blob: a7d29bddb298a7a7d41cc1edeb3753d15bae7037 [file] [log] [blame]
/* zd_mac.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/usb.h>
#include <linux/jiffies.h>
#include <net/ieee80211_radiotap.h>
#include "zd_def.h"
#include "zd_chip.h"
#include "zd_mac.h"
#include "zd_ieee80211.h"
#include "zd_netdev.h"
#include "zd_rf.h"
#include "zd_util.h"
static void ieee_init(struct ieee80211_device *ieee);
static void softmac_init(struct ieee80211softmac_device *sm);
static void housekeeping_init(struct zd_mac *mac);
static void housekeeping_enable(struct zd_mac *mac);
static void housekeeping_disable(struct zd_mac *mac);
int zd_mac_init(struct zd_mac *mac,
struct net_device *netdev,
struct usb_interface *intf)
{
struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
memset(mac, 0, sizeof(*mac));
spin_lock_init(&mac->lock);
mac->netdev = netdev;
ieee_init(ieee);
softmac_init(ieee80211_priv(netdev));
zd_chip_init(&mac->chip, netdev, intf);
housekeeping_init(mac);
return 0;
}
static int reset_channel(struct zd_mac *mac)
{
int r;
unsigned long flags;
const struct channel_range *range;
spin_lock_irqsave(&mac->lock, flags);
range = zd_channel_range(mac->regdomain);
if (!range->start) {
r = -EINVAL;
goto out;
}
mac->requested_channel = range->start;
r = 0;
out:
spin_unlock_irqrestore(&mac->lock, flags);
return r;
}
int zd_mac_init_hw(struct zd_mac *mac, u8 device_type)
{
int r;
struct zd_chip *chip = &mac->chip;
u8 addr[ETH_ALEN];
u8 default_regdomain;
r = zd_chip_enable_int(chip);
if (r)
goto out;
r = zd_chip_init_hw(chip, device_type);
if (r)
goto disable_int;
zd_get_e2p_mac_addr(chip, addr);
r = zd_write_mac_addr(chip, addr);
if (r)
goto disable_int;
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&mac->lock);
memcpy(mac->netdev->dev_addr, addr, ETH_ALEN);
spin_unlock_irq(&mac->lock);
r = zd_read_regdomain(chip, &default_regdomain);
if (r)
goto disable_int;
if (!zd_regdomain_supported(default_regdomain)) {
dev_dbg_f(zd_mac_dev(mac),
"Regulatory Domain %#04x is not supported.\n",
default_regdomain);
r = -EINVAL;
goto disable_int;
}
spin_lock_irq(&mac->lock);
mac->regdomain = mac->default_regdomain = default_regdomain;
spin_unlock_irq(&mac->lock);
r = reset_channel(mac);
if (r)
goto disable_int;
/* We must inform the device that we are doing encryption/decryption in
* software at the moment. */
r = zd_set_encryption_type(chip, ENC_SNIFFER);
if (r)
goto disable_int;
r = zd_geo_init(zd_mac_to_ieee80211(mac), mac->regdomain);
if (r)
goto disable_int;
r = 0;
disable_int:
zd_chip_disable_int(chip);
out:
return r;
}
void zd_mac_clear(struct zd_mac *mac)
{
zd_chip_clear(&mac->chip);
ZD_ASSERT(!spin_is_locked(&mac->lock));
ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
}
static int reset_mode(struct zd_mac *mac)
{
struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
struct zd_ioreq32 ioreqs[3] = {
{ CR_RX_FILTER, STA_RX_FILTER },
{ CR_SNIFFER_ON, 0U },
};
if (ieee->iw_mode == IW_MODE_MONITOR) {
ioreqs[0].value = 0xffffffff;
ioreqs[1].value = 0x1;
ioreqs[2].value = ENC_SNIFFER;
}
return zd_iowrite32a(&mac->chip, ioreqs, 3);
}
int zd_mac_open(struct net_device *netdev)
{
struct zd_mac *mac = zd_netdev_mac(netdev);
struct zd_chip *chip = &mac->chip;
int r;
r = zd_chip_enable_int(chip);
if (r < 0)
goto out;
r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
if (r < 0)
goto disable_int;
r = reset_mode(mac);
if (r)
goto disable_int;
r = zd_chip_switch_radio_on(chip);
if (r < 0)
goto disable_int;
r = zd_chip_set_channel(chip, mac->requested_channel);
if (r < 0)
goto disable_radio;
r = zd_chip_enable_rx(chip);
if (r < 0)
goto disable_radio;
r = zd_chip_enable_hwint(chip);
if (r < 0)
goto disable_rx;
housekeeping_enable(mac);
ieee80211softmac_start(netdev);
return 0;
disable_rx:
zd_chip_disable_rx(chip);
disable_radio:
zd_chip_switch_radio_off(chip);
disable_int:
zd_chip_disable_int(chip);
out:
return r;
}
int zd_mac_stop(struct net_device *netdev)
{
struct zd_mac *mac = zd_netdev_mac(netdev);
struct zd_chip *chip = &mac->chip;
netif_stop_queue(netdev);
/*
* The order here deliberately is a little different from the open()
* method, since we need to make sure there is no opportunity for RX
* frames to be processed by softmac after we have stopped it.
