blob: 828aacaa4d115c151ed6ba397561f3d4a7c67843 [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/debugfs.h>
#include <linux/mfd/wcd9xxx/core.h>
#include <linux/mfd/wcd9xxx/wcd9xxx_registers.h>
#include <linux/mfd/wcd9xxx/wcd9310_registers.h>
#include <linux/mfd/wcd9xxx/pdata.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include "wcd9310.h"
#define WCD9310_RATES (SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000|\
SNDRV_PCM_RATE_32000|SNDRV_PCM_RATE_48000)
#define NUM_DECIMATORS 10
#define NUM_INTERPOLATORS 7
#define BITS_PER_REG 8
#define TABLA_CFILT_FAST_MODE 0x00
#define TABLA_CFILT_SLOW_MODE 0x40
#define MBHC_FW_READ_ATTEMPTS 15
#define MBHC_FW_READ_TIMEOUT 2000000
#define TABLA_JACK_MASK (SND_JACK_HEADSET | SND_JACK_OC_HPHL | SND_JACK_OC_HPHR)
#define TABLA_I2S_MASTER_MODE_MASK 0x08
#define TABLA_OCP_ATTEMPT 1
#define AIF1_PB 1
#define AIF1_CAP 2
#define AIF2_PB 3
#define NUM_CODEC_DAIS 3
#define TABLA_COMP_DIGITAL_GAIN_OFFSET 3
struct tabla_codec_dai_data {
u32 rate;
u32 *ch_num;
u32 ch_act;
u32 ch_tot;
};
#define TABLA_MCLK_RATE_12288KHZ 12288000
#define TABLA_MCLK_RATE_9600KHZ 9600000
#define TABLA_FAKE_INS_THRESHOLD_MS 2500
#define TABLA_FAKE_REMOVAL_MIN_PERIOD_MS 50
static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
static const DECLARE_TLV_DB_SCALE(line_gain, 0, 7, 1);
static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 25, 1);
static struct snd_soc_dai_driver tabla_dai[];
static const DECLARE_TLV_DB_SCALE(aux_pga_gain, 0, 2, 0);
enum tabla_bandgap_type {
TABLA_BANDGAP_OFF = 0,
TABLA_BANDGAP_AUDIO_MODE,
TABLA_BANDGAP_MBHC_MODE,
};
struct mbhc_micbias_regs {
u16 cfilt_val;
u16 cfilt_ctl;
u16 mbhc_reg;
u16 int_rbias;
u16 ctl_reg;
u8 cfilt_sel;
};
/* Codec supports 2 IIR filters */
enum {
IIR1 = 0,
IIR2,
IIR_MAX,
};
/* Codec supports 5 bands */
enum {
BAND1 = 0,
BAND2,
BAND3,
BAND4,
BAND5,
BAND_MAX,
};
enum {
COMPANDER_1 = 0,
COMPANDER_2,
COMPANDER_MAX,
};
enum {
COMPANDER_FS_8KHZ = 0,
COMPANDER_FS_16KHZ,
COMPANDER_FS_32KHZ,
COMPANDER_FS_48KHZ,
COMPANDER_FS_MAX,
};
/* Flags to track of PA and DAC state.
* PA and DAC should be tracked separately as AUXPGA loopback requires
* only PA to be turned on without DAC being on. */
enum tabla_priv_ack_flags {
TABLA_HPHL_PA_OFF_ACK = 0,
TABLA_HPHR_PA_OFF_ACK,
TABLA_HPHL_DAC_OFF_ACK,
TABLA_HPHR_DAC_OFF_ACK
};
struct comp_sample_dependent_params {
u32 peak_det_timeout;
u32 rms_meter_div_fact;
u32 rms_meter_resamp_fact;
};
/* Data used by MBHC */
struct mbhc_internal_cal_data {
u16 dce_z;
u16 dce_mb;
u16 sta_z;
u16 sta_mb;
u32 t_sta_dce;
u32 t_dce;
u32 t_sta;
u32 micb_mv;
u16 v_ins_hu;
u16 v_ins_h;
u16 v_b1_hu;
u16 v_b1_h;
u16 v_b1_huc;
u16 v_brh;
u16 v_brl;
u16 v_no_mic;
u8 npoll;
u8 nbounce_wait;
};
struct tabla_reg_address {
u16 micb_4_ctl;
u16 micb_4_int_rbias;
u16 micb_4_mbhc;
};
struct tabla_priv {
struct snd_soc_codec *codec;
struct tabla_reg_address reg_addr;
u32 mclk_freq;
u32 adc_count;
u32 cfilt1_cnt;
u32 cfilt2_cnt;
u32 cfilt3_cnt;
u32 rx_bias_count;
enum tabla_bandgap_type bandgap_type;
bool mclk_enabled;
bool clock_active;
bool config_mode_active;
bool mbhc_polling_active;
unsigned long mbhc_fake_ins_start;
int buttons_pressed;
enum tabla_micbias_num micbias;
/* void* calibration contains:
* struct tabla_mbhc_general_cfg generic;
* struct tabla_mbhc_plug_detect_cfg plug_det;
* struct tabla_mbhc_plug_type_cfg plug_type;
* struct tabla_mbhc_btn_detect_cfg btn_det;
* struct tabla_mbhc_imped_detect_cfg imped_det;
* Note: various size depends on btn_det->num_btn
*/
void *calibration;
struct mbhc_internal_cal_data mbhc_data;
struct snd_soc_jack *headset_jack;
struct snd_soc_jack *button_jack;
struct wcd9xxx_pdata *pdata;
u32 anc_slot;
bool no_mic_headset_override;
/* Delayed work to report long button press */
struct delayed_work btn0_dwork;
struct mbhc_micbias_regs mbhc_bias_regs;
u8 cfilt_k_value;
bool mbhc_micbias_switched;
/* track PA/DAC state */
unsigned long hph_pa_dac_state;
/*track tabla interface type*/
u8 intf_type;
u32 hph_status; /* track headhpone status */
/* define separate work for left and right headphone OCP to avoid
* additional checking on which OCP event to report so no locking
* to ensure synchronization is required
*/
struct work_struct hphlocp_work; /* reporting left hph ocp off */
struct work_struct hphrocp_work; /* reporting right hph ocp off */
u8 hphlocp_cnt; /* headphone left ocp retry */
u8 hphrocp_cnt; /* headphone right ocp retry */
/* Callback function to enable MCLK */
int (*mclk_cb) (struct snd_soc_codec*, int);
/* Work to perform MBHC Firmware Read */
struct delayed_work mbhc_firmware_dwork;
const struct firmware *mbhc_fw;
/* num of slim ports required */
struct tabla_codec_dai_data dai[NUM_CODEC_DAIS];
/*compander*/
int comp_enabled[COMPANDER_MAX];
u32 comp_fs[COMPANDER_MAX];
/* Maintain the status of AUX PGA */
int aux_pga_cnt;
u8 aux_l_gain;
u8 aux_r_gain;
};
#ifdef CONFIG_DEBUG_FS
struct tabla_priv *debug_tabla_priv;
#endif
static const u32 comp_shift[] = {
0,
2,
};
static const int comp_rx_path[] = {
COMPANDER_1,
COMPANDER_1,
COMPANDER_2,
COMPANDER_2,
COMPANDER_2,
COMPANDER_2,
COMPANDER_MAX,
};
static const struct comp_sample_dependent_params comp_samp_params[] = {
{
.peak_det_timeout = 0x2,
.rms_meter_div_fact = 0x8 << 4,
.rms_meter_resamp_fact = 0x21,
},
{
.peak_det_timeout = 0x3,
.rms_meter_div_fact = 0x9 << 4,
.rms_meter_resamp_fact = 0x28,
},
{
.peak_det_timeout = 0x5,
.rms_meter_div_fact = 0xB << 4,
.rms_meter_resamp_fact = 0x28,
},
{
.peak_det_timeout = 0x5,
.rms_meter_div_fact = 0xB << 4,
.rms_meter_resamp_fact = 0x28,
},
};
static int tabla_codec_enable_charge_pump(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x01,
0x01);
snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x08, 0x08);
usleep_range(200, 200);
snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x10, 0x00);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 0x10,
0x10);
usleep_range(20, 20);
snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x08, 0x08);
snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x10, 0x10);
snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x08, 0x00);
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x01,
0x00);
snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x08, 0x00);
break;
}
return 0;
}
static int tabla_get_anc_slot(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
ucontrol->value.integer.value[0] = tabla->anc_slot;
return 0;
}
static int tabla_put_anc_slot(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
tabla->anc_slot = ucontrol->value.integer.value[0];
return 0;
}
static int tabla_pa_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
ear_pa_gain = snd_soc_read(codec, TABLA_A_RX_EAR_GAIN);
ear_pa_gain = ear_pa_gain >> 5;
if (ear_pa_gain == 0x00) {
ucontrol->value.integer.value[0] = 0;
} else if (ear_pa_gain == 0x04) {
ucontrol->value.integer.value[0] = 1;
} else {
pr_err("%s: ERROR: Unsupported Ear Gain = 0x%x\n",
__func__, ear_pa_gain);
return -EINVAL;
}
pr_debug("%s: ear_pa_gain = 0x%x\n", __func__, ear_pa_gain);
return 0;
}
static int tabla_pa_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
pr_debug("%s: ucontrol->value.integer.value[0] = %ld\n", __func__,
ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
ear_pa_gain = 0x00;
break;
case 1:
ear_pa_gain = 0x80;
break;
default:
return -EINVAL;
}
snd_soc_update_bits(codec, TABLA_A_RX_EAR_GAIN, 0xE0, ear_pa_gain);
return 0;
}
static int tabla_get_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
snd_soc_read(codec, (TABLA_A_CDC_IIR1_CTL + 16 * iir_idx)) &
(1 << band_idx);
pr_debug("%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0]);
return 0;
}
static int tabla_put_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
/* Mask first 5 bits, 6-8 are reserved */
snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_CTL + 16 * iir_idx),
(1 << band_idx), (value << band_idx));
pr_debug("%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx, value);
return 0;
}
static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
int coeff_idx)
{
/* Address does not automatically update if reading */
snd_soc_write(codec,
(TABLA_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx),
(band_idx * BAND_MAX + coeff_idx) & 0x1F);
/* Mask bits top 2 bits since they are reserved */
return ((snd_soc_read(codec,
(TABLA_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx)) << 24) |
(snd_soc_read(codec,
(TABLA_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx)) << 16) |
(snd_soc_read(codec,
(TABLA_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx)) << 8) |
(snd_soc_read(codec,
(TABLA_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx)))) &
0x3FFFFFFF;
}
static int tabla_get_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
get_iir_band_coeff(codec, iir_idx, band_idx, 0);
ucontrol->value.integer.value[1] =
get_iir_band_coeff(codec, iir_idx, band_idx, 1);
ucontrol->value.integer.value[2] =
get_iir_band_coeff(codec, iir_idx, band_idx, 2);
ucontrol->value.integer.value[3] =
get_iir_band_coeff(codec, iir_idx, band_idx, 3);
ucontrol->value.integer.value[4] =
get_iir_band_coeff(codec, iir_idx, band_idx, 4);
pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[1],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[2],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[3],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[4]);
return 0;
}
static void set_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
int coeff_idx, uint32_t value)
{
/* Mask top 3 bits, 6-8 are reserved */
/* Update address manually each time */
snd_soc_write(codec,
(TABLA_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx),
(band_idx * BAND_MAX + coeff_idx) & 0x1F);
/* Mask top 2 bits, 7-8 are reserved */
snd_soc_write(codec,
(TABLA_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx),
(value >> 24) & 0x3F);
/* Isolate 8bits at a time */
snd_soc_write(codec,
(TABLA_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx),
(value >> 16) & 0xFF);
snd_soc_write(codec,
(TABLA_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx),
(value >> 8) & 0xFF);
snd_soc_write(codec,
(TABLA_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx),
value & 0xFF);
}
static int tabla_put_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
set_iir_band_coeff(codec, iir_idx, band_idx, 0,
ucontrol->value.integer.value[0]);
set_iir_band_coeff(codec, iir_idx, band_idx, 1,
ucontrol->value.integer.value[1]);
set_iir_band_coeff(codec, iir_idx, band_idx, 2,
ucontrol->value.integer.value[2]);
set_iir_band_coeff(codec, iir_idx, band_idx, 3,
ucontrol->value.integer.value[3]);
set_iir_band_coeff(codec, iir_idx, band_idx, 4,
ucontrol->value.integer.value[4]);
pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 0),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 1),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 2),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 3),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 4));
return 0;
}
static int tabla_compander_gain_offset(
struct snd_soc_codec *codec, u32 enable,
unsigned int reg, int mask, int event)
{
int pa_mode = snd_soc_read(codec, reg) & mask;
int gain_offset = 0;
/* if PMU && enable is 1-> offset is 3
* if PMU && enable is 0-> offset is 0
* if PMD && pa_mode is PA -> offset is 0: PMU compander is off
* if PMD && pa_mode is comp -> offset is -3: PMU compander is on.
*/
if (SND_SOC_DAPM_EVENT_ON(event) && (enable != 0))
gain_offset = TABLA_COMP_DIGITAL_GAIN_OFFSET;
if (SND_SOC_DAPM_EVENT_OFF(event) && (pa_mode == 0))
gain_offset = -TABLA_COMP_DIGITAL_GAIN_OFFSET;
return gain_offset;
}
static int tabla_config_gain_compander(
struct snd_soc_codec *codec,
u32 compander, u32 enable, int event)
{
int value = 0;
int mask = 1 << 4;
int gain = 0;
int gain_offset;
if (compander >= COMPANDER_MAX) {
pr_err("%s: Error, invalid compander channel\n", __func__);
return -EINVAL;
}
if ((enable == 0) || SND_SOC_DAPM_EVENT_OFF(event))
value = 1 << 4;
if (compander == COMPANDER_1) {
gain_offset = tabla_compander_gain_offset(codec, enable,
TABLA_A_RX_HPH_L_GAIN, mask, event);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_L_GAIN, mask, value);
gain = snd_soc_read(codec, TABLA_A_CDC_RX1_VOL_CTL_B2_CTL);
snd_soc_update_bits(codec, TABLA_A_CDC_RX1_VOL_CTL_B2_CTL,
0xFF, gain - gain_offset);
gain_offset = tabla_compander_gain_offset(codec, enable,
TABLA_A_RX_HPH_R_GAIN, mask, event);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_R_GAIN, mask, value);
gain = snd_soc_read(codec, TABLA_A_CDC_RX2_VOL_CTL_B2_CTL);
snd_soc_update_bits(codec, TABLA_A_CDC_RX2_VOL_CTL_B2_CTL,
0xFF, gain - gain_offset);
} else if (compander == COMPANDER_2) {
gain_offset = tabla_compander_gain_offset(codec, enable,
TABLA_A_RX_LINE_1_GAIN, mask, event);
snd_soc_update_bits(codec, TABLA_A_RX_LINE_1_GAIN, mask, value);
gain = snd_soc_read(codec, TABLA_A_CDC_RX3_VOL_CTL_B2_CTL);
snd_soc_update_bits(codec, TABLA_A_CDC_RX3_VOL_CTL_B2_CTL,
0xFF, gain - gain_offset);
gain_offset = tabla_compander_gain_offset(codec, enable,
TABLA_A_RX_LINE_3_GAIN, mask, event);
snd_soc_update_bits(codec, TABLA_A_RX_LINE_3_GAIN, mask, value);
gain = snd_soc_read(codec, TABLA_A_CDC_RX4_VOL_CTL_B2_CTL);
snd_soc_update_bits(codec, TABLA_A_CDC_RX4_VOL_CTL_B2_CTL,
0xFF, gain - gain_offset);
gain_offset = tabla_compander_gain_offset(codec, enable,
TABLA_A_RX_LINE_2_GAIN, mask, event);
snd_soc_update_bits(codec, TABLA_A_RX_LINE_2_GAIN, mask, value);
gain = snd_soc_read(codec, TABLA_A_CDC_RX5_VOL_CTL_B2_CTL);
snd_soc_update_bits(codec, TABLA_A_CDC_RX5_VOL_CTL_B2_CTL,
0xFF, gain - gain_offset);
gain_offset = tabla_compander_gain_offset(codec, enable,
TABLA_A_RX_LINE_4_GAIN, mask, event);
snd_soc_update_bits(codec, TABLA_A_RX_LINE_4_GAIN, mask, value);
gain = snd_soc_read(codec, TABLA_A_CDC_RX6_VOL_CTL_B2_CTL);
snd_soc_update_bits(codec, TABLA_A_CDC_RX6_VOL_CTL_B2_CTL,
0xFF, gain - gain_offset);
}
return 0;
}
static int tabla_get_compander(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int comp = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->max;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
ucontrol->value.integer.value[0] = tabla->comp_enabled[comp];
return 0;
}
static int tabla_set_compander(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
int comp = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->max;
int value = ucontrol->value.integer.value[0];
if (value == tabla->comp_enabled[comp]) {
pr_debug("%s: compander #%d enable %d no change\n",
__func__, comp, value);
return 0;
}
tabla->comp_enabled[comp] = value;
return 0;
}
static int tabla_config_compander(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = w->codec;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
u32 rate = tabla->comp_fs[w->shift];
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (tabla->comp_enabled[w->shift] != 0) {
/* Enable both L/R compander clocks */
snd_soc_update_bits(codec,
TABLA_A_CDC_CLK_RX_B2_CTL,
0x03 << comp_shift[w->shift],
0x03 << comp_shift[w->shift]);
/* Clar the HALT for the compander*/
snd_soc_update_bits(codec,
TABLA_A_CDC_COMP1_B1_CTL +
w->shift * 8, 1 << 2, 0);
/* Toggle compander reset bits*/
snd_soc_update_bits(codec,
TABLA_A_CDC_CLK_OTHR_RESET_CTL,
0x03 << comp_shift[w->shift],
0x03 << comp_shift[w->shift]);
snd_soc_update_bits(codec,
TABLA_A_CDC_CLK_OTHR_RESET_CTL,
0x03 << comp_shift[w->shift], 0);
tabla_config_gain_compander(codec, w->shift, 1, event);
/* Update the RMS meter resampling*/
snd_soc_update_bits(codec,
TABLA_A_CDC_COMP1_B3_CTL +
w->shift * 8, 0xFF, 0x01);
/* Wait for 1ms*/
usleep_range(1000, 1000);
}
break;
case SND_SOC_DAPM_POST_PMU:
/* Set sample rate dependent paramater*/
if (tabla->comp_enabled[w->shift] != 0) {
snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_FS_CFG +
w->shift * 8, 0x03, rate);
snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B2_CTL +
w->shift * 8, 0x0F,
comp_samp_params[rate].peak_det_timeout);
snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B2_CTL +
w->shift * 8, 0xF0,
comp_samp_params[rate].rms_meter_div_fact);
snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B3_CTL +
w->shift * 8, 0xFF,
comp_samp_params[rate].rms_meter_resamp_fact);
/* Compander enable -> 0x370/0x378*/
snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B1_CTL +
w->shift * 8, 0x03, 0x03);
}
break;
case SND_SOC_DAPM_PRE_PMD:
/* Halt the compander*/
snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B1_CTL +
w->shift * 8, 1 << 2, 1 << 2);
break;
case SND_SOC_DAPM_POST_PMD:
/* Restore the gain */
tabla_config_gain_compander(codec, w->shift,
tabla->comp_enabled[w->shift], event);
/* Disable the compander*/
snd_soc_update_bits(codec, TABLA_A_CDC_COMP1_B1_CTL +
w->shift * 8, 0x03, 0x00);
/* Turn off the clock for compander in pair*/
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_B2_CTL,
0x03 << comp_shift[w->shift], 0);
break;
}
return 0;
}
static const char *tabla_ear_pa_gain_text[] = {"POS_6_DB", "POS_2_DB"};
static const struct soc_enum tabla_ear_pa_gain_enum[] = {
SOC_ENUM_SINGLE_EXT(2, tabla_ear_pa_gain_text),
};
/*cut of frequency for high pass filter*/
static const char *cf_text[] = {
"MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz"
};
static const struct soc_enum cf_dec1_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX1_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec2_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX2_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec3_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX3_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec4_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX4_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec5_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX5_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec6_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX6_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec7_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX7_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec8_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX8_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec9_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX9_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec10_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_TX10_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_rxmix1_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX1_B4_CTL, 1, 3, cf_text);
static const struct soc_enum cf_rxmix2_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX2_B4_CTL, 1, 3, cf_text);
static const struct soc_enum cf_rxmix3_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX3_B4_CTL, 1, 3, cf_text);
static const struct soc_enum cf_rxmix4_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX4_B4_CTL, 1, 3, cf_text);
static const struct soc_enum cf_rxmix5_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX5_B4_CTL, 1, 3, cf_text)
;
static const struct soc_enum cf_rxmix6_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX6_B4_CTL, 1, 3, cf_text);
static const struct soc_enum cf_rxmix7_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX7_B4_CTL, 1, 3, cf_text);
static const struct snd_kcontrol_new tabla_snd_controls[] = {
SOC_ENUM_EXT("EAR PA Gain", tabla_ear_pa_gain_enum[0],
tabla_pa_gain_get, tabla_pa_gain_put),
SOC_SINGLE_TLV("LINEOUT1 Volume", TABLA_A_RX_LINE_1_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("LINEOUT2 Volume", TABLA_A_RX_LINE_2_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("LINEOUT3 Volume", TABLA_A_RX_LINE_3_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("LINEOUT4 Volume", TABLA_A_RX_LINE_4_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("LINEOUT5 Volume", TABLA_A_RX_LINE_5_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("HPHL Volume", TABLA_A_RX_HPH_L_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("HPHR Volume", TABLA_A_RX_HPH_R_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_S8_TLV("RX1 Digital Volume", TABLA_A_CDC_RX1_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX2 Digital Volume", TABLA_A_CDC_RX2_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX3 Digital Volume", TABLA_A_CDC_RX3_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX4 Digital Volume", TABLA_A_CDC_RX4_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX5 Digital Volume", TABLA_A_CDC_RX5_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX6 Digital Volume", TABLA_A_CDC_RX6_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX7 Digital Volume", TABLA_A_CDC_RX7_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("DEC1 Volume", TABLA_A_CDC_TX1_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC2 Volume", TABLA_A_CDC_TX2_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC3 Volume", TABLA_A_CDC_TX3_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC4 Volume", TABLA_A_CDC_TX4_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC5 Volume", TABLA_A_CDC_TX5_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC6 Volume", TABLA_A_CDC_TX6_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC7 Volume", TABLA_A_CDC_TX7_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC8 Volume", TABLA_A_CDC_TX8_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC9 Volume", TABLA_A_CDC_TX9_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC10 Volume", TABLA_A_CDC_TX10_VOL_CTL_GAIN, -84,
40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP1 Volume", TABLA_A_CDC_IIR1_GAIN_B1_CTL, -84,
40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP2 Volume", TABLA_A_CDC_IIR1_GAIN_B2_CTL, -84,
40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP3 Volume", TABLA_A_CDC_IIR1_GAIN_B3_CTL, -84,
40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP4 Volume", TABLA_A_CDC_IIR1_GAIN_B4_CTL, -84,
40, digital_gain),
SOC_SINGLE_TLV("ADC1 Volume", TABLA_A_TX_1_2_EN, 5, 3, 0, analog_gain),
SOC_SINGLE_TLV("ADC2 Volume", TABLA_A_TX_1_2_EN, 1, 3, 0, analog_gain),
SOC_SINGLE_TLV("ADC3 Volume", TABLA_A_TX_3_4_EN, 5, 3, 0, analog_gain),
SOC_SINGLE_TLV("ADC4 Volume", TABLA_A_TX_3_4_EN, 1, 3, 0, analog_gain),
SOC_SINGLE_TLV("ADC5 Volume", TABLA_A_TX_5_6_EN, 5, 3, 0, analog_gain),
