end >= start && (state->state & bits)) { | 
 | 			*start_ret = state->start; | 
 | 			*end_ret = state->end; | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* find the first state struct with 'bits' set after 'start', and | 
 |  * return it.  tree->lock must be held.  NULL will returned if | 
 |  * nothing was found after 'start' | 
 |  */ | 
 | struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, | 
 | 						 u64 start, int bits) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->end >= start && (state->state & bits)) | 
 | 			return state; | 
 |  | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find a contiguous range of bytes in the file marked as delalloc, not | 
 |  * more than 'max_bytes'.  start and end are used to return the range, | 
 |  * | 
 |  * 1 is returned if we find something, 0 if nothing was in the tree | 
 |  */ | 
 | static noinline u64 find_delalloc_range(struct extent_io_tree *tree, | 
 | 					u64 *start, u64 *end, u64 max_bytes, | 
 | 					struct extent_state **cached_state) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	u64 cur_start = *start; | 
 | 	u64 found = 0; | 
 | 	u64 total_bytes = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 |  | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, cur_start); | 
 | 	if (!node) { | 
 | 		if (!found) | 
 | 			*end = (u64)-1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (found && (state->start != cur_start || | 
 | 			      (state->state & EXTENT_BOUNDARY))) { | 
 | 			goto out; | 
 | 		} | 
 | 		if (!(state->state & EXTENT_DELALLOC)) { | 
 | 			if (!found) | 
 | 				*end = state->end; | 
 | 			goto out; | 
 | 		} | 
 | 		if (!found) { | 
 | 			*start = state->start; | 
 | 			*cached_state = state; | 
 | 			atomic_inc(&state->refs); | 
 | 		} | 
 | 		found++; | 
 | 		*end = state->end; | 
 | 		cur_start = state->end + 1; | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 		total_bytes += state->end - state->start + 1; | 
 | 		if (total_bytes >= max_bytes) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return found; | 
 | } | 
 |  | 
 | static noinline int __unlock_for_delalloc(struct inode *inode, | 
 | 					  struct page *locked_page, | 
 | 					  u64 start, u64 end) | 
 | { | 
 | 	int ret; | 
 | 	struct page *pages[16]; | 
 | 	unsigned long index = start >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long nr_pages = end_index - index + 1; | 
 | 	int i; | 
 |  | 
 | 	if (index == locked_page->index && end_index == index) | 
 | 		return 0; | 
 |  | 
 | 	while (nr_pages > 0) { | 
 | 		ret = find_get_pages_contig(inode->i_mapping, index, | 
 | 				     min_t(unsigned long, nr_pages, | 
 | 				     ARRAY_SIZE(pages)), pages); | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			if (pages[i] != locked_page) | 
 | 				unlock_page(pages[i]); | 
 | 			page_cache_release(pages[i]); | 
 | 		} | 
 | 		nr_pages -= ret; | 
 | 		index += ret; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int lock_delalloc_pages(struct inode *inode, | 
 | 					struct page *locked_page, | 
 | 					u64 delalloc_start, | 
 | 					u64 delalloc_end) | 
 | { | 
 | 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long start_index = index; | 
 | 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long pages_locked = 0; | 
 | 	struct page *pages[16]; | 
 | 	unsigned long nrpages; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	/* the caller is responsible for locking the start index */ | 
 | 	if (index == locked_page->index && index == end_index) | 
 | 		return 0; | 
 |  | 
 | 	/* skip the page at the start index */ | 
 | 	nrpages = end_index - index + 1; | 
 | 	while (nrpages > 0) { | 
 | 		ret = find_get_pages_contig(inode->i_mapping, index, | 
 | 				     min_t(unsigned long, | 
 | 				     nrpages, ARRAY_SIZE(pages)), pages); | 
 | 		if (ret == 0) { | 
 | 			ret = -EAGAIN; | 
 | 			goto done; | 
 | 		} | 
 | 		/* now we have an array of pages, lock them all */ | 
 | 		for (i = 0; i < ret; i++) { | 
 | 			/* | 
 | 			 * the caller is taking responsibility for | 
 | 			 * locked_page | 
 | 			 */ | 
 | 			if (pages[i] != locked_page) { | 
 | 				lock_page(pages[i]); | 
 | 				if (!PageDirty(pages[i]) || | 
 | 				    pages[i]->mapping != inode->i_mapping) { | 
 | 					ret = -EAGAIN; | 
 | 					unlock_page(pages[i]); | 
 | 					page_cache_release(pages[i]); | 
 | 					goto done; | 
 | 				} | 
 | 			} | 
 | 			page_cache_release(pages[i]); | 
 | 			pages_locked++; | 
 | 		} | 
 | 		nrpages -= ret; | 
 | 		index += ret; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	ret = 0; | 
 | done: | 
 | 	if (ret && pages_locked) { | 
 | 		__unlock_for_delalloc(inode, locked_page, | 
 | 			      delalloc_start, | 
 | 			      ((u64)(start_index + pages_locked - 1)) << | 
 | 			      PAGE_CACHE_SHIFT); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * find a contiguous range of bytes in the file marked as delalloc, not | 
 |  * more than 'max_bytes'.  start and end are used to return the range, | 
 |  * | 
 |  * 1 is returned if we find something, 0 if nothing was in the tree | 
 |  */ | 
 | static noinline u64 find_lock_delalloc_range(struct inode *inode, | 
 | 					     struct extent_io_tree *tree, | 
 | 					     struct page *locked_page, | 
 | 					     u64 *start, u64 *end, | 
 | 					     u64 max_bytes) | 
 | { | 
 | 	u64 delalloc_start; | 
 | 	u64 delalloc_end; | 
 | 	u64 found; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int ret; | 
 | 	int loops = 0; | 
 |  | 
 | again: | 
 | 	/* step one, find a bunch of delalloc bytes starting at start */ | 
 | 	delalloc_start = *start; | 
 | 	delalloc_end = 0; | 
 | 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, | 
 | 				    max_bytes, &cached_state); | 
 | 	if (!found || delalloc_end <= *start) { | 
 | 		*start = delalloc_start; | 
 | 		*end = delalloc_end; | 
 | 		free_extent_state(cached_state); | 
 | 		return found; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * start comes from the offset of locked_page.  We have to lock | 
 | 	 * pages in order, so we can't process delalloc bytes before | 
 | 	 * locked_page | 
 | 	 */ | 
 | 	if (delalloc_start < *start) | 
 | 		delalloc_start = *start; | 
 |  | 
 | 	/* | 
 | 	 * make sure to limit the number of pages we try to lock down | 
 | 	 * if we're looping. | 
 | 	 */ | 
 | 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops) | 
 | 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; | 
 |  | 
 | 	/* step two, lock all the pages after the page that has start */ | 
 | 	ret = lock_delalloc_pages(inode, locked_page, | 
 | 				  delalloc_start, delalloc_end); | 
 | 	if (ret == -EAGAIN) { | 
 | 		/* some of the pages are gone, lets avoid looping by | 
 | 		 * shortening the size of the delalloc range we're searching | 
 | 		 */ | 
 | 		free_extent_state(cached_state); | 
 | 		if (!loops) { | 
 | 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); | 
 | 			max_bytes = PAGE_CACHE_SIZE - offset; | 
 | 			loops = 1; | 
 | 			goto again; | 
 | 		} else { | 
 | 			found = 0; | 
 | 			goto out_failed; | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	/* step three, lock the state bits for the whole range */ | 
 | 	lock_extent_bits(tree, delalloc_start, delalloc_end, | 
 | 			 0, &cached_state, GFP_NOFS); | 
 |  | 
 | 	/* then test to make sure it is all still delalloc */ | 
 | 	ret = test_range_bit(tree, delalloc_start, delalloc_end, | 
 | 			     EXTENT_DELALLOC, 1, cached_state); | 
 | 	if (!ret) { | 
 | 		unlock_extent_cached(tree, delalloc_start, delalloc_end, | 
 | 				     &cached_state, GFP_NOFS); | 
 | 		__unlock_for_delalloc(inode, locked_page, | 
 | 			      delalloc_start, delalloc_end); | 
 | 		cond_resched(); | 
 | 		goto again; | 
 | 	} | 
 | 	free_extent_state(cached_state); | 
 | 	*start = delalloc_start; | 
 | 	*end = delalloc_end; | 
 | out_failed: | 
 | 	return found; | 
 | } | 
 |  | 
 | int extent_clear_unlock_delalloc(struct inode *inode, | 
 | 				struct extent_io_tree *tree, | 
 | 				u64 start, u64 end, struct page *locked_page, | 
 | 				unsigned long op) | 
 | { | 
 | 	int ret; | 
 | 	struct page *pages[16]; | 
 | 	unsigned long index = start >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long nr_pages = end_index - index + 1; | 
 | 	int i; | 
 | 	int clear_bits = 0; | 
 |  | 
 | 	if (op & EXTENT_CLEAR_UNLOCK) | 
 | 		clear_bits |= EXTENT_LOCKED; | 
 | 	if (op & EXTENT_CLEAR_DIRTY) | 
 | 		clear_bits |= EXTENT_DIRTY; | 
 |  | 
 | 	if (op & EXTENT_CLEAR_DELALLOC) | 
 | 		clear_bits |= EXTENT_DELALLOC; | 
 |  | 
 | 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); | 
 | 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | | 
 | 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | | 
 | 		    EXTENT_SET_PRIVATE2))) | 
 | 		return 0; | 
 |  | 
 | 	while (nr_pages > 0) { | 
 | 		ret = find_get_pages_contig(inode->i_mapping, index, | 
 | 				     min_t(unsigned long, | 
 | 				     nr_pages, ARRAY_SIZE(pages)), pages); | 
 | 		for (i = 0; i < ret; i++) { | 
 |  | 
 | 			if (op & EXTENT_SET_PRIVATE2) | 
 | 				SetPagePrivate2(pages[i]); | 
 |  | 
 | 			if (pages[i] == locked_page) { | 
 | 				page_cache_release(pages[i]); | 
 | 				continue; | 
 | 			} | 
 | 			if (op & EXTENT_CLEAR_DIRTY) | 
 | 				clear_page_dirty_for_io(pages[i]); | 
 | 			if (op & EXTENT_SET_WRITEBACK) | 
 | 				set_page_writeback(pages[i]); | 
 | 			if (op & EXTENT_END_WRITEBACK) | 
 | 				end_page_writeback(pages[i]); | 
 | 			if (op & EXTENT_CLEAR_UNLOCK_PAGE) | 
 | 				unlock_page(pages[i]); | 
 | 			page_cache_release(pages[i]); | 
 | 		} | 
 | 		nr_pages -= ret; | 
 | 		index += ret; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * count the number of bytes in the tree that have a given bit(s) | 
 |  * set.  This can be fairly slow, except for EXTENT_DIRTY which is | 
 |  * cached.  The total number found is returned. | 
 |  */ | 
 | u64 count_range_bits(struct extent_io_tree *tree, | 
 | 		     u64 *start, u64 search_end, u64 max_bytes, | 
 | 		     unsigned long bits, int contig) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	u64 cur_start = *start; | 
 | 	u64 total_bytes = 0; | 
 | 	u64 last = 0; | 
 | 	int found = 0; | 
 |  | 
 | 	if (search_end <= cur_start) { | 
 | 		WARN_ON(1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cur_start == 0 && bits == EXTENT_DIRTY) { | 
 | 		total_bytes = tree->dirty_bytes; | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, cur_start); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		if (state->start > search_end) | 
 | 			break; | 
 | 		if (contig && found && state->start > last + 1) | 
 | 			break; | 