*/
zd_chip_disable_rx(chip);
housekeeping_disable(mac);
ieee80211softmac_stop(netdev);
zd_chip_disable_hwint(chip);
zd_chip_switch_radio_off(chip);
zd_chip_disable_int(chip);
return 0;
}
int zd_mac_set_mac_address(struct net_device *netdev, void *p)
{
int r;
unsigned long flags;
struct sockaddr *addr = p;
struct zd_mac *mac = zd_netdev_mac(netdev);
struct zd_chip *chip = &mac->chip;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
dev_dbg_f(zd_mac_dev(mac),
"Setting MAC to " MAC_FMT "\n", MAC_ARG(addr->sa_data));
r = zd_write_mac_addr(chip, addr->sa_data);
if (r)
return r;
spin_lock_irqsave(&mac->lock, flags);
memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN);
spin_unlock_irqrestore(&mac->lock, flags);
return 0;
}
int zd_mac_set_regdomain(struct zd_mac *mac, u8 regdomain)
{
int r;
u8 channel;
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&mac->lock);
if (regdomain == 0) {
regdomain = mac->default_regdomain;
}
if (!zd_regdomain_supported(regdomain)) {
spin_unlock_irq(&mac->lock);
return -EINVAL;
}
mac->regdomain = regdomain;
channel = mac->requested_channel;
spin_unlock_irq(&mac->lock);
r = zd_geo_init(zd_mac_to_ieee80211(mac), regdomain);
if (r)
return r;
if (!zd_regdomain_supports_channel(regdomain, channel)) {
r = reset_channel(mac);
if (r)
return r;
}
return 0;
}
u8 zd_mac_get_regdomain(struct zd_mac *mac)
{
unsigned long flags;
u8 regdomain;
spin_lock_irqsave(&mac->lock, flags);
regdomain = mac->regdomain;
spin_unlock_irqrestore(&mac->lock, flags);
return regdomain;
}
static void set_channel(struct net_device *netdev, u8 channel)
{
struct zd_mac *mac = zd_netdev_mac(netdev);
dev_dbg_f(zd_mac_dev(mac), "channel %d\n", channel);
zd_chip_set_channel(&mac->chip, channel);
}
/* TODO: Should not work in Managed mode. */
int zd_mac_request_channel(struct zd_mac *mac, u8 channel)
{
unsigned long lock_flags;
struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
if (ieee->iw_mode == IW_MODE_INFRA)
return -EPERM;
spin_lock_irqsave(&mac->lock, lock_flags);
if (!zd_regdomain_supports_channel(mac->regdomain, channel)) {
spin_unlock_irqrestore(&mac->lock, lock_flags);
return -EINVAL;
}
mac->requested_channel = channel;
spin_unlock_irqrestore(&mac->lock, lock_flags);
if (netif_running(mac->netdev))
return zd_chip_set_channel(&mac->chip, channel);
else
return 0;
}
int zd_mac_get_channel(struct zd_mac *mac, u8 *channel, u8 *flags)
{
struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
*channel = zd_chip_get_channel(&mac->chip);
if (ieee->iw_mode != IW_MODE_INFRA) {
spin_lock_irq(&mac->lock);
*flags = *channel == mac->requested_channel ?