SOC_SINGLE_TLV("ADC6 Volume", TABLA_A_TX_5_6_EN, 1, 3, 0, analog_gain),
SOC_SINGLE_TLV("AUX_PGA_LEFT Volume", TABLA_A_AUX_L_GAIN, 0, 39, 0,
aux_pga_gain),
SOC_SINGLE_TLV("AUX_PGA_RIGHT Volume", TABLA_A_AUX_R_GAIN, 0, 39, 0,
aux_pga_gain),
SOC_SINGLE("MICBIAS1 CAPLESS Switch", TABLA_A_MICB_1_CTL, 4, 1, 1),
SOC_SINGLE("MICBIAS2 CAPLESS Switch", TABLA_A_MICB_2_CTL, 4, 1, 1),
SOC_SINGLE("MICBIAS3 CAPLESS Switch", TABLA_A_MICB_3_CTL, 4, 1, 1),
SOC_SINGLE_EXT("ANC Slot", SND_SOC_NOPM, 0, 0, 100, tabla_get_anc_slot,
tabla_put_anc_slot),
SOC_ENUM("TX1 HPF cut off", cf_dec1_enum),
SOC_ENUM("TX2 HPF cut off", cf_dec2_enum),
SOC_ENUM("TX3 HPF cut off", cf_dec3_enum),
SOC_ENUM("TX4 HPF cut off", cf_dec4_enum),
SOC_ENUM("TX5 HPF cut off", cf_dec5_enum),
SOC_ENUM("TX6 HPF cut off", cf_dec6_enum),
SOC_ENUM("TX7 HPF cut off", cf_dec7_enum),
SOC_ENUM("TX8 HPF cut off", cf_dec8_enum),
SOC_ENUM("TX9 HPF cut off", cf_dec9_enum),
SOC_ENUM("TX10 HPF cut off", cf_dec10_enum),
SOC_SINGLE("TX1 HPF Switch", TABLA_A_CDC_TX1_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX2 HPF Switch", TABLA_A_CDC_TX2_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX3 HPF Switch", TABLA_A_CDC_TX3_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX4 HPF Switch", TABLA_A_CDC_TX4_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX5 HPF Switch", TABLA_A_CDC_TX5_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX6 HPF Switch", TABLA_A_CDC_TX6_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX7 HPF Switch", TABLA_A_CDC_TX7_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX8 HPF Switch", TABLA_A_CDC_TX8_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX9 HPF Switch", TABLA_A_CDC_TX9_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX10 HPF Switch", TABLA_A_CDC_TX10_MUX_CTL, 3, 1, 0),
SOC_SINGLE("RX1 HPF Switch", TABLA_A_CDC_RX1_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX2 HPF Switch", TABLA_A_CDC_RX2_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX3 HPF Switch", TABLA_A_CDC_RX3_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX4 HPF Switch", TABLA_A_CDC_RX4_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX5 HPF Switch", TABLA_A_CDC_RX5_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX6 HPF Switch", TABLA_A_CDC_RX6_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX7 HPF Switch", TABLA_A_CDC_RX7_B5_CTL, 2, 1, 0),
SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum),
SOC_ENUM("RX2 HPF cut off", cf_rxmix2_enum),
SOC_ENUM("RX3 HPF cut off", cf_rxmix3_enum),
SOC_ENUM("RX4 HPF cut off", cf_rxmix4_enum),
SOC_ENUM("RX5 HPF cut off", cf_rxmix5_enum),
SOC_ENUM("RX6 HPF cut off", cf_rxmix6_enum),
SOC_ENUM("RX7 HPF cut off", cf_rxmix7_enum),
SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0,
tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5,
tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer),
SOC_SINGLE_EXT("COMP1 Switch", SND_SOC_NOPM, 1, COMPANDER_1, 0,
tabla_get_compander, tabla_set_compander),
SOC_SINGLE_EXT("COMP2 Switch", SND_SOC_NOPM, 0, COMPANDER_2, 0,
tabla_get_compander, tabla_set_compander),
};
static const struct snd_kcontrol_new tabla_1_x_snd_controls[] = {
SOC_SINGLE("MICBIAS4 CAPLESS Switch", TABLA_1_A_MICB_4_CTL, 4, 1, 1),
};
static const struct snd_kcontrol_new tabla_2_higher_snd_controls[] = {
SOC_SINGLE("MICBIAS4 CAPLESS Switch", TABLA_2_A_MICB_4_CTL, 4, 1, 1),
};
static const char *rx_mix1_text[] = {
"ZERO", "SRC1", "SRC2", "IIR1", "IIR2", "RX1", "RX2", "RX3", "RX4",
"RX5", "RX6", "RX7"
};
static const char *rx_dsm_text[] = {
"CIC_OUT", "DSM_INV"
};
static const char *sb_tx1_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC1"
};
static const char *sb_tx5_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC5"
};
static const char *sb_tx6_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC6"
};
static const char const *sb_tx7_to_tx10_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC1", "DEC2", "DEC3", "DEC4", "DEC5", "DEC6", "DEC7", "DEC8",
"DEC9", "DEC10"
};
static const char *dec1_mux_text[] = {
"ZERO", "DMIC1", "ADC6",
};
static const char *dec2_mux_text[] = {
"ZERO", "DMIC2", "ADC5",
};
static const char *dec3_mux_text[] = {
"ZERO", "DMIC3", "ADC4",
};
static const char *dec4_mux_text[] = {
"ZERO", "DMIC4", "ADC3",
};
static const char *dec5_mux_text[] = {
"ZERO", "DMIC5", "ADC2",
};
static const char *dec6_mux_text[] = {
"ZERO", "DMIC6", "ADC1",
};
static const char const *dec7_mux_text[] = {
"ZERO", "DMIC1", "DMIC6", "ADC1", "ADC6", "ANC1_FB", "ANC2_FB",
};
static const char *dec8_mux_text[] = {
"ZERO", "DMIC2", "DMIC5", "ADC2", "ADC5",
};
static const char *dec9_mux_text[] = {
"ZERO", "DMIC4", "DMIC5", "ADC2", "ADC3", "ADCMB", "ANC1_FB", "ANC2_FB",
};
static const char *dec10_mux_text[] = {
"ZERO", "DMIC3", "DMIC6", "ADC1", "ADC4", "ADCMB", "ANC1_FB", "ANC2_FB",
};
static const char const *anc_mux_text[] = {
"ZERO", "ADC1", "ADC2", "ADC3", "ADC4", "ADC5", "ADC6", "ADC_MB",
"RSVD_1", "DMIC1", "DMIC2", "DMIC3", "DMIC4", "DMIC5", "DMIC6"
};
static const char const *anc1_fb_mux_text[] = {
"ZERO", "EAR_HPH_L", "EAR_LINE_1",
};
static const char *iir1_inp1_text[] = {
"ZERO", "DEC1", "DEC2", "DEC3", "DEC4", "DEC5", "DEC6", "DEC7", "DEC8",
"DEC9", "DEC10", "RX1", "RX2", "RX3", "RX4", "RX5", "RX6", "RX7"
};
static const struct soc_enum rx_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B1_CTL, 0, 12, rx_mix1_text);
static const struct soc_enum rx_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B1_CTL, 4, 12, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B1_CTL, 0, 12, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B1_CTL, 4, 12, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B1_CTL, 0, 12, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B1_CTL, 4, 12, rx_mix1_text);
static const struct soc_enum rx4_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX4_B1_CTL, 0, 12, rx_mix1_text);
static const struct soc_enum rx4_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX4_B1_CTL, 4, 12, rx_mix1_text);
static const struct soc_enum rx5_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX5_B1_CTL, 0, 12, rx_mix1_text);
static const struct soc_enum rx5_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX5_B1_CTL, 4, 12, rx_mix1_text);
static const struct soc_enum rx6_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX6_B1_CTL, 0, 12, rx_mix1_text);
static const struct soc_enum rx6_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX6_B1_CTL, 4, 12, rx_mix1_text);
static const struct soc_enum rx7_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX7_B1_CTL, 0, 12, rx_mix1_text);
static const struct soc_enum rx7_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX7_B1_CTL, 4, 12, rx_mix1_text);
static const struct soc_enum rx4_dsm_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX4_B6_CTL, 4, 2, rx_dsm_text);
static const struct soc_enum rx6_dsm_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_RX6_B6_CTL, 4, 2, rx_dsm_text);
static const struct soc_enum sb_tx5_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B5_CTL, 0, 9, sb_tx5_mux_text);
static const struct soc_enum sb_tx6_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B6_CTL, 0, 9, sb_tx6_mux_text);
static const struct soc_enum sb_tx7_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B7_CTL, 0, 18,
sb_tx7_to_tx10_mux_text);
static const struct soc_enum sb_tx8_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B8_CTL, 0, 18,
sb_tx7_to_tx10_mux_text);
static const struct soc_enum sb_tx9_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B9_CTL, 0, 18,
sb_tx7_to_tx10_mux_text);
static const struct soc_enum sb_tx10_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B10_CTL, 0, 18,
sb_tx7_to_tx10_mux_text);
static const struct soc_enum sb_tx1_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B1_CTL, 0, 9, sb_tx1_mux_text);
static const struct soc_enum dec1_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 0, 3, dec1_mux_text);
static const struct soc_enum dec2_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 2, 3, dec2_mux_text);
static const struct soc_enum dec3_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 4, 3, dec3_mux_text);
static const struct soc_enum dec4_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 6, 3, dec4_mux_text);
static const struct soc_enum dec5_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 0, 3, dec5_mux_text);
static const struct soc_enum dec6_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 2, 3, dec6_mux_text);
static const struct soc_enum dec7_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 4, 7, dec7_mux_text);
static const struct soc_enum dec8_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B3_CTL, 0, 7, dec8_mux_text);
static const struct soc_enum dec9_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B3_CTL, 3, 8, dec9_mux_text);
static const struct soc_enum dec10_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B4_CTL, 0, 8, dec10_mux_text);
static const struct soc_enum anc1_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B1_CTL, 0, 16, anc_mux_text);
static const struct soc_enum anc2_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B1_CTL, 4, 16, anc_mux_text);
static const struct soc_enum anc1_fb_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B2_CTL, 0, 3, anc1_fb_mux_text);
static const struct soc_enum iir1_inp1_mux_enum =
SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_EQ1_B1_CTL, 0, 18, iir1_inp1_text);
static const struct snd_kcontrol_new rx_mix1_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp2_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp2_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp1_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp2_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx4_mix1_inp1_mux =
SOC_DAPM_ENUM("RX4 MIX1 INP1 Mux", rx4_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx4_mix1_inp2_mux =
SOC_DAPM_ENUM("RX4 MIX1 INP2 Mux", rx4_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx5_mix1_inp1_mux =
SOC_DAPM_ENUM("RX5 MIX1 INP1 Mux", rx5_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx5_mix1_inp2_mux =
SOC_DAPM_ENUM("RX5 MIX1 INP2 Mux", rx5_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx6_mix1_inp1_mux =
SOC_DAPM_ENUM("RX6 MIX1 INP1 Mux", rx6_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx6_mix1_inp2_mux =
SOC_DAPM_ENUM("RX6 MIX1 INP2 Mux", rx6_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx7_mix1_inp1_mux =
SOC_DAPM_ENUM("RX7 MIX1 INP1 Mux", rx7_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx7_mix1_inp2_mux =
SOC_DAPM_ENUM("RX7 MIX1 INP2 Mux", rx7_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx4_dsm_mux =
SOC_DAPM_ENUM("RX4 DSM MUX Mux", rx4_dsm_enum);
static const struct snd_kcontrol_new rx6_dsm_mux =
SOC_DAPM_ENUM("RX6 DSM MUX Mux", rx6_dsm_enum);
static const struct snd_kcontrol_new sb_tx5_mux =
SOC_DAPM_ENUM("SLIM TX5 MUX Mux", sb_tx5_mux_enum);
static const struct snd_kcontrol_new sb_tx6_mux =
SOC_DAPM_ENUM("SLIM TX6 MUX Mux", sb_tx6_mux_enum);
static const struct snd_kcontrol_new sb_tx7_mux =
SOC_DAPM_ENUM("SLIM TX7 MUX Mux", sb_tx7_mux_enum);
static const struct snd_kcontrol_new sb_tx8_mux =
SOC_DAPM_ENUM("SLIM TX8 MUX Mux", sb_tx8_mux_enum);
static const struct snd_kcontrol_new sb_tx9_mux =
SOC_DAPM_ENUM("SLIM TX9 MUX Mux", sb_tx9_mux_enum);
static const struct snd_kcontrol_new sb_tx10_mux =
SOC_DAPM_ENUM("SLIM TX10 MUX Mux", sb_tx10_mux_enum);
static const struct snd_kcontrol_new sb_tx1_mux =
SOC_DAPM_ENUM("SLIM TX1 MUX Mux", sb_tx1_mux_enum);
static const struct snd_kcontrol_new dec1_mux =
SOC_DAPM_ENUM("DEC1 MUX Mux", dec1_mux_enum);
static const struct snd_kcontrol_new dec2_mux =
SOC_DAPM_ENUM("DEC2 MUX Mux", dec2_mux_enum);
static const struct snd_kcontrol_new dec3_mux =
SOC_DAPM_ENUM("DEC3 MUX Mux", dec3_mux_enum);
static const struct snd_kcontrol_new dec4_mux =
SOC_DAPM_ENUM("DEC4 MUX Mux", dec4_mux_enum);
static const struct snd_kcontrol_new dec5_mux =
SOC_DAPM_ENUM("DEC5 MUX Mux", dec5_mux_enum);
static const struct snd_kcontrol_new dec6_mux =
SOC_DAPM_ENUM("DEC6 MUX Mux", dec6_mux_enum);
static const struct snd_kcontrol_new dec7_mux =
SOC_DAPM_ENUM("DEC7 MUX Mux", dec7_mux_enum);
static const struct snd_kcontrol_new anc1_mux =
SOC_DAPM_ENUM("ANC1 MUX Mux", anc1_mux_enum);
static const struct snd_kcontrol_new dec8_mux =
SOC_DAPM_ENUM("DEC8 MUX Mux", dec8_mux_enum);
static const struct snd_kcontrol_new dec9_mux =
SOC_DAPM_ENUM("DEC9 MUX Mux", dec9_mux_enum);
static const struct snd_kcontrol_new dec10_mux =
SOC_DAPM_ENUM("DEC10 MUX Mux", dec10_mux_enum);
static const struct snd_kcontrol_new iir1_inp1_mux =
SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum);
static const struct snd_kcontrol_new anc2_mux =
SOC_DAPM_ENUM("ANC2 MUX Mux", anc2_mux_enum);
static const struct snd_kcontrol_new anc1_fb_mux =
SOC_DAPM_ENUM("ANC1 FB MUX Mux", anc1_fb_mux_enum);
static const struct snd_kcontrol_new dac1_switch[] = {
SOC_DAPM_SINGLE("Switch", TABLA_A_RX_EAR_EN, 5, 1, 0)
};
static const struct snd_kcontrol_new hphl_switch[] = {
SOC_DAPM_SINGLE("Switch", TABLA_A_RX_HPH_L_DAC_CTL, 6, 1, 0)
};
static const struct snd_kcontrol_new hphl_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
7, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
7, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 7, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 7, 1, 0),
};
static const struct snd_kcontrol_new hphr_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
6, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
6, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 6, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 6, 1, 0),
};
static const struct snd_kcontrol_new lineout1_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
5, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
5, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 5, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 5, 1, 0),
};
static const struct snd_kcontrol_new lineout2_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
4, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
4, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 4, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 4, 1, 0),
};
static const struct snd_kcontrol_new lineout3_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
3, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
3, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 3, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 3, 1, 0),
};
static const struct snd_kcontrol_new lineout4_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
2, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
2, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 2, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 2, 1, 0),
};
static const struct snd_kcontrol_new lineout5_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
1, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
1, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 1, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 1, 1, 0),
};
static const struct snd_kcontrol_new ear_pa_mix[] = {
SOC_DAPM_SINGLE("AUX_PGA_L Switch", TABLA_A_AUX_L_PA_CONN,
0, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R Switch", TABLA_A_AUX_R_PA_CONN,
0, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_L_INV Switch",
TABLA_A_AUX_L_PA_CONN_INV, 0, 1, 0),
SOC_DAPM_SINGLE("AUX_PGA_R_INV Switch",
TABLA_A_AUX_R_PA_CONN_INV, 0, 1, 0),
};
static const struct snd_kcontrol_new lineout3_ground_switch =
SOC_DAPM_SINGLE("Switch", TABLA_A_RX_LINE_3_DAC_CTL, 6, 1, 0);
static const struct snd_kcontrol_new lineout4_ground_switch =
SOC_DAPM_SINGLE("Switch", TABLA_A_RX_LINE_4_DAC_CTL, 6, 1, 0);
static void tabla_codec_enable_adc_block(struct snd_soc_codec *codec,
int enable)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
pr_debug("%s %d\n", __func__, enable);
if (enable) {
tabla->adc_count++;
snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS, 0xE0, 0xE0);
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x2, 0x2);
} else {
tabla->adc_count--;
if (!tabla->adc_count) {
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL,
0x2, 0x0);
if (!tabla->mbhc_polling_active)
snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS,
0xE0, 0x0);
}
}
}
static int tabla_codec_enable_adc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 adc_reg;
u8 init_bit_shift;
pr_debug("%s %d\n", __func__, event);
if (w->reg == TABLA_A_TX_1_2_EN)
adc_reg = TABLA_A_TX_1_2_TEST_CTL;
else if (w->reg == TABLA_A_TX_3_4_EN)
adc_reg = TABLA_A_TX_3_4_TEST_CTL;
else if (w->reg == TABLA_A_TX_5_6_EN)
adc_reg = TABLA_A_TX_5_6_TEST_CTL;
else {
pr_err("%s: Error, invalid adc register\n", __func__);
return -EINVAL;
}
if (w->shift == 3)
init_bit_shift = 6;
else if (w->shift == 7)
init_bit_shift = 7;
else {
pr_err("%s: Error, invalid init bit postion adc register\n",
__func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
tabla_codec_enable_adc_block(codec, 1);
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift,
1 << init_bit_shift);
break;
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
tabla_codec_enable_adc_block(codec, 0);
break;
}
return 0;
}
static void tabla_codec_enable_audio_mode_bandgap(struct snd_soc_codec *codec)
{
snd_soc_write(codec, TABLA_A_BIAS_REF_CTL, 0x1C);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x80);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x04,
0x04);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x01,
0x01);
usleep_range(1000, 1000);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x00);
}
static void tabla_codec_enable_bandgap(struct snd_soc_codec *codec,
enum tabla_bandgap_type choice)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
/* TODO lock resources accessed by audio streams and threaded
* interrupt handlers
*/
pr_debug("%s, choice is %d, current is %d\n", __func__, choice,
tabla->bandgap_type);
if (tabla->bandgap_type == choice)
return;
if ((tabla->bandgap_type == TABLA_BANDGAP_OFF) &&
(choice == TABLA_BANDGAP_AUDIO_MODE)) {
tabla_codec_enable_audio_mode_bandgap(codec);
} else if (choice == TABLA_BANDGAP_MBHC_MODE) {
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x2,
0x2);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x80);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x4,
0x4);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x01,
0x01);
usleep_range(1000, 1000);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x00);
} else if ((tabla->bandgap_type == TABLA_BANDGAP_MBHC_MODE) &&
(choice == TABLA_BANDGAP_AUDIO_MODE)) {
snd_soc_write(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x00);
usleep_range(100, 100);
tabla_codec_enable_audio_mode_bandgap(codec);
} else if (choice == TABLA_BANDGAP_OFF) {
snd_soc_write(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x00);
} else {
pr_err("%s: Error, Invalid bandgap settings\n", __func__);
}
tabla->bandgap_type = choice;
}
static void tabla_codec_disable_clock_block(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
pr_debug("%s\n", __func__);
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x04, 0x00);
ndelay(160);
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x02, 0x02);
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x00);
tabla->clock_active = false;
}
static int tabla_codec_mclk_index(const struct tabla_priv *tabla)
{
if (tabla->mclk_freq == TABLA_MCLK_RATE_12288KHZ)
return 0;
else if (tabla->mclk_freq == TABLA_MCLK_RATE_9600KHZ)
return 1;
else {
BUG_ON(1);
return -EINVAL;
}
}
static void tabla_enable_rx_bias(struct snd_soc_codec *codec, u32 enable)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
if (enable) {
tabla->rx_bias_count++;
if (tabla->rx_bias_count == 1)
snd_soc_update_bits(codec, TABLA_A_RX_COM_BIAS,
0x80, 0x80);
} else {
tabla->rx_bias_count--;
if (!tabla->rx_bias_count)
snd_soc_update_bits(codec, TABLA_A_RX_COM_BIAS,
0x80, 0x00);
}
}
static int tabla_codec_enable_config_mode(struct snd_soc_codec *codec,
int enable)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: enable = %d\n", __func__, enable);
if (enable) {
snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x10, 0);
snd_soc_write(codec, TABLA_A_BIAS_CONFIG_MODE_BG_CTL, 0x17);
usleep_range(5, 5);
snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x80,
0x80);
snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_TEST, 0x80,
0x80);
usleep_range(10, 10);
snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_TEST, 0x80, 0);
usleep_range(20, 20);
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x08);
} else {
snd_soc_update_bits(codec, TABLA_A_BIAS_CONFIG_MODE_BG_CTL, 0x1,
0);
snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x80, 0);
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x00);
}
tabla->config_mode_active = enable ? true : false;
return 0;
}
static int tabla_codec_enable_clock_block(struct snd_soc_codec *codec,
int config_mode)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: config_mode = %d\n", __func__, config_mode);
if (config_mode) {
tabla_codec_enable_config_mode(codec, 1);
snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x00);
snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x02);
snd_soc_write(codec, TABLA_A_CLK_BUFF_EN1, 0x0D);
usleep_range(1000, 1000);
} else
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x00);
if (!config_mode && tabla->mbhc_polling_active) {
snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x02);
tabla_codec_enable_config_mode(codec, 0);
}
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x05);
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x02, 0x00);
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x04, 0x04);
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_MCLK_CTL, 0x01, 0x01);
usleep_range(50, 50);
tabla->clock_active = true;
return 0;
}
static int tabla_codec_enable_aux_pga(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
tabla_codec_enable_bandgap(codec,
TABLA_BANDGAP_AUDIO_MODE);
tabla_enable_rx_bias(codec, 1);
snd_soc_update_bits(codec, TABLA_A_AUX_COM_CTL,
0x08, 0x08);
/* Enable Zero Cross detect for AUX PGA channel
* and set the initial AUX PGA gain to NEG_0P0_DB
* to avoid glitches.