 | 		if (state->end >= cur_start && (state->state & bits) == bits) { | 
 | 			total_bytes += min(search_end, state->end) + 1 - | 
 | 				       max(cur_start, state->start); | 
 | 			if (total_bytes >= max_bytes) | 
 | 				break; | 
 | 			if (!found) { | 
 | 				*start = state->start; | 
 | 				found = 1; | 
 | 			} | 
 | 			last = state->end; | 
 | 		} else if (contig && found) { | 
 | 			break; | 
 | 		} | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return total_bytes; | 
 | } | 
 |  | 
 | /* | 
 |  * set the private field for a given byte offset in the tree.  If there isn't | 
 |  * an extent_state there already, this does nothing. | 
 |  */ | 
 | int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | 	if (state->start != start) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state->private = private; | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct extent_state *state; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	/* | 
 | 	 * this search will find all the extents that end after | 
 | 	 * our range starts. | 
 | 	 */ | 
 | 	node = tree_search(tree, start); | 
 | 	if (!node) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	state = rb_entry(node, struct extent_state, rb_node); | 
 | 	if (state->start != start) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	*private = state->private; | 
 | out: | 
 | 	spin_unlock(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * searches a range in the state tree for a given mask. | 
 |  * If 'filled' == 1, this returns 1 only if every extent in the tree | 
 |  * has the bits set.  Otherwise, 1 is returned if any bit in the | 
 |  * range is found set. | 
 |  */ | 
 | int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, | 
 | 		   int bits, int filled, struct extent_state *cached) | 
 | { | 
 | 	struct extent_state *state = NULL; | 
 | 	struct rb_node *node; | 
 | 	int bitset = 0; | 
 |  | 
 | 	spin_lock(&tree->lock); | 
 | 	if (cached && cached->tree && cached->start == start) | 
 | 		node = &cached->rb_node; | 
 | 	else | 
 | 		node = tree_search(tree, start); | 
 | 	while (node && start <= end) { | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 |  | 
 | 		if (filled && state->start > start) { | 
 | 			bitset = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (state->start > end) | 
 | 			break; | 
 |  | 
 | 		if (state->state & bits) { | 
 | 			bitset = 1; | 
 | 			if (!filled) | 
 | 				break; | 
 | 		} else if (filled) { | 
 | 			bitset = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (state->end == (u64)-1) | 
 | 			break; | 
 |  | 
 | 		start = state->end + 1; | 
 | 		if (start > end) | 
 | 			break; | 
 | 		node = rb_next(node); | 
 | 		if (!node) { | 
 | 			if (filled) | 
 | 				bitset = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&tree->lock); | 
 | 	return bitset; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to set a given page up to date if all the | 
 |  * extents in the tree for that page are up to date | 
 |  */ | 
 | static int check_page_uptodate(struct extent_io_tree *tree, | 
 | 			       struct page *page) | 
 | { | 
 | 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 end = start + PAGE_CACHE_SIZE - 1; | 
 | 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) | 
 | 		SetPageUptodate(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to unlock a page if all the extents in the tree | 
 |  * for that page are unlocked | 
 |  */ | 
 | static int check_page_locked(struct extent_io_tree *tree, | 
 | 			     struct page *page) | 
 | { | 
 | 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 end = start + PAGE_CACHE_SIZE - 1; | 
 | 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) | 
 | 		unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to end page writeback if all the extents | 
 |  * in the tree for that page are done with writeback | 
 |  */ | 
 | static int check_page_writeback(struct extent_io_tree *tree, | 
 | 			     struct page *page) | 
 | { | 
 | 	end_page_writeback(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* lots and lots of room for performance fixes in the end_bio funcs */ | 
 |  | 
 | /* | 
 |  * after a writepage IO is done, we need to: | 
 |  * clear the uptodate bits on error | 
 |  * clear the writeback bits in the extent tree for this IO | 
 |  * end_page_writeback if the page has no more pending IO | 
 |  * | 
 |  * Scheduling is not allowed, so the extent state tree is expected | 
 |  * to have one and only one object corresponding to this IO. | 
 |  */ | 
 | static void end_bio_extent_writepage(struct bio *bio, int err) | 
 | { | 
 | 	int uptodate = err == 0; | 
 | 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | 
 | 	struct extent_io_tree *tree; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	int whole_page; | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		struct page *page = bvec->bv_page; | 
 | 		tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 |  | 
 | 		start = ((u64)page->index << PAGE_CACHE_SHIFT) + | 
 | 			 bvec->bv_offset; | 
 | 		end = start + bvec->bv_len - 1; | 
 |  | 
 | 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) | 
 | 			whole_page = 1; | 
 | 		else | 
 | 			whole_page = 0; | 
 |  | 
 | 		if (--bvec >= bio->bi_io_vec) | 
 | 			prefetchw(&bvec->bv_page->flags); | 
 | 		if (tree->ops && tree->ops->writepage_end_io_hook) { | 
 | 			ret = tree->ops->writepage_end_io_hook(page, start, | 
 | 						       end, NULL, uptodate); | 
 | 			if (ret) | 
 | 				uptodate = 0; | 
 | 		} | 
 |  | 
 | 		if (!uptodate && tree->ops && | 
 | 		    tree->ops->writepage_io_failed_hook) { | 
 | 			ret = tree->ops->writepage_io_failed_hook(bio, page, | 
 | 							 start, end, NULL); | 
 | 			if (ret == 0) { | 
 | 				uptodate = (err == 0); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!uptodate) { | 
 | 			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS); | 
 | 			ClearPageUptodate(page); | 
 | 			SetPageError(page); | 
 | 		} | 
 |  | 
 | 		if (whole_page) | 
 | 			end_page_writeback(page); | 
 | 		else | 
 | 			check_page_writeback(tree, page); | 
 | 	} while (bvec >= bio->bi_io_vec); | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * after a readpage IO is done, we need to: | 
 |  * clear the uptodate bits on error | 
 |  * set the uptodate bits if things worked | 
 |  * set the page up to date if all extents in the tree are uptodate | 
 |  * clear the lock bit in the extent tree | 
 |  * unlock the page if there are no other extents locked for it | 
 |  * | 
 |  * Scheduling is not allowed, so the extent state tree is expected | 
 |  * to have one and only one object corresponding to this IO. | 
 |  */ | 
 | static void end_bio_extent_readpage(struct bio *bio, int err) | 
 | { | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; | 
 | 	struct bio_vec *bvec = bio->bi_io_vec; | 
 | 	struct extent_io_tree *tree; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	int whole_page; | 
 | 	int ret; | 
 |  | 
 | 	if (err) | 
 | 		uptodate = 0; | 
 |  | 
 | 	do { | 
 | 		struct page *page = bvec->bv_page; | 
 | 		tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 |  | 
 | 		start = ((u64)page->index << PAGE_CACHE_SHIFT) + | 
 | 			bvec->bv_offset; | 
 | 		end = start + bvec->bv_len - 1; | 
 |  | 
 | 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) | 
 | 			whole_page = 1; | 
 | 		else | 
 | 			whole_page = 0; | 
 |  | 
 | 		if (++bvec <= bvec_end) | 
 | 			prefetchw(&bvec->bv_page->flags); | 
 |  | 
 | 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { | 
 | 			ret = tree->ops->readpage_end_io_hook(page, start, end, | 
 | 							      NULL); | 
 | 			if (ret) | 
 | 				uptodate = 0; | 
 | 		} | 
 | 		if (!uptodate && tree->ops && | 
 | 		    tree->ops->readpage_io_failed_hook) { | 
 | 			ret = tree->ops->readpage_io_failed_hook(bio, page, | 
 | 							 start, end, NULL); | 
 | 			if (ret == 0) { | 
 | 				uptodate = | 
 | 					test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 				if (err) | 
 | 					uptodate = 0; | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (uptodate) { | 
 | 			set_extent_uptodate(tree, start, end, | 
 | 					    GFP_ATOMIC); | 
 | 		} | 
 | 		unlock_extent(tree, start, end, GFP_ATOMIC); | 
 |  | 
 | 		if (whole_page) { | 
 | 			if (uptodate) { | 
 | 				SetPageUptodate(page); | 
 | 			} else { | 
 | 				ClearPageUptodate(page); | 
 | 				SetPageError(page); | 
 | 			} | 
 | 			unlock_page(page); | 
 | 		} else { | 
 | 			if (uptodate) { | 
 | 				check_page_uptodate(tree, page); | 
 | 			} else { | 
 | 				ClearPageUptodate(page); | 
 | 				SetPageError(page); | 
 | 			} | 
 | 			check_page_locked(tree, page); | 
 | 		} | 
 | 	} while (bvec <= bvec_end); | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * IO done from prepare_write is pretty simple, we just unlock | 
 |  * the structs in the extent tree when done, and set the uptodate bits | 
 |  * as appropriate. | 
 |  */ | 
 | static void end_bio_extent_preparewrite(struct bio *bio, int err) | 
 | { | 
 | 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | 
 | 	struct extent_io_tree *tree; | 
 | 	u64 start; | 
 | 	u64 end; | 
 |  | 
 | 	do { | 
 | 		struct page *page = bvec->bv_page; | 
 | 		tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 |  | 
 | 		start = ((u64)page->index << PAGE_CACHE_SHIFT) + | 
 | 			bvec->bv_offset; | 
 | 		end = start + bvec->bv_len - 1; | 
 |  | 
 | 		if (--bvec >= bio->bi_io_vec) | 
 | 			prefetchw(&bvec->bv_page->flags); | 
 |  | 
 | 		if (uptodate) { | 
 | 			set_extent_uptodate(tree, start, end, GFP_ATOMIC); | 
 | 		} else { | 
 | 			ClearPageUptodate(page); | 
 | 			SetPageError(page); | 
 | 		} | 
 |  | 
 | 		unlock_extent(tree, start, end, GFP_ATOMIC); | 
 |  | 
 | 	} while (bvec >= bio->bi_io_vec); | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | struct bio * | 
 | btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, | 
 | 		gfp_t gfp_flags) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_alloc(gfp_flags, nr_vecs); | 
 |  | 
 | 	if (bio == NULL && (current->flags & PF_MEMALLOC)) { | 
 | 		while (!bio && (nr_vecs /= 2)) | 
 | 			bio = bio_alloc(gfp_flags, nr_vecs); | 
 | 	} | 
 |  | 
 | 	if (bio) { | 
 | 		bio->bi_size = 0; | 
 | 		bio->bi_bdev = bdev; | 
 | 		bio->bi_sector = first_sector; | 
 | 	} | 
 | 	return bio; | 
 | } | 
 |  | 
 | static int submit_one_bio(int rw, struct bio *bio, int mirror_num, | 
 | 			  unsigned long bio_flags) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | 
 | 	struct page *page = bvec->bv_page; | 
 | 	struct extent_io_tree *tree = bio->bi_private; | 
 | 	u64 start; | 
 |  | 
 | 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; | 