MAC_FIXED_CHANNEL : 0;
spin_unlock(&mac->lock);
} else {
*flags = 0;
}
dev_dbg_f(zd_mac_dev(mac), "channel %u flags %u\n", *channel, *flags);
return 0;
}
/* If wrong rate is given, we are falling back to the slowest rate: 1MBit/s */
static u8 cs_typed_rate(u8 cs_rate)
{
static const u8 typed_rates[16] = {
[ZD_CS_CCK_RATE_1M] = ZD_CS_CCK|ZD_CS_CCK_RATE_1M,
[ZD_CS_CCK_RATE_2M] = ZD_CS_CCK|ZD_CS_CCK_RATE_2M,
[ZD_CS_CCK_RATE_5_5M] = ZD_CS_CCK|ZD_CS_CCK_RATE_5_5M,
[ZD_CS_CCK_RATE_11M] = ZD_CS_CCK|ZD_CS_CCK_RATE_11M,
[ZD_OFDM_RATE_6M] = ZD_CS_OFDM|ZD_OFDM_RATE_6M,
[ZD_OFDM_RATE_9M] = ZD_CS_OFDM|ZD_OFDM_RATE_9M,
[ZD_OFDM_RATE_12M] = ZD_CS_OFDM|ZD_OFDM_RATE_12M,
[ZD_OFDM_RATE_18M] = ZD_CS_OFDM|ZD_OFDM_RATE_18M,
[ZD_OFDM_RATE_24M] = ZD_CS_OFDM|ZD_OFDM_RATE_24M,
[ZD_OFDM_RATE_36M] = ZD_CS_OFDM|ZD_OFDM_RATE_36M,
[ZD_OFDM_RATE_48M] = ZD_CS_OFDM|ZD_OFDM_RATE_48M,
[ZD_OFDM_RATE_54M] = ZD_CS_OFDM|ZD_OFDM_RATE_54M,
};
ZD_ASSERT(ZD_CS_RATE_MASK == 0x0f);
return typed_rates[cs_rate & ZD_CS_RATE_MASK];
}
/* Fallback to lowest rate, if rate is unknown. */
static u8 rate_to_cs_rate(u8 rate)
{
switch (rate) {
case IEEE80211_CCK_RATE_2MB:
return ZD_CS_CCK_RATE_2M;
case IEEE80211_CCK_RATE_5MB:
return ZD_CS_CCK_RATE_5_5M;
case IEEE80211_CCK_RATE_11MB:
return ZD_CS_CCK_RATE_11M;
case IEEE80211_OFDM_RATE_6MB:
return ZD_OFDM_RATE_6M;
case IEEE80211_OFDM_RATE_9MB:
return ZD_OFDM_RATE_9M;
case IEEE80211_OFDM_RATE_12MB:
return ZD_OFDM_RATE_12M;
case IEEE80211_OFDM_RATE_18MB:
return ZD_OFDM_RATE_18M;
case IEEE80211_OFDM_RATE_24MB:
return ZD_OFDM_RATE_24M;
case IEEE80211_OFDM_RATE_36MB:
return ZD_OFDM_RATE_36M;
case IEEE80211_OFDM_RATE_48MB:
return ZD_OFDM_RATE_48M;
case IEEE80211_OFDM_RATE_54MB:
return ZD_OFDM_RATE_54M;
}
return ZD_CS_CCK_RATE_1M;
}
int zd_mac_set_mode(struct zd_mac *mac, u32 mode)
{
struct ieee80211_device *ieee;
switch (mode) {
case IW_MODE_AUTO:
case IW_MODE_ADHOC:
case IW_MODE_INFRA:
mac->netdev->type = ARPHRD_ETHER;
break;
case IW_MODE_MONITOR:
mac->netdev->type = ARPHRD_IEEE80211_RADIOTAP;
break;
default:
dev_dbg_f(zd_mac_dev(mac), "wrong mode %u\n", mode);
return -EINVAL;
}
ieee = zd_mac_to_ieee80211(mac);
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&ieee->lock);
ieee->iw_mode = mode;
spin_unlock_irq(&ieee->lock);
if (netif_running(mac->netdev))
return reset_mode(mac);
return 0;
}
int zd_mac_get_mode(struct zd_mac *mac, u32 *mode)
{
unsigned long flags;
struct ieee80211_device *ieee;
ieee = zd_mac_to_ieee80211(mac);
spin_lock_irqsave(&ieee->lock, flags);
*mode = ieee->iw_mode;
spin_unlock_irqrestore(&ieee->lock, flags);
return 0;
}
int zd_mac_get_range(struct zd_mac *mac, struct iw_range *range)
{
int i;
const struct channel_range *channel_range;
u8 regdomain;
memset(range, 0, sizeof(*range));
/* FIXME: Not so important and depends on the mode. For 802.11g
* usually this value is used. It seems to be that Bit/s number is
* given here.