*/
if (w->reg == TABLA_A_AUX_L_EN) {
snd_soc_update_bits(codec, TABLA_A_AUX_L_EN,
0x20, 0x20);
tabla->aux_l_gain = snd_soc_read(codec,
TABLA_A_AUX_L_GAIN);
snd_soc_write(codec, TABLA_A_AUX_L_GAIN, 0x1F);
} else {
snd_soc_update_bits(codec, TABLA_A_AUX_R_EN,
0x20, 0x20);
tabla->aux_r_gain = snd_soc_read(codec,
TABLA_A_AUX_R_GAIN);
snd_soc_write(codec, TABLA_A_AUX_R_GAIN, 0x1F);
}
if (tabla->aux_pga_cnt++ == 1
&& !tabla->mclk_enabled) {
tabla_codec_enable_clock_block(codec, 1);
pr_debug("AUX PGA enabled RC osc\n");
}
break;
case SND_SOC_DAPM_POST_PMU:
if (w->reg == TABLA_A_AUX_L_EN)
snd_soc_write(codec, TABLA_A_AUX_L_GAIN,
tabla->aux_l_gain);
else
snd_soc_write(codec, TABLA_A_AUX_R_GAIN,
tabla->aux_r_gain);
break;
case SND_SOC_DAPM_PRE_PMD:
/* Mute AUX PGA channel in use before disabling AUX PGA */
if (w->reg == TABLA_A_AUX_L_EN) {
tabla->aux_l_gain = snd_soc_read(codec,
TABLA_A_AUX_L_GAIN);
snd_soc_write(codec, TABLA_A_AUX_L_GAIN, 0x1F);
} else {
tabla->aux_r_gain = snd_soc_read(codec,
TABLA_A_AUX_R_GAIN);
snd_soc_write(codec, TABLA_A_AUX_R_GAIN, 0x1F);
}
break;
case SND_SOC_DAPM_POST_PMD:
tabla_enable_rx_bias(codec, 0);
snd_soc_update_bits(codec, TABLA_A_AUX_COM_CTL,
0x08, 0x00);
if (w->reg == TABLA_A_AUX_L_EN) {
snd_soc_write(codec, TABLA_A_AUX_L_GAIN,
tabla->aux_l_gain);
snd_soc_update_bits(codec, TABLA_A_AUX_L_EN,
0x20, 0x00);
} else {
snd_soc_write(codec, TABLA_A_AUX_R_GAIN,
tabla->aux_r_gain);
snd_soc_update_bits(codec, TABLA_A_AUX_R_EN,
0x20, 0x00);
}
if (tabla->aux_pga_cnt-- == 0) {
if (tabla->mbhc_polling_active)
tabla_codec_enable_bandgap(codec,
TABLA_BANDGAP_MBHC_MODE);
else
tabla_codec_enable_bandgap(codec,
TABLA_BANDGAP_OFF);
if (!tabla->mclk_enabled &&
!tabla->mbhc_polling_active) {
tabla_codec_enable_clock_block(codec, 0);
}
}
break;
}
return 0;
}
static int tabla_codec_enable_lineout(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 lineout_gain_reg;
pr_debug("%s %d %s\n", __func__, event, w->name);
switch (w->shift) {
case 0:
lineout_gain_reg = TABLA_A_RX_LINE_1_GAIN;
break;
case 1:
lineout_gain_reg = TABLA_A_RX_LINE_2_GAIN;
break;
case 2:
lineout_gain_reg = TABLA_A_RX_LINE_3_GAIN;
break;
case 3:
lineout_gain_reg = TABLA_A_RX_LINE_4_GAIN;
break;
case 4:
lineout_gain_reg = TABLA_A_RX_LINE_5_GAIN;
break;
default:
pr_err("%s: Error, incorrect lineout register value\n",
__func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMU:
pr_debug("%s: sleeping 16 ms after %s PA turn on\n",
__func__, w->name);
usleep_range(16000, 16000);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x00);
break;
}
return 0;
}
static int tabla_codec_enable_dmic(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 tx_mux_ctl_reg, tx_dmic_ctl_reg;
u8 dmic_clk_sel, dmic_clk_en;
unsigned int dmic;
int ret;
ret = kstrtouint(strpbrk(w->name, "123456"), 10, &dmic);
if (ret < 0) {
pr_err("%s: Invalid DMIC line on the codec\n", __func__);
return -EINVAL;
}
switch (dmic) {
case 1:
case 2:
dmic_clk_sel = 0x02;
dmic_clk_en = 0x01;
break;
case 3:
case 4:
dmic_clk_sel = 0x08;
dmic_clk_en = 0x04;
break;
case 5:
case 6:
dmic_clk_sel = 0x20;
dmic_clk_en = 0x10;
break;
default:
pr_err("%s: Invalid DMIC Selection\n", __func__);
return -EINVAL;
}
tx_mux_ctl_reg = TABLA_A_CDC_TX1_MUX_CTL + 8 * (dmic - 1);
tx_dmic_ctl_reg = TABLA_A_CDC_TX1_DMIC_CTL + 8 * (dmic - 1);
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, 0x1);
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL,
dmic_clk_sel, dmic_clk_sel);
snd_soc_update_bits(codec, tx_dmic_ctl_reg, 0x1, 0x1);
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL,
dmic_clk_en, dmic_clk_en);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL,
dmic_clk_en, 0);
break;
}
return 0;
}
static int tabla_codec_enable_anc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
const char *filename;
const struct firmware *fw;
int i;
int ret;
int num_anc_slots;
struct anc_header *anc_head;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
u32 anc_writes_size = 0;
int anc_size_remaining;
u32 *anc_ptr;
u16 reg;
u8 mask, val, old_val;
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
filename = "wcd9310/wcd9310_anc.bin";
ret = request_firmware(&fw, filename, codec->dev);
if (ret != 0) {
dev_err(codec->dev, "Failed to acquire ANC data: %d\n",
ret);
return -ENODEV;
}
if (fw->size < sizeof(struct anc_header)) {
dev_err(codec->dev, "Not enough data\n");
release_firmware(fw);
return -ENOMEM;
}
/* First number is the number of register writes */
anc_head = (struct anc_header *)(fw->data);
anc_ptr = (u32 *)((u32)fw->data + sizeof(struct anc_header));
anc_size_remaining = fw->size - sizeof(struct anc_header);
num_anc_slots = anc_head->num_anc_slots;
if (tabla->anc_slot >= num_anc_slots) {
dev_err(codec->dev, "Invalid ANC slot selected\n");
release_firmware(fw);
return -EINVAL;
}
for (i = 0; i < num_anc_slots; i++) {
if (anc_size_remaining < TABLA_PACKED_REG_SIZE) {
dev_err(codec->dev, "Invalid register format\n");
release_firmware(fw);
return -EINVAL;
}
anc_writes_size = (u32)(*anc_ptr);
anc_size_remaining -= sizeof(u32);
anc_ptr += 1;
if (anc_writes_size * TABLA_PACKED_REG_SIZE
> anc_size_remaining) {
dev_err(codec->dev, "Invalid register format\n");
release_firmware(fw);
return -ENOMEM;
}
if (tabla->anc_slot == i)
break;
anc_size_remaining -= (anc_writes_size *
TABLA_PACKED_REG_SIZE);
anc_ptr += anc_writes_size;
}
if (i == num_anc_slots) {
dev_err(codec->dev, "Selected ANC slot not present\n");
release_firmware(fw);
return -ENOMEM;
}
for (i = 0; i < anc_writes_size; i++) {
TABLA_CODEC_UNPACK_ENTRY(anc_ptr[i], reg,
mask, val);
old_val = snd_soc_read(codec, reg);
snd_soc_write(codec, reg, (old_val & ~mask) |
(val & mask));
}
release_firmware(fw);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_write(codec, TABLA_A_CDC_CLK_ANC_RESET_CTL, 0xFF);
snd_soc_write(codec, TABLA_A_CDC_CLK_ANC_CLK_EN_CTL, 0);
break;
}
return 0;
}
static void tabla_codec_disable_button_presses(struct snd_soc_codec *codec)
{
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B4_CTL, 0x80);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B3_CTL, 0x00);
}
static void tabla_codec_start_hs_polling(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84);
wcd9xxx_enable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL);
if (!tabla->no_mic_headset_override) {
wcd9xxx_enable_irq(codec->control_data,
TABLA_IRQ_MBHC_POTENTIAL);
wcd9xxx_enable_irq(codec->control_data,
TABLA_IRQ_MBHC_RELEASE);
} else {
tabla_codec_disable_button_presses(codec);
}
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x1);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x1);
}
static void tabla_codec_pause_hs_polling(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL);
if (!tabla->no_mic_headset_override) {
wcd9xxx_disable_irq(codec->control_data,
TABLA_IRQ_MBHC_POTENTIAL);
wcd9xxx_disable_irq(codec->control_data,
TABLA_IRQ_MBHC_RELEASE);
}
}
static void tabla_codec_switch_cfilt_mode(struct snd_soc_codec *codec,
int mode)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
u8 reg_mode_val, cur_mode_val;
bool mbhc_was_polling = false;
if (mode)
reg_mode_val = TABLA_CFILT_FAST_MODE;
else
reg_mode_val = TABLA_CFILT_SLOW_MODE;
cur_mode_val = snd_soc_read(codec,
tabla->mbhc_bias_regs.cfilt_ctl) & 0x40;
if (cur_mode_val != reg_mode_val) {
if (tabla->mbhc_polling_active) {
tabla_codec_pause_hs_polling(codec);
mbhc_was_polling = true;
}
snd_soc_update_bits(codec,
tabla->mbhc_bias_regs.cfilt_ctl, 0x40, reg_mode_val);
if (mbhc_was_polling)
tabla_codec_start_hs_polling(codec);
pr_debug("%s: CFILT mode change (%x to %x)\n", __func__,
cur_mode_val, reg_mode_val);
} else {
pr_debug("%s: CFILT Value is already %x\n",
__func__, cur_mode_val);
}
}
static void tabla_codec_update_cfilt_usage(struct snd_soc_codec *codec,
u8 cfilt_sel, int inc)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
u32 *cfilt_cnt_ptr = NULL;
u16 micb_cfilt_reg;
switch (cfilt_sel) {
case TABLA_CFILT1_SEL:
cfilt_cnt_ptr = &tabla->cfilt1_cnt;
micb_cfilt_reg = TABLA_A_MICB_CFILT_1_CTL;
break;
case TABLA_CFILT2_SEL:
cfilt_cnt_ptr = &tabla->cfilt2_cnt;
micb_cfilt_reg = TABLA_A_MICB_CFILT_2_CTL;
break;
case TABLA_CFILT3_SEL:
cfilt_cnt_ptr = &tabla->cfilt3_cnt;
micb_cfilt_reg = TABLA_A_MICB_CFILT_3_CTL;
break;
default:
return; /* should not happen */
}
if (inc) {
if (!(*cfilt_cnt_ptr)++) {
/* Switch CFILT to slow mode if MBHC CFILT being used */
if (cfilt_sel == tabla->mbhc_bias_regs.cfilt_sel)
tabla_codec_switch_cfilt_mode(codec, 0);
snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0x80);
}
} else {
/* check if count not zero, decrement
* then check if zero, go ahead disable cfilter
*/
if ((*cfilt_cnt_ptr) && !--(*cfilt_cnt_ptr)) {
snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0);
/* Switch CFILT to fast mode if MBHC CFILT being used */
if (cfilt_sel == tabla->mbhc_bias_regs.cfilt_sel)
tabla_codec_switch_cfilt_mode(codec, 1);
}
}
}
static int tabla_find_k_value(unsigned int ldoh_v, unsigned int cfilt_mv)
{
int rc = -EINVAL;
unsigned min_mv, max_mv;
switch (ldoh_v) {
case TABLA_LDOH_1P95_V:
min_mv = 160;
max_mv = 1800;
break;
case TABLA_LDOH_2P35_V:
min_mv = 200;
max_mv = 2200;
break;
case TABLA_LDOH_2P75_V:
min_mv = 240;
max_mv = 2600;
break;
case TABLA_LDOH_2P85_V:
min_mv = 250;
max_mv = 2700;
break;
default:
goto done;
}
if (cfilt_mv < min_mv || cfilt_mv > max_mv)
goto done;
for (rc = 4; rc <= 44; rc++) {
min_mv = max_mv * (rc) / 44;
if (min_mv >= cfilt_mv) {
rc -= 4;
break;
}
}
done:
return rc;
}
static bool tabla_is_hph_pa_on(struct snd_soc_codec *codec)
{
u8 hph_reg_val = 0;
hph_reg_val = snd_soc_read(codec, TABLA_A_RX_HPH_CNP_EN);
return (hph_reg_val & 0x30) ? true : false;
}
static bool tabla_is_hph_dac_on(struct snd_soc_codec *codec, int left)
{
u8 hph_reg_val = 0;
if (left)
hph_reg_val = snd_soc_read(codec,
TABLA_A_RX_HPH_L_DAC_CTL);
else
hph_reg_val = snd_soc_read(codec,
TABLA_A_RX_HPH_R_DAC_CTL);
return (hph_reg_val & 0xC0) ? true : false;
}
static void tabla_codec_switch_micbias(struct snd_soc_codec *codec,
int vddio_switch)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
int cfilt_k_val;
bool mbhc_was_polling = false;
switch (vddio_switch) {
case 1:
if (tabla->mbhc_polling_active) {
tabla_codec_pause_hs_polling(codec);
/* VDDIO switch enabled */
tabla->cfilt_k_value = snd_soc_read(codec,
tabla->mbhc_bias_regs.cfilt_val);
cfilt_k_val = tabla_find_k_value(
tabla->pdata->micbias.ldoh_v, 1800);
snd_soc_update_bits(codec,
tabla->mbhc_bias_regs.cfilt_val,
0xFC, (cfilt_k_val << 2));
snd_soc_update_bits(codec,
tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x80);
snd_soc_update_bits(codec,
tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x00);
tabla_codec_start_hs_polling(codec);
tabla->mbhc_micbias_switched = true;
pr_debug("%s: VDDIO switch enabled\n", __func__);
}
break;
case 0:
if (tabla->mbhc_micbias_switched) {
if (tabla->mbhc_polling_active) {
tabla_codec_pause_hs_polling(codec);
mbhc_was_polling = true;
}
/* VDDIO switch disabled */
if (tabla->cfilt_k_value != 0)
snd_soc_update_bits(codec,
tabla->mbhc_bias_regs.cfilt_val, 0XFC,
tabla->cfilt_k_value);
snd_soc_update_bits(codec,
tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x00);
snd_soc_update_bits(codec,
tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x00);
if (mbhc_was_polling)
tabla_codec_start_hs_polling(codec);
tabla->mbhc_micbias_switched = false;
pr_debug("%s: VDDIO switch disabled\n", __func__);
}
break;
}
}
static int tabla_codec_enable_micbias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
u16 micb_int_reg;
int micb_line;
u8 cfilt_sel_val = 0;
char *internal1_text = "Internal1";
char *internal2_text = "Internal2";
char *internal3_text = "Internal3";
pr_debug("%s %d\n", __func__, event);
switch (w->reg) {
case TABLA_A_MICB_1_CTL:
micb_int_reg = TABLA_A_MICB_1_INT_RBIAS;
cfilt_sel_val = tabla->pdata->micbias.bias1_cfilt_sel;
micb_line = TABLA_MICBIAS1;
break;
case TABLA_A_MICB_2_CTL:
micb_int_reg = TABLA_A_MICB_2_INT_RBIAS;
cfilt_sel_val = tabla->pdata->micbias.bias2_cfilt_sel;
micb_line = TABLA_MICBIAS2;
break;
case TABLA_A_MICB_3_CTL:
micb_int_reg = TABLA_A_MICB_3_INT_RBIAS;
cfilt_sel_val = tabla->pdata->micbias.bias3_cfilt_sel;
micb_line = TABLA_MICBIAS3;
break;
case TABLA_1_A_MICB_4_CTL:
case TABLA_2_A_MICB_4_CTL:
micb_int_reg = tabla->reg_addr.micb_4_int_rbias;
cfilt_sel_val = tabla->pdata->micbias.bias4_cfilt_sel;
micb_line = TABLA_MICBIAS4;
break;
default:
pr_err("%s: Error, invalid micbias register\n", __func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Decide whether to switch the micbias for MBHC */
if ((w->reg == tabla->mbhc_bias_regs.ctl_reg)
&& tabla->mbhc_micbias_switched)
tabla_codec_switch_micbias(codec, 0);
snd_soc_update_bits(codec, w->reg, 0x0E, 0x0A);
tabla_codec_update_cfilt_usage(codec, cfilt_sel_val, 1);
if (strnstr(w->name, internal1_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0xE0, 0xE0);
else if (strnstr(w->name, internal2_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x1C, 0x1C);
else if (strnstr(w->name, internal3_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x3, 0x3);
break;
case SND_SOC_DAPM_POST_PMU:
if (tabla->mbhc_polling_active &&
tabla->micbias == micb_line) {
tabla_codec_pause_hs_polling(codec);
tabla_codec_start_hs_polling(codec);
}
break;
case SND_SOC_DAPM_POST_PMD:
if ((w->reg == tabla->mbhc_bias_regs.ctl_reg)
&& tabla_is_hph_pa_on(codec))
tabla_codec_switch_micbias(codec, 1);
if (strnstr(w->name, internal1_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x00);
else if (strnstr(w->name, internal2_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x00);
else if (strnstr(w->name, internal3_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x2, 0x0);
tabla_codec_update_cfilt_usage(codec, cfilt_sel_val, 0);
break;
}
return 0;
}
static int tabla_codec_enable_dec(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 dec_reset_reg;
pr_debug("%s %d\n", __func__, event);
if (w->reg == TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL)
dec_reset_reg = TABLA_A_CDC_CLK_TX_RESET_B1_CTL;
else if (w->reg == TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL)
dec_reset_reg = TABLA_A_CDC_CLK_TX_RESET_B2_CTL;
else {
pr_err("%s: Error, incorrect dec\n", __func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift,
1 << w->shift);
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0);
break;
}
return 0;
}
static int tabla_codec_reset_interpolator(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %d %s\n", __func__, event, w->name);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 1 << w->shift);
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 0x0);
break;
}
return 0;
}
static int tabla_codec_enable_ldo_h(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
switch (event) {
case SND_SOC_DAPM_POST_PMU:
case SND_SOC_DAPM_POST_PMD:
usleep_range(1000, 1000);
break;
}
return 0;
}
static int tabla_codec_enable_rx_bias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
tabla_enable_rx_bias(codec, 1);
break;
case SND_SOC_DAPM_POST_PMD:
tabla_enable_rx_bias(codec, 0);
break;
}
return 0;
}
static int tabla_hphr_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, w->reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, w->reg, 0x40, 0x00);
break;
}
return 0;
}
static void tabla_snd_soc_jack_report(struct tabla_priv *tabla,
struct snd_soc_jack *jack, int status,
int mask)
{
/* XXX: wake_lock_timeout()? */
snd_soc_jack_report(jack, status, mask);
}
static void hphocp_off_report(struct tabla_priv *tabla,
u32 jack_status, int irq)
{
struct snd_soc_codec *codec;
if (tabla) {
pr_info("%s: clear ocp status %x\n", __func__, jack_status);
codec = tabla->codec;
tabla->hph_status &= ~jack_status;
if (tabla->headset_jack)
tabla_snd_soc_jack_report(tabla, tabla->headset_jack,
tabla->hph_status,
TABLA_JACK_MASK);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x00);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10);
/* reset retry counter as PA is turned off signifying
* start of new OCP detection session
*/
if (TABLA_IRQ_HPH_PA_OCPL_FAULT)
tabla->hphlocp_cnt = 0;
else
tabla->hphrocp_cnt = 0;
wcd9xxx_enable_irq(codec->control_data, irq);
} else {
pr_err("%s: Bad tabla private data\n", __func__);
}
}
static void hphlocp_off_report(struct work_struct *work)
{
struct tabla_priv *tabla = container_of(work, struct tabla_priv,
hphlocp_work);
hphocp_off_report(tabla, SND_JACK_OC_HPHL, TABLA_IRQ_HPH_PA_OCPL_FAULT);
}
static void hphrocp_off_report(struct work_struct *work)
{
struct tabla_priv *tabla = container_of(work, struct tabla_priv,
hphrocp_work);
hphocp_off_report(tabla, SND_JACK_OC_HPHR, TABLA_IRQ_HPH_PA_OCPR_FAULT);
}
static int tabla_hph_pa_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
u8 mbhc_micb_ctl_val;
pr_debug("%s: event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
mbhc_micb_ctl_val = snd_soc_read(codec,
tabla->mbhc_bias_regs.ctl_reg);
if (!(mbhc_micb_ctl_val & 0x80)
&& !tabla->mbhc_micbias_switched)
tabla_codec_switch_micbias(codec, 1);
break;
case SND_SOC_DAPM_POST_PMD:
/* schedule work is required because at the time HPH PA DAPM
* event callback is called by DAPM framework, CODEC dapm mutex
* would have been locked while snd_soc_jack_report also
* attempts to acquire same lock.