 |  | 
 | 	bio->bi_private = NULL; | 
 |  | 
 | 	bio_get(bio); | 
 |  | 
 | 	if (tree->ops && tree->ops->submit_bio_hook) | 
 | 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, | 
 | 					   mirror_num, bio_flags, start); | 
 | 	else | 
 | 		submit_bio(rw, bio); | 
 | 	if (bio_flagged(bio, BIO_EOPNOTSUPP)) | 
 | 		ret = -EOPNOTSUPP; | 
 | 	bio_put(bio); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int submit_extent_page(int rw, struct extent_io_tree *tree, | 
 | 			      struct page *page, sector_t sector, | 
 | 			      size_t size, unsigned long offset, | 
 | 			      struct block_device *bdev, | 
 | 			      struct bio **bio_ret, | 
 | 			      unsigned long max_pages, | 
 | 			      bio_end_io_t end_io_func, | 
 | 			      int mirror_num, | 
 | 			      unsigned long prev_bio_flags, | 
 | 			      unsigned long bio_flags) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct bio *bio; | 
 | 	int nr; | 
 | 	int contig = 0; | 
 | 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; | 
 | 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; | 
 | 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); | 
 |  | 
 | 	if (bio_ret && *bio_ret) { | 
 | 		bio = *bio_ret; | 
 | 		if (old_compressed) | 
 | 			contig = bio->bi_sector == sector; | 
 | 		else | 
 | 			contig = bio->bi_sector + (bio->bi_size >> 9) == | 
 | 				sector; | 
 |  | 
 | 		if (prev_bio_flags != bio_flags || !contig || | 
 | 		    (tree->ops && tree->ops->merge_bio_hook && | 
 | 		     tree->ops->merge_bio_hook(page, offset, page_size, bio, | 
 | 					       bio_flags)) || | 
 | 		    bio_add_page(bio, page, page_size, offset) < page_size) { | 
 | 			ret = submit_one_bio(rw, bio, mirror_num, | 
 | 					     prev_bio_flags); | 
 | 			bio = NULL; | 
 | 		} else { | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	if (this_compressed) | 
 | 		nr = BIO_MAX_PAGES; | 
 | 	else | 
 | 		nr = bio_get_nr_vecs(bdev); | 
 |  | 
 | 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); | 
 | 	if (!bio) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bio_add_page(bio, page, page_size, offset); | 
 | 	bio->bi_end_io = end_io_func; | 
 | 	bio->bi_private = tree; | 
 |  | 
 | 	if (bio_ret) | 
 | 		*bio_ret = bio; | 
 | 	else | 
 | 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void set_page_extent_mapped(struct page *page) | 
 | { | 
 | 	if (!PagePrivate(page)) { | 
 | 		SetPagePrivate(page); | 
 | 		page_cache_get(page); | 
 | 		set_page_private(page, EXTENT_PAGE_PRIVATE); | 
 | 	} | 
 | } | 
 |  | 
 | static void set_page_extent_head(struct page *page, unsigned long len) | 
 | { | 
 | 	WARN_ON(!PagePrivate(page)); | 
 | 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); | 
 | } | 
 |  | 
 | /* | 
 |  * basic readpage implementation.  Locked extent state structs are inserted | 
 |  * into the tree that are removed when the IO is done (by the end_io | 
 |  * handlers) | 
 |  */ | 
 | static int __extent_read_full_page(struct extent_io_tree *tree, | 
 | 				   struct page *page, | 
 | 				   get_extent_t *get_extent, | 
 | 				   struct bio **bio, int mirror_num, | 
 | 				   unsigned long *bio_flags) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 page_end = start + PAGE_CACHE_SIZE - 1; | 
 | 	u64 end; | 
 | 	u64 cur = start; | 
 | 	u64 extent_offset; | 
 | 	u64 last_byte = i_size_read(inode); | 
 | 	u64 block_start; | 
 | 	u64 cur_end; | 
 | 	sector_t sector; | 
 | 	struct extent_map *em; | 
 | 	struct block_device *bdev; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	int ret; | 
 | 	int nr = 0; | 
 | 	size_t page_offset = 0; | 
 | 	size_t iosize; | 
 | 	size_t disk_io_size; | 
 | 	size_t blocksize = inode->i_sb->s_blocksize; | 
 | 	unsigned long this_bio_flag = 0; | 
 |  | 
 | 	set_page_extent_mapped(page); | 
 |  | 
 | 	end = page_end; | 
 | 	while (1) { | 
 | 		lock_extent(tree, start, end, GFP_NOFS); | 
 | 		ordered = btrfs_lookup_ordered_extent(inode, start); | 
 | 		if (!ordered) | 
 | 			break; | 
 | 		unlock_extent(tree, start, end, GFP_NOFS); | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 	} | 
 |  | 
 | 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) { | 
 | 		char *userpage; | 
 | 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 		if (zero_offset) { | 
 | 			iosize = PAGE_CACHE_SIZE - zero_offset; | 
 | 			userpage = kmap_atomic(page, KM_USER0); | 
 | 			memset(userpage + zero_offset, 0, iosize); | 
 | 			flush_dcache_page(page); | 
 | 			kunmap_atomic(userpage, KM_USER0); | 
 | 		} | 
 | 	} | 
 | 	while (cur <= end) { | 
 | 		if (cur >= last_byte) { | 
 | 			char *userpage; | 
 | 			iosize = PAGE_CACHE_SIZE - page_offset; | 
 | 			userpage = kmap_atomic(page, KM_USER0); | 
 | 			memset(userpage + page_offset, 0, iosize); | 
 | 			flush_dcache_page(page); | 
 | 			kunmap_atomic(userpage, KM_USER0); | 
 | 			set_extent_uptodate(tree, cur, cur + iosize - 1, | 
 | 					    GFP_NOFS); | 
 | 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | 
 | 			break; | 
 | 		} | 
 | 		em = get_extent(inode, page, page_offset, cur, | 
 | 				end - cur + 1, 0); | 
 | 		if (IS_ERR(em) || !em) { | 
 | 			SetPageError(page); | 
 | 			unlock_extent(tree, cur, end, GFP_NOFS); | 
 | 			break; | 
 | 		} | 
 | 		extent_offset = cur - em->start; | 
 | 		BUG_ON(extent_map_end(em) <= cur); | 
 | 		BUG_ON(end < cur); | 
 |  | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { | 
 | 			this_bio_flag = EXTENT_BIO_COMPRESSED; | 
 | 			extent_set_compress_type(&this_bio_flag, | 
 | 						 em->compress_type); | 
 | 		} | 
 |  | 
 | 		iosize = min(extent_map_end(em) - cur, end - cur + 1); | 
 | 		cur_end = min(extent_map_end(em) - 1, end); | 
 | 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); | 
 | 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) { | 
 | 			disk_io_size = em->block_len; | 
 | 			sector = em->block_start >> 9; | 
 | 		} else { | 
 | 			sector = (em->block_start + extent_offset) >> 9; | 
 | 			disk_io_size = iosize; | 
 | 		} | 
 | 		bdev = em->bdev; | 
 | 		block_start = em->block_start; | 
 | 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 			block_start = EXTENT_MAP_HOLE; | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 |  | 
 | 		/* we've found a hole, just zero and go on */ | 
 | 		if (block_start == EXTENT_MAP_HOLE) { | 
 | 			char *userpage; | 
 | 			userpage = kmap_atomic(page, KM_USER0); | 
 | 			memset(userpage + page_offset, 0, iosize); | 
 | 			flush_dcache_page(page); | 
 | 			kunmap_atomic(userpage, KM_USER0); | 
 |  | 
 | 			set_extent_uptodate(tree, cur, cur + iosize - 1, | 
 | 					    GFP_NOFS); | 
 | 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | 
 | 			cur = cur + iosize; | 
 | 			page_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 | 		/* the get_extent function already copied into the page */ | 
 | 		if (test_range_bit(tree, cur, cur_end, | 
 | 				   EXTENT_UPTODATE, 1, NULL)) { | 
 | 			check_page_uptodate(tree, page); | 
 | 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | 
 | 			cur = cur + iosize; | 
 | 			page_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 | 		/* we have an inline extent but it didn't get marked up | 
 | 		 * to date.  Error out | 
 | 		 */ | 
 | 		if (block_start == EXTENT_MAP_INLINE) { | 
 | 			SetPageError(page); | 
 | 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); | 
 | 			cur = cur + iosize; | 
 | 			page_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = 0; | 
 | 		if (tree->ops && tree->ops->readpage_io_hook) { | 
 | 			ret = tree->ops->readpage_io_hook(page, cur, | 
 | 							  cur + iosize - 1); | 
 | 		} | 
 | 		if (!ret) { | 
 | 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; | 
 | 			pnr -= page->index; | 
 | 			ret = submit_extent_page(READ, tree, page, | 
 | 					 sector, disk_io_size, page_offset, | 
 | 					 bdev, bio, pnr, | 
 | 					 end_bio_extent_readpage, mirror_num, | 
 | 					 *bio_flags, | 
 | 					 this_bio_flag); | 
 | 			nr++; | 
 | 			*bio_flags = this_bio_flag; | 
 | 		} | 
 | 		if (ret) | 
 | 			SetPageError(page); | 
 | 		cur = cur + iosize; | 
 | 		page_offset += iosize; | 
 | 	} | 
 | 	if (!nr) { | 
 | 		if (!PageError(page)) | 
 | 			SetPageUptodate(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int extent_read_full_page(struct extent_io_tree *tree, struct page *page, | 
 | 			    get_extent_t *get_extent) | 
 | { | 
 | 	struct bio *bio = NULL; | 
 | 	unsigned long bio_flags = 0; | 
 | 	int ret; | 
 |  | 
 | 	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, | 
 | 				      &bio_flags); | 
 | 	if (bio) | 
 | 		ret = submit_one_bio(READ, bio, 0, bio_flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline void update_nr_written(struct page *page, | 
 | 				      struct writeback_control *wbc, | 
 | 				      unsigned long nr_written) | 
 | { | 
 | 	wbc->nr_to_write -= nr_written; | 
 | 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && | 
 | 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) | 
 | 		page->mapping->writeback_index = page->index + nr_written; | 
 | } | 
 |  | 
 | /* | 
 |  * the writepage semantics are similar to regular writepage.  extent | 
 |  * records are inserted to lock ranges in the tree, and as dirty areas | 
 |  * are found, they are marked writeback.  Then the lock bits are removed | 
 |  * and the end_io handler clears the writeback ranges | 
 |  */ | 
 | static int __extent_writepage(struct page *page, struct writeback_control *wbc, | 
 | 			      void *data) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct extent_page_data *epd = data; | 
 | 	struct extent_io_tree *tree = epd->tree; | 
 | 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 delalloc_start; | 
 | 	u64 page_end = start + PAGE_CACHE_SIZE - 1; | 
 | 	u64 end; | 
 | 	u64 cur = start; | 
 | 	u64 extent_offset; | 
 | 	u64 last_byte = i_size_read(inode); | 
 | 	u64 block_start; | 
 | 	u64 iosize; | 
 | 	sector_t sector; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct extent_map *em; | 
 | 	struct block_device *bdev; | 
 | 	int ret; | 
 | 	int nr = 0; | 
 | 	size_t pg_offset = 0; | 
 | 	size_t blocksize; | 
 | 	loff_t i_size = i_size_read(inode); | 
 | 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; | 
 | 	u64 nr_delalloc; | 
 | 	u64 delalloc_end; | 
 | 	int page_started; | 
 | 	int compressed; | 
 | 	int write_flags; | 
 | 	unsigned long nr_written = 0; | 
 |  | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 		write_flags = WRITE_SYNC_PLUG; | 
 | 	else | 
 | 		write_flags = WRITE; | 
 |  | 
 | 	WARN_ON(!PageLocked(page)); | 
 | 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1); | 