*/
range->throughput = 27 * 1000 * 1000;
range->max_qual.qual = 100;
range->max_qual.level = 100;
/* FIXME: Needs still to be tuned. */
range->avg_qual.qual = 71;
range->avg_qual.level = 80;
/* FIXME: depends on standard? */
range->min_rts = 256;
range->max_rts = 2346;
range->min_frag = MIN_FRAG_THRESHOLD;
range->max_frag = MAX_FRAG_THRESHOLD;
range->max_encoding_tokens = WEP_KEYS;
range->num_encoding_sizes = 2;
range->encoding_size[0] = 5;
range->encoding_size[1] = WEP_KEY_LEN;
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 20;
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&mac->lock);
regdomain = mac->regdomain;
spin_unlock_irq(&mac->lock);
channel_range = zd_channel_range(regdomain);
range->num_channels = channel_range->end - channel_range->start;
range->old_num_channels = range->num_channels;
range->num_frequency = range->num_channels;
range->old_num_frequency = range->num_frequency;
for (i = 0; i < range->num_frequency; i++) {
struct iw_freq *freq = &range->freq[i];
freq->i = channel_range->start + i;
zd_channel_to_freq(freq, freq->i);
}
return 0;
}
static int zd_calc_tx_length_us(u8 *service, u8 cs_rate, u16 tx_length)
{
static const u8 rate_divisor[] = {
[ZD_CS_CCK_RATE_1M] = 1,
[ZD_CS_CCK_RATE_2M] = 2,
[ZD_CS_CCK_RATE_5_5M] = 11, /* bits must be doubled */
[ZD_CS_CCK_RATE_11M] = 11,
[ZD_OFDM_RATE_6M] = 6,
[ZD_OFDM_RATE_9M] = 9,
[ZD_OFDM_RATE_12M] = 12,
[ZD_OFDM_RATE_18M] = 18,
[ZD_OFDM_RATE_24M] = 24,
[ZD_OFDM_RATE_36M] = 36,
[ZD_OFDM_RATE_48M] = 48,
[ZD_OFDM_RATE_54M] = 54,
};
u32 bits = (u32)tx_length * 8;
u32 divisor;
divisor = rate_divisor[cs_rate];
if (divisor == 0)
return -EINVAL;
switch (cs_rate) {
case ZD_CS_CCK_RATE_5_5M:
bits = (2*bits) + 10; /* round up to the next integer */
break;
case ZD_CS_CCK_RATE_11M:
if (service) {
u32 t = bits % 11;
*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
if (0 < t && t <= 3) {
*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
}
}
bits += 10; /* round up to the next integer */
break;
}
return bits/divisor;
}
enum {
R2M_SHORT_PREAMBLE = 0x01,
R2M_11A = 0x02,
};
static u8 cs_rate_to_modulation(u8 cs_rate, int flags)
{
u8 modulation;
modulation = cs_typed_rate(cs_rate);
if (flags & R2M_SHORT_PREAMBLE) {
switch (ZD_CS_RATE(modulation)) {
case ZD_CS_CCK_RATE_2M:
case ZD_CS_CCK_RATE_5_5M:
case ZD_CS_CCK_RATE_11M:
modulation |= ZD_CS_CCK_PREA_SHORT;
return modulation;
}
}
if (flags & R2M_11A) {
if (ZD_CS_TYPE(modulation) == ZD_CS_OFDM)
modulation |= ZD_CS_OFDM_MODE_11A;
}
return modulation;
}
static void cs_set_modulation(struct zd_mac *mac, struct zd_ctrlset *cs,
struct ieee80211_hdr_4addr *hdr)
{
struct ieee80211softmac_device *softmac = ieee80211_priv(mac->netdev);
u16 ftype = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_ctl));
u8 rate, cs_rate;
int is_mgt = (ftype == IEEE80211_FTYPE_MGMT) != 0;
/* FIXME: 802.11a? short preamble? */
rate = ieee80211softmac_suggest_txrate(softmac,
is_multicast_ether_addr(hdr->addr1), is_mgt);
cs_rate = rate_to_cs_rate(rate);
cs->modulation = cs_rate_to_modulation(cs_rate, 0);
}
static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
struct ieee80211_hdr_4addr *header)
{
unsigned int tx_length = le16_to_cpu(cs->tx_length);
u16 fctl = le16_to_cpu(header->frame_ctl);
u16 ftype = WLAN_FC_GET_TYPE(fctl);
u16 stype = WLAN_FC_GET_STYPE(fctl);
/*
* CONTROL:
* - start at 0x00
* - if fragment 0, enable bit 0
* - if backoff needed, enable bit 0
* - if burst (backoff not needed) disable bit 0
* - if multicast, enable bit 1
* - if PS-POLL frame, enable bit 2
* - if in INDEPENDENT_BSS mode and zd1205_DestPowerSave, then enable
* bit 4 (FIXME: wtf)
* - if frag_len > RTS threshold, set bit 5 as long if it isnt