*/
if (w->shift == 5) {
clear_bit(TABLA_HPHL_PA_OFF_ACK,
&tabla->hph_pa_dac_state);
clear_bit(TABLA_HPHL_DAC_OFF_ACK,
&tabla->hph_pa_dac_state);
if (tabla->hph_status & SND_JACK_OC_HPHL)
schedule_work(&tabla->hphlocp_work);
} else if (w->shift == 4) {
clear_bit(TABLA_HPHR_PA_OFF_ACK,
&tabla->hph_pa_dac_state);
clear_bit(TABLA_HPHR_DAC_OFF_ACK,
&tabla->hph_pa_dac_state);
if (tabla->hph_status & SND_JACK_OC_HPHR)
schedule_work(&tabla->hphrocp_work);
}
if (tabla->mbhc_micbias_switched)
tabla_codec_switch_micbias(codec, 0);
pr_debug("%s: sleep 10 ms after %s PA disable.\n", __func__,
w->name);
usleep_range(10000, 10000);
break;
}
return 0;
}
static void tabla_get_mbhc_micbias_regs(struct snd_soc_codec *codec,
struct mbhc_micbias_regs *micbias_regs)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
unsigned int cfilt;
switch (tabla->micbias) {
case TABLA_MICBIAS1:
cfilt = tabla->pdata->micbias.bias1_cfilt_sel;
micbias_regs->mbhc_reg = TABLA_A_MICB_1_MBHC;
micbias_regs->int_rbias = TABLA_A_MICB_1_INT_RBIAS;
micbias_regs->ctl_reg = TABLA_A_MICB_1_CTL;
break;
case TABLA_MICBIAS2:
cfilt = tabla->pdata->micbias.bias2_cfilt_sel;
micbias_regs->mbhc_reg = TABLA_A_MICB_2_MBHC;
micbias_regs->int_rbias = TABLA_A_MICB_2_INT_RBIAS;
micbias_regs->ctl_reg = TABLA_A_MICB_2_CTL;
break;
case TABLA_MICBIAS3:
cfilt = tabla->pdata->micbias.bias3_cfilt_sel;
micbias_regs->mbhc_reg = TABLA_A_MICB_3_MBHC;
micbias_regs->int_rbias = TABLA_A_MICB_3_INT_RBIAS;
micbias_regs->ctl_reg = TABLA_A_MICB_3_CTL;
break;
case TABLA_MICBIAS4:
cfilt = tabla->pdata->micbias.bias4_cfilt_sel;
micbias_regs->mbhc_reg = tabla->reg_addr.micb_4_mbhc;
micbias_regs->int_rbias = tabla->reg_addr.micb_4_int_rbias;
micbias_regs->ctl_reg = tabla->reg_addr.micb_4_ctl;
break;
default:
/* Should never reach here */
pr_err("%s: Invalid MIC BIAS for MBHC\n", __func__);
return;
}
micbias_regs->cfilt_sel = cfilt;
switch (cfilt) {
case TABLA_CFILT1_SEL:
micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_1_VAL;
micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_1_CTL;
tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt1_mv;
break;
case TABLA_CFILT2_SEL:
micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_2_VAL;
micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_2_CTL;
tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt2_mv;
break;
case TABLA_CFILT3_SEL:
micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_3_VAL;
micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_3_CTL;
tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt3_mv;
break;
}
}
static const struct snd_soc_dapm_widget tabla_dapm_i2s_widgets[] = {
SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", TABLA_A_CDC_CLK_RX_I2S_CTL,
4, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", TABLA_A_CDC_CLK_TX_I2S_CTL, 4,
0, NULL, 0),
};
static int tabla_lineout_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, w->reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, w->reg, 0x40, 0x00);
break;
}
return 0;
}
static const struct snd_soc_dapm_widget tabla_1_x_dapm_widgets[] = {
SND_SOC_DAPM_MICBIAS_E("MIC BIAS4 External", TABLA_1_A_MICB_4_CTL, 7,
0, tabla_codec_enable_micbias,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
};
static const struct snd_soc_dapm_widget tabla_2_higher_dapm_widgets[] = {
SND_SOC_DAPM_MICBIAS_E("MIC BIAS4 External", TABLA_2_A_MICB_4_CTL, 7,
0, tabla_codec_enable_micbias,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
};
static const struct snd_soc_dapm_route audio_i2s_map[] = {
{"RX_I2S_CLK", NULL, "CDC_CONN"},
{"SLIM RX1", NULL, "RX_I2S_CLK"},
{"SLIM RX2", NULL, "RX_I2S_CLK"},
{"SLIM RX3", NULL, "RX_I2S_CLK"},
{"SLIM RX4", NULL, "RX_I2S_CLK"},
{"SLIM TX7", NULL, "TX_I2S_CLK"},
{"SLIM TX8", NULL, "TX_I2S_CLK"},
{"SLIM TX9", NULL, "TX_I2S_CLK"},
{"SLIM TX10", NULL, "TX_I2S_CLK"},
};
static const struct snd_soc_dapm_route audio_map[] = {
/* SLIMBUS Connections */
{"SLIM TX1", NULL, "SLIM TX1 MUX"},
{"SLIM TX1 MUX", "DEC1", "DEC1 MUX"},
{"SLIM TX5", NULL, "SLIM TX5 MUX"},
{"SLIM TX5 MUX", "DEC5", "DEC5 MUX"},
{"SLIM TX6", NULL, "SLIM TX6 MUX"},
{"SLIM TX6 MUX", "DEC6", "DEC6 MUX"},
{"SLIM TX7", NULL, "SLIM TX7 MUX"},
{"SLIM TX7 MUX", "DEC1", "DEC1 MUX"},
{"SLIM TX7 MUX", "DEC2", "DEC2 MUX"},
{"SLIM TX7 MUX", "DEC3", "DEC3 MUX"},
{"SLIM TX7 MUX", "DEC4", "DEC4 MUX"},
{"SLIM TX7 MUX", "DEC5", "DEC5 MUX"},
{"SLIM TX7 MUX", "DEC6", "DEC6 MUX"},
{"SLIM TX7 MUX", "DEC7", "DEC7 MUX"},
{"SLIM TX7 MUX", "DEC8", "DEC8 MUX"},
{"SLIM TX7 MUX", "DEC9", "DEC9 MUX"},
{"SLIM TX7 MUX", "DEC10", "DEC10 MUX"},
{"SLIM TX8", NULL, "SLIM TX8 MUX"},
{"SLIM TX8 MUX", "DEC1", "DEC1 MUX"},
{"SLIM TX8 MUX", "DEC2", "DEC2 MUX"},
{"SLIM TX8 MUX", "DEC3", "DEC3 MUX"},
{"SLIM TX8 MUX", "DEC4", "DEC4 MUX"},
{"SLIM TX8 MUX", "DEC5", "DEC5 MUX"},
{"SLIM TX8 MUX", "DEC6", "DEC6 MUX"},
{"SLIM TX9", NULL, "SLIM TX9 MUX"},
{"SLIM TX9 MUX", "DEC1", "DEC1 MUX"},
{"SLIM TX9 MUX", "DEC2", "DEC2 MUX"},
{"SLIM TX9 MUX", "DEC3", "DEC3 MUX"},
{"SLIM TX9 MUX", "DEC4", "DEC4 MUX"},
{"SLIM TX9 MUX", "DEC5", "DEC5 MUX"},
{"SLIM TX9 MUX", "DEC6", "DEC6 MUX"},
{"SLIM TX9 MUX", "DEC7", "DEC7 MUX"},
{"SLIM TX9 MUX", "DEC8", "DEC8 MUX"},
{"SLIM TX9 MUX", "DEC9", "DEC9 MUX"},
{"SLIM TX9 MUX", "DEC10", "DEC10 MUX"},
{"SLIM TX10", NULL, "SLIM TX10 MUX"},
{"SLIM TX10 MUX", "DEC1", "DEC1 MUX"},
{"SLIM TX10 MUX", "DEC2", "DEC2 MUX"},
{"SLIM TX10 MUX", "DEC3", "DEC3 MUX"},
{"SLIM TX10 MUX", "DEC4", "DEC4 MUX"},
{"SLIM TX10 MUX", "DEC5", "DEC5 MUX"},
{"SLIM TX10 MUX", "DEC6", "DEC6 MUX"},
{"SLIM TX10 MUX", "DEC7", "DEC7 MUX"},
{"SLIM TX10 MUX", "DEC8", "DEC8 MUX"},
{"SLIM TX10 MUX", "DEC9", "DEC9 MUX"},
{"SLIM TX10 MUX", "DEC10", "DEC10 MUX"},
/* Earpiece (RX MIX1) */
{"EAR", NULL, "EAR PA"},
{"EAR PA", NULL, "EAR_PA_MIXER"},
{"EAR_PA_MIXER", NULL, "DAC1"},
{"DAC1", NULL, "CP"},
{"ANC1 FB MUX", "EAR_HPH_L", "RX1 MIX1"},
{"ANC1 FB MUX", "EAR_LINE_1", "RX2 MIX1"},
{"ANC", NULL, "ANC1 FB MUX"},
/* Headset (RX MIX1 and RX MIX2) */
{"HEADPHONE", NULL, "HPHL"},
{"HEADPHONE", NULL, "HPHR"},
{"HPHL", NULL, "HPHL_PA_MIXER"},
{"HPHL_PA_MIXER", NULL, "HPHL DAC"},
{"HPHR", NULL, "HPHR_PA_MIXER"},
{"HPHR_PA_MIXER", NULL, "HPHR DAC"},
{"HPHL DAC", NULL, "CP"},
{"HPHR DAC", NULL, "CP"},
{"ANC", NULL, "ANC1 MUX"},
{"ANC", NULL, "ANC2 MUX"},
{"ANC1 MUX", "ADC1", "ADC1"},
{"ANC1 MUX", "ADC2", "ADC2"},
{"ANC1 MUX", "ADC3", "ADC3"},
{"ANC1 MUX", "ADC4", "ADC4"},
{"ANC2 MUX", "ADC1", "ADC1"},
{"ANC2 MUX", "ADC2", "ADC2"},
{"ANC2 MUX", "ADC3", "ADC3"},
{"ANC2 MUX", "ADC4", "ADC4"},
{"ANC", NULL, "CDC_CONN"},
{"DAC1", "Switch", "RX1 CHAIN"},
{"HPHL DAC", "Switch", "RX1 CHAIN"},
{"HPHR DAC", NULL, "RX2 CHAIN"},
{"LINEOUT1", NULL, "LINEOUT1 PA"},
{"LINEOUT2", NULL, "LINEOUT2 PA"},
{"LINEOUT3", NULL, "LINEOUT3 PA"},
{"LINEOUT4", NULL, "LINEOUT4 PA"},
{"LINEOUT5", NULL, "LINEOUT5 PA"},
{"LINEOUT1 PA", NULL, "LINEOUT1_PA_MIXER"},
{"LINEOUT1_PA_MIXER", NULL, "LINEOUT1 DAC"},
{"LINEOUT2 PA", NULL, "LINEOUT2_PA_MIXER"},
{"LINEOUT2_PA_MIXER", NULL, "LINEOUT2 DAC"},
{"LINEOUT3 PA", NULL, "LINEOUT3_PA_MIXER"},
{"LINEOUT3_PA_MIXER", NULL, "LINEOUT3 DAC"},
{"LINEOUT4 PA", NULL, "LINEOUT4_PA_MIXER"},
{"LINEOUT4_PA_MIXER", NULL, "LINEOUT4 DAC"},
{"LINEOUT5 PA", NULL, "LINEOUT5_PA_MIXER"},
{"LINEOUT5_PA_MIXER", NULL, "LINEOUT5 DAC"},
{"LINEOUT1 DAC", NULL, "RX3 MIX1"},
{"LINEOUT5 DAC", NULL, "RX7 MIX1"},
{"RX1 CHAIN", NULL, "RX1 MIX1"},
{"RX2 CHAIN", NULL, "RX2 MIX1"},
{"RX1 CHAIN", NULL, "ANC"},
{"RX2 CHAIN", NULL, "ANC"},
{"CP", NULL, "RX_BIAS"},
{"LINEOUT1 DAC", NULL, "RX_BIAS"},
{"LINEOUT2 DAC", NULL, "RX_BIAS"},
{"LINEOUT3 DAC", NULL, "RX_BIAS"},
{"LINEOUT4 DAC", NULL, "RX_BIAS"},
{"LINEOUT5 DAC", NULL, "RX_BIAS"},
{"RX1 MIX1", NULL, "COMP1_CLK"},
{"RX2 MIX1", NULL, "COMP1_CLK"},
{"RX3 MIX1", NULL, "COMP2_CLK"},
{"RX5 MIX1", NULL, "COMP2_CLK"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP2"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP1"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP2"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP1"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP2"},
{"RX4 MIX1", NULL, "RX4 MIX1 INP1"},
{"RX4 MIX1", NULL, "RX4 MIX1 INP2"},
{"RX5 MIX1", NULL, "RX5 MIX1 INP1"},
{"RX5 MIX1", NULL, "RX5 MIX1 INP2"},
{"RX6 MIX1", NULL, "RX6 MIX1 INP1"},
{"RX6 MIX1", NULL, "RX6 MIX1 INP2"},
{"RX7 MIX1", NULL, "RX7 MIX1 INP1"},
{"RX7 MIX1", NULL, "RX7 MIX1 INP2"},
{"RX1 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX1 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX1 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX1 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX1 MIX1 INP1", "RX6", "SLIM RX6"},
{"RX1 MIX1 INP1", "RX7", "SLIM RX7"},
{"RX1 MIX1 INP1", "IIR1", "IIR1"},
{"RX1 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX1 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX1 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX1 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX1 MIX1 INP2", "RX6", "SLIM RX6"},
{"RX1 MIX1 INP2", "RX7", "SLIM RX7"},
{"RX1 MIX1 INP2", "IIR1", "IIR1"},
{"RX2 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX2 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX2 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX2 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX2 MIX1 INP1", "RX6", "SLIM RX6"},
{"RX2 MIX1 INP1", "RX7", "SLIM RX7"},
{"RX2 MIX1 INP1", "IIR1", "IIR1"},
{"RX2 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX2 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX2 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX2 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX2 MIX1 INP2", "RX6", "SLIM RX6"},
{"RX2 MIX1 INP2", "RX7", "SLIM RX7"},
{"RX2 MIX1 INP2", "IIR1", "IIR1"},
{"RX3 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX3 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX3 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX3 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX3 MIX1 INP1", "RX6", "SLIM RX6"},
{"RX3 MIX1 INP1", "RX7", "SLIM RX7"},
{"RX3 MIX1 INP1", "IIR1", "IIR1"},
{"RX3 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX3 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX3 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX3 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX3 MIX1 INP2", "RX6", "SLIM RX6"},
{"RX3 MIX1 INP2", "RX7", "SLIM RX7"},
{"RX3 MIX1 INP2", "IIR1", "IIR1"},
{"RX4 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX4 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX4 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX4 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX4 MIX1 INP1", "RX6", "SLIM RX6"},
{"RX4 MIX1 INP1", "RX7", "SLIM RX7"},
{"RX4 MIX1 INP1", "IIR1", "IIR1"},
{"RX4 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX4 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX4 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX4 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX4 MIX1 INP2", "RX6", "SLIM RX6"},
{"RX4 MIX1 INP2", "RX7", "SLIM RX7"},
{"RX4 MIX1 INP2", "IIR1", "IIR1"},
{"RX5 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX5 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX5 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX5 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX5 MIX1 INP1", "RX6", "SLIM RX6"},
{"RX5 MIX1 INP1", "RX7", "SLIM RX7"},
{"RX5 MIX1 INP1", "IIR1", "IIR1"},
{"RX5 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX5 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX5 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX5 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX5 MIX1 INP2", "RX6", "SLIM RX6"},
{"RX5 MIX1 INP2", "RX7", "SLIM RX7"},
{"RX5 MIX1 INP2", "IIR1", "IIR1"},
{"RX6 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX6 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX6 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX6 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX6 MIX1 INP1", "RX6", "SLIM RX6"},
{"RX6 MIX1 INP1", "RX7", "SLIM RX7"},
{"RX6 MIX1 INP1", "IIR1", "IIR1"},
{"RX6 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX6 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX6 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX6 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX6 MIX1 INP2", "RX6", "SLIM RX6"},
{"RX6 MIX1 INP2", "RX7", "SLIM RX7"},
{"RX6 MIX1 INP2", "IIR1", "IIR1"},
{"RX7 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX7 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX7 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX7 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX7 MIX1 INP1", "RX6", "SLIM RX6"},
{"RX7 MIX1 INP1", "RX7", "SLIM RX7"},
{"RX7 MIX1 INP1", "IIR1", "IIR1"},
{"RX7 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX7 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX7 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX7 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX7 MIX1 INP2", "RX6", "SLIM RX6"},
{"RX7 MIX1 INP2", "RX7", "SLIM RX7"},
{"RX7 MIX1 INP2", "IIR1", "IIR1"},
/* Decimator Inputs */
{"DEC1 MUX", "DMIC1", "DMIC1"},
{"DEC1 MUX", "ADC6", "ADC6"},
{"DEC1 MUX", NULL, "CDC_CONN"},
{"DEC2 MUX", "DMIC2", "DMIC2"},
{"DEC2 MUX", "ADC5", "ADC5"},
{"DEC2 MUX", NULL, "CDC_CONN"},
{"DEC3 MUX", "DMIC3", "DMIC3"},
{"DEC3 MUX", "ADC4", "ADC4"},
{"DEC3 MUX", NULL, "CDC_CONN"},
{"DEC4 MUX", "DMIC4", "DMIC4"},
{"DEC4 MUX", "ADC3", "ADC3"},
{"DEC4 MUX", NULL, "CDC_CONN"},
{"DEC5 MUX", "DMIC5", "DMIC5"},
{"DEC5 MUX", "ADC2", "ADC2"},
{"DEC5 MUX", NULL, "CDC_CONN"},
{"DEC6 MUX", "DMIC6", "DMIC6"},
{"DEC6 MUX", "ADC1", "ADC1"},
{"DEC6 MUX", NULL, "CDC_CONN"},
{"DEC7 MUX", "DMIC1", "DMIC1"},
{"DEC7 MUX", "ADC6", "ADC6"},
{"DEC7 MUX", NULL, "CDC_CONN"},
{"DEC8 MUX", "ADC5", "ADC5"},
{"DEC8 MUX", NULL, "CDC_CONN"},
{"DEC9 MUX", "ADC3", "ADC3"},
{"DEC9 MUX", NULL, "CDC_CONN"},
{"DEC10 MUX", "ADC4", "ADC4"},
{"DEC10 MUX", NULL, "CDC_CONN"},
/* ADC Connections */
{"ADC1", NULL, "AMIC1"},
{"ADC2", NULL, "AMIC2"},
{"ADC3", NULL, "AMIC3"},
{"ADC4", NULL, "AMIC4"},
{"ADC5", NULL, "AMIC5"},
{"ADC6", NULL, "AMIC6"},
/* AUX PGA Connections */
{"HPHL_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"HPHL_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"HPHL_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"HPHL_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"HPHR_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"HPHR_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"HPHR_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"HPHR_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"LINEOUT1_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"LINEOUT1_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"LINEOUT1_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"LINEOUT1_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"LINEOUT2_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"LINEOUT2_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"LINEOUT2_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"LINEOUT2_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"LINEOUT3_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"LINEOUT3_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"LINEOUT3_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"LINEOUT3_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"LINEOUT4_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"LINEOUT4_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"LINEOUT4_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"LINEOUT4_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"LINEOUT5_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"LINEOUT5_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"LINEOUT5_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"LINEOUT5_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"EAR_PA_MIXER", "AUX_PGA_L Switch", "AUX_PGA_Left"},
{"EAR_PA_MIXER", "AUX_PGA_R Switch", "AUX_PGA_Right"},
{"EAR_PA_MIXER", "AUX_PGA_L_INV Switch", "AUX_PGA_Left"},
{"EAR_PA_MIXER", "AUX_PGA_R_INV Switch", "AUX_PGA_Right"},
{"AUX_PGA_Left", NULL, "AMIC5"},
{"AUX_PGA_Right", NULL, "AMIC6"},
{"IIR1", NULL, "IIR1 INP1 MUX"},
{"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"},
{"IIR1 INP1 MUX", "DEC3", "DEC3 MUX"},
{"IIR1 INP1 MUX", "DEC4", "DEC4 MUX"},
{"IIR1 INP1 MUX", "DEC5", "DEC5 MUX"},
{"IIR1 INP1 MUX", "DEC6", "DEC6 MUX"},
{"IIR1 INP1 MUX", "DEC7", "DEC7 MUX"},
{"IIR1 INP1 MUX", "DEC8", "DEC8 MUX"},
{"IIR1 INP1 MUX", "DEC9", "DEC9 MUX"},
{"IIR1 INP1 MUX", "DEC10", "DEC10 MUX"},
{"MIC BIAS1 Internal1", NULL, "LDO_H"},
{"MIC BIAS1 Internal2", NULL, "LDO_H"},
{"MIC BIAS1 External", NULL, "LDO_H"},
{"MIC BIAS2 Internal1", NULL, "LDO_H"},
{"MIC BIAS2 Internal2", NULL, "LDO_H"},
{"MIC BIAS2 Internal3", NULL, "LDO_H"},
{"MIC BIAS2 External", NULL, "LDO_H"},
{"MIC BIAS3 Internal1", NULL, "LDO_H"},
{"MIC BIAS3 Internal2", NULL, "LDO_H"},
{"MIC BIAS3 External", NULL, "LDO_H"},
{"MIC BIAS4 External", NULL, "LDO_H"},
};
static const struct snd_soc_dapm_route tabla_1_x_lineout_2_to_4_map[] = {
{"RX4 DSM MUX", "DSM_INV", "RX3 MIX1"},
{"RX4 DSM MUX", "CIC_OUT", "RX4 MIX1"},
{"LINEOUT2 DAC", NULL, "RX4 DSM MUX"},
{"LINEOUT3 DAC", NULL, "RX5 MIX1"},
{"LINEOUT3 DAC GROUND", "Switch", "RX3 MIX1"},
{"LINEOUT3 DAC", NULL, "LINEOUT3 DAC GROUND"},
{"RX6 DSM MUX", "DSM_INV", "RX5 MIX1"},
{"RX6 DSM MUX", "CIC_OUT", "RX6 MIX1"},
{"LINEOUT4 DAC", NULL, "RX6 DSM MUX"},
{"LINEOUT4 DAC GROUND", "Switch", "RX4 DSM MUX"},
{"LINEOUT4 DAC", NULL, "LINEOUT4 DAC GROUND"},
};
static const struct snd_soc_dapm_route tabla_2_x_lineout_2_to_4_map[] = {
{"RX4 DSM MUX", "DSM_INV", "RX3 MIX1"},
{"RX4 DSM MUX", "CIC_OUT", "RX4 MIX1"},
{"LINEOUT3 DAC", NULL, "RX4 DSM MUX"},
{"LINEOUT2 DAC", NULL, "RX5 MIX1"},
{"RX6 DSM MUX", "DSM_INV", "RX5 MIX1"},
{"RX6 DSM MUX", "CIC_OUT", "RX6 MIX1"},
{"LINEOUT4 DAC", NULL, "RX6 DSM MUX"},
};
static int tabla_readable(struct snd_soc_codec *ssc, unsigned int reg)
{
int i;
struct wcd9xxx *tabla_core = dev_get_drvdata(ssc->dev->parent);
if (TABLA_IS_1_X(tabla_core->version)) {
for (i = 0; i < ARRAY_SIZE(tabla_1_reg_readable); i++) {
if (tabla_1_reg_readable[i] == reg)
return 1;
}
} else {
for (i = 0; i < ARRAY_SIZE(tabla_2_reg_readable); i++) {
if (tabla_2_reg_readable[i] == reg)
return 1;
}
}
return tabla_reg_readable[reg];
}
static int tabla_volatile(struct snd_soc_codec *ssc, unsigned int reg)
{
/* Registers lower than 0x100 are top level registers which can be
* written by the Tabla core driver.