 | 	if (page->index > end_index || | 
 | 	   (page->index == end_index && !pg_offset)) { | 
 | 		page->mapping->a_ops->invalidatepage(page, 0); | 
 | 		unlock_page(page); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (page->index == end_index) { | 
 | 		char *userpage; | 
 |  | 
 | 		userpage = kmap_atomic(page, KM_USER0); | 
 | 		memset(userpage + pg_offset, 0, | 
 | 		       PAGE_CACHE_SIZE - pg_offset); | 
 | 		kunmap_atomic(userpage, KM_USER0); | 
 | 		flush_dcache_page(page); | 
 | 	} | 
 | 	pg_offset = 0; | 
 |  | 
 | 	set_page_extent_mapped(page); | 
 |  | 
 | 	delalloc_start = start; | 
 | 	delalloc_end = 0; | 
 | 	page_started = 0; | 
 | 	if (!epd->extent_locked) { | 
 | 		u64 delalloc_to_write = 0; | 
 | 		/* | 
 | 		 * make sure the wbc mapping index is at least updated | 
 | 		 * to this page. | 
 | 		 */ | 
 | 		update_nr_written(page, wbc, 0); | 
 |  | 
 | 		while (delalloc_end < page_end) { | 
 | 			nr_delalloc = find_lock_delalloc_range(inode, tree, | 
 | 						       page, | 
 | 						       &delalloc_start, | 
 | 						       &delalloc_end, | 
 | 						       128 * 1024 * 1024); | 
 | 			if (nr_delalloc == 0) { | 
 | 				delalloc_start = delalloc_end + 1; | 
 | 				continue; | 
 | 			} | 
 | 			tree->ops->fill_delalloc(inode, page, delalloc_start, | 
 | 						 delalloc_end, &page_started, | 
 | 						 &nr_written); | 
 | 			/* | 
 | 			 * delalloc_end is already one less than the total | 
 | 			 * length, so we don't subtract one from | 
 | 			 * PAGE_CACHE_SIZE | 
 | 			 */ | 
 | 			delalloc_to_write += (delalloc_end - delalloc_start + | 
 | 					      PAGE_CACHE_SIZE) >> | 
 | 					      PAGE_CACHE_SHIFT; | 
 | 			delalloc_start = delalloc_end + 1; | 
 | 		} | 
 | 		if (wbc->nr_to_write < delalloc_to_write) { | 
 | 			int thresh = 8192; | 
 |  | 
 | 			if (delalloc_to_write < thresh * 2) | 
 | 				thresh = delalloc_to_write; | 
 | 			wbc->nr_to_write = min_t(u64, delalloc_to_write, | 
 | 						 thresh); | 
 | 		} | 
 |  | 
 | 		/* did the fill delalloc function already unlock and start | 
 | 		 * the IO? | 
 | 		 */ | 
 | 		if (page_started) { | 
 | 			ret = 0; | 
 | 			/* | 
 | 			 * we've unlocked the page, so we can't update | 
 | 			 * the mapping's writeback index, just update | 
 | 			 * nr_to_write. | 
 | 			 */ | 
 | 			wbc->nr_to_write -= nr_written; | 
 | 			goto done_unlocked; | 
 | 		} | 
 | 	} | 
 | 	if (tree->ops && tree->ops->writepage_start_hook) { | 
 | 		ret = tree->ops->writepage_start_hook(page, start, | 
 | 						      page_end); | 
 | 		if (ret == -EAGAIN) { | 
 | 			redirty_page_for_writepage(wbc, page); | 
 | 			update_nr_written(page, wbc, nr_written); | 
 | 			unlock_page(page); | 
 | 			ret = 0; | 
 | 			goto done_unlocked; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we don't want to touch the inode after unlocking the page, | 
 | 	 * so we update the mapping writeback index now | 
 | 	 */ | 
 | 	update_nr_written(page, wbc, nr_written + 1); | 
 |  | 
 | 	end = page_end; | 
 | 	if (last_byte <= start) { | 
 | 		if (tree->ops && tree->ops->writepage_end_io_hook) | 
 | 			tree->ops->writepage_end_io_hook(page, start, | 
 | 							 page_end, NULL, 1); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	blocksize = inode->i_sb->s_blocksize; | 
 |  | 
 | 	while (cur <= end) { | 
 | 		if (cur >= last_byte) { | 
 | 			if (tree->ops && tree->ops->writepage_end_io_hook) | 
 | 				tree->ops->writepage_end_io_hook(page, cur, | 
 | 							 page_end, NULL, 1); | 
 | 			break; | 
 | 		} | 
 | 		em = epd->get_extent(inode, page, pg_offset, cur, | 
 | 				     end - cur + 1, 1); | 
 | 		if (IS_ERR(em) || !em) { | 
 | 			SetPageError(page); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		extent_offset = cur - em->start; | 
 | 		BUG_ON(extent_map_end(em) <= cur); | 
 | 		BUG_ON(end < cur); | 
 | 		iosize = min(extent_map_end(em) - cur, end - cur + 1); | 
 | 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); | 
 | 		sector = (em->block_start + extent_offset) >> 9; | 
 | 		bdev = em->bdev; | 
 | 		block_start = em->block_start; | 
 | 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 |  | 
 | 		/* | 
 | 		 * compressed and inline extents are written through other | 
 | 		 * paths in the FS | 
 | 		 */ | 
 | 		if (compressed || block_start == EXTENT_MAP_HOLE || | 
 | 		    block_start == EXTENT_MAP_INLINE) { | 
 | 			/* | 
 | 			 * end_io notification does not happen here for | 
 | 			 * compressed extents | 
 | 			 */ | 
 | 			if (!compressed && tree->ops && | 
 | 			    tree->ops->writepage_end_io_hook) | 
 | 				tree->ops->writepage_end_io_hook(page, cur, | 
 | 							 cur + iosize - 1, | 
 | 							 NULL, 1); | 
 | 			else if (compressed) { | 
 | 				/* we don't want to end_page_writeback on | 
 | 				 * a compressed extent.  this happens | 
 | 				 * elsewhere | 
 | 				 */ | 
 | 				nr++; | 
 | 			} | 
 |  | 
 | 			cur += iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 | 		/* leave this out until we have a page_mkwrite call */ | 
 | 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1, | 
 | 				   EXTENT_DIRTY, 0, NULL)) { | 
 | 			cur = cur + iosize; | 
 | 			pg_offset += iosize; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (tree->ops && tree->ops->writepage_io_hook) { | 
 | 			ret = tree->ops->writepage_io_hook(page, cur, | 
 | 						cur + iosize - 1); | 
 | 		} else { | 
 | 			ret = 0; | 
 | 		} | 
 | 		if (ret) { | 
 | 			SetPageError(page); | 
 | 		} else { | 
 | 			unsigned long max_nr = end_index + 1; | 
 |  | 
 | 			set_range_writeback(tree, cur, cur + iosize - 1); | 
 | 			if (!PageWriteback(page)) { | 
 | 				printk(KERN_ERR "btrfs warning page %lu not " | 
 | 				       "writeback, cur %llu end %llu\n", | 
 | 				       page->index, (unsigned long long)cur, | 
 | 				       (unsigned long long)end); | 
 | 			} | 
 |  | 
 | 			ret = submit_extent_page(write_flags, tree, page, | 
 | 						 sector, iosize, pg_offset, | 
 | 						 bdev, &epd->bio, max_nr, | 
 | 						 end_bio_extent_writepage, | 
 | 						 0, 0, 0); | 
 | 			if (ret) | 
 | 				SetPageError(page); | 
 | 		} | 
 | 		cur = cur + iosize; | 
 | 		pg_offset += iosize; | 
 | 		nr++; | 
 | 	} | 
 | done: | 
 | 	if (nr == 0) { | 
 | 		/* make sure the mapping tag for page dirty gets cleared */ | 
 | 		set_page_writeback(page); | 
 | 		end_page_writeback(page); | 
 | 	} | 
 | 	unlock_page(page); | 
 |  | 
 | done_unlocked: | 
 |  | 
 | 	/* drop our reference on any cached states */ | 
 | 	free_extent_state(cached_state); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 
 |  * @mapping: address space structure to write | 
 |  * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
 |  * @writepage: function called for each page | 
 |  * @data: data passed to writepage function | 
 |  * | 
 |  * If a page is already under I/O, write_cache_pages() skips it, even | 
 |  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
 |  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
 |  * and msync() need to guarantee that all the data which was dirty at the time | 
 |  * the call was made get new I/O started against them.  If wbc->sync_mode is | 
 |  * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
 |  * existing IO to complete. | 
 |  */ | 
 | static int extent_write_cache_pages(struct extent_io_tree *tree, | 
 | 			     struct address_space *mapping, | 
 | 			     struct writeback_control *wbc, | 
 | 			     writepage_t writepage, void *data, | 
 | 			     void (*flush_fn)(void *)) | 
 | { | 
 | 	int ret = 0; | 
 | 	int done = 0; | 
 | 	int nr_to_write_done = 0; | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	pgoff_t index; | 
 | 	pgoff_t end;		/* Inclusive */ | 
 | 	int scanned = 0; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	if (wbc->range_cyclic) { | 
 | 		index = mapping->writeback_index; /* Start from prev offset */ | 
 | 		end = -1; | 
 | 	} else { | 
 | 		index = wbc->range_start >> PAGE_CACHE_SHIFT; | 
 | 		end = wbc->range_end >> PAGE_CACHE_SHIFT; | 
 | 		scanned = 1; | 
 | 	} | 
 | retry: | 
 | 	while (!done && !nr_to_write_done && (index <= end) && | 
 | 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 			      PAGECACHE_TAG_DIRTY, min(end - index, | 
 | 				  (pgoff_t)PAGEVEC_SIZE-1) + 1))) { | 
 | 		unsigned i; | 
 |  | 
 | 		scanned = 1; | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* | 
 | 			 * At this point we hold neither mapping->tree_lock nor | 
 | 			 * lock on the page itself: the page may be truncated or | 
 | 			 * invalidated (changing page->mapping to NULL), or even | 
 | 			 * swizzled back from swapper_space to tmpfs file | 
 | 			 * mapping | 
 | 			 */ | 
 | 			if (tree->ops && tree->ops->write_cache_pages_lock_hook) | 
 | 				tree->ops->write_cache_pages_lock_hook(page); | 
 | 			else | 
 | 				lock_page(page); | 
 |  | 
 | 			if (unlikely(page->mapping != mapping)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!wbc->range_cyclic && page->index > end) { | 
 | 				done = 1; | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (wbc->sync_mode != WB_SYNC_NONE) { | 
 | 				if (PageWriteback(page)) | 
 | 					flush_fn(data); | 
 | 				wait_on_page_writeback(page); | 
 | 			} | 
 |  | 
 | 			if (PageWriteback(page) || | 
 | 			    !clear_page_dirty_for_io(page)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ret = (*writepage)(page, wbc, data); | 
 |  | 
 | 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { | 
 | 				unlock_page(page); | 
 | 				ret = 0; | 
 | 			} | 
 | 			if (ret) | 
 | 				done = 1; | 
 |  | 
 | 			/* | 
 | 			 * the filesystem may choose to bump up nr_to_write. | 
 | 			 * We have to make sure to honor the new nr_to_write | 
 | 			 * at any time | 
 | 			 */ | 
 | 			nr_to_write_done = wbc->nr_to_write <= 0; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!scanned && !done) { | 
 | 		/* | 
 | 		 * We hit the last page and there is more work to be done: wrap | 
 | 		 * back to the start of the file | 
 | 		 */ | 
 | 		scanned = 1; | 
 | 		index = 0; | 
 | 		goto retry; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void flush_epd_write_bio(struct extent_page_data *epd) | 
 | { | 
 | 	if (epd->bio) { | 
 | 		if (epd->sync_io) | 
 | 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0); | 
 | 		else | 
 | 			submit_one_bio(WRITE, epd->bio, 0, 0); | 
 | 		epd->bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static noinline void flush_write_bio(void *data) | 
 | { | 
 | 	struct extent_page_data *epd = data; | 
 | 	flush_epd_write_bio(epd); | 
 | } | 
 |  | 
 | int extent_write_full_page(struct extent_io_tree *tree, struct page *page, | 
 | 			  get_extent_t *get_extent, | 