* multicast or mgt
* - if bit 5 is set, and we are in OFDM mode, unset bit 5 and set bit
* 7
*/
cs->control = 0;
/* First fragment */
if (WLAN_GET_SEQ_FRAG(le16_to_cpu(header->seq_ctl)) == 0)
cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
/* Multicast */
if (is_multicast_ether_addr(header->addr1))
cs->control |= ZD_CS_MULTICAST;
/* PS-POLL */
if (stype == IEEE80211_STYPE_PSPOLL)
cs->control |= ZD_CS_PS_POLL_FRAME;
if (!is_multicast_ether_addr(header->addr1) &&
ftype != IEEE80211_FTYPE_MGMT &&
tx_length > zd_netdev_ieee80211(mac->netdev)->rts)
{
/* FIXME: check the logic */
if (ZD_CS_TYPE(cs->modulation) == ZD_CS_OFDM) {
/* 802.11g */
cs->control |= ZD_CS_SELF_CTS;
} else { /* 802.11b */
cs->control |= ZD_CS_RTS;
}
}
/* FIXME: Management frame? */
}
static int fill_ctrlset(struct zd_mac *mac,
struct ieee80211_txb *txb,
int frag_num)
{
int r;
struct sk_buff *skb = txb->fragments[frag_num];
struct ieee80211_hdr_4addr *hdr =
(struct ieee80211_hdr_4addr *) skb->data;
unsigned int frag_len = skb->len + IEEE80211_FCS_LEN;
unsigned int next_frag_len;
unsigned int packet_length;
struct zd_ctrlset *cs = (struct zd_ctrlset *)
skb_push(skb, sizeof(struct zd_ctrlset));
if (frag_num+1 < txb->nr_frags) {
next_frag_len = txb->fragments[frag_num+1]->len +
IEEE80211_FCS_LEN;
} else {
next_frag_len = 0;
}
ZD_ASSERT(frag_len <= 0xffff);
ZD_ASSERT(next_frag_len <= 0xffff);
cs_set_modulation(mac, cs, hdr);
cs->tx_length = cpu_to_le16(frag_len);
cs_set_control(mac, cs, hdr);
packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
ZD_ASSERT(packet_length <= 0xffff);
/* ZD1211B: Computing the length difference this way, gives us
* flexibility to compute the packet length.
*/
cs->packet_length = cpu_to_le16(mac->chip.is_zd1211b ?
packet_length - frag_len : packet_length);
/*
* CURRENT LENGTH:
* - transmit frame length in microseconds
* - seems to be derived from frame length
* - see Cal_Us_Service() in zdinlinef.h
* - if macp->bTxBurstEnable is enabled, then multiply by 4
* - bTxBurstEnable is never set in the vendor driver
*
* SERVICE:
* - "for PLCP configuration"
* - always 0 except in some situations at 802.11b 11M
* - see line 53 of zdinlinef.h
*/
cs->service = 0;
r = zd_calc_tx_length_us(&cs->service, ZD_CS_RATE(cs->modulation),
le16_to_cpu(cs->tx_length));
if (r < 0)
return r;
cs->current_length = cpu_to_le16(r);
if (next_frag_len == 0) {
cs->next_frame_length = 0;
} else {
r = zd_calc_tx_length_us(NULL, ZD_CS_RATE(cs->modulation),
next_frag_len);
if (r < 0)
return r;
cs->next_frame_length = cpu_to_le16(r);
}
return 0;
}
static int zd_mac_tx(struct zd_mac *mac, struct ieee80211_txb *txb, int pri)
{
int i, r;
for (i = 0; i < txb->nr_frags; i++) {
struct sk_buff *skb = txb->fragments[i];
r = fill_ctrlset(mac, txb, i);
if (r)
return r;
r = zd_usb_tx(&mac->chip.usb, skb->data, skb->len);
if (r)
return r;
}
/* FIXME: shouldn't this be handled by the upper layers? */
mac->netdev->trans_start = jiffies;
ieee80211_txb_free(txb);
return 0;
}
struct zd_rt_hdr {
struct ieee80211_radiotap_header rt_hdr;
u8 rt_flags;
u8 rt_rate;
u16 rt_channel;
u16 rt_chbitmask;
};
static void fill_rt_header(void *buffer, struct zd_mac *mac,
const struct ieee80211_rx_stats *stats,
const struct rx_status *status)
{
struct zd_rt_hdr *hdr = buffer;
hdr->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
hdr->rt_hdr.it_pad = 0;
hdr->rt_hdr.it_len = cpu_to_le16(sizeof(struct zd_rt_hdr));
hdr->rt_hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL) |
(1 << IEEE80211_RADIOTAP_RATE));
hdr->rt_flags = 0;
if (status->decryption_type & (ZD_RX_WEP64|ZD_RX_WEP128|ZD_RX_WEP256))
hdr->rt_flags |= IEEE80211_RADIOTAP_F_WEP;