*/
if ((reg >= TABLA_A_CDC_MBHC_EN_CTL) || (reg < 0x100))
return 1;
/* IIR Coeff registers are not cacheable */
if ((reg >= TABLA_A_CDC_IIR1_COEF_B1_CTL) &&
(reg <= TABLA_A_CDC_IIR2_COEF_B5_CTL))
return 1;
return 0;
}
#define TABLA_FORMATS (SNDRV_PCM_FMTBIT_S16_LE)
static int tabla_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
int ret;
BUG_ON(reg > TABLA_MAX_REGISTER);
if (!tabla_volatile(codec, reg)) {
ret = snd_soc_cache_write(codec, reg, value);
if (ret != 0)
dev_err(codec->dev, "Cache write to %x failed: %d\n",
reg, ret);
}
return wcd9xxx_reg_write(codec->control_data, reg, value);
}
static unsigned int tabla_read(struct snd_soc_codec *codec,
unsigned int reg)
{
unsigned int val;
int ret;
BUG_ON(reg > TABLA_MAX_REGISTER);
if (!tabla_volatile(codec, reg) && tabla_readable(codec, reg) &&
reg < codec->driver->reg_cache_size) {
ret = snd_soc_cache_read(codec, reg, &val);
if (ret >= 0) {
return val;
} else
dev_err(codec->dev, "Cache read from %x failed: %d\n",
reg, ret);
}
val = wcd9xxx_reg_read(codec->control_data, reg);
return val;
}
static void tabla_codec_calibrate_hs_polling(struct snd_soc_codec *codec)
{
u8 *n_ready, *n_cic;
struct tabla_mbhc_btn_detect_cfg *btn_det;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B1_CTL,
tabla->mbhc_data.v_ins_hu & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B2_CTL,
(tabla->mbhc_data.v_ins_hu >> 8) & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B3_CTL,
tabla->mbhc_data.v_b1_hu & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B4_CTL,
(tabla->mbhc_data.v_b1_hu >> 8) & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B5_CTL,
tabla->mbhc_data.v_b1_h & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B6_CTL,
(tabla->mbhc_data.v_b1_h >> 8) & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B9_CTL,
tabla->mbhc_data.v_brh & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B10_CTL,
(tabla->mbhc_data.v_brh >> 8) & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B11_CTL,
tabla->mbhc_data.v_brl & 0xFF);
snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B12_CTL,
(tabla->mbhc_data.v_brl >> 8) & 0xFF);
n_ready = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_READY);
snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B1_CTL,
n_ready[tabla_codec_mclk_index(tabla)]);
snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B2_CTL,
tabla->mbhc_data.npoll);
snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B3_CTL,
tabla->mbhc_data.nbounce_wait);
n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC);
snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B6_CTL,
n_cic[tabla_codec_mclk_index(tabla)]);
}
static int tabla_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct wcd9xxx *tabla_core = dev_get_drvdata(dai->codec->dev->parent);
pr_debug("%s(): substream = %s stream = %d\n" , __func__,
substream->name, substream->stream);
if ((tabla_core != NULL) &&
(tabla_core->dev != NULL) &&
(tabla_core->dev->parent != NULL))
pm_runtime_get_sync(tabla_core->dev->parent);
return 0;
}
static void tabla_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct wcd9xxx *tabla_core = dev_get_drvdata(dai->codec->dev->parent);
pr_debug("%s(): substream = %s stream = %d\n" , __func__,
substream->name, substream->stream);
if ((tabla_core != NULL) &&
(tabla_core->dev != NULL) &&
(tabla_core->dev->parent != NULL)) {
pm_runtime_mark_last_busy(tabla_core->dev->parent);
pm_runtime_put(tabla_core->dev->parent);
}
}
int tabla_mclk_enable(struct snd_soc_codec *codec, int mclk_enable)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
pr_debug("%s() mclk_enable = %u\n", __func__, mclk_enable);
if (mclk_enable) {
tabla->mclk_enabled = true;
if (tabla->mbhc_polling_active && (tabla->mclk_enabled)) {
tabla_codec_pause_hs_polling(codec);
tabla_codec_enable_bandgap(codec,
TABLA_BANDGAP_AUDIO_MODE);
tabla_codec_enable_clock_block(codec, 0);
tabla_codec_calibrate_hs_polling(codec);
tabla_codec_start_hs_polling(codec);
} else {
tabla_codec_enable_bandgap(codec,
TABLA_BANDGAP_AUDIO_MODE);
tabla_codec_enable_clock_block(codec, 0);
}
} else {
if (!tabla->mclk_enabled) {
pr_err("Error, MCLK already diabled\n");
return -EINVAL;
}
tabla->mclk_enabled = false;
if (tabla->mbhc_polling_active) {
if (!tabla->mclk_enabled) {
tabla_codec_pause_hs_polling(codec);
tabla_codec_enable_bandgap(codec,
TABLA_BANDGAP_MBHC_MODE);
tabla_enable_rx_bias(codec, 1);
tabla_codec_enable_clock_block(codec, 1);
tabla_codec_calibrate_hs_polling(codec);
tabla_codec_start_hs_polling(codec);
}
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1,
0x05, 0x01);
} else {
tabla_codec_disable_clock_block(codec);
tabla_codec_enable_bandgap(codec,
TABLA_BANDGAP_OFF);
}
}
return 0;
}
static int tabla_set_dai_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
pr_debug("%s\n", __func__);
return 0;
}
static int tabla_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
u8 val = 0;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec);
pr_debug("%s\n", __func__);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* CPU is master */
if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
if (dai->id == AIF1_CAP)
snd_soc_update_bits(dai->codec,
TABLA_A_CDC_CLK_TX_I2S_CTL,
TABLA_I2S_MASTER_MODE_MASK, 0);
else if (dai->id == AIF1_PB)
snd_soc_update_bits(dai->codec,
TABLA_A_CDC_CLK_RX_I2S_CTL,
TABLA_I2S_MASTER_MODE_MASK, 0);
}
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* CPU is slave */
if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
val = TABLA_I2S_MASTER_MODE_MASK;
if (dai->id == AIF1_CAP)
snd_soc_update_bits(dai->codec,
TABLA_A_CDC_CLK_TX_I2S_CTL, val, val);
else if (dai->id == AIF1_PB)
snd_soc_update_bits(dai->codec,
TABLA_A_CDC_CLK_RX_I2S_CTL, val, val);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int tabla_set_channel_map(struct snd_soc_dai *dai,
unsigned int tx_num, unsigned int *tx_slot,
unsigned int rx_num, unsigned int *rx_slot)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec);
u32 i = 0;
if (!tx_slot && !rx_slot) {
pr_err("%s: Invalid\n", __func__);
return -EINVAL;
}
pr_debug("%s: DAI-ID %x %d %d\n", __func__, dai->id, tx_num, rx_num);
if (dai->id == AIF1_PB || dai->id == AIF2_PB) {
for (i = 0; i < rx_num; i++) {
tabla->dai[dai->id - 1].ch_num[i] = rx_slot[i];
tabla->dai[dai->id - 1].ch_act = 0;
tabla->dai[dai->id - 1].ch_tot = rx_num;
}
} else if (dai->id == AIF1_CAP) {
for (i = 0; i < tx_num; i++) {
tabla->dai[dai->id - 1].ch_num[i] = tx_slot[i];
tabla->dai[dai->id - 1].ch_act = 0;
tabla->dai[dai->id - 1].ch_tot = tx_num;
}
}
return 0;
}
static int tabla_get_channel_map(struct snd_soc_dai *dai,
unsigned int *tx_num, unsigned int *tx_slot,
unsigned int *rx_num, unsigned int *rx_slot)
{
struct wcd9xxx *tabla = dev_get_drvdata(dai->codec->control_data);
u32 cnt = 0;
u32 tx_ch[SLIM_MAX_TX_PORTS];
u32 rx_ch[SLIM_MAX_RX_PORTS];
if (!rx_slot && !tx_slot) {
pr_err("%s: Invalid\n", __func__);
return -EINVAL;
}
pr_debug("%s: DAI-ID %x\n", __func__, dai->id);
/* for virtual port, codec driver needs to do
* housekeeping, for now should be ok
*/
wcd9xxx_get_channel(tabla, rx_ch, tx_ch);
if (dai->id == AIF1_PB) {
*rx_num = tabla_dai[dai->id - 1].playback.channels_max;
while (cnt < *rx_num) {
rx_slot[cnt] = rx_ch[cnt];
cnt++;
}
} else if (dai->id == AIF1_CAP) {
*tx_num = tabla_dai[dai->id - 1].capture.channels_max;
while (cnt < *tx_num) {
tx_slot[cnt] = tx_ch[6 + cnt];
cnt++;
}
} else if (dai->id == AIF2_PB) {
*rx_num = tabla_dai[dai->id - 1].playback.channels_max;
while (cnt < *rx_num) {
rx_slot[cnt] = rx_ch[5 + cnt];
cnt++;
}
}
return 0;
}
static int tabla_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec);
u8 path, shift;
u16 tx_fs_reg, rx_fs_reg;
u8 tx_fs_rate, rx_fs_rate, rx_state, tx_state;
u32 compander_fs;
pr_debug("%s: DAI-ID %x rate %d\n", __func__, dai->id,
params_rate(params));
switch (params_rate(params)) {
case 8000:
tx_fs_rate = 0x00;
rx_fs_rate = 0x00;
compander_fs = COMPANDER_FS_8KHZ;
break;
case 16000:
tx_fs_rate = 0x01;
rx_fs_rate = 0x20;
compander_fs = COMPANDER_FS_16KHZ;
break;
case 32000:
tx_fs_rate = 0x02;
rx_fs_rate = 0x40;
compander_fs = COMPANDER_FS_32KHZ;
break;
case 48000:
tx_fs_rate = 0x03;
rx_fs_rate = 0x60;
compander_fs = COMPANDER_FS_48KHZ;
break;
default:
pr_err("%s: Invalid sampling rate %d\n", __func__,
params_rate(params));
return -EINVAL;
}
/**
* If current dai is a tx dai, set sample rate to
* all the txfe paths that are currently not active
*/
if (dai->id == AIF1_CAP) {
tx_state = snd_soc_read(codec,
TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL);
for (path = 1, shift = 0;
path <= NUM_DECIMATORS; path++, shift++) {
if (path == BITS_PER_REG + 1) {
shift = 0;
tx_state = snd_soc_read(codec,
TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL);
}
if (!(tx_state & (1 << shift))) {
tx_fs_reg = TABLA_A_CDC_TX1_CLK_FS_CTL
+ (BITS_PER_REG*(path-1));
snd_soc_update_bits(codec, tx_fs_reg,
0x03, tx_fs_rate);
}
}
if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
snd_soc_update_bits(codec,
TABLA_A_CDC_CLK_TX_I2S_CTL,
0x20, 0x20);
break;
case SNDRV_PCM_FORMAT_S32_LE:
snd_soc_update_bits(codec,
TABLA_A_CDC_CLK_TX_I2S_CTL,
0x20, 0x00);
break;
default:
pr_err("invalid format\n");
break;
}
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_TX_I2S_CTL,
0x03, tx_fs_rate);
} else {
tabla->dai[dai->id - 1].rate = params_rate(params);
}
}
/**
* TODO: Need to handle case where same RX chain takes 2 or more inputs
* with varying sample rates
*/
/**
* If current dai is a rx dai, set sample rate to
* all the rx paths that are currently not active
*/
if (dai->id == AIF1_PB || dai->id == AIF2_PB) {
rx_state = snd_soc_read(codec,
TABLA_A_CDC_CLK_RX_B1_CTL);
for (path = 1, shift = 0;
path <= NUM_INTERPOLATORS; path++, shift++) {
if (!(rx_state & (1 << shift))) {
rx_fs_reg = TABLA_A_CDC_RX1_B5_CTL
+ (BITS_PER_REG*(path-1));
snd_soc_update_bits(codec, rx_fs_reg,
0xE0, rx_fs_rate);
if (comp_rx_path[shift] < COMPANDER_MAX)
tabla->comp_fs[comp_rx_path[shift]]
= compander_fs;
}
}
if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
snd_soc_update_bits(codec,
TABLA_A_CDC_CLK_RX_I2S_CTL,
0x20, 0x20);
break;
case SNDRV_PCM_FORMAT_S32_LE:
snd_soc_update_bits(codec,
TABLA_A_CDC_CLK_RX_I2S_CTL,
0x20, 0x00);
break;
default:
pr_err("invalid format\n");
break;
}
snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_I2S_CTL,
0x03, (rx_fs_rate >> 0x05));
} else {
tabla->dai[dai->id - 1].rate = params_rate(params);
}
}
return 0;
}
static struct snd_soc_dai_ops tabla_dai_ops = {
.startup = tabla_startup,
.shutdown = tabla_shutdown,
.hw_params = tabla_hw_params,
.set_sysclk = tabla_set_dai_sysclk,
.set_fmt = tabla_set_dai_fmt,
.set_channel_map = tabla_set_channel_map,
.get_channel_map = tabla_get_channel_map,
};
static struct snd_soc_dai_driver tabla_dai[] = {
{
.name = "tabla_rx1",
.id = AIF1_PB,
.playback = {
.stream_name = "AIF1 Playback",
.rates = WCD9310_RATES,
.formats = TABLA_FORMATS,
.rate_max = 48000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 2,
},
.ops = &tabla_dai_ops,
},
{
.name = "tabla_tx1",
.id = AIF1_CAP,
.capture = {
.stream_name = "AIF1 Capture",
.rates = WCD9310_RATES,
.formats = TABLA_FORMATS,
.rate_max = 48000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 4,
},
.ops = &tabla_dai_ops,
},
{
.name = "tabla_rx2",
.id = AIF2_PB,
.playback = {
.stream_name = "AIF2 Playback",
.rates = WCD9310_RATES,
.formats = TABLA_FORMATS,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
},
.ops = &tabla_dai_ops,
},
};
static struct snd_soc_dai_driver tabla_i2s_dai[] = {
{
.name = "tabla_i2s_rx1",
.id = 1,
.playback = {
.stream_name = "AIF1 Playback",
.rates = WCD9310_RATES,
.formats = TABLA_FORMATS,
.rate_max = 48000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 4,
},
.ops = &tabla_dai_ops,
},
{
.name = "tabla_i2s_tx1",
.id = 2,
.capture = {
.stream_name = "AIF1 Capture",
.rates = WCD9310_RATES,
.formats = TABLA_FORMATS,
.rate_max = 48000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 4,
},
.ops = &tabla_dai_ops,
},
};
static int tabla_codec_enable_slimrx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct wcd9xxx *tabla;
struct snd_soc_codec *codec = w->codec;
struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(codec);
u32 j = 0;
u32 ret = 0;
codec->control_data = dev_get_drvdata(codec->dev->parent);
tabla = codec->control_data;
/* Execute the callback only if interface type is slimbus */
if (tabla_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS)
return 0;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
for (j = 0; j < ARRAY_SIZE(tabla_dai); j++) {
if (tabla_dai[j].id == AIF1_CAP)
continue;
if (!strncmp(w->sname,
tabla_dai[j].playback.stream_name, 13)) {
++tabla_p->dai[j].ch_act;
break;
}
}
if (tabla_p->dai[j].ch_act == tabla_p->dai[j].ch_tot)
ret = wcd9xxx_cfg_slim_sch_rx(tabla,
tabla_p->dai[j].ch_num,
tabla_p->dai[j].ch_tot,
tabla_p->dai[j].rate);
break;
case SND_SOC_DAPM_POST_PMD:
for (j = 0; j < ARRAY_SIZE(tabla_dai); j++) {
if (tabla_dai[j].id == AIF1_CAP)
continue;
if (!strncmp(w->sname,
tabla_dai[j].playback.stream_name, 13)) {
--tabla_p->dai[j].ch_act;
break;
}
}
if (!tabla_p->dai[j].ch_act) {
ret = wcd9xxx_close_slim_sch_rx(tabla,
tabla_p->dai[j].ch_num,
tabla_p->dai[j].ch_tot);
tabla_p->dai[j].rate = 0;
memset(tabla_p->dai[j].ch_num, 0, (sizeof(u32)*
tabla_p->dai[j].ch_tot));
tabla_p->dai[j].ch_tot = 0;
}
}
return ret;
}
static int tabla_codec_enable_slimtx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct wcd9xxx *tabla;
struct snd_soc_codec *codec = w->codec;
struct tabla_priv *tabla_p = snd_soc_codec_get_drvdata(codec);
/* index to the DAI ID, for now hardcoding */
u32 j = 0;
u32 ret = 0;
codec->control_data = dev_get_drvdata(codec->dev->parent);
tabla = codec->control_data;
/* Execute the callback only if interface type is slimbus */
if (tabla_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS)
return 0;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
for (j = 0; j < ARRAY_SIZE(tabla_dai); j++) {
if (tabla_dai[j].id == AIF1_PB ||
tabla_dai[j].id == AIF2_PB)
continue;
if (!strncmp(w->sname,
tabla_dai[j].capture.stream_name, 13)) {
++tabla_p->dai[j].ch_act;
break;
}
}
if (tabla_p->dai[j].ch_act == tabla_p->dai[j].ch_tot)
ret = wcd9xxx_cfg_slim_sch_tx(tabla,
tabla_p->dai[j].ch_num,
tabla_p->dai[j].ch_tot,
tabla_p->dai[j].rate);
break;
case SND_SOC_DAPM_POST_PMD:
for (j = 0; j < ARRAY_SIZE(tabla_dai); j++) {
if (tabla_dai[j].id == AIF1_PB ||
tabla_dai[j].id == AIF2_PB)
continue;
if (!strncmp(w->sname,
tabla_dai[j].capture.stream_name, 13)) {
--tabla_p->dai[j].ch_act;
break;
}
}
if (!tabla_p->dai[j].ch_act) {
ret = wcd9xxx_close_slim_sch_tx(tabla,
tabla_p->dai[j].ch_num,
tabla_p->dai[j].ch_tot);
tabla_p->dai[j].rate = 0;
memset(tabla_p->dai[j].ch_num, 0, (sizeof(u32)*
tabla_p->dai[j].ch_tot));
tabla_p->dai[j].ch_tot = 0;
}
}
return ret;
}
/* Todo: Have seperate dapm widgets for I2S and Slimbus.
* Might Need to have callbacks registered only for slimbus
*/
static const struct snd_soc_dapm_widget tabla_dapm_widgets[] = {
/*RX stuff */
SND_SOC_DAPM_OUTPUT("EAR"),
SND_SOC_DAPM_PGA("EAR PA", TABLA_A_RX_EAR_EN, 4, 0, NULL, 0),
SND_SOC_DAPM_MIXER("DAC1", TABLA_A_RX_EAR_EN, 6, 0, dac1_switch,
ARRAY_SIZE(dac1_switch)),
SND_SOC_DAPM_AIF_IN_E("SLIM RX1", "AIF1 Playback", 0, SND_SOC_NOPM, 0,
0, tabla_codec_enable_slimrx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_IN_E("SLIM RX2", "AIF1 Playback", 0, SND_SOC_NOPM, 0,
0, tabla_codec_enable_slimrx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_IN("SLIM RX3", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SLIM RX4", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN_E("SLIM RX6", "AIF2 Playback", 0, SND_SOC_NOPM, 0,
0, tabla_codec_enable_slimrx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_IN_E("SLIM RX7", "AIF2 Playback", 0, SND_SOC_NOPM, 0,
0, tabla_codec_enable_slimrx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
/* Headphone */
SND_SOC_DAPM_OUTPUT("HEADPHONE"),
SND_SOC_DAPM_PGA_E("HPHL", TABLA_A_RX_HPH_CNP_EN, 5, 0, NULL, 0,
tabla_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("HPHL DAC", TABLA_A_RX_HPH_L_DAC_CTL, 7, 0,
hphl_switch, ARRAY_SIZE(hphl_switch)),
SND_SOC_DAPM_PGA_E("HPHR", TABLA_A_RX_HPH_CNP_EN, 4, 0, NULL, 0,
tabla_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("HPHR DAC", NULL, TABLA_A_RX_HPH_R_DAC_CTL, 7, 0,
tabla_hphr_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
/* Speaker */
SND_SOC_DAPM_OUTPUT("LINEOUT1"),
SND_SOC_DAPM_OUTPUT("LINEOUT2"),
SND_SOC_DAPM_OUTPUT("LINEOUT3"),
SND_SOC_DAPM_OUTPUT("LINEOUT4"),
SND_SOC_DAPM_OUTPUT("LINEOUT5"),
SND_SOC_DAPM_PGA_E("LINEOUT1 PA", TABLA_A_RX_LINE_CNP_EN, 0, 0, NULL,
0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("LINEOUT2 PA", TABLA_A_RX_LINE_CNP_EN, 1, 0, NULL,
0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("LINEOUT3 PA", TABLA_A_RX_LINE_CNP_EN, 2, 0, NULL,
0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("LINEOUT4 PA", TABLA_A_RX_LINE_CNP_EN, 3, 0, NULL,
0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("LINEOUT5 PA", TABLA_A_RX_LINE_CNP_EN, 4, 0, NULL, 0,
tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("LINEOUT1 DAC", NULL, TABLA_A_RX_LINE_1_DAC_CTL, 7, 0
, tabla_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("LINEOUT2 DAC", NULL, TABLA_A_RX_LINE_2_DAC_CTL, 7, 0
, tabla_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("LINEOUT3 DAC", NULL, TABLA_A_RX_LINE_3_DAC_CTL, 7, 0
, tabla_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SWITCH("LINEOUT3 DAC GROUND", SND_SOC_NOPM, 0, 0,
&lineout3_ground_switch),
SND_SOC_DAPM_DAC_E("LINEOUT4 DAC", NULL, TABLA_A_RX_LINE_4_DAC_CTL, 7, 0
, tabla_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SWITCH("LINEOUT4 DAC GROUND", SND_SOC_NOPM, 0, 0,
&lineout4_ground_switch),
SND_SOC_DAPM_DAC_E("LINEOUT5 DAC", NULL, TABLA_A_RX_LINE_5_DAC_CTL, 7, 0
, tabla_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX1 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 0, 0, NULL,
0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MIXER_E("RX2 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 1, 0, NULL,
0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MIXER_E("RX3 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 2, 0, NULL,
0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MIXER_E("RX4 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 3, 0, NULL,
0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MIXER_E("RX5 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 4, 0, NULL,
0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MIXER_E("RX6 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 5, 0, NULL,
0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MIXER_E("RX7 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 6, 0, NULL,
0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("RX4 DSM MUX", TABLA_A_CDC_CLK_RX_B1_CTL, 3, 0,
&rx4_dsm_mux, tabla_codec_reset_interpolator,
SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("RX6 DSM MUX", TABLA_A_CDC_CLK_RX_B1_CTL, 5, 0,
&rx6_dsm_mux, tabla_codec_reset_interpolator,
SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MIXER("RX1 CHAIN", TABLA_A_CDC_RX1_B6_CTL, 5, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX2 CHAIN", TABLA_A_CDC_RX2_B6_CTL, 5, 0, NULL, 0),
SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX4 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx4_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX4 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx4_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX5 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx5_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX5 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx5_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX6 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx6_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX6 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx6_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX7 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx7_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX7 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx7_mix1_inp2_mux),
SND_SOC_DAPM_SUPPLY("CP", TABLA_A_CP_EN, 0, 0,
tabla_codec_enable_charge_pump, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SUPPLY("RX_BIAS", SND_SOC_NOPM, 0, 0,
tabla_codec_enable_rx_bias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
/* TX */
SND_SOC_DAPM_SUPPLY("CDC_CONN", TABLA_A_CDC_CLK_OTHR_CTL, 2, 0, NULL,
0),
SND_SOC_DAPM_SUPPLY("LDO_H", TABLA_A_LDO_H_MODE_1, 7, 0,
tabla_codec_enable_ldo_h, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SUPPLY("COMP1_CLK", SND_SOC_NOPM, 0, 0,
tabla_config_compander, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD),