 | 			  struct writeback_control *wbc) | 
 | { | 
 | 	int ret; | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio = NULL, | 
 | 		.tree = tree, | 
 | 		.get_extent = get_extent, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 | 	struct writeback_control wbc_writepages = { | 
 | 		.sync_mode	= wbc->sync_mode, | 
 | 		.older_than_this = NULL, | 
 | 		.nr_to_write	= 64, | 
 | 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE, | 
 | 		.range_end	= (loff_t)-1, | 
 | 	}; | 
 |  | 
 | 	ret = __extent_writepage(page, wbc, &epd); | 
 |  | 
 | 	extent_write_cache_pages(tree, mapping, &wbc_writepages, | 
 | 				 __extent_writepage, &epd, flush_write_bio); | 
 | 	flush_epd_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, | 
 | 			      u64 start, u64 end, get_extent_t *get_extent, | 
 | 			      int mode) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct page *page; | 
 | 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> | 
 | 		PAGE_CACHE_SHIFT; | 
 |  | 
 | 	struct extent_page_data epd = { | 
 | 		.bio = NULL, | 
 | 		.tree = tree, | 
 | 		.get_extent = get_extent, | 
 | 		.extent_locked = 1, | 
 | 		.sync_io = mode == WB_SYNC_ALL, | 
 | 	}; | 
 | 	struct writeback_control wbc_writepages = { | 
 | 		.sync_mode	= mode, | 
 | 		.older_than_this = NULL, | 
 | 		.nr_to_write	= nr_pages * 2, | 
 | 		.range_start	= start, | 
 | 		.range_end	= end + 1, | 
 | 	}; | 
 |  | 
 | 	while (start <= end) { | 
 | 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); | 
 | 		if (clear_page_dirty_for_io(page)) | 
 | 			ret = __extent_writepage(page, &wbc_writepages, &epd); | 
 | 		else { | 
 | 			if (tree->ops && tree->ops->writepage_end_io_hook) | 
 | 				tree->ops->writepage_end_io_hook(page, start, | 
 | 						 start + PAGE_CACHE_SIZE - 1, | 
 | 						 NULL, 1); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		page_cache_release(page); | 
 | 		start += PAGE_CACHE_SIZE; | 
 | 	} | 
 |  | 
 | 	flush_epd_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_writepages(struct extent_io_tree *tree, | 
 | 		      struct address_space *mapping, | 
 | 		      get_extent_t *get_extent, | 
 | 		      struct writeback_control *wbc) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct extent_page_data epd = { | 
 | 		.bio = NULL, | 
 | 		.tree = tree, | 
 | 		.get_extent = get_extent, | 
 | 		.extent_locked = 0, | 
 | 		.sync_io = wbc->sync_mode == WB_SYNC_ALL, | 
 | 	}; | 
 |  | 
 | 	ret = extent_write_cache_pages(tree, mapping, wbc, | 
 | 				       __extent_writepage, &epd, | 
 | 				       flush_write_bio); | 
 | 	flush_epd_write_bio(&epd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int extent_readpages(struct extent_io_tree *tree, | 
 | 		     struct address_space *mapping, | 
 | 		     struct list_head *pages, unsigned nr_pages, | 
 | 		     get_extent_t get_extent) | 
 | { | 
 | 	struct bio *bio = NULL; | 
 | 	unsigned page_idx; | 
 | 	unsigned long bio_flags = 0; | 
 |  | 
 | 	for (page_idx = 0; page_idx < nr_pages; page_idx++) { | 
 | 		struct page *page = list_entry(pages->prev, struct page, lru); | 
 |  | 
 | 		prefetchw(&page->flags); | 
 | 		list_del(&page->lru); | 
 | 		if (!add_to_page_cache_lru(page, mapping, | 
 | 					page->index, GFP_KERNEL)) { | 
 | 			__extent_read_full_page(tree, page, get_extent, | 
 | 						&bio, 0, &bio_flags); | 
 | 		} | 
 | 		page_cache_release(page); | 
 | 	} | 
 | 	BUG_ON(!list_empty(pages)); | 
 | 	if (bio) | 
 | 		submit_one_bio(READ, bio, 0, bio_flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * basic invalidatepage code, this waits on any locked or writeback | 
 |  * ranges corresponding to the page, and then deletes any extent state | 
 |  * records from the tree | 
 |  */ | 
 | int extent_invalidatepage(struct extent_io_tree *tree, | 
 | 			  struct page *page, unsigned long offset) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); | 
 | 	u64 end = start + PAGE_CACHE_SIZE - 1; | 
 | 	size_t blocksize = page->mapping->host->i_sb->s_blocksize; | 
 |  | 
 | 	start += (offset + blocksize - 1) & ~(blocksize - 1); | 
 | 	if (start > end) | 
 | 		return 0; | 
 |  | 
 | 	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS); | 
 | 	wait_on_page_writeback(page); | 
 | 	clear_extent_bit(tree, start, end, | 
 | 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | | 
 | 			 EXTENT_DO_ACCOUNTING, | 
 | 			 1, 1, &cached_state, GFP_NOFS); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * simple commit_write call, set_range_dirty is used to mark both | 
 |  * the pages and the extent records as dirty | 
 |  */ | 
 | int extent_commit_write(struct extent_io_tree *tree, | 
 | 			struct inode *inode, struct page *page, | 
 | 			unsigned from, unsigned to) | 
 | { | 
 | 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | 
 |  | 
 | 	set_page_extent_mapped(page); | 
 | 	set_page_dirty(page); | 
 |  | 
 | 	if (pos > inode->i_size) { | 
 | 		i_size_write(inode, pos); | 
 | 		mark_inode_dirty(inode); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int extent_prepare_write(struct extent_io_tree *tree, | 
 | 			 struct inode *inode, struct page *page, | 
 | 			 unsigned from, unsigned to, get_extent_t *get_extent) | 
 | { | 
 | 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1; | 
 | 	u64 block_start; | 
 | 	u64 orig_block_start; | 
 | 	u64 block_end; | 
 | 	u64 cur_end; | 
 | 	struct extent_map *em; | 
 | 	unsigned blocksize = 1 << inode->i_blkbits; | 
 | 	size_t page_offset = 0; | 
 | 	size_t block_off_start; | 
 | 	size_t block_off_end; | 
 | 	int err = 0; | 
 | 	int iocount = 0; | 
 | 	int ret = 0; | 
 | 	int isnew; | 
 |  | 
 | 	set_page_extent_mapped(page); | 
 |  | 
 | 	block_start = (page_start + from) & ~((u64)blocksize - 1); | 
 | 	block_end = (page_start + to - 1) | (blocksize - 1); | 
 | 	orig_block_start = block_start; | 
 |  | 
 | 	lock_extent(tree, page_start, page_end, GFP_NOFS); | 
 | 	while (block_start <= block_end) { | 
 | 		em = get_extent(inode, page, page_offset, block_start, | 
 | 				block_end - block_start + 1, 1); | 
 | 		if (IS_ERR(em) || !em) | 
 | 			goto err; | 
 |  | 
 | 		cur_end = min(block_end, extent_map_end(em) - 1); | 
 | 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1); | 
 | 		block_off_end = block_off_start + blocksize; | 
 | 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); | 
 |  | 
 | 		if (!PageUptodate(page) && isnew && | 
 | 		    (block_off_end > to || block_off_start < from)) { | 
 | 			void *kaddr; | 
 |  | 
 | 			kaddr = kmap_atomic(page, KM_USER0); | 
 | 			if (block_off_end > to) | 
 | 				memset(kaddr + to, 0, block_off_end - to); | 
 | 			if (block_off_start < from) | 
 | 				memset(kaddr + block_off_start, 0, | 
 | 				       from - block_off_start); | 
 | 			flush_dcache_page(page); | 
 | 			kunmap_atomic(kaddr, KM_USER0); | 
 | 		} | 
 | 		if ((em->block_start != EXTENT_MAP_HOLE && | 
 | 		     em->block_start != EXTENT_MAP_INLINE) && | 
 | 		    !isnew && !PageUptodate(page) && | 
 | 		    (block_off_end > to || block_off_start < from) && | 
 | 		    !test_range_bit(tree, block_start, cur_end, | 
 | 				    EXTENT_UPTODATE, 1, NULL)) { | 
 | 			u64 sector; | 
 | 			u64 extent_offset = block_start - em->start; | 
 | 			size_t iosize; | 
 | 			sector = (em->block_start + extent_offset) >> 9; | 
 | 			iosize = (cur_end - block_start + blocksize) & | 
 | 				~((u64)blocksize - 1); | 
 | 			/* | 
 | 			 * we've already got the extent locked, but we | 
 | 			 * need to split the state such that our end_bio | 
 | 			 * handler can clear the lock. | 
 | 			 */ | 
 | 			set_extent_bit(tree, block_start, | 
 | 				       block_start + iosize - 1, | 
 | 				       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS); | 
 | 			ret = submit_extent_page(READ, tree, page, | 
 | 					 sector, iosize, page_offset, em->bdev, | 
 | 					 NULL, 1, | 
 | 					 end_bio_extent_preparewrite, 0, | 
 | 					 0, 0); | 
 | 			if (ret && !err) | 
 | 				err = ret; | 
 | 			iocount++; | 
 | 			block_start = block_start + iosize; | 
 | 		} else { | 
 | 			set_extent_uptodate(tree, block_start, cur_end, | 
 | 					    GFP_NOFS); | 
 | 			unlock_extent(tree, block_start, cur_end, GFP_NOFS); | 
 | 			block_start = cur_end + 1; | 
 | 		} | 
 | 		page_offset = block_start & (PAGE_CACHE_SIZE - 1); | 
 | 		free_extent_map(em); | 
 | 	} | 
 | 	if (iocount) { | 
 | 		wait_extent_bit(tree, orig_block_start, | 
 | 				block_end, EXTENT_LOCKED); | 
 | 	} | 
 | 	check_page_uptodate(tree, page); | 
 | err: | 
 | 	/* FIXME, zero out newly allocated blocks on error */ | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper for releasepage, this tests for areas of the page that | 
 |  * are locked or under IO and drops the related state bits if it is safe | 
 |  * to drop the page. | 
 |  */ | 
 | int try_release_extent_state(struct extent_map_tree *map, | 
 | 			     struct extent_io_tree *tree, struct page *page, | 
 | 			     gfp_t mask) | 
 | { | 
 | 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 end = start + PAGE_CACHE_SIZE - 1; | 
 | 	int ret = 1; | 
 |  | 
 | 	if (test_range_bit(tree, start, end, | 
 | 			   EXTENT_IOBITS, 0, NULL)) | 
 | 		ret = 0; | 
 | 	else { | 
 | 		if ((mask & GFP_NOFS) == GFP_NOFS) | 
 | 			mask = GFP_NOFS; | 
 | 		/* | 
 | 		 * at this point we can safely clear everything except the | 
 | 		 * locked bit and the nodatasum bit | 
 | 		 */ | 
 | 		ret = clear_extent_bit(tree, start, end, | 
 | 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM), | 
 | 				 0, 0, NULL, mask); | 
 |  | 
 | 		/* if clear_extent_bit failed for enomem reasons, | 
 | 		 * we can't allow the release to continue. | 
 | 		 */ | 
 | 		if (ret < 0) | 
 | 			ret = 0; | 
 | 		else | 
 | 			ret = 1; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper for releasepage.  As long as there are no locked extents | 
 |  * in the range corresponding to the page, both state records and extent | 
 |  * map records are removed | 
 |  */ | 
 | int try_release_extent_mapping(struct extent_map_tree *map, | 
 | 			       struct extent_io_tree *tree, struct page *page, | 
 | 			       gfp_t mask) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT; | 
 | 	u64 end = start + PAGE_CACHE_SIZE - 1; | 
 |  | 
 | 	if ((mask & __GFP_WAIT) && | 
 | 	    page->mapping->host->i_size > 16 * 1024 * 1024) { | 
 | 		u64 len; | 
 | 		while (start <= end) { | 
 | 			len = end - start + 1; | 
 | 			write_lock(&map->lock); | 
 | 			em = lookup_extent_mapping(map, start, len); | 
 | 			if (!em || IS_ERR(em)) { | 
 | 				write_unlock(&map->lock); | 
 | 				break; | 
 | 			} | 
 | 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || | 
 | 			    em->start != start) { | 