hdr->rt_rate = stats->rate / 5;
/* FIXME: 802.11a */
hdr->rt_channel = cpu_to_le16(ieee80211chan2mhz(
_zd_chip_get_channel(&mac->chip)));
hdr->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_2GHZ |
((status->frame_status & ZD_RX_FRAME_MODULATION_MASK) ==
ZD_RX_OFDM ? IEEE80211_CHAN_OFDM : IEEE80211_CHAN_CCK));
}
/* Returns 1 if the data packet is for us and 0 otherwise. */
static int is_data_packet_for_us(struct ieee80211_device *ieee,
struct ieee80211_hdr_4addr *hdr)
{
struct net_device *netdev = ieee->dev;
u16 fc = le16_to_cpu(hdr->frame_ctl);
ZD_ASSERT(WLAN_FC_GET_TYPE(fc) == IEEE80211_FTYPE_DATA);
switch (ieee->iw_mode) {
case IW_MODE_ADHOC:
if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) != 0 ||
memcmp(hdr->addr3, ieee->bssid, ETH_ALEN) != 0)
return 0;
break;
case IW_MODE_AUTO:
case IW_MODE_INFRA:
if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) !=
IEEE80211_FCTL_FROMDS ||
memcmp(hdr->addr2, ieee->bssid, ETH_ALEN) != 0)
return 0;
break;
default:
ZD_ASSERT(ieee->iw_mode != IW_MODE_MONITOR);
return 0;
}
return memcmp(hdr->addr1, netdev->dev_addr, ETH_ALEN) == 0 ||
is_multicast_ether_addr(hdr->addr1) ||
(netdev->flags & IFF_PROMISC);
}
/* Filters receiving packets. If it returns 1 send it to ieee80211_rx, if 0
* return. If an error is detected -EINVAL is returned. ieee80211_rx_mgt() is
* called here.
*
* It has been based on ieee80211_rx_any.
*/
static int filter_rx(struct ieee80211_device *ieee,
const u8 *buffer, unsigned int length,
struct ieee80211_rx_stats *stats)
{
struct ieee80211_hdr_4addr *hdr;
u16 fc;
if (ieee->iw_mode == IW_MODE_MONITOR)
return 1;
hdr = (struct ieee80211_hdr_4addr *)buffer;
fc = le16_to_cpu(hdr->frame_ctl);
if ((fc & IEEE80211_FCTL_VERS) != 0)
return -EINVAL;
switch (WLAN_FC_GET_TYPE(fc)) {
case IEEE80211_FTYPE_MGMT:
if (length < sizeof(struct ieee80211_hdr_3addr))
return -EINVAL;
ieee80211_rx_mgt(ieee, hdr, stats);
return 0;
case IEEE80211_FTYPE_CTL:
/* Ignore invalid short buffers */
return 0;
case IEEE80211_FTYPE_DATA:
if (length < sizeof(struct ieee80211_hdr_3addr))
return -EINVAL;
return is_data_packet_for_us(ieee, hdr);
}
return -EINVAL;
}
static void update_qual_rssi(struct zd_mac *mac,
const u8 *buffer, unsigned int length,
u8 qual_percent, u8 rssi_percent)
{
unsigned long flags;
struct ieee80211_hdr_3addr *hdr;
int i;
hdr = (struct ieee80211_hdr_3addr *)buffer;
if (length < offsetof(struct ieee80211_hdr_3addr, addr3))
return;
if (memcmp(hdr->addr2, zd_mac_to_ieee80211(mac)->bssid, ETH_ALEN) != 0)
return;
spin_lock_irqsave(&mac->lock, flags);
i = mac->stats_count % ZD_MAC_STATS_BUFFER_SIZE;
mac->qual_buffer[i] = qual_percent;
mac->rssi_buffer[i] = rssi_percent;
mac->stats_count++;
spin_unlock_irqrestore(&mac->lock, flags);
}
static int fill_rx_stats(struct ieee80211_rx_stats *stats,
const struct rx_status **pstatus,
struct zd_mac *mac,
const u8 *buffer, unsigned int length)
{
const struct rx_status *status;
*pstatus = status = zd_tail(buffer, length, sizeof(struct rx_status));
if (status->frame_status & ZD_RX_ERROR) {
/* FIXME: update? */
return -EINVAL;
}
memset(stats, 0, sizeof(struct ieee80211_rx_stats));
stats->len = length - (ZD_PLCP_HEADER_SIZE + IEEE80211_FCS_LEN +
+ sizeof(struct rx_status));
/* FIXME: 802.11a */
stats->freq = IEEE80211_24GHZ_BAND;
stats->received_channel = _zd_chip_get_channel(&mac->chip);
stats->rssi = zd_rx_strength_percent(status->signal_strength);
stats->signal = zd_rx_qual_percent(buffer,
length - sizeof(struct rx_status),
status);
stats->mask = IEEE80211_STATMASK_RSSI | IEEE80211_STATMASK_SIGNAL;
stats->rate = zd_rx_rate(buffer, status);
if (stats->rate)
stats->mask |= IEEE80211_STATMASK_RATE;
return 0;
}