SND_SOC_DAPM_SUPPLY("COMP2_CLK", SND_SOC_NOPM, 1, 0,
tabla_config_compander, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_POST_PMD),
SND_SOC_DAPM_INPUT("AMIC1"),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 External", TABLA_A_MICB_1_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal1", TABLA_A_MICB_1_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal2", TABLA_A_MICB_1_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC1", NULL, TABLA_A_TX_1_2_EN, 7, 0,
tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_INPUT("AMIC3"),
SND_SOC_DAPM_ADC_E("ADC3", NULL, TABLA_A_TX_3_4_EN, 7, 0,
tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_INPUT("AMIC4"),
SND_SOC_DAPM_ADC_E("ADC4", NULL, TABLA_A_TX_3_4_EN, 3, 0,
tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_INPUT("AMIC5"),
SND_SOC_DAPM_ADC_E("ADC5", NULL, TABLA_A_TX_5_6_EN, 7, 0,
tabla_codec_enable_adc, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_INPUT("AMIC6"),
SND_SOC_DAPM_ADC_E("ADC6", NULL, TABLA_A_TX_5_6_EN, 3, 0,
tabla_codec_enable_adc, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX_E("DEC1 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0,
&dec1_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC2 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0,
&dec2_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC3 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 2, 0,
&dec3_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC4 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 3, 0,
&dec4_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC5 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 4, 0,
&dec5_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC6 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 5, 0,
&dec6_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC7 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 6, 0,
&dec7_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC8 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 7, 0,
&dec8_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC9 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL, 0, 0,
&dec9_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("DEC10 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL, 1, 0,
&dec10_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX("ANC1 MUX", SND_SOC_NOPM, 0, 0, &anc1_mux),
SND_SOC_DAPM_MUX("ANC2 MUX", SND_SOC_NOPM, 0, 0, &anc2_mux),
SND_SOC_DAPM_MIXER_E("ANC", SND_SOC_NOPM, 0, 0, NULL, 0,
tabla_codec_enable_anc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("ANC1 FB MUX", SND_SOC_NOPM, 0, 0, &anc1_fb_mux),
SND_SOC_DAPM_INPUT("AMIC2"),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 External", TABLA_A_MICB_2_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal1", TABLA_A_MICB_2_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal2", TABLA_A_MICB_2_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal3", TABLA_A_MICB_2_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 External", TABLA_A_MICB_3_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 Internal1", TABLA_A_MICB_3_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 Internal2", TABLA_A_MICB_3_CTL, 7, 0,
tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC2", NULL, TABLA_A_TX_1_2_EN, 3, 0,
tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("SLIM TX1 MUX", SND_SOC_NOPM, 0, 0, &sb_tx1_mux),
SND_SOC_DAPM_AIF_OUT("SLIM TX1", "AIF1 Capture", NULL, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_MUX("SLIM TX5 MUX", SND_SOC_NOPM, 0, 0, &sb_tx5_mux),
SND_SOC_DAPM_AIF_OUT("SLIM TX5", "AIF1 Capture", NULL, SND_SOC_NOPM,
4, 0),
SND_SOC_DAPM_MUX("SLIM TX6 MUX", SND_SOC_NOPM, 0, 0, &sb_tx6_mux),
SND_SOC_DAPM_AIF_OUT("SLIM TX6", "AIF1 Capture", NULL, SND_SOC_NOPM,
5, 0),
SND_SOC_DAPM_MUX("SLIM TX7 MUX", SND_SOC_NOPM, 0, 0, &sb_tx7_mux),
SND_SOC_DAPM_AIF_OUT_E("SLIM TX7", "AIF1 Capture", 0, SND_SOC_NOPM, 0,
0, tabla_codec_enable_slimtx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("SLIM TX8 MUX", SND_SOC_NOPM, 0, 0, &sb_tx8_mux),
SND_SOC_DAPM_AIF_OUT_E("SLIM TX8", "AIF1 Capture", 0, SND_SOC_NOPM, 0,
0, tabla_codec_enable_slimtx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("SLIM TX9 MUX", SND_SOC_NOPM, 0, 0, &sb_tx9_mux),
SND_SOC_DAPM_AIF_OUT_E("SLIM TX9", "AIF1 Capture", NULL, SND_SOC_NOPM,
0, 0, tabla_codec_enable_slimtx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("SLIM TX10 MUX", SND_SOC_NOPM, 0, 0, &sb_tx10_mux),
SND_SOC_DAPM_AIF_OUT_E("SLIM TX10", "AIF1 Capture", NULL, SND_SOC_NOPM,
0, 0, tabla_codec_enable_slimtx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
/* Digital Mic Inputs */
SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0,
tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0,
tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC3", NULL, SND_SOC_NOPM, 0, 0,
tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC4", NULL, SND_SOC_NOPM, 0, 0,
tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC5", NULL, SND_SOC_NOPM, 0, 0,
tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC6", NULL, SND_SOC_NOPM, 0, 0,
tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
/* Sidetone */
SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux),
SND_SOC_DAPM_PGA("IIR1", TABLA_A_CDC_CLK_SD_CTL, 0, 0, NULL, 0),
/* AUX PGA */
SND_SOC_DAPM_ADC_E("AUX_PGA_Left", NULL, TABLA_A_AUX_L_EN, 7, 0,
tabla_codec_enable_aux_pga, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("AUX_PGA_Right", NULL, TABLA_A_AUX_R_EN, 7, 0,
tabla_codec_enable_aux_pga, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD |
SND_SOC_DAPM_POST_PMD),
/* Lineout, ear and HPH PA Mixers */
SND_SOC_DAPM_MIXER("HPHL_PA_MIXER", SND_SOC_NOPM, 0, 0,
hphl_pa_mix, ARRAY_SIZE(hphl_pa_mix)),
SND_SOC_DAPM_MIXER("HPHR_PA_MIXER", SND_SOC_NOPM, 0, 0,
hphr_pa_mix, ARRAY_SIZE(hphr_pa_mix)),
SND_SOC_DAPM_MIXER("LINEOUT1_PA_MIXER", SND_SOC_NOPM, 0, 0,
lineout1_pa_mix, ARRAY_SIZE(lineout1_pa_mix)),
SND_SOC_DAPM_MIXER("LINEOUT2_PA_MIXER", SND_SOC_NOPM, 0, 0,
lineout2_pa_mix, ARRAY_SIZE(lineout2_pa_mix)),
SND_SOC_DAPM_MIXER("LINEOUT3_PA_MIXER", SND_SOC_NOPM, 0, 0,
lineout3_pa_mix, ARRAY_SIZE(lineout3_pa_mix)),
SND_SOC_DAPM_MIXER("LINEOUT4_PA_MIXER", SND_SOC_NOPM, 0, 0,
lineout4_pa_mix, ARRAY_SIZE(lineout4_pa_mix)),
SND_SOC_DAPM_MIXER("LINEOUT5_PA_MIXER", SND_SOC_NOPM, 0, 0,
lineout5_pa_mix, ARRAY_SIZE(lineout5_pa_mix)),
SND_SOC_DAPM_MIXER("EAR_PA_MIXER", SND_SOC_NOPM, 0, 0,
ear_pa_mix, ARRAY_SIZE(ear_pa_mix)),
};
static short tabla_codec_read_sta_result(struct snd_soc_codec *codec)
{
u8 bias_msb, bias_lsb;
short bias_value;
bias_msb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B3_STATUS);
bias_lsb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B2_STATUS);
bias_value = (bias_msb << 8) | bias_lsb;
return bias_value;
}
static short tabla_codec_read_dce_result(struct snd_soc_codec *codec)
{
u8 bias_msb, bias_lsb;
short bias_value;
bias_msb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B5_STATUS);
bias_lsb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B4_STATUS);
bias_value = (bias_msb << 8) | bias_lsb;
return bias_value;
}
static short tabla_codec_sta_dce(struct snd_soc_codec *codec, int dce)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
short bias_value;
/* Turn on the override */
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x4, 0x4);
if (dce) {
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x4);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0);
usleep_range(tabla->mbhc_data.t_sta_dce,
tabla->mbhc_data.t_sta_dce);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x4);
usleep_range(tabla->mbhc_data.t_dce,
tabla->mbhc_data.t_dce);
bias_value = tabla_codec_read_dce_result(codec);
} else {
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x2);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0);
usleep_range(tabla->mbhc_data.t_sta_dce,
tabla->mbhc_data.t_sta_dce);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x2);
usleep_range(tabla->mbhc_data.t_sta,
tabla->mbhc_data.t_sta);
bias_value = tabla_codec_read_sta_result(codec);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x0);
}
/* Turn off the override after measuring mic voltage */
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x00);
return bias_value;
}
static short tabla_codec_setup_hs_polling(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
short bias_value;
u8 cfilt_mode;
if (!tabla->calibration) {
pr_err("Error, no tabla calibration\n");
return -ENODEV;
}
tabla->mbhc_polling_active = true;
if (!tabla->mclk_enabled) {
tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_MBHC_MODE);
tabla_enable_rx_bias(codec, 1);
tabla_codec_enable_clock_block(codec, 1);
}
snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x01);
snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS, 0xE0, 0xE0);
/* Make sure CFILT is in fast mode, save current mode */
cfilt_mode = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x70, 0x00);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x1F, 0x16);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x2, 0x2);
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84);
snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x80);
snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x1F, 0x1C);
snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_TEST_CTL, 0x40, 0x40);
snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x00);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x00);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x2, 0x2);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
tabla_codec_calibrate_hs_polling(codec);
bias_value = tabla_codec_sta_dce(codec, 0);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40,
cfilt_mode);
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13, 0x00);
return bias_value;
}
static int tabla_codec_enable_hs_detect(struct snd_soc_codec *codec,
int insertion)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
int central_bias_enabled = 0;
const struct tabla_mbhc_general_cfg *generic =
TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration);
const struct tabla_mbhc_plug_detect_cfg *plug_det =
TABLA_MBHC_CAL_PLUG_DET_PTR(tabla->calibration);
u8 wg_time;
if (!tabla->calibration) {
pr_err("Error, no tabla calibration\n");
return -EINVAL;
}
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0);
if (insertion) {
/* Make sure mic bias and Mic line schmitt trigger
* are turned OFF
*/
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg,
0x81, 0x01);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg,
0x90, 0x00);
wg_time = snd_soc_read(codec, TABLA_A_RX_HPH_CNP_WG_TIME) ;
wg_time += 1;
/* Enable HPH Schmitt Trigger */
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x11, 0x11);
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x0C,
plug_det->hph_current << 2);
/* Turn off HPH PAs and DAC's during insertion detection to
* avoid false insertion interrupts
*/
if (tabla->mbhc_micbias_switched)
tabla_codec_switch_micbias(codec, 0);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_CNP_EN, 0x30, 0x00);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_L_DAC_CTL,
0xC0, 0x00);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_R_DAC_CTL,
0xC0, 0x00);
usleep_range(wg_time * 1000, wg_time * 1000);
/* setup for insetion detection */
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x02, 0x02);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0);
} else {
/* Make sure the HPH schmitt trigger is OFF */
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x12, 0x00);
/* enable the mic line schmitt trigger */
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x60,
plug_det->mic_current << 5);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg,
0x80, 0x80);
usleep_range(plug_det->t_mic_pid, plug_det->t_mic_pid);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg,
0x10, 0x10);
/* Setup for low power removal detection */
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0x2);
}
if (snd_soc_read(codec, TABLA_A_CDC_MBHC_B1_CTL) & 0x4) {
if (!(tabla->clock_active)) {
tabla_codec_enable_config_mode(codec, 1);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL,
0x06, 0);
usleep_range(generic->t_shutdown_plug_rem,
generic->t_shutdown_plug_rem);
tabla_codec_enable_config_mode(codec, 0);
} else
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL,
0x06, 0);
}
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.int_rbias, 0x80, 0);
/* If central bandgap disabled */
if (!(snd_soc_read(codec, TABLA_A_PIN_CTL_OE1) & 1)) {
snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE1, 0x3, 0x3);
usleep_range(generic->t_bg_fast_settle,
generic->t_bg_fast_settle);
central_bias_enabled = 1;
}
/* If LDO_H disabled */
if (snd_soc_read(codec, TABLA_A_PIN_CTL_OE0) & 0x80) {
snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x10, 0);
snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x80, 0x80);
usleep_range(generic->t_ldoh, generic->t_ldoh);
snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x80, 0);
if (central_bias_enabled)
snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE1, 0x1, 0);
}
snd_soc_update_bits(codec, tabla->reg_addr.micb_4_mbhc, 0x3,
tabla->micbias);
wcd9xxx_enable_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0x1);
return 0;
}
static u16 tabla_codec_v_sta_dce(struct snd_soc_codec *codec, bool dce,
s16 vin_mv)
{
short diff, zero;
struct tabla_priv *tabla;
u32 mb_mv, in;
tabla = snd_soc_codec_get_drvdata(codec);
mb_mv = tabla->mbhc_data.micb_mv;
if (mb_mv == 0) {
pr_err("%s: Mic Bias voltage is set to zero\n", __func__);
return -EINVAL;
}
if (dce) {
diff = tabla->mbhc_data.dce_mb - tabla->mbhc_data.dce_z;
zero = tabla->mbhc_data.dce_z;
} else {
diff = tabla->mbhc_data.sta_mb - tabla->mbhc_data.sta_z;
zero = tabla->mbhc_data.sta_z;
}
in = (u32) diff * vin_mv;
return (u16) (in / mb_mv) + zero;
}
static s32 tabla_codec_sta_dce_v(struct snd_soc_codec *codec, s8 dce,
u16 bias_value)
{
struct tabla_priv *tabla;
s32 mv;
tabla = snd_soc_codec_get_drvdata(codec);
if (dce) {
mv = ((s32)bias_value - (s32)tabla->mbhc_data.dce_z) *
(s32)tabla->mbhc_data.micb_mv /
(s32)(tabla->mbhc_data.dce_mb - tabla->mbhc_data.dce_z);
} else {
mv = ((s32)bias_value - (s32)tabla->mbhc_data.sta_z) *
(s32)tabla->mbhc_data.micb_mv /
(s32)(tabla->mbhc_data.sta_mb - tabla->mbhc_data.sta_z);
}
return mv;
}
static void btn0_lpress_fn(struct work_struct *work)
{
struct delayed_work *delayed_work;
struct tabla_priv *tabla;
short bias_value;
int dce_mv, sta_mv;
struct tabla *core;
pr_debug("%s:\n", __func__);
delayed_work = to_delayed_work(work);
tabla = container_of(delayed_work, struct tabla_priv, btn0_dwork);
core = dev_get_drvdata(tabla->codec->dev->parent);
if (tabla) {
if (tabla->button_jack) {
bias_value = tabla_codec_read_sta_result(tabla->codec);
sta_mv = tabla_codec_sta_dce_v(tabla->codec, 0,
bias_value);
bias_value = tabla_codec_read_dce_result(tabla->codec);
dce_mv = tabla_codec_sta_dce_v(tabla->codec, 1,
bias_value);
pr_debug("%s: Reporting long button press event"
" STA: %d, DCE: %d\n", __func__,
sta_mv, dce_mv);
tabla_snd_soc_jack_report(tabla, tabla->button_jack,
SND_JACK_BTN_0,
SND_JACK_BTN_0);
}
} else {
pr_err("%s: Bad tabla private data\n", __func__);
}
}
void tabla_mbhc_cal(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla;
struct tabla_mbhc_btn_detect_cfg *btn_det;
u8 cfilt_mode, bg_mode;
u8 ncic, nmeas, navg;
u32 mclk_rate;
u32 dce_wait, sta_wait;
u8 *n_cic;
tabla = snd_soc_codec_get_drvdata(codec);
/* First compute the DCE / STA wait times
* depending on tunable parameters.
* The value is computed in microseconds
*/
btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration);
n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC);
ncic = n_cic[tabla_codec_mclk_index(tabla)];
nmeas = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration)->n_meas;
navg = TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration)->mbhc_navg;
mclk_rate = tabla->mclk_freq;
dce_wait = (1000 * 512 * ncic * (nmeas + 1)) / (mclk_rate / 1000);
sta_wait = (1000 * 128 * (navg + 1)) / (mclk_rate / 1000);
tabla->mbhc_data.t_dce = dce_wait;
tabla->mbhc_data.t_sta = sta_wait;
/* LDOH and CFILT are already configured during pdata handling.
* Only need to make sure CFILT and bandgap are in Fast mode.
* Need to restore defaults once calculation is done.
*/
cfilt_mode = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, 0x00);
bg_mode = snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x02,
0x02);
/* Micbias, CFILT, LDOH, MBHC MUX mode settings
* to perform ADC calibration
*/
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x60,
tabla->micbias << 5);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00);
snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x60, 0x60);
snd_soc_write(codec, TABLA_A_TX_7_MBHC_TEST_CTL, 0x78);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x04);
/* DCE measurement for 0 volts */
snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04);
snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02);
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x81);
usleep_range(100, 100);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04);
usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce);
tabla->mbhc_data.dce_z = tabla_codec_read_dce_result(codec);
/* DCE measurment for MB voltage */
snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A);
snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02);
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x82);
usleep_range(100, 100);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04);
usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce);
tabla->mbhc_data.dce_mb = tabla_codec_read_dce_result(codec);
/* Sta measuremnt for 0 volts */
snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02);
snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02);
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x81);
usleep_range(100, 100);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02);
usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta);
tabla->mbhc_data.sta_z = tabla_codec_read_sta_result(codec);
/* STA Measurement for MB Voltage */
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x82);
usleep_range(100, 100);
snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02);
usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta);
tabla->mbhc_data.sta_mb = tabla_codec_read_sta_result(codec);
/* Restore default settings. */
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x00);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40,
cfilt_mode);
snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x02, bg_mode);
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84);
usleep_range(100, 100);
}
void *tabla_mbhc_cal_btn_det_mp(const struct tabla_mbhc_btn_detect_cfg* btn_det,
const enum tabla_mbhc_btn_det_mem mem)
{
void *ret = &btn_det->_v_btn_low;
switch (mem) {
case TABLA_BTN_DET_GAIN:
ret += sizeof(btn_det->_n_cic);
case TABLA_BTN_DET_N_CIC:
ret += sizeof(btn_det->_n_ready);
case TABLA_BTN_DET_N_READY:
ret += sizeof(btn_det->_v_btn_high[0]) * btn_det->num_btn;
case TABLA_BTN_DET_V_BTN_HIGH:
ret += sizeof(btn_det->_v_btn_low[0]) * btn_det->num_btn;
case TABLA_BTN_DET_V_BTN_LOW:
/* do nothing */
break;
default:
ret = NULL;
}
return ret;
}
static void tabla_mbhc_calc_thres(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla;
s16 btn_mv = 0, btn_delta_mv;
struct tabla_mbhc_btn_detect_cfg *btn_det;
struct tabla_mbhc_plug_type_cfg *plug_type;
u16 *btn_high;
u8 *n_ready;
int i;
tabla = snd_soc_codec_get_drvdata(codec);
btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration);
plug_type = TABLA_MBHC_CAL_PLUG_TYPE_PTR(tabla->calibration);
n_ready = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_READY);
if (tabla->mclk_freq == TABLA_MCLK_RATE_12288KHZ) {
tabla->mbhc_data.npoll = 9;
tabla->mbhc_data.nbounce_wait = 30;
} else if (tabla->mclk_freq == TABLA_MCLK_RATE_9600KHZ) {
tabla->mbhc_data.npoll = 7;
tabla->mbhc_data.nbounce_wait = 23;
}
tabla->mbhc_data.t_sta_dce = ((1000 * 256) / (tabla->mclk_freq / 1000) *
n_ready[tabla_codec_mclk_index(tabla)]) +
10;
tabla->mbhc_data.v_ins_hu =
tabla_codec_v_sta_dce(codec, STA, plug_type->v_hs_max);
tabla->mbhc_data.v_ins_h =
tabla_codec_v_sta_dce(codec, DCE, plug_type->v_hs_max);
btn_high = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_HIGH);
for (i = 0; i < btn_det->num_btn; i++)
btn_mv = btn_high[i] > btn_mv ? btn_high[i] : btn_mv;
tabla->mbhc_data.v_b1_h = tabla_codec_v_sta_dce(codec, DCE, btn_mv);
btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_sta;
tabla->mbhc_data.v_b1_hu =