 | 				write_unlock(&map->lock); | 
 | 				free_extent_map(em); | 
 | 				break; | 
 | 			} | 
 | 			if (!test_range_bit(tree, em->start, | 
 | 					    extent_map_end(em) - 1, | 
 | 					    EXTENT_LOCKED | EXTENT_WRITEBACK, | 
 | 					    0, NULL)) { | 
 | 				remove_extent_mapping(map, em); | 
 | 				/* once for the rb tree */ | 
 | 				free_extent_map(em); | 
 | 			} | 
 | 			start = extent_map_end(em); | 
 | 			write_unlock(&map->lock); | 
 |  | 
 | 			/* once for us */ | 
 | 			free_extent_map(em); | 
 | 		} | 
 | 	} | 
 | 	return try_release_extent_state(map, tree, page, mask); | 
 | } | 
 |  | 
 | sector_t extent_bmap(struct address_space *mapping, sector_t iblock, | 
 | 		get_extent_t *get_extent) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 start = iblock << inode->i_blkbits; | 
 | 	sector_t sector = 0; | 
 | 	size_t blksize = (1 << inode->i_blkbits); | 
 | 	struct extent_map *em; | 
 |  | 
 | 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, | 
 | 			 0, &cached_state, GFP_NOFS); | 
 | 	em = get_extent(inode, NULL, 0, start, blksize, 0); | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, | 
 | 			     start + blksize - 1, &cached_state, GFP_NOFS); | 
 | 	if (!em || IS_ERR(em)) | 
 | 		return 0; | 
 |  | 
 | 	if (em->block_start > EXTENT_MAP_LAST_BYTE) | 
 | 		goto out; | 
 |  | 
 | 	sector = (em->block_start + start - em->start) >> inode->i_blkbits; | 
 | out: | 
 | 	free_extent_map(em); | 
 | 	return sector; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function for fiemap, which doesn't want to see any holes. | 
 |  * This maps until we find something past 'last' | 
 |  */ | 
 | static struct extent_map *get_extent_skip_holes(struct inode *inode, | 
 | 						u64 offset, | 
 | 						u64 last, | 
 | 						get_extent_t *get_extent) | 
 | { | 
 | 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize; | 
 | 	struct extent_map *em; | 
 | 	u64 len; | 
 |  | 
 | 	if (offset >= last) | 
 | 		return NULL; | 
 |  | 
 | 	while(1) { | 
 | 		len = last - offset; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		len = (len + sectorsize - 1) & ~(sectorsize - 1); | 
 | 		em = get_extent(inode, NULL, 0, offset, len, 0); | 
 | 		if (!em || IS_ERR(em)) | 
 | 			return em; | 
 |  | 
 | 		/* if this isn't a hole return it */ | 
 | 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && | 
 | 		    em->block_start != EXTENT_MAP_HOLE) { | 
 | 			return em; | 
 | 		} | 
 |  | 
 | 		/* this is a hole, advance to the next extent */ | 
 | 		offset = extent_map_end(em); | 
 | 		free_extent_map(em); | 
 | 		if (offset >= last) | 
 | 			break; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
 | 		__u64 start, __u64 len, get_extent_t *get_extent) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 off = start; | 
 | 	u64 max = start + len; | 
 | 	u32 flags = 0; | 
 | 	u32 found_type; | 
 | 	u64 last; | 
 | 	u64 last_for_get_extent = 0; | 
 | 	u64 disko = 0; | 
 | 	u64 isize = i_size_read(inode); | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_map *em = NULL; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_file_extent_item *item; | 
 | 	int end = 0; | 
 | 	u64 em_start = 0; | 
 | 	u64 em_len = 0; | 
 | 	u64 em_end = 0; | 
 | 	unsigned long emflags; | 
 |  | 
 | 	if (len == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	/* | 
 | 	 * lookup the last file extent.  We're not using i_size here | 
 | 	 * because there might be preallocation past i_size | 
 | 	 */ | 
 | 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, | 
 | 				       path, inode->i_ino, -1, 0); | 
 | 	if (ret < 0) { | 
 | 		btrfs_free_path(path); | 
 | 		return ret; | 
 | 	} | 
 | 	WARN_ON(!ret); | 
 | 	path->slots[0]--; | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_file_extent_item); | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); | 
 | 	found_type = btrfs_key_type(&found_key); | 
 |  | 
 | 	/* No extents, but there might be delalloc bits */ | 
 | 	if (found_key.objectid != inode->i_ino || | 
 | 	    found_type != BTRFS_EXTENT_DATA_KEY) { | 
 | 		/* have to trust i_size as the end */ | 
 | 		last = (u64)-1; | 
 | 		last_for_get_extent = isize; | 
 | 	} else { | 
 | 		/* | 
 | 		 * remember the start of the last extent.  There are a | 
 | 		 * bunch of different factors that go into the length of the | 
 | 		 * extent, so its much less complex to remember where it started | 
 | 		 */ | 
 | 		last = found_key.offset; | 
 | 		last_for_get_extent = last + 1; | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	/* | 
 | 	 * we might have some extents allocated but more delalloc past those | 
 | 	 * extents.  so, we trust isize unless the start of the last extent is | 
 | 	 * beyond isize | 
 | 	 */ | 
 | 	if (last < isize) { | 
 | 		last = (u64)-1; | 
 | 		last_for_get_extent = isize; | 
 | 	} | 
 |  | 
 | 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, | 
 | 			 &cached_state, GFP_NOFS); | 
 |  | 
 | 	em = get_extent_skip_holes(inode, off, last_for_get_extent, | 
 | 				   get_extent); | 
 | 	if (!em) | 
 | 		goto out; | 
 | 	if (IS_ERR(em)) { | 
 | 		ret = PTR_ERR(em); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (!end) { | 
 | 		u64 offset_in_extent; | 
 |  | 
 | 		/* break if the extent we found is outside the range */ | 
 | 		if (em->start >= max || extent_map_end(em) < off) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * get_extent may return an extent that starts before our | 
 | 		 * requested range.  We have to make sure the ranges | 
 | 		 * we return to fiemap always move forward and don't | 
 | 		 * overlap, so adjust the offsets here | 
 | 		 */ | 
 | 		em_start = max(em->start, off); | 
 |  | 
 | 		/* | 
 | 		 * record the offset from the start of the extent | 
 | 		 * for adjusting the disk offset below | 
 | 		 */ | 
 | 		offset_in_extent = em_start - em->start; | 
 | 		em_end = extent_map_end(em); | 
 | 		em_len = em_end - em_start; | 
 | 		emflags = em->flags; | 
 | 		disko = 0; | 
 | 		flags = 0; | 
 |  | 
 | 		/* | 
 | 		 * bump off for our next call to get_extent | 
 | 		 */ | 
 | 		off = extent_map_end(em); | 
 | 		if (off >= max) | 
 | 			end = 1; | 
 |  | 
 | 		if (em->block_start == EXTENT_MAP_LAST_BYTE) { | 
 | 			end = 1; | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 		} else if (em->block_start == EXTENT_MAP_INLINE) { | 
 | 			flags |= (FIEMAP_EXTENT_DATA_INLINE | | 
 | 				  FIEMAP_EXTENT_NOT_ALIGNED); | 
 | 		} else if (em->block_start == EXTENT_MAP_DELALLOC) { | 
 | 			flags |= (FIEMAP_EXTENT_DELALLOC | | 
 | 				  FIEMAP_EXTENT_UNKNOWN); | 
 | 		} else { | 
 | 			disko = em->block_start + offset_in_extent; | 
 | 		} | 
 | 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) | 
 | 			flags |= FIEMAP_EXTENT_ENCODED; | 
 |  | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 | 		if ((em_start >= last) || em_len == (u64)-1 || | 
 | 		   (last == (u64)-1 && isize <= em_end)) { | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 			end = 1; | 
 | 		} | 
 |  | 
 | 		/* now scan forward to see if this is really the last extent. */ | 
 | 		em = get_extent_skip_holes(inode, off, last_for_get_extent, | 
 | 					   get_extent); | 
 | 		if (IS_ERR(em)) { | 
 | 			ret = PTR_ERR(em); | 
 | 			goto out; | 
 | 		} | 
 | 		if (!em) { | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 			end = 1; | 
 | 		} | 
 | 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko, | 
 | 					      em_len, flags); | 
 | 		if (ret) | 
 | 			goto out_free; | 
 | 	} | 
 | out_free: | 
 | 	free_extent_map(em); | 
 | out: | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, | 
 | 			     &cached_state, GFP_NOFS); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline struct page *extent_buffer_page(struct extent_buffer *eb, | 
 | 					      unsigned long i) | 
 | { | 
 | 	struct page *p; | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	if (i == 0) | 
 | 		return eb->first_page; | 
 | 	i += eb->start >> PAGE_CACHE_SHIFT; | 
 | 	mapping = eb->first_page->mapping; | 
 | 	if (!mapping) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * extent_buffer_page is only called after pinning the page | 
 | 	 * by increasing the reference count.  So we know the page must | 
 | 	 * be in the radix tree. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	p = radix_tree_lookup(&mapping->page_tree, i); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static inline unsigned long num_extent_pages(u64 start, u64 len) | 
 | { | 
 | 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - | 
 | 		(start >> PAGE_CACHE_SHIFT); | 
 | } | 
 |  | 
 | static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, | 
 | 						   u64 start, | 
 | 						   unsigned long len, | 
 | 						   gfp_t mask) | 
 | { | 
 | 	struct extent_buffer *eb = NULL; | 
 | #if LEAK_DEBUG | 
 | 	unsigned long flags; | 
 | #endif | 
 |  | 
 | 	eb = kmem_cache_zalloc(extent_buffer_cache, mask); | 
 | 	if (eb == NULL) | 
 | 		return NULL; | 
 | 	eb->start = start; | 
 | 	eb->len = len; | 
 | 	spin_lock_init(&eb->lock); | 
 | 	init_waitqueue_head(&eb->lock_wq); | 
 |  | 
 | #if LEAK_DEBUG | 
 | 	spin_lock_irqsave(&leak_lock, flags); | 
 | 	list_add(&eb->leak_list, &buffers); | 
 | 	spin_unlock_irqrestore(&leak_lock, flags); | 
 | #endif | 
 | 	atomic_set(&eb->refs, 1); | 
 |  | 
 | 	return eb; | 
 | } | 
 |  | 
 | static void __free_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | #if LEAK_DEBUG | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&leak_lock, flags); | 
 | 	list_del(&eb->leak_list); | 
 | 	spin_unlock_irqrestore(&leak_lock, flags); | 
 | #endif | 
 | 	kmem_cache_free(extent_buffer_cache, eb); | 
 | } | 
 |  | 
 | /* | 
 |  * Helper for releasing extent buffer page. | 
 |  */ | 
 | static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, | 
 | 						unsigned long start_idx) | 
 | { | 
 | 	unsigned long index; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!eb->first_page) | 
 | 		return; | 
 |  | 
 | 	index = num_extent_pages(eb->start, eb->len); | 
 | 	if (start_idx >= index) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		index--; | 
 | 		page = extent_buffer_page(eb, index); | 
 | 		if (page) | 
 | 			page_cache_release(page); | 
 | 	} while (index != start_idx); | 
 | } | 
 |  | 
 | /* | 
 |  * Helper for releasing the extent buffer. | 
 |  */ | 
 | static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	btrfs_release_extent_buffer_page(eb, 0); | 
 | 	__free_extent_buffer(eb); | 
 | } | 
 |  | 
 | struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, | 
 | 					  u64 start, unsigned long len, | 
 | 					  struct page *page0, | 
 | 					  gfp_t mask) | 