int zd_mac_rx(struct zd_mac *mac, const u8 *buffer, unsigned int length)
{
int r;
struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
struct ieee80211_rx_stats stats;
const struct rx_status *status;
struct sk_buff *skb;
if (length < ZD_PLCP_HEADER_SIZE + IEEE80211_1ADDR_LEN +
IEEE80211_FCS_LEN + sizeof(struct rx_status))
return -EINVAL;
r = fill_rx_stats(&stats, &status, mac, buffer, length);
if (r)
return r;
length -= ZD_PLCP_HEADER_SIZE+IEEE80211_FCS_LEN+
sizeof(struct rx_status);
buffer += ZD_PLCP_HEADER_SIZE;
update_qual_rssi(mac, buffer, length, stats.signal, stats.rssi);
r = filter_rx(ieee, buffer, length, &stats);
if (r <= 0)
return r;
skb = dev_alloc_skb(sizeof(struct zd_rt_hdr) + length);
if (!skb)
return -ENOMEM;
if (ieee->iw_mode == IW_MODE_MONITOR)
fill_rt_header(skb_put(skb, sizeof(struct zd_rt_hdr)), mac,
&stats, status);
memcpy(skb_put(skb, length), buffer, length);
r = ieee80211_rx(ieee, skb, &stats);
if (!r) {
ZD_ASSERT(in_irq());
dev_kfree_skb_irq(skb);
}
return 0;
}
static int netdev_tx(struct ieee80211_txb *txb, struct net_device *netdev,
int pri)
{
return zd_mac_tx(zd_netdev_mac(netdev), txb, pri);
}
static void set_security(struct net_device *netdev,
struct ieee80211_security *sec)
{
struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
struct ieee80211_security *secinfo = &ieee->sec;
int keyidx;
dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), "\n");
for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
if (sec->flags & (1<<keyidx)) {
secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
memcpy(secinfo->keys[keyidx], sec->keys[keyidx],
SCM_KEY_LEN);
}
if (sec->flags & SEC_ACTIVE_KEY) {
secinfo->active_key = sec->active_key;
dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
" .active_key = %d\n", sec->active_key);
}
if (sec->flags & SEC_UNICAST_GROUP) {
secinfo->unicast_uses_group = sec->unicast_uses_group;
dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
" .unicast_uses_group = %d\n",
sec->unicast_uses_group);
}
if (sec->flags & SEC_LEVEL) {
secinfo->level = sec->level;
dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
" .level = %d\n", sec->level);
}
if (sec->flags & SEC_ENABLED) {
secinfo->enabled = sec->enabled;
dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
" .enabled = %d\n", sec->enabled);
}
if (sec->flags & SEC_ENCRYPT) {
secinfo->encrypt = sec->encrypt;
dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
" .encrypt = %d\n", sec->encrypt);
}
if (sec->flags & SEC_AUTH_MODE) {
secinfo->auth_mode = sec->auth_mode;
dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
" .auth_mode = %d\n", sec->auth_mode);
}
}
static void ieee_init(struct ieee80211_device *ieee)
{
ieee->mode = IEEE_B | IEEE_G;
ieee->freq_band = IEEE80211_24GHZ_BAND;
ieee->modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION;
ieee->tx_headroom = sizeof(struct zd_ctrlset);
ieee->set_security = set_security;
ieee->hard_start_xmit = netdev_tx;
/* Software encryption/decryption for now */
ieee->host_build_iv = 0;
ieee->host_encrypt = 1;
ieee->host_decrypt = 1;
/* FIXME: default to managed mode, until ieee80211 and zd1211rw can
* correctly support AUTO */
ieee->iw_mode = IW_MODE_INFRA;
}
static void softmac_init(struct ieee80211softmac_device *sm)
{
sm->set_channel = set_channel;
}
struct iw_statistics *zd_mac_get_wireless_stats(struct net_device *ndev)
{
struct zd_mac *mac = zd_netdev_mac(ndev);
struct iw_statistics *iw_stats = &mac->iw_stats;
unsigned int i, count, qual_total, rssi_total;
memset(iw_stats, 0, sizeof(struct iw_statistics));
/* We are not setting the status, because ieee->state is not updated
* at all and this driver doesn't track authentication state.