tabla_codec_v_sta_dce(codec, STA, btn_delta_mv);
btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_cic;
tabla->mbhc_data.v_b1_huc =
tabla_codec_v_sta_dce(codec, DCE, btn_delta_mv);
tabla->mbhc_data.v_brh = tabla->mbhc_data.v_b1_h;
tabla->mbhc_data.v_brl = 0xFA55;
tabla->mbhc_data.v_no_mic =
tabla_codec_v_sta_dce(codec, STA, plug_type->v_no_mic);
}
void tabla_mbhc_init(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla;
struct tabla_mbhc_general_cfg *generic;
struct tabla_mbhc_btn_detect_cfg *btn_det;
int n;
u8 *n_cic, *gain;
struct wcd9xxx *tabla_core = dev_get_drvdata(codec->dev->parent);
tabla = snd_soc_codec_get_drvdata(codec);
generic = TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration);
btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration);
for (n = 0; n < 8; n++) {
if ((!TABLA_IS_1_X(tabla_core->version)) || n != 7) {
snd_soc_update_bits(codec,
TABLA_A_CDC_MBHC_FEATURE_B1_CFG,
0x07, n);
snd_soc_write(codec, TABLA_A_CDC_MBHC_FEATURE_B2_CFG,
btn_det->c[n]);
}
}
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B2_CTL, 0x07,
btn_det->nc);
n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B6_CTL, 0xFF,
n_cic[tabla_codec_mclk_index(tabla)]);
gain = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_GAIN);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B2_CTL, 0x78,
gain[tabla_codec_mclk_index(tabla)] << 3);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B4_CTL, 0x70,
generic->mbhc_nsa << 4);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B4_CTL, 0x0F,
btn_det->n_meas);
snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B5_CTL, generic->mbhc_navg);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x80, 0x80);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x78,
btn_det->mbhc_nsc << 3);
snd_soc_update_bits(codec, tabla->reg_addr.micb_4_mbhc, 0x03,
TABLA_MICBIAS2);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x02, 0x02);
}
static bool tabla_mbhc_fw_validate(const struct firmware *fw)
{
u32 cfg_offset;
struct tabla_mbhc_imped_detect_cfg *imped_cfg;
struct tabla_mbhc_btn_detect_cfg *btn_cfg;
if (fw->size < TABLA_MBHC_CAL_MIN_SIZE)
return false;
/* previous check guarantees that there is enough fw data up
* to num_btn
*/
btn_cfg = TABLA_MBHC_CAL_BTN_DET_PTR(fw->data);
cfg_offset = (u32) ((void *) btn_cfg - (void *) fw->data);
if (fw->size < (cfg_offset + TABLA_MBHC_CAL_BTN_SZ(btn_cfg)))
return false;
/* previous check guarantees that there is enough fw data up
* to start of impedance detection configuration
*/
imped_cfg = TABLA_MBHC_CAL_IMPED_DET_PTR(fw->data);
cfg_offset = (u32) ((void *) imped_cfg - (void *) fw->data);
if (fw->size < (cfg_offset + TABLA_MBHC_CAL_IMPED_MIN_SZ))
return false;
if (fw->size < (cfg_offset + TABLA_MBHC_CAL_IMPED_SZ(imped_cfg)))
return false;
return true;
}
static void mbhc_fw_read(struct work_struct *work)
{
struct delayed_work *dwork;
struct tabla_priv *tabla;
struct snd_soc_codec *codec;
const struct firmware *fw;
int ret = -1, retry = 0, rc;
dwork = to_delayed_work(work);
tabla = container_of(dwork, struct tabla_priv,
mbhc_firmware_dwork);
codec = tabla->codec;
while (retry < MBHC_FW_READ_ATTEMPTS) {
retry++;
pr_info("%s:Attempt %d to request MBHC firmware\n",
__func__, retry);
ret = request_firmware(&fw, "wcd9310/wcd9310_mbhc.bin",
codec->dev);
if (ret != 0) {
usleep_range(MBHC_FW_READ_TIMEOUT,
MBHC_FW_READ_TIMEOUT);
} else {
pr_info("%s: MBHC Firmware read succesful\n", __func__);
break;
}
}
if (ret != 0) {
pr_err("%s: Cannot load MBHC firmware use default cal\n",
__func__);
} else if (tabla_mbhc_fw_validate(fw) == false) {
pr_err("%s: Invalid MBHC cal data size use default cal\n",
__func__);
release_firmware(fw);
} else {
tabla->calibration = (void *)fw->data;
tabla->mbhc_fw = fw;
}
tabla->mclk_cb(codec, 1);
tabla_mbhc_init(codec);
tabla_mbhc_cal(codec);
tabla_mbhc_calc_thres(codec);
tabla->mclk_cb(codec, 0);
tabla_codec_calibrate_hs_polling(codec);
rc = tabla_codec_enable_hs_detect(codec, 1);
if (IS_ERR_VALUE(rc))
pr_err("%s: Failed to setup MBHC detection\n", __func__);
}
int tabla_hs_detect(struct snd_soc_codec *codec,
struct snd_soc_jack *headset_jack,
struct snd_soc_jack *button_jack,
void *calibration, enum tabla_micbias_num micbias,
int (*mclk_cb_fn) (struct snd_soc_codec*, int),
int read_fw_bin, u32 mclk_rate)
{
struct tabla_priv *tabla;
int rc = 0;
if (!codec || !calibration) {
pr_err("Error: no codec or calibration\n");
return -EINVAL;
}
if (mclk_rate != TABLA_MCLK_RATE_12288KHZ) {
if (mclk_rate == TABLA_MCLK_RATE_9600KHZ)
pr_err("Error: clock rate %dHz is not yet supported\n",
mclk_rate);
else
pr_err("Error: unsupported clock rate %d\n", mclk_rate);
return -EINVAL;
}
tabla = snd_soc_codec_get_drvdata(codec);
tabla->headset_jack = headset_jack;
tabla->button_jack = button_jack;
tabla->micbias = micbias;
tabla->calibration = calibration;
tabla->mclk_cb = mclk_cb_fn;
tabla->mclk_freq = mclk_rate;
tabla_get_mbhc_micbias_regs(codec, &tabla->mbhc_bias_regs);
/* Put CFILT in fast mode by default */
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl,
0x40, TABLA_CFILT_FAST_MODE);
INIT_DELAYED_WORK(&tabla->mbhc_firmware_dwork, mbhc_fw_read);
INIT_DELAYED_WORK(&tabla->btn0_dwork, btn0_lpress_fn);
INIT_WORK(&tabla->hphlocp_work, hphlocp_off_report);
INIT_WORK(&tabla->hphrocp_work, hphrocp_off_report);
if (!read_fw_bin) {
tabla->mclk_cb(codec, 1);
tabla_mbhc_init(codec);
tabla_mbhc_cal(codec);
tabla_mbhc_calc_thres(codec);
tabla->mclk_cb(codec, 0);
tabla_codec_calibrate_hs_polling(codec);
rc = tabla_codec_enable_hs_detect(codec, 1);
} else {
schedule_delayed_work(&tabla->mbhc_firmware_dwork,
usecs_to_jiffies(MBHC_FW_READ_TIMEOUT));
}
if (!IS_ERR_VALUE(rc)) {
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10,
0x10);
wcd9xxx_enable_irq(codec->control_data,
TABLA_IRQ_HPH_PA_OCPL_FAULT);
wcd9xxx_enable_irq(codec->control_data,
TABLA_IRQ_HPH_PA_OCPR_FAULT);
}
return rc;
}
EXPORT_SYMBOL_GPL(tabla_hs_detect);
static int tabla_determine_button(const struct tabla_priv *priv,
const s32 bias_mv)
{
s16 *v_btn_low, *v_btn_high;
struct tabla_mbhc_btn_detect_cfg *btn_det;
int i, btn = -1;
btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(priv->calibration);
v_btn_low = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_LOW);
v_btn_high = tabla_mbhc_cal_btn_det_mp(btn_det,
TABLA_BTN_DET_V_BTN_HIGH);
for (i = 0; i < btn_det->num_btn; i++) {
if ((v_btn_low[i] <= bias_mv) && (v_btn_high[i] >= bias_mv)) {
btn = i;
break;
}
}
if (btn == -1)
pr_debug("%s: couldn't find button number for mic mv %d\n",
__func__, bias_mv);
return btn;
}
static int tabla_get_button_mask(const int btn)
{
int mask = 0;
switch (btn) {
case 0:
mask = SND_JACK_BTN_0;
break;
case 1:
mask = SND_JACK_BTN_1;
break;
case 2:
mask = SND_JACK_BTN_2;
break;
case 3:
mask = SND_JACK_BTN_3;
break;
case 4:
mask = SND_JACK_BTN_4;
break;
case 5:
mask = SND_JACK_BTN_5;
break;
case 6:
mask = SND_JACK_BTN_6;
break;
case 7:
mask = SND_JACK_BTN_7;
break;
}
return mask;
}
static irqreturn_t tabla_dce_handler(int irq, void *data)
{
int i, mask;
short bias_value_dce;
s32 bias_mv_dce;
int btn = -1, meas = 0;
struct tabla_priv *priv = data;
const struct tabla_mbhc_btn_detect_cfg *d =
TABLA_MBHC_CAL_BTN_DET_PTR(priv->calibration);
short btnmeas[d->n_btn_meas + 1];
struct snd_soc_codec *codec = priv->codec;
struct wcd9xxx *core = dev_get_drvdata(priv->codec->dev->parent);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL);
bias_value_dce = tabla_codec_read_dce_result(codec);
bias_mv_dce = tabla_codec_sta_dce_v(codec, 1, bias_value_dce);
/* determine pressed button */
btnmeas[meas++] = tabla_determine_button(priv, bias_mv_dce);
pr_debug("%s: meas %d - DCE %d,%d, button %d\n", __func__,
meas - 1, bias_value_dce, bias_mv_dce, btnmeas[meas - 1]);
if (d->n_btn_meas == 0)
btn = btnmeas[0];
for (; ((d->n_btn_meas) && (meas < (d->n_btn_meas + 1))); meas++) {
bias_value_dce = tabla_codec_sta_dce(codec, 1);
bias_mv_dce = tabla_codec_sta_dce_v(codec, 1, bias_value_dce);
btnmeas[meas] = tabla_determine_button(priv, bias_mv_dce);
pr_debug("%s: meas %d - DCE %d,%d, button %d\n",
__func__, meas, bias_value_dce, bias_mv_dce,
btnmeas[meas]);
/* if large enough measurements are collected,
* start to check if last all n_btn_con measurements were
* in same button low/high range */
if (meas + 1 >= d->n_btn_con) {
for (i = 0; i < d->n_btn_con; i++)
if ((btnmeas[meas] < 0) ||
(btnmeas[meas] != btnmeas[meas - i]))
break;
if (i == d->n_btn_con) {
/* button pressed */
btn = btnmeas[meas];
break;
}
}
/* if left measurements are less than n_btn_con,
* it's impossible to find button number */
if ((d->n_btn_meas - meas) < d->n_btn_con)
break;
}
if (btn >= 0) {
mask = tabla_get_button_mask(btn);
priv->buttons_pressed |= mask;
msleep(100);
/* XXX: assuming button 0 has the lowest micbias voltage */
if (btn == 0) {
wcd9xxx_lock_sleep(core);
if (schedule_delayed_work(&priv->btn0_dwork,
msecs_to_jiffies(400)) == 0) {
WARN(1, "Button pressed twice without release"
"event\n");
wcd9xxx_unlock_sleep(core);
}
} else {
pr_debug("%s: Reporting short button %d(0x%x) press\n",
__func__, btn, mask);
tabla_snd_soc_jack_report(priv, priv->button_jack, mask,
mask);
}
} else {
pr_debug("%s: bogus button press, too short press?\n",
__func__);
}
return IRQ_HANDLED;
}
static irqreturn_t tabla_release_handler(int irq, void *data)
{
int ret;
short mb_v;
struct tabla_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
struct wcd9xxx *core = dev_get_drvdata(priv->codec->dev->parent);
pr_debug("%s: enter\n", __func__);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE);
if (priv->buttons_pressed & SND_JACK_BTN_0) {
ret = cancel_delayed_work(&priv->btn0_dwork);
if (ret == 0) {
pr_debug("%s: Reporting long button 0 release event\n",
__func__);
if (priv->button_jack)
tabla_snd_soc_jack_report(priv,
priv->button_jack, 0,
SND_JACK_BTN_0);
} else {
/* if scheduled btn0_dwork is canceled from here,
* we have to unlock from here instead btn0_work */
wcd9xxx_unlock_sleep(core);
mb_v = tabla_codec_sta_dce(codec, 0);
pr_debug("%s: Mic Voltage on release STA: %d,%d\n",
__func__, mb_v,
tabla_codec_sta_dce_v(codec, 0, mb_v));
if (mb_v < (short)priv->mbhc_data.v_b1_hu ||
mb_v > (short)priv->mbhc_data.v_ins_hu)
pr_debug("%s: Fake buttton press interrupt\n",
__func__);
else if (priv->button_jack) {
pr_debug("%s: Reporting short button 0 "
"press and release\n", __func__);
tabla_snd_soc_jack_report(priv,
priv->button_jack,
SND_JACK_BTN_0,
SND_JACK_BTN_0);
tabla_snd_soc_jack_report(priv,
priv->button_jack, 0,
SND_JACK_BTN_0);
}
}
priv->buttons_pressed &= ~SND_JACK_BTN_0;
}
if (priv->buttons_pressed) {
pr_debug("%s:reporting button release mask 0x%x\n", __func__,
priv->buttons_pressed);
tabla_snd_soc_jack_report(priv, priv->button_jack, 0,
priv->buttons_pressed);
/* hardware doesn't detect another button press until
* already pressed button is released.
* therefore buttons_pressed has only one button's mask. */
priv->buttons_pressed &= ~TABLA_JACK_BUTTON_MASK;
}
tabla_codec_start_hs_polling(codec);
return IRQ_HANDLED;
}
static void tabla_codec_shutdown_hs_removal_detect(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
const struct tabla_mbhc_general_cfg *generic =
TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration);
if (!tabla->mclk_enabled && !tabla->mbhc_polling_active)
tabla_codec_enable_config_mode(codec, 1);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x2, 0x2);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x6, 0x0);
snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x00);
usleep_range(generic->t_shutdown_plug_rem,
generic->t_shutdown_plug_rem);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0xA, 0x8);
if (!tabla->mclk_enabled && !tabla->mbhc_polling_active)
tabla_codec_enable_config_mode(codec, 0);
snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x00);
}
static void tabla_codec_shutdown_hs_polling(struct snd_soc_codec *codec)
{
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
tabla_codec_shutdown_hs_removal_detect(codec);
if (!tabla->mclk_enabled) {
snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS, 0xE0, 0x00);
tabla_codec_disable_clock_block(codec);
tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF);
}
tabla->mbhc_polling_active = false;
}
static irqreturn_t tabla_hphl_ocp_irq(int irq, void *data)
{
struct tabla_priv *tabla = data;
struct snd_soc_codec *codec;
pr_info("%s: received HPHL OCP irq\n", __func__);
if (tabla) {
codec = tabla->codec;
if (tabla->hphlocp_cnt++ < TABLA_OCP_ATTEMPT) {
pr_info("%s: retry\n", __func__);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10,
0x00);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10,
0x10);
} else {
wcd9xxx_disable_irq(codec->control_data,
TABLA_IRQ_HPH_PA_OCPL_FAULT);
tabla->hphlocp_cnt = 0;
tabla->hph_status |= SND_JACK_OC_HPHL;
if (tabla->headset_jack)
tabla_snd_soc_jack_report(tabla,
tabla->headset_jack,
tabla->hph_status,
TABLA_JACK_MASK);
}
} else {
pr_err("%s: Bad tabla private data\n", __func__);
}
return IRQ_HANDLED;
}
static irqreturn_t tabla_hphr_ocp_irq(int irq, void *data)
{
struct tabla_priv *tabla = data;
struct snd_soc_codec *codec;
pr_info("%s: received HPHR OCP irq\n", __func__);
if (tabla) {
codec = tabla->codec;
if (tabla->hphrocp_cnt++ < TABLA_OCP_ATTEMPT) {
pr_info("%s: retry\n", __func__);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10,
0x00);
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10,
0x10);
} else {
wcd9xxx_disable_irq(codec->control_data,
TABLA_IRQ_HPH_PA_OCPR_FAULT);
tabla->hphrocp_cnt = 0;
tabla->hph_status |= SND_JACK_OC_HPHR;
if (tabla->headset_jack)
tabla_snd_soc_jack_report(tabla,
tabla->headset_jack,
tabla->hph_status,
TABLA_JACK_MASK);
}
} else {
pr_err("%s: Bad tabla private data\n", __func__);
}
return IRQ_HANDLED;
}
static void tabla_sync_hph_state(struct tabla_priv *tabla)
{
if (test_and_clear_bit(TABLA_HPHR_PA_OFF_ACK,
&tabla->hph_pa_dac_state)) {
pr_debug("%s: HPHR clear flag and enable PA\n", __func__);
snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_CNP_EN, 0x10,
1 << 4);
}
if (test_and_clear_bit(TABLA_HPHL_PA_OFF_ACK,
&tabla->hph_pa_dac_state)) {
pr_debug("%s: HPHL clear flag and enable PA\n", __func__);
snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_CNP_EN, 0x20,
1 << 5);
}
if (test_and_clear_bit(TABLA_HPHR_DAC_OFF_ACK,
&tabla->hph_pa_dac_state)) {
pr_debug("%s: HPHR clear flag and enable DAC\n", __func__);
snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_R_DAC_CTL,
0xC0, 0xC0);
}
if (test_and_clear_bit(TABLA_HPHL_DAC_OFF_ACK,
&tabla->hph_pa_dac_state)) {
pr_debug("%s: HPHL clear flag and enable DAC\n", __func__);
snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_L_DAC_CTL,
0xC0, 0xC0);
}
}
static irqreturn_t tabla_hs_insert_irq(int irq, void *data)
{
struct tabla_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
const struct tabla_mbhc_plug_detect_cfg *plug_det =
TABLA_MBHC_CAL_PLUG_DET_PTR(priv->calibration);
int ldo_h_on, micb_cfilt_on;
short mb_v;
u8 is_removal;
int mic_mv;
pr_debug("%s: enter\n", __func__);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION);
is_removal = snd_soc_read(codec, TABLA_A_CDC_MBHC_INT_CTL) & 0x02;
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x03, 0x00);
/* Turn off both HPH and MIC line schmitt triggers */
snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x90, 0x00);
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13, 0x00);
if (priv->mbhc_fake_ins_start &&
time_after(jiffies, priv->mbhc_fake_ins_start +
msecs_to_jiffies(TABLA_FAKE_INS_THRESHOLD_MS))) {
pr_debug("%s: fake context interrupt, reset insertion\n",
__func__);
priv->mbhc_fake_ins_start = 0;
tabla_codec_shutdown_hs_polling(codec);
tabla_codec_enable_hs_detect(codec, 1);
return IRQ_HANDLED;
}
ldo_h_on = snd_soc_read(codec, TABLA_A_LDO_H_MODE_1) & 0x80;
micb_cfilt_on = snd_soc_read(codec, priv->mbhc_bias_regs.cfilt_ctl)
& 0x80;
if (!ldo_h_on)
snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x80, 0x80);
if (!micb_cfilt_on)
snd_soc_update_bits(codec, priv->mbhc_bias_regs.cfilt_ctl,
0x80, 0x80);
if (plug_det->t_ins_complete > 20)
msleep(plug_det->t_ins_complete);
else
usleep_range(plug_det->t_ins_complete * 1000,
plug_det->t_ins_complete * 1000);
if (!ldo_h_on)
snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x80, 0x0);
if (!micb_cfilt_on)
snd_soc_update_bits(codec, priv->mbhc_bias_regs.cfilt_ctl,
0x80, 0x0);
if (is_removal) {
/*
* If headphone is removed while playback is in progress,
* it is possible that micbias will be switched to VDDIO.
*/
if (priv->mbhc_micbias_switched)
tabla_codec_switch_micbias(codec, 0);
priv->hph_status &= ~SND_JACK_HEADPHONE;
/* If headphone PA is on, check if userspace receives
* removal event to sync-up PA's state */
if (tabla_is_hph_pa_on(codec)) {
set_bit(TABLA_HPHL_PA_OFF_ACK, &priv->hph_pa_dac_state);
set_bit(TABLA_HPHR_PA_OFF_ACK, &priv->hph_pa_dac_state);
}
if (tabla_is_hph_dac_on(codec, 1))
set_bit(TABLA_HPHL_DAC_OFF_ACK,
&priv->hph_pa_dac_state);
if (tabla_is_hph_dac_on(codec, 0))
set_bit(TABLA_HPHR_DAC_OFF_ACK,
&priv->hph_pa_dac_state);
if (priv->headset_jack) {
pr_debug("%s: Reporting removal\n", __func__);
tabla_snd_soc_jack_report(priv, priv->headset_jack,
priv->hph_status,
TABLA_JACK_MASK);
}
tabla_codec_shutdown_hs_removal_detect(codec);
tabla_codec_enable_hs_detect(codec, 1);
return IRQ_HANDLED;
}
mb_v = tabla_codec_setup_hs_polling(codec);
mic_mv = tabla_codec_sta_dce_v(codec, 0, mb_v);
if (mb_v > (short) priv->mbhc_data.v_ins_hu) {
pr_debug("%s: Fake insertion interrupt since %dmsec ago, "
"STA : %d,%d\n", __func__,
(priv->mbhc_fake_ins_start ?
jiffies_to_msecs(jiffies -
priv->mbhc_fake_ins_start) :
0),
mb_v, mic_mv);
if (time_after(jiffies,
priv->mbhc_fake_ins_start +
msecs_to_jiffies(TABLA_FAKE_INS_THRESHOLD_MS))) {
/* Disable HPH trigger and enable MIC line trigger */
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x12,
0x00);
snd_soc_update_bits(codec,
priv->mbhc_bias_regs.mbhc_reg, 0x60,
plug_det->mic_current << 5);
snd_soc_update_bits(codec,
priv->mbhc_bias_regs.mbhc_reg,
0x80, 0x80);
usleep_range(plug_det->t_mic_pid, plug_det->t_mic_pid);
snd_soc_update_bits(codec,
priv->mbhc_bias_regs.mbhc_reg,
0x10, 0x10);
} else {
if (priv->mbhc_fake_ins_start == 0)
priv->mbhc_fake_ins_start = jiffies;
/* Setup normal insert detection
* Enable HPH Schmitt Trigger
*/
snd_soc_update_bits(codec, TABLA_A_MBHC_HPH,
0x13 | 0x0C,
0x13 | plug_det->hph_current << 2);
}
/* Setup for insertion detection */
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0);
wcd9xxx_enable_irq(codec->control_data,
TABLA_IRQ_MBHC_INSERTION);
snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0x1);
} else if (mb_v < (short) priv->mbhc_data.v_no_mic) {
pr_debug("%s: Headphone Detected, mb_v: %d,%d\n",
__func__, mb_v, mic_mv);
priv->mbhc_fake_ins_start = 0;
priv->hph_status |= SND_JACK_HEADPHONE;
if (priv->headset_jack) {
pr_debug("%s: Reporting insertion %d\n", __func__,
SND_JACK_HEADPHONE);
tabla_snd_soc_jack_report(priv, priv->headset_jack,
priv->hph_status,
TABLA_JACK_MASK);
}
tabla_codec_shutdown_hs_polling(codec);
tabla_codec_enable_hs_detect(codec, 0);
tabla_sync_hph_state(priv);
} else {
pr_debug("%s: Headset detected, mb_v: %d,%d\n",
__func__, mb_v, mic_mv);
priv->mbhc_fake_ins_start = 0;
priv->hph_status |= SND_JACK_HEADSET;
if (priv->headset_jack) {
pr_debug("%s: Reporting insertion %d\n", __func__,
SND_JACK_HEADSET);
tabla_snd_soc_jack_report(priv, priv->headset_jack,
priv->hph_status,
TABLA_JACK_MASK);
}
/* avoid false button press detect */
msleep(50);
tabla_codec_start_hs_polling(codec);
tabla_sync_hph_state(priv);
}
return IRQ_HANDLED;
}
static irqreturn_t tabla_hs_remove_irq(int irq, void *data)
{
short bias_value;
struct tabla_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
const struct tabla_mbhc_general_cfg *generic =
TABLA_MBHC_CAL_GENERAL_PTR(priv->calibration);
int fake_removal = 0;
int min_us = TABLA_FAKE_REMOVAL_MIN_PERIOD_MS * 1000;
pr_debug("%s: enter, removal interrupt\n", __func__);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL);
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE);
usleep_range(generic->t_shutdown_plug_rem,
generic->t_shutdown_plug_rem);
do {
bias_value = tabla_codec_sta_dce(codec, 1);
pr_debug("%s: DCE %d,%d, %d us left\n", __func__, bias_value,
tabla_codec_sta_dce_v(codec, 1, bias_value), min_us);
if (bias_value < (short)priv->mbhc_data.v_ins_h) {
fake_removal = 1;
break;
}
min_us -= priv->mbhc_data.t_dce;
} while (min_us > 0);
if (fake_removal) {
pr_debug("False alarm, headset not actually removed\n");
tabla_codec_start_hs_polling(codec);
} else {
/*
* If this removal is not false, first check the micbias
* switch status and switch it to LDOH if it is already
* switched to VDDIO.