 | { | 
 | 	unsigned long num_pages = num_extent_pages(start, len); | 
 | 	unsigned long i; | 
 | 	unsigned long index = start >> PAGE_CACHE_SHIFT; | 
 | 	struct extent_buffer *eb; | 
 | 	struct extent_buffer *exists = NULL; | 
 | 	struct page *p; | 
 | 	struct address_space *mapping = tree->mapping; | 
 | 	int uptodate = 1; | 
 | 	int ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); | 
 | 	if (eb && atomic_inc_not_zero(&eb->refs)) { | 
 | 		rcu_read_unlock(); | 
 | 		mark_page_accessed(eb->first_page); | 
 | 		return eb; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	eb = __alloc_extent_buffer(tree, start, len, mask); | 
 | 	if (!eb) | 
 | 		return NULL; | 
 |  | 
 | 	if (page0) { | 
 | 		eb->first_page = page0; | 
 | 		i = 1; | 
 | 		index++; | 
 | 		page_cache_get(page0); | 
 | 		mark_page_accessed(page0); | 
 | 		set_page_extent_mapped(page0); | 
 | 		set_page_extent_head(page0, len); | 
 | 		uptodate = PageUptodate(page0); | 
 | 	} else { | 
 | 		i = 0; | 
 | 	} | 
 | 	for (; i < num_pages; i++, index++) { | 
 | 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); | 
 | 		if (!p) { | 
 | 			WARN_ON(1); | 
 | 			goto free_eb; | 
 | 		} | 
 | 		set_page_extent_mapped(p); | 
 | 		mark_page_accessed(p); | 
 | 		if (i == 0) { | 
 | 			eb->first_page = p; | 
 | 			set_page_extent_head(p, len); | 
 | 		} else { | 
 | 			set_page_private(p, EXTENT_PAGE_PRIVATE); | 
 | 		} | 
 | 		if (!PageUptodate(p)) | 
 | 			uptodate = 0; | 
 |  | 
 | 		/* | 
 | 		 * see below about how we avoid a nasty race with release page | 
 | 		 * and why we unlock later | 
 | 		 */ | 
 | 		if (i != 0) | 
 | 			unlock_page(p); | 
 | 	} | 
 | 	if (uptodate) | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 |  | 
 | 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); | 
 | 	if (ret) | 
 | 		goto free_eb; | 
 |  | 
 | 	spin_lock(&tree->buffer_lock); | 
 | 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); | 
 | 	if (ret == -EEXIST) { | 
 | 		exists = radix_tree_lookup(&tree->buffer, | 
 | 						start >> PAGE_CACHE_SHIFT); | 
 | 		/* add one reference for the caller */ | 
 | 		atomic_inc(&exists->refs); | 
 | 		spin_unlock(&tree->buffer_lock); | 
 | 		radix_tree_preload_end(); | 
 | 		goto free_eb; | 
 | 	} | 
 | 	/* add one reference for the tree */ | 
 | 	atomic_inc(&eb->refs); | 
 | 	spin_unlock(&tree->buffer_lock); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	/* | 
 | 	 * there is a race where release page may have | 
 | 	 * tried to find this extent buffer in the radix | 
 | 	 * but failed.  It will tell the VM it is safe to | 
 | 	 * reclaim the, and it will clear the page private bit. | 
 | 	 * We must make sure to set the page private bit properly | 
 | 	 * after the extent buffer is in the radix tree so | 
 | 	 * it doesn't get lost | 
 | 	 */ | 
 | 	set_page_extent_mapped(eb->first_page); | 
 | 	set_page_extent_head(eb->first_page, eb->len); | 
 | 	if (!page0) | 
 | 		unlock_page(eb->first_page); | 
 | 	return eb; | 
 |  | 
 | free_eb: | 
 | 	if (eb->first_page && !page0) | 
 | 		unlock_page(eb->first_page); | 
 |  | 
 | 	if (!atomic_dec_and_test(&eb->refs)) | 
 | 		return exists; | 
 | 	btrfs_release_extent_buffer(eb); | 
 | 	return exists; | 
 | } | 
 |  | 
 | struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, | 
 | 					 u64 start, unsigned long len, | 
 | 					  gfp_t mask) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); | 
 | 	if (eb && atomic_inc_not_zero(&eb->refs)) { | 
 | 		rcu_read_unlock(); | 
 | 		mark_page_accessed(eb->first_page); | 
 | 		return eb; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void free_extent_buffer(struct extent_buffer *eb) | 
 | { | 
 | 	if (!eb) | 
 | 		return; | 
 |  | 
 | 	if (!atomic_dec_and_test(&eb->refs)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(1); | 
 | } | 
 |  | 
 | int clear_extent_buffer_dirty(struct extent_io_tree *tree, | 
 | 			      struct extent_buffer *eb) | 
 | { | 
 | 	unsigned long i; | 
 | 	unsigned long num_pages; | 
 | 	struct page *page; | 
 |  | 
 | 	num_pages = num_extent_pages(eb->start, eb->len); | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		if (!PageDirty(page)) | 
 | 			continue; | 
 |  | 
 | 		lock_page(page); | 
 | 		WARN_ON(!PagePrivate(page)); | 
 |  | 
 | 		set_page_extent_mapped(page); | 
 | 		if (i == 0) | 
 | 			set_page_extent_head(page, eb->len); | 
 |  | 
 | 		clear_page_dirty_for_io(page); | 
 | 		spin_lock_irq(&page->mapping->tree_lock); | 
 | 		if (!PageDirty(page)) { | 
 | 			radix_tree_tag_clear(&page->mapping->page_tree, | 
 | 						page_index(page), | 
 | 						PAGECACHE_TAG_DIRTY); | 
 | 		} | 
 | 		spin_unlock_irq(&page->mapping->tree_lock); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, | 
 | 				    struct extent_buffer *eb) | 
 | { | 
 | 	return wait_on_extent_writeback(tree, eb->start, | 
 | 					eb->start + eb->len - 1); | 
 | } | 
 |  | 
 | int set_extent_buffer_dirty(struct extent_io_tree *tree, | 
 | 			     struct extent_buffer *eb) | 
 | { | 
 | 	unsigned long i; | 
 | 	unsigned long num_pages; | 
 | 	int was_dirty = 0; | 
 |  | 
 | 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); | 
 | 	num_pages = num_extent_pages(eb->start, eb->len); | 
 | 	for (i = 0; i < num_pages; i++) | 
 | 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i)); | 
 | 	return was_dirty; | 
 | } | 
 |  | 
 | int clear_extent_buffer_uptodate(struct extent_io_tree *tree, | 
 | 				struct extent_buffer *eb, | 
 | 				struct extent_state **cached_state) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct page *page; | 
 | 	unsigned long num_pages; | 
 |  | 
 | 	num_pages = num_extent_pages(eb->start, eb->len); | 
 | 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 |  | 
 | 	clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, | 
 | 			      cached_state, GFP_NOFS); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		if (page) | 
 | 			ClearPageUptodate(page); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int set_extent_buffer_uptodate(struct extent_io_tree *tree, | 
 | 				struct extent_buffer *eb) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct page *page; | 
 | 	unsigned long num_pages; | 
 |  | 
 | 	num_pages = num_extent_pages(eb->start, eb->len); | 
 |  | 
 | 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, | 
 | 			    GFP_NOFS); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || | 
 | 		    ((i == num_pages - 1) && | 
 | 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { | 
 | 			check_page_uptodate(tree, page); | 
 | 			continue; | 
 | 		} | 
 | 		SetPageUptodate(page); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int extent_range_uptodate(struct extent_io_tree *tree, | 
 | 			  u64 start, u64 end) | 
 | { | 
 | 	struct page *page; | 
 | 	int ret; | 
 | 	int pg_uptodate = 1; | 
 | 	int uptodate; | 
 | 	unsigned long index; | 
 |  | 
 | 	ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL); | 
 | 	if (ret) | 
 | 		return 1; | 
 | 	while (start <= end) { | 
 | 		index = start >> PAGE_CACHE_SHIFT; | 
 | 		page = find_get_page(tree->mapping, index); | 
 | 		uptodate = PageUptodate(page); | 
 | 		page_cache_release(page); | 
 | 		if (!uptodate) { | 
 | 			pg_uptodate = 0; | 
 | 			break; | 
 | 		} | 
 | 		start += PAGE_CACHE_SIZE; | 
 | 	} | 
 | 	return pg_uptodate; | 
 | } | 
 |  | 
 | int extent_buffer_uptodate(struct extent_io_tree *tree, | 
 | 			   struct extent_buffer *eb, | 
 | 			   struct extent_state *cached_state) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long num_pages; | 
 | 	unsigned long i; | 
 | 	struct page *page; | 
 | 	int pg_uptodate = 1; | 
 |  | 
 | 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
 | 		return 1; | 
 |  | 
 | 	ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1, | 
 | 			   EXTENT_UPTODATE, 1, cached_state); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	num_pages = num_extent_pages(eb->start, eb->len); | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		if (!PageUptodate(page)) { | 
 | 			pg_uptodate = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return pg_uptodate; | 
 | } | 
 |  | 
 | int read_extent_buffer_pages(struct extent_io_tree *tree, | 
 | 			     struct extent_buffer *eb, | 
 | 			     u64 start, int wait, | 
 | 			     get_extent_t *get_extent, int mirror_num) | 
 | { | 
 | 	unsigned long i; | 
 | 	unsigned long start_i; | 
 | 	struct page *page; | 
 | 	int err; | 
 | 	int ret = 0; | 
 | 	int locked_pages = 0; | 
 | 	int all_uptodate = 1; | 
 | 	int inc_all_pages = 0; | 
 | 	unsigned long num_pages; | 
 | 	struct bio *bio = NULL; | 
 | 	unsigned long bio_flags = 0; | 
 |  | 
 | 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) | 
 | 		return 0; | 
 |  | 
 | 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, | 
 | 			   EXTENT_UPTODATE, 1, NULL)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (start) { | 
 | 		WARN_ON(start < eb->start); | 
 | 		start_i = (start >> PAGE_CACHE_SHIFT) - | 
 | 			(eb->start >> PAGE_CACHE_SHIFT); | 
 | 	} else { | 
 | 		start_i = 0; | 
 | 	} | 
 |  | 
 | 	num_pages = num_extent_pages(eb->start, eb->len); | 
 | 	for (i = start_i; i < num_pages; i++) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		if (!wait) { | 
 | 			if (!trylock_page(page)) | 
 | 				goto unlock_exit; | 
 | 		} else { | 
 | 			lock_page(page); | 
 | 		} | 
 | 		locked_pages++; | 
 | 		if (!PageUptodate(page)) | 
 | 			all_uptodate = 0; | 
 | 	} | 
 | 	if (all_uptodate) { | 
 | 		if (start_i == 0) | 
 | 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 		goto unlock_exit; | 
 | 	} | 
 |  | 
 | 	for (i = start_i; i < num_pages; i++) { | 
 | 		page = extent_buffer_page(eb, i); | 
 |  | 
 | 		WARN_ON(!PagePrivate(page)); | 
 |  | 
 | 		set_page_extent_mapped(page); | 
 | 		if (i == 0) | 
 | 			set_page_extent_head(page, eb->len); | 
 |  | 
 | 		if (inc_all_pages) | 
 | 			page_cache_get(page); | 
 | 		if (!PageUptodate(page)) { | 
 | 			if (start_i == 0) | 
 | 				inc_all_pages = 1; | 
 | 			ClearPageError(page); | 
 | 			err = __extent_read_full_page(tree, page, | 
 | 						      get_extent, &bio, | 
 | 						      mirror_num, &bio_flags); | 
 | 			if (err) | 
 | 				ret = err; | 
 | 		} else { | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bio) | 
 | 		submit_one_bio(READ, bio, mirror_num, bio_flags); | 
 |  | 
 | 	if (ret || !wait) | 
 | 		return ret; | 
 |  | 
 | 	for (i = start_i; i < num_pages; i++) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		wait_on_page_locked(page); | 
 | 		if (!PageUptodate(page)) | 
 | 			ret = -EIO; | 
 | 	} | 
 |  | 
 | 	if (!ret) | 
 | 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); | 