*/
spin_lock_irq(&mac->lock);
count = mac->stats_count < ZD_MAC_STATS_BUFFER_SIZE ?
mac->stats_count : ZD_MAC_STATS_BUFFER_SIZE;
qual_total = rssi_total = 0;
for (i = 0; i < count; i++) {
qual_total += mac->qual_buffer[i];
rssi_total += mac->rssi_buffer[i];
}
spin_unlock_irq(&mac->lock);
iw_stats->qual.updated = IW_QUAL_NOISE_INVALID;
if (count > 0) {
iw_stats->qual.qual = qual_total / count;
iw_stats->qual.level = rssi_total / count;
iw_stats->qual.updated |=
IW_QUAL_QUAL_UPDATED|IW_QUAL_LEVEL_UPDATED;
} else {
iw_stats->qual.updated |=
IW_QUAL_QUAL_INVALID|IW_QUAL_LEVEL_INVALID;
}
/* TODO: update counter */
return iw_stats;
}
#ifdef DEBUG
static const char* decryption_types[] = {
[ZD_RX_NO_WEP] = "none",
[ZD_RX_WEP64] = "WEP64",
[ZD_RX_TKIP] = "TKIP",
[ZD_RX_AES] = "AES",
[ZD_RX_WEP128] = "WEP128",
[ZD_RX_WEP256] = "WEP256",
};
static const char *decryption_type_string(u8 type)
{
const char *s;
if (type < ARRAY_SIZE(decryption_types)) {
s = decryption_types[type];
} else {
s = NULL;
}
return s ? s : "unknown";
}
static int is_ofdm(u8 frame_status)
{
return (frame_status & ZD_RX_OFDM);
}
void zd_dump_rx_status(const struct rx_status *status)
{
const char* modulation;
u8 quality;
if (is_ofdm(status->frame_status)) {
modulation = "ofdm";
quality = status->signal_quality_ofdm;
} else {
modulation = "cck";
quality = status->signal_quality_cck;
}
pr_debug("rx status %s strength %#04x qual %#04x decryption %s\n",
modulation, status->signal_strength, quality,
decryption_type_string(status->decryption_type));
if (status->frame_status & ZD_RX_ERROR) {
pr_debug("rx error %s%s%s%s%s%s\n",
(status->frame_status & ZD_RX_TIMEOUT_ERROR) ?
"timeout " : "",
(status->frame_status & ZD_RX_FIFO_OVERRUN_ERROR) ?
"fifo " : "",
(status->frame_status & ZD_RX_DECRYPTION_ERROR) ?
"decryption " : "",
(status->frame_status & ZD_RX_CRC32_ERROR) ?
"crc32 " : "",
(status->frame_status & ZD_RX_NO_ADDR1_MATCH_ERROR) ?
"addr1 " : "",
(status->frame_status & ZD_RX_CRC16_ERROR) ?
"crc16" : "");
}
}
#endif /* DEBUG */
#define LINK_LED_WORK_DELAY HZ
static void link_led_handler(void *p)
{
struct zd_mac *mac = p;
struct zd_chip *chip = &mac->chip;
struct ieee80211softmac_device *sm = ieee80211_priv(mac->netdev);
int is_associated;
int r;
spin_lock_irq(&mac->lock);
is_associated = sm->associnfo.associated != 0;
spin_unlock_irq(&mac->lock);
r = zd_chip_control_leds(chip,
is_associated ? LED_ASSOCIATED : LED_SCANNING);
if (r)
dev_err(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
LINK_LED_WORK_DELAY);
}
static void housekeeping_init(struct zd_mac *mac)
{
INIT_WORK(&mac->housekeeping.link_led_work, link_led_handler, mac);
}
static void housekeeping_enable(struct zd_mac *mac)
{
dev_dbg_f(zd_mac_dev(mac), "\n");
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
0);
}
static void housekeeping_disable(struct zd_mac *mac)
{
dev_dbg_f(zd_mac_dev(mac), "\n");
cancel_rearming_delayed_workqueue(zd_workqueue,
&mac->housekeeping.link_led_work);
zd_chip_control_leds(&mac->chip, LED_OFF);
}