*/
if (priv->mbhc_micbias_switched)
tabla_codec_switch_micbias(codec, 0);
priv->hph_status &= ~SND_JACK_HEADSET;
if (priv->headset_jack) {
pr_debug("%s: Reporting removal\n", __func__);
tabla_snd_soc_jack_report(priv, priv->headset_jack, 0,
TABLA_JACK_MASK);
}
tabla_codec_shutdown_hs_polling(codec);
tabla_codec_enable_hs_detect(codec, 1);
}
return IRQ_HANDLED;
}
static unsigned long slimbus_value;
static irqreturn_t tabla_slimbus_irq(int irq, void *data)
{
struct tabla_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
int i, j;
u8 val;
for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++) {
slimbus_value = wcd9xxx_interface_reg_read(codec->control_data,
TABLA_SLIM_PGD_PORT_INT_STATUS0 + i);
for_each_set_bit(j, &slimbus_value, BITS_PER_BYTE) {
val = wcd9xxx_interface_reg_read(codec->control_data,
TABLA_SLIM_PGD_PORT_INT_SOURCE0 + i*8 + j);
if (val & 0x1)
pr_err_ratelimited("overflow error on port %x,"
" value %x\n", i*8 + j, val);
if (val & 0x2)
pr_err_ratelimited("underflow error on port %x,"
" value %x\n", i*8 + j, val);
}
wcd9xxx_interface_reg_write(codec->control_data,
TABLA_SLIM_PGD_PORT_INT_CLR0 + i, 0xFF);
}
return IRQ_HANDLED;
}
static int tabla_handle_pdata(struct tabla_priv *tabla)
{
struct snd_soc_codec *codec = tabla->codec;
struct wcd9xxx_pdata *pdata = tabla->pdata;
int k1, k2, k3, rc = 0;
u8 leg_mode = pdata->amic_settings.legacy_mode;
u8 txfe_bypass = pdata->amic_settings.txfe_enable;
u8 txfe_buff = pdata->amic_settings.txfe_buff;
u8 flag = pdata->amic_settings.use_pdata;
u8 i = 0, j = 0;
u8 val_txfe = 0, value = 0;
if (!pdata) {
rc = -ENODEV;
goto done;
}
/* Make sure settings are correct */
if ((pdata->micbias.ldoh_v > TABLA_LDOH_2P85_V) ||
(pdata->micbias.bias1_cfilt_sel > TABLA_CFILT3_SEL) ||
(pdata->micbias.bias2_cfilt_sel > TABLA_CFILT3_SEL) ||
(pdata->micbias.bias3_cfilt_sel > TABLA_CFILT3_SEL) ||
(pdata->micbias.bias4_cfilt_sel > TABLA_CFILT3_SEL)) {
rc = -EINVAL;
goto done;
}
/* figure out k value */
k1 = tabla_find_k_value(pdata->micbias.ldoh_v,
pdata->micbias.cfilt1_mv);
k2 = tabla_find_k_value(pdata->micbias.ldoh_v,
pdata->micbias.cfilt2_mv);
k3 = tabla_find_k_value(pdata->micbias.ldoh_v,
pdata->micbias.cfilt3_mv);
if (IS_ERR_VALUE(k1) || IS_ERR_VALUE(k2) || IS_ERR_VALUE(k3)) {
rc = -EINVAL;
goto done;
}
/* Set voltage level and always use LDO */
snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x0C,
(pdata->micbias.ldoh_v << 2));
snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_1_VAL, 0xFC,
(k1 << 2));
snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_2_VAL, 0xFC,
(k2 << 2));
snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_3_VAL, 0xFC,
(k3 << 2));
snd_soc_update_bits(codec, TABLA_A_MICB_1_CTL, 0x60,
(pdata->micbias.bias1_cfilt_sel << 5));
snd_soc_update_bits(codec, TABLA_A_MICB_2_CTL, 0x60,
(pdata->micbias.bias2_cfilt_sel << 5));
snd_soc_update_bits(codec, TABLA_A_MICB_3_CTL, 0x60,
(pdata->micbias.bias3_cfilt_sel << 5));
snd_soc_update_bits(codec, tabla->reg_addr.micb_4_ctl, 0x60,
(pdata->micbias.bias4_cfilt_sel << 5));
for (i = 0; i < 6; j++, i += 2) {
if (flag & (0x01 << i)) {
value = (leg_mode & (0x01 << i)) ? 0x10 : 0x00;
val_txfe = (txfe_bypass & (0x01 << i)) ? 0x20 : 0x00;
val_txfe = val_txfe |
((txfe_buff & (0x01 << i)) ? 0x10 : 0x00);
snd_soc_update_bits(codec, TABLA_A_TX_1_2_EN + j * 10,
0x10, value);
snd_soc_update_bits(codec,
TABLA_A_TX_1_2_TEST_EN + j * 10,
0x30, val_txfe);
}
if (flag & (0x01 << (i + 1))) {
value = (leg_mode & (0x01 << (i + 1))) ? 0x01 : 0x00;
val_txfe = (txfe_bypass &
(0x01 << (i + 1))) ? 0x02 : 0x00;
val_txfe |= (txfe_buff &
(0x01 << (i + 1))) ? 0x01 : 0x00;
snd_soc_update_bits(codec, TABLA_A_TX_1_2_EN + j * 10,
0x01, value);
snd_soc_update_bits(codec,
TABLA_A_TX_1_2_TEST_EN + j * 10,
0x03, val_txfe);
}
}
if (flag & 0x40) {
value = (leg_mode & 0x40) ? 0x10 : 0x00;
value = value | ((txfe_bypass & 0x40) ? 0x02 : 0x00);
value = value | ((txfe_buff & 0x40) ? 0x01 : 0x00);
snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN,
0x13, value);
}
if (pdata->ocp.use_pdata) {
/* not defined in CODEC specification */
if (pdata->ocp.hph_ocp_limit == 1 ||
pdata->ocp.hph_ocp_limit == 5) {
rc = -EINVAL;
goto done;
}
snd_soc_update_bits(codec, TABLA_A_RX_COM_OCP_CTL,
0x0F, pdata->ocp.num_attempts);
snd_soc_write(codec, TABLA_A_RX_COM_OCP_COUNT,
((pdata->ocp.run_time << 4) | pdata->ocp.wait_time));
snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL,
0xE0, (pdata->ocp.hph_ocp_limit << 5));
}
done:
return rc;
}
static const struct tabla_reg_mask_val tabla_1_1_reg_defaults[] = {
/* Tabla 1.1 MICBIAS changes */
TABLA_REG_VAL(TABLA_A_MICB_1_INT_RBIAS, 0x24),
TABLA_REG_VAL(TABLA_A_MICB_2_INT_RBIAS, 0x24),
TABLA_REG_VAL(TABLA_A_MICB_3_INT_RBIAS, 0x24),
/* Tabla 1.1 HPH changes */
TABLA_REG_VAL(TABLA_A_RX_HPH_BIAS_PA, 0x57),
TABLA_REG_VAL(TABLA_A_RX_HPH_BIAS_LDO, 0x56),
/* Tabla 1.1 EAR PA changes */
TABLA_REG_VAL(TABLA_A_RX_EAR_BIAS_PA, 0xA6),
TABLA_REG_VAL(TABLA_A_RX_EAR_GAIN, 0x02),
TABLA_REG_VAL(TABLA_A_RX_EAR_VCM, 0x03),
/* Tabla 1.1 Lineout_5 Changes */
TABLA_REG_VAL(TABLA_A_RX_LINE_5_GAIN, 0x10),
/* Tabla 1.1 RX Changes */
TABLA_REG_VAL(TABLA_A_CDC_RX1_B5_CTL, 0x78),
TABLA_REG_VAL(TABLA_A_CDC_RX2_B5_CTL, 0x78),
TABLA_REG_VAL(TABLA_A_CDC_RX3_B5_CTL, 0x78),
TABLA_REG_VAL(TABLA_A_CDC_RX4_B5_CTL, 0x78),
TABLA_REG_VAL(TABLA_A_CDC_RX5_B5_CTL, 0x78),
TABLA_REG_VAL(TABLA_A_CDC_RX6_B5_CTL, 0x78),
TABLA_REG_VAL(TABLA_A_CDC_RX7_B5_CTL, 0x78),
/* Tabla 1.1 RX1 and RX2 Changes */
TABLA_REG_VAL(TABLA_A_CDC_RX1_B6_CTL, 0xA0),
TABLA_REG_VAL(TABLA_A_CDC_RX2_B6_CTL, 0xA0),
/* Tabla 1.1 RX3 to RX7 Changes */
TABLA_REG_VAL(TABLA_A_CDC_RX3_B6_CTL, 0x80),
TABLA_REG_VAL(TABLA_A_CDC_RX4_B6_CTL, 0x80),
TABLA_REG_VAL(TABLA_A_CDC_RX5_B6_CTL, 0x80),
TABLA_REG_VAL(TABLA_A_CDC_RX6_B6_CTL, 0x80),
TABLA_REG_VAL(TABLA_A_CDC_RX7_B6_CTL, 0x80),
/* Tabla 1.1 CLASSG Changes */
TABLA_REG_VAL(TABLA_A_CDC_CLSG_FREQ_THRESH_B3_CTL, 0x1B),
};
static const struct tabla_reg_mask_val tabla_2_0_reg_defaults[] = {
/* Tabla 2.0 MICBIAS changes */
TABLA_REG_VAL(TABLA_A_MICB_2_MBHC, 0x02),
};
static const struct tabla_reg_mask_val tabla_1_x_only_reg_2_0_defaults[] = {
TABLA_REG_VAL(TABLA_1_A_MICB_4_INT_RBIAS, 0x24),
};
static const struct tabla_reg_mask_val tabla_2_only_reg_2_0_defaults[] = {
TABLA_REG_VAL(TABLA_2_A_MICB_4_INT_RBIAS, 0x24),
};
static void tabla_update_reg_defaults(struct snd_soc_codec *codec)
{
u32 i;
struct wcd9xxx *tabla_core = dev_get_drvdata(codec->dev->parent);
for (i = 0; i < ARRAY_SIZE(tabla_1_1_reg_defaults); i++)
snd_soc_write(codec, tabla_1_1_reg_defaults[i].reg,
tabla_1_1_reg_defaults[i].val);
for (i = 0; i < ARRAY_SIZE(tabla_2_0_reg_defaults); i++)
snd_soc_write(codec, tabla_2_0_reg_defaults[i].reg,
tabla_2_0_reg_defaults[i].val);
if (TABLA_IS_1_X(tabla_core->version)) {
for (i = 0; i < ARRAY_SIZE(tabla_1_x_only_reg_2_0_defaults);
i++)
snd_soc_write(codec,
tabla_1_x_only_reg_2_0_defaults[i].reg,
tabla_1_x_only_reg_2_0_defaults[i].val);
} else {
for (i = 0; i < ARRAY_SIZE(tabla_2_only_reg_2_0_defaults); i++)
snd_soc_write(codec,
tabla_2_only_reg_2_0_defaults[i].reg,
tabla_2_only_reg_2_0_defaults[i].val);
}
}
static const struct tabla_reg_mask_val tabla_codec_reg_init_val[] = {
/* Initialize current threshold to 350MA
* number of wait and run cycles to 4096
*/
{TABLA_A_RX_HPH_OCP_CTL, 0xE0, 0x60},
{TABLA_A_RX_COM_OCP_COUNT, 0xFF, 0xFF},
{TABLA_A_QFUSE_CTL, 0xFF, 0x03},
/* Initialize gain registers to use register gain */
{TABLA_A_RX_HPH_L_GAIN, 0x10, 0x10},
{TABLA_A_RX_HPH_R_GAIN, 0x10, 0x10},
{TABLA_A_RX_LINE_1_GAIN, 0x10, 0x10},
{TABLA_A_RX_LINE_2_GAIN, 0x10, 0x10},
{TABLA_A_RX_LINE_3_GAIN, 0x10, 0x10},
{TABLA_A_RX_LINE_4_GAIN, 0x10, 0x10},
/* Initialize mic biases to differential mode */
{TABLA_A_MICB_1_INT_RBIAS, 0x24, 0x24},
{TABLA_A_MICB_2_INT_RBIAS, 0x24, 0x24},
{TABLA_A_MICB_3_INT_RBIAS, 0x24, 0x24},
{TABLA_A_CDC_CONN_CLSG_CTL, 0x3C, 0x14},
/* Use 16 bit sample size for TX1 to TX6 */
{TABLA_A_CDC_CONN_TX_SB_B1_CTL, 0x30, 0x20},
{TABLA_A_CDC_CONN_TX_SB_B2_CTL, 0x30, 0x20},
{TABLA_A_CDC_CONN_TX_SB_B3_CTL, 0x30, 0x20},
{TABLA_A_CDC_CONN_TX_SB_B4_CTL, 0x30, 0x20},
{TABLA_A_CDC_CONN_TX_SB_B5_CTL, 0x30, 0x20},
{TABLA_A_CDC_CONN_TX_SB_B6_CTL, 0x30, 0x20},
/* Use 16 bit sample size for TX7 to TX10 */
{TABLA_A_CDC_CONN_TX_SB_B7_CTL, 0x60, 0x40},
{TABLA_A_CDC_CONN_TX_SB_B8_CTL, 0x60, 0x40},
{TABLA_A_CDC_CONN_TX_SB_B9_CTL, 0x60, 0x40},
{TABLA_A_CDC_CONN_TX_SB_B10_CTL, 0x60, 0x40},
/* Use 16 bit sample size for RX */
{TABLA_A_CDC_CONN_RX_SB_B1_CTL, 0xFF, 0xAA},
{TABLA_A_CDC_CONN_RX_SB_B2_CTL, 0xFF, 0xAA},
/*enable HPF filter for TX paths */
{TABLA_A_CDC_TX1_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX2_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX3_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX4_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX5_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX6_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX7_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX8_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX9_MUX_CTL, 0x8, 0x0},
{TABLA_A_CDC_TX10_MUX_CTL, 0x8, 0x0},
};
static const struct tabla_reg_mask_val tabla_1_x_codec_reg_init_val[] = {
/* Initialize mic biases to differential mode */
{TABLA_1_A_MICB_4_INT_RBIAS, 0x24, 0x24},
};
static const struct tabla_reg_mask_val tabla_2_higher_codec_reg_init_val[] = {
/* Initialize mic biases to differential mode */
{TABLA_2_A_MICB_4_INT_RBIAS, 0x24, 0x24},
};
static void tabla_codec_init_reg(struct snd_soc_codec *codec)
{
u32 i;
struct wcd9xxx *tabla_core = dev_get_drvdata(codec->dev->parent);
for (i = 0; i < ARRAY_SIZE(tabla_codec_reg_init_val); i++)
snd_soc_update_bits(codec, tabla_codec_reg_init_val[i].reg,
tabla_codec_reg_init_val[i].mask,
tabla_codec_reg_init_val[i].val);
if (TABLA_IS_1_X(tabla_core->version)) {
for (i = 0; i < ARRAY_SIZE(tabla_1_x_codec_reg_init_val); i++)
snd_soc_update_bits(codec,
tabla_1_x_codec_reg_init_val[i].reg,
tabla_1_x_codec_reg_init_val[i].mask,
tabla_1_x_codec_reg_init_val[i].val);
} else {
for (i = 0; i < ARRAY_SIZE(tabla_2_higher_codec_reg_init_val);
i++)
snd_soc_update_bits(codec,
tabla_2_higher_codec_reg_init_val[i].reg,
tabla_2_higher_codec_reg_init_val[i].mask,
tabla_2_higher_codec_reg_init_val[i].val);
}
}
static void tabla_update_reg_address(struct tabla_priv *priv)
{
struct wcd9xxx *tabla_core = dev_get_drvdata(priv->codec->dev->parent);
struct tabla_reg_address *reg_addr = &priv->reg_addr;
if (TABLA_IS_1_X(tabla_core->version)) {
reg_addr->micb_4_mbhc = TABLA_1_A_MICB_4_MBHC;
reg_addr->micb_4_int_rbias = TABLA_1_A_MICB_4_INT_RBIAS;
reg_addr->micb_4_ctl = TABLA_1_A_MICB_4_CTL;
} else if (TABLA_IS_2_0(tabla_core->version)) {
reg_addr->micb_4_mbhc = TABLA_2_A_MICB_4_MBHC;
reg_addr->micb_4_int_rbias = TABLA_2_A_MICB_4_INT_RBIAS;
reg_addr->micb_4_ctl = TABLA_2_A_MICB_4_CTL;
}
}
static int tabla_codec_probe(struct snd_soc_codec *codec)
{
struct wcd9xxx *control;
struct tabla_priv *tabla;
struct snd_soc_dapm_context *dapm = &codec->dapm;
int ret = 0;
int i;
int ch_cnt;
codec->control_data = dev_get_drvdata(codec->dev->parent);
control = codec->control_data;
tabla = kzalloc(sizeof(struct tabla_priv), GFP_KERNEL);
if (!tabla) {
dev_err(codec->dev, "Failed to allocate private data\n");
return -ENOMEM;
}
/* Make sure mbhc micbias register addresses are zeroed out */
memset(&tabla->mbhc_bias_regs, 0,
sizeof(struct mbhc_micbias_regs));
tabla->cfilt_k_value = 0;
tabla->mbhc_micbias_switched = false;
/* Make sure mbhc intenal calibration data is zeroed out */
memset(&tabla->mbhc_data, 0,
sizeof(struct mbhc_internal_cal_data));
tabla->mbhc_data.t_sta_dce = DEFAULT_DCE_STA_WAIT;
tabla->mbhc_data.t_dce = DEFAULT_DCE_WAIT;
tabla->mbhc_data.t_sta = DEFAULT_STA_WAIT;
snd_soc_codec_set_drvdata(codec, tabla);
tabla->mclk_enabled = false;
tabla->bandgap_type = TABLA_BANDGAP_OFF;
tabla->clock_active = false;
tabla->config_mode_active = false;
tabla->mbhc_polling_active = false;
tabla->mbhc_fake_ins_start = 0;
tabla->no_mic_headset_override = false;
tabla->codec = codec;
for (i = 0; i < COMPANDER_MAX; i++) {
tabla->comp_enabled[i] = 0;
tabla->comp_fs[i] = COMPANDER_FS_48KHZ;
}
tabla->pdata = dev_get_platdata(codec->dev->parent);
tabla->intf_type = wcd9xxx_get_intf_type();
tabla->aux_pga_cnt = 0;
tabla->aux_l_gain = 0x1F;
tabla->aux_r_gain = 0x1F;
tabla_update_reg_address(tabla);
tabla_update_reg_defaults(codec);
tabla_codec_init_reg(codec);
ret = tabla_handle_pdata(tabla);
if (IS_ERR_VALUE(ret)) {
pr_err("%s: bad pdata\n", __func__);
goto err_pdata;
}
snd_soc_add_controls(codec, tabla_snd_controls,
ARRAY_SIZE(tabla_snd_controls));
if (TABLA_IS_1_X(control->version))
snd_soc_add_controls(codec, tabla_1_x_snd_controls,
ARRAY_SIZE(tabla_1_x_snd_controls));
else
snd_soc_add_controls(codec, tabla_2_higher_snd_controls,
ARRAY_SIZE(tabla_2_higher_snd_controls));
snd_soc_dapm_new_controls(dapm, tabla_dapm_widgets,
ARRAY_SIZE(tabla_dapm_widgets));
if (TABLA_IS_1_X(control->version))
snd_soc_dapm_new_controls(dapm, tabla_1_x_dapm_widgets,
ARRAY_SIZE(tabla_1_x_dapm_widgets));
else
snd_soc_dapm_new_controls(dapm, tabla_2_higher_dapm_widgets,
ARRAY_SIZE(tabla_2_higher_dapm_widgets));
if (tabla->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
snd_soc_dapm_new_controls(dapm, tabla_dapm_i2s_widgets,
ARRAY_SIZE(tabla_dapm_i2s_widgets));
snd_soc_dapm_add_routes(dapm, audio_i2s_map,
ARRAY_SIZE(audio_i2s_map));
}
snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map));
if (TABLA_IS_1_X(control->version)) {
snd_soc_dapm_add_routes(dapm, tabla_1_x_lineout_2_to_4_map,
ARRAY_SIZE(tabla_1_x_lineout_2_to_4_map));
} else if (TABLA_IS_2_0(control->version)) {
snd_soc_dapm_add_routes(dapm, tabla_2_x_lineout_2_to_4_map,
ARRAY_SIZE(tabla_2_x_lineout_2_to_4_map));
} else {
pr_err("%s : ERROR. Unsupported Tabla version 0x%2x\n",
__func__, control->version);
goto err_pdata;
}
snd_soc_dapm_sync(dapm);
ret = wcd9xxx_request_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION,
tabla_hs_insert_irq, "Headset insert detect", tabla);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
TABLA_IRQ_MBHC_INSERTION);
goto err_insert_irq;
}
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION);
ret = wcd9xxx_request_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL,
tabla_hs_remove_irq, "Headset remove detect", tabla);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
TABLA_IRQ_MBHC_REMOVAL);
goto err_remove_irq;
}
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL);
ret = wcd9xxx_request_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL,
tabla_dce_handler, "DC Estimation detect", tabla);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
TABLA_IRQ_MBHC_POTENTIAL);
goto err_potential_irq;
}
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL);
ret = wcd9xxx_request_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE,
tabla_release_handler, "Button Release detect", tabla);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
TABLA_IRQ_MBHC_RELEASE);
goto err_release_irq;
}
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE);
ret = wcd9xxx_request_irq(codec->control_data, TABLA_IRQ_SLIMBUS,
tabla_slimbus_irq, "SLIMBUS Slave", tabla);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
TABLA_IRQ_SLIMBUS);
goto err_slimbus_irq;
}
for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++)
wcd9xxx_interface_reg_write(codec->control_data,
TABLA_SLIM_PGD_PORT_INT_EN0 + i, 0xFF);
ret = wcd9xxx_request_irq(codec->control_data,
TABLA_IRQ_HPH_PA_OCPL_FAULT, tabla_hphl_ocp_irq,
"HPH_L OCP detect", tabla);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
TABLA_IRQ_HPH_PA_OCPL_FAULT);
goto err_hphl_ocp_irq;
}
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPL_FAULT);
ret = wcd9xxx_request_irq(codec->control_data,
TABLA_IRQ_HPH_PA_OCPR_FAULT, tabla_hphr_ocp_irq,
"HPH_R OCP detect", tabla);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
TABLA_IRQ_HPH_PA_OCPR_FAULT);
goto err_hphr_ocp_irq;
}
wcd9xxx_disable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPR_FAULT);
for (i = 0; i < ARRAY_SIZE(tabla_dai); i++) {
switch (tabla_dai[i].id) {
case AIF1_PB:
ch_cnt = tabla_dai[i].playback.channels_max;
break;
case AIF1_CAP:
ch_cnt = tabla_dai[i].capture.channels_max;
break;
case AIF2_PB:
ch_cnt = tabla_dai[i].playback.channels_max;
break;
default:
continue;
}
tabla->dai[i].ch_num = kzalloc((sizeof(unsigned int)*
ch_cnt), GFP_KERNEL);
}
#ifdef CONFIG_DEBUG_FS
debug_tabla_priv = tabla;
#endif
return ret;
err_hphr_ocp_irq:
wcd9xxx_free_irq(codec->control_data,
TABLA_IRQ_HPH_PA_OCPL_FAULT, tabla);
err_hphl_ocp_irq:
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_SLIMBUS, tabla);
err_slimbus_irq:
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE, tabla);
err_release_irq:
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL, tabla);
err_potential_irq:
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL, tabla);
err_remove_irq:
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION, tabla);
err_insert_irq:
err_pdata:
kfree(tabla);
return ret;
}
static int tabla_codec_remove(struct snd_soc_codec *codec)
{
int i;
struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec);
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_SLIMBUS, tabla);
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE, tabla);
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL, tabla);
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL, tabla);
wcd9xxx_free_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION, tabla);
tabla_codec_disable_clock_block(codec);
tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF);
if (tabla->mbhc_fw)
release_firmware(tabla->mbhc_fw);
for (i = 0; i < ARRAY_SIZE(tabla_dai); i++)
kfree(tabla->dai[i].ch_num);
kfree(tabla);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_tabla = {
.probe = tabla_codec_probe,
.remove = tabla_codec_remove,
.read = tabla_read,
.write = tabla_write,
.readable_register = tabla_readable,
.volatile_register = tabla_volatile,
.reg_cache_size = TABLA_CACHE_SIZE,
.reg_cache_default = tabla_reg_defaults,
.reg_word_size = 1,
};
#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_poke;
static int codec_debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t codec_debug_write(struct file *filp,
const char __user *ubuf, size_t cnt, loff_t *ppos)
{
char lbuf[32];
char *buf;
int rc;
if (cnt > sizeof(lbuf) - 1)
return -EINVAL;
rc = copy_from_user(lbuf, ubuf, cnt);
if (rc)
return -EFAULT;
lbuf[cnt] = '\0';
buf = (char *)lbuf;
debug_tabla_priv->no_mic_headset_override = (*strsep(&buf, " ") == '0')
? false : true;
return rc;
}
static const struct file_operations codec_debug_ops = {
.open = codec_debug_open,
.write = codec_debug_write,
};
#endif
#ifdef CONFIG_PM
static int tabla_suspend(struct device *dev)
{
dev_dbg(dev, "%s: system suspend\n", __func__);
return 0;
}
static int tabla_resume(struct device *dev)
{
dev_dbg(dev, "%s: system resume\n", __func__);
return 0;
}
static const struct dev_pm_ops tabla_pm_ops = {
.suspend = tabla_suspend,
.resume = tabla_resume,
};
#endif
static int __devinit tabla_probe(struct platform_device *pdev)
{
int ret = 0;
#ifdef CONFIG_DEBUG_FS
debugfs_poke = debugfs_create_file("TRRS",
S_IFREG | S_IRUGO, NULL, (void *) "TRRS", &codec_debug_ops);
#endif
if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_SLIMBUS)
ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_tabla,
tabla_dai, ARRAY_SIZE(tabla_dai));
else if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_I2C)
ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_tabla,
tabla_i2s_dai, ARRAY_SIZE(tabla_i2s_dai));
return ret;
}
static int __devexit tabla_remove(struct platform_device *pdev)
{
snd_soc_unregister_codec(&pdev->dev);
#ifdef CONFIG_DEBUG_FS
debugfs_remove(debugfs_poke);
#endif
return 0;
}
static struct platform_driver tabla_codec_driver = {
.probe = tabla_probe,
.remove = tabla_remove,
.driver = {
.name = "tabla_codec",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &tabla_pm_ops,
#endif
},
};
static struct platform_driver tabla1x_codec_driver = {
.probe = tabla_probe,
.remove = tabla_remove,
.driver = {
.name = "tabla1x_codec",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &tabla_pm_ops,
#endif
},
};
static int __init tabla_codec_init(void)
{
int rtn = platform_driver_register(&tabla_codec_driver);
if (rtn == 0) {
rtn = platform_driver_register(&tabla1x_codec_driver);
if (rtn != 0)
platform_driver_unregister(&tabla_codec_driver);
}
return rtn;
}
static void __exit tabla_codec_exit(void)
{
platform_driver_unregister(&tabla1x_codec_driver);
platform_driver_unregister(&tabla_codec_driver);
}
module_init(tabla_codec_init);
module_exit(tabla_codec_exit);
MODULE_DESCRIPTION("Tabla codec driver");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL v2");