 | 	return ret; | 
 |  | 
 | unlock_exit: | 
 | 	i = start_i; | 
 | 	while (locked_pages > 0) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		i++; | 
 | 		unlock_page(page); | 
 | 		locked_pages--; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void read_extent_buffer(struct extent_buffer *eb, void *dstv, | 
 | 			unsigned long start, | 
 | 			unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *dst = (char *)dstv; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = extent_buffer_page(eb, i); | 
 |  | 
 | 		cur = min(len, (PAGE_CACHE_SIZE - offset)); | 
 | 		kaddr = kmap_atomic(page, KM_USER1); | 
 | 		memcpy(dst, kaddr + offset, cur); | 
 | 		kunmap_atomic(kaddr, KM_USER1); | 
 |  | 
 | 		dst += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, | 
 | 			       unsigned long min_len, char **token, char **map, | 
 | 			       unsigned long *map_start, | 
 | 			       unsigned long *map_len, int km) | 
 | { | 
 | 	size_t offset = start & (PAGE_CACHE_SIZE - 1); | 
 | 	char *kaddr; | 
 | 	struct page *p; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | 
 | 	unsigned long end_i = (start_offset + start + min_len - 1) >> | 
 | 		PAGE_CACHE_SHIFT; | 
 |  | 
 | 	if (i != end_i) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (i == 0) { | 
 | 		offset = start_offset; | 
 | 		*map_start = 0; | 
 | 	} else { | 
 | 		offset = 0; | 
 | 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; | 
 | 	} | 
 |  | 
 | 	if (start + min_len > eb->len) { | 
 | 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " | 
 | 		       "wanted %lu %lu\n", (unsigned long long)eb->start, | 
 | 		       eb->len, start, min_len); | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	p = extent_buffer_page(eb, i); | 
 | 	kaddr = kmap_atomic(p, km); | 
 | 	*token = kaddr; | 
 | 	*map = kaddr + offset; | 
 | 	*map_len = PAGE_CACHE_SIZE - offset; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int map_extent_buffer(struct extent_buffer *eb, unsigned long start, | 
 | 		      unsigned long min_len, | 
 | 		      char **token, char **map, | 
 | 		      unsigned long *map_start, | 
 | 		      unsigned long *map_len, int km) | 
 | { | 
 | 	int err; | 
 | 	int save = 0; | 
 | 	if (eb->map_token) { | 
 | 		unmap_extent_buffer(eb, eb->map_token, km); | 
 | 		eb->map_token = NULL; | 
 | 		save = 1; | 
 | 	} | 
 | 	err = map_private_extent_buffer(eb, start, min_len, token, map, | 
 | 				       map_start, map_len, km); | 
 | 	if (!err && save) { | 
 | 		eb->map_token = *token; | 
 | 		eb->kaddr = *map; | 
 | 		eb->map_start = *map_start; | 
 | 		eb->map_len = *map_len; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) | 
 | { | 
 | 	kunmap_atomic(token, km); | 
 | } | 
 |  | 
 | int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, | 
 | 			  unsigned long start, | 
 | 			  unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *ptr = (char *)ptrv; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = extent_buffer_page(eb, i); | 
 |  | 
 | 		cur = min(len, (PAGE_CACHE_SIZE - offset)); | 
 |  | 
 | 		kaddr = kmap_atomic(page, KM_USER0); | 
 | 		ret = memcmp(ptr, kaddr + offset, cur); | 
 | 		kunmap_atomic(kaddr, KM_USER0); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		ptr += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void write_extent_buffer(struct extent_buffer *eb, const void *srcv, | 
 | 			 unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	char *src = (char *)srcv; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		WARN_ON(!PageUptodate(page)); | 
 |  | 
 | 		cur = min(len, PAGE_CACHE_SIZE - offset); | 
 | 		kaddr = kmap_atomic(page, KM_USER1); | 
 | 		memcpy(kaddr + offset, src, cur); | 
 | 		kunmap_atomic(kaddr, KM_USER1); | 
 |  | 
 | 		src += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | void memset_extent_buffer(struct extent_buffer *eb, char c, | 
 | 			  unsigned long start, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	WARN_ON(start > eb->len); | 
 | 	WARN_ON(start + len > eb->start + eb->len); | 
 |  | 
 | 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = extent_buffer_page(eb, i); | 
 | 		WARN_ON(!PageUptodate(page)); | 
 |  | 
 | 		cur = min(len, PAGE_CACHE_SIZE - offset); | 
 | 		kaddr = kmap_atomic(page, KM_USER0); | 
 | 		memset(kaddr + offset, c, cur); | 
 | 		kunmap_atomic(kaddr, KM_USER0); | 
 |  | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, | 
 | 			unsigned long dst_offset, unsigned long src_offset, | 
 | 			unsigned long len) | 
 | { | 
 | 	u64 dst_len = dst->len; | 
 | 	size_t cur; | 
 | 	size_t offset; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	WARN_ON(src->len != dst_len); | 
 |  | 
 | 	offset = (start_offset + dst_offset) & | 
 | 		((unsigned long)PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		page = extent_buffer_page(dst, i); | 
 | 		WARN_ON(!PageUptodate(page)); | 
 |  | 
 | 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); | 
 |  | 
 | 		kaddr = kmap_atomic(page, KM_USER0); | 
 | 		read_extent_buffer(src, kaddr + offset, src_offset, cur); | 
 | 		kunmap_atomic(kaddr, KM_USER0); | 
 |  | 
 | 		src_offset += cur; | 
 | 		len -= cur; | 
 | 		offset = 0; | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | static void move_pages(struct page *dst_page, struct page *src_page, | 
 | 		       unsigned long dst_off, unsigned long src_off, | 
 | 		       unsigned long len) | 
 | { | 
 | 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); | 
 | 	if (dst_page == src_page) { | 
 | 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); | 
 | 	} else { | 
 | 		char *src_kaddr = kmap_atomic(src_page, KM_USER1); | 
 | 		char *p = dst_kaddr + dst_off + len; | 
 | 		char *s = src_kaddr + src_off + len; | 
 |  | 
 | 		while (len--) | 
 | 			*--p = *--s; | 
 |  | 
 | 		kunmap_atomic(src_kaddr, KM_USER1); | 
 | 	} | 
 | 	kunmap_atomic(dst_kaddr, KM_USER0); | 
 | } | 
 |  | 
 | static void copy_pages(struct page *dst_page, struct page *src_page, | 
 | 		       unsigned long dst_off, unsigned long src_off, | 
 | 		       unsigned long len) | 
 | { | 
 | 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); | 
 | 	char *src_kaddr; | 
 |  | 
 | 	if (dst_page != src_page) | 
 | 		src_kaddr = kmap_atomic(src_page, KM_USER1); | 
 | 	else | 
 | 		src_kaddr = dst_kaddr; | 
 |  | 
 | 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); | 
 | 	kunmap_atomic(dst_kaddr, KM_USER0); | 
 | 	if (dst_page != src_page) | 
 | 		kunmap_atomic(src_kaddr, KM_USER1); | 
 | } | 
 |  | 
 | void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | 
 | 			   unsigned long src_offset, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t dst_off_in_page; | 
 | 	size_t src_off_in_page; | 
 | 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long dst_i; | 
 | 	unsigned long src_i; | 
 |  | 
 | 	if (src_offset + len > dst->len) { | 
 | 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " | 
 | 		       "len %lu dst len %lu\n", src_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 | 	if (dst_offset + len > dst->len) { | 
 | 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " | 
 | 		       "len %lu dst len %lu\n", dst_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	while (len > 0) { | 
 | 		dst_off_in_page = (start_offset + dst_offset) & | 
 | 			((unsigned long)PAGE_CACHE_SIZE - 1); | 
 | 		src_off_in_page = (start_offset + src_offset) & | 
 | 			((unsigned long)PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; | 
 | 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - | 
 | 					       src_off_in_page)); | 
 | 		cur = min_t(unsigned long, cur, | 
 | 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); | 
 |  | 
 | 		copy_pages(extent_buffer_page(dst, dst_i), | 
 | 			   extent_buffer_page(dst, src_i), | 
 | 			   dst_off_in_page, src_off_in_page, cur); | 
 |  | 
 | 		src_offset += cur; | 
 | 		dst_offset += cur; | 
 | 		len -= cur; | 
 | 	} | 
 | } | 
 |  | 
 | void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, | 
 | 			   unsigned long src_offset, unsigned long len) | 
 | { | 
 | 	size_t cur; | 
 | 	size_t dst_off_in_page; | 
 | 	size_t src_off_in_page; | 
 | 	unsigned long dst_end = dst_offset + len - 1; | 
 | 	unsigned long src_end = src_offset + len - 1; | 
 | 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); | 
 | 	unsigned long dst_i; | 
 | 	unsigned long src_i; | 
 |  | 
 | 	if (src_offset + len > dst->len) { | 
 | 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " | 
 | 		       "len %lu len %lu\n", src_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 | 	if (dst_offset + len > dst->len) { | 
 | 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " | 
 | 		       "len %lu len %lu\n", dst_offset, len, dst->len); | 
 | 		BUG_ON(1); | 
 | 	} | 
 | 	if (dst_offset < src_offset) { | 
 | 		memcpy_extent_buffer(dst, dst_offset, src_offset, len); | 
 | 		return; | 
 | 	} | 
 | 	while (len > 0) { | 
 | 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; | 
 | 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 		dst_off_in_page = (start_offset + dst_end) & | 
 | 			((unsigned long)PAGE_CACHE_SIZE - 1); | 
 | 		src_off_in_page = (start_offset + src_end) & | 
 | 			((unsigned long)PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 		cur = min_t(unsigned long, len, src_off_in_page + 1); | 
 | 		cur = min(cur, dst_off_in_page + 1); | 
 | 		move_pages(extent_buffer_page(dst, dst_i), | 
 | 			   extent_buffer_page(dst, src_i), | 
 | 			   dst_off_in_page - cur + 1, | 
 | 			   src_off_in_page - cur + 1, cur); | 
 |  | 
 | 		dst_end -= cur; | 
 | 		src_end -= cur; | 
 | 		len -= cur; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct extent_buffer *eb = | 
 | 			container_of(head, struct extent_buffer, rcu_head); | 
 |  | 
 | 	btrfs_release_extent_buffer(eb); | 
 | } | 
 |  | 
 | int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page) | 
 | { | 
 | 	u64 start = page_offset(page); | 
 | 	struct extent_buffer *eb; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock(&tree->buffer_lock); | 
 | 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); | 
 | 	if (!eb) { | 
 | 		spin_unlock(&tree->buffer_lock); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * set @eb->refs to 0 if it is already 1, and then release the @eb. | 
 | 	 * Or go back. | 
 | 	 */ | 
 | 	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT); | 
 | out: | 
 | 	spin_unlock(&tree->buffer_lock); | 
 |  | 
 | 	/* at this point we can safely release the extent buffer */ | 
 | 	if (atomic_read(&eb->refs) == 0) | 
 | 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); | 
 | 	return ret; | 
 | } |