| /****************************************************************************** |
| * |
| * Module Name: tbfadt - FADT table utilities |
| * |
| *****************************************************************************/ |
| |
| /* |
| * Copyright (C) 2000 - 2007, R. Byron Moore |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| */ |
| |
| #include <acpi/acpi.h> |
| #include <acpi/actables.h> |
| |
| #define _COMPONENT ACPI_TABLES |
| ACPI_MODULE_NAME("tbfadt") |
| |
| /* Local prototypes */ |
| static void inline |
| acpi_tb_init_generic_address(struct acpi_generic_address *generic_address, |
| u8 bit_width, u64 address); |
| |
| static void acpi_tb_convert_fadt(void); |
| |
| static void acpi_tb_validate_fadt(void); |
| |
| /* Table for conversion of FADT to common internal format and FADT validation */ |
| |
| typedef struct acpi_fadt_info { |
| char *name; |
| u8 target; |
| u8 source; |
| u8 length; |
| u8 type; |
| |
| } acpi_fadt_info; |
| |
| #define ACPI_FADT_REQUIRED 1 |
| #define ACPI_FADT_SEPARATE_LENGTH 2 |
| |
| static struct acpi_fadt_info fadt_info_table[] = { |
| {"Pm1aEventBlock", ACPI_FADT_OFFSET(xpm1a_event_block), |
| ACPI_FADT_OFFSET(pm1a_event_block), |
| ACPI_FADT_OFFSET(pm1_event_length), ACPI_FADT_REQUIRED}, |
| |
| {"Pm1bEventBlock", ACPI_FADT_OFFSET(xpm1b_event_block), |
| ACPI_FADT_OFFSET(pm1b_event_block), |
| ACPI_FADT_OFFSET(pm1_event_length), 0}, |
| |
| {"Pm1aControlBlock", ACPI_FADT_OFFSET(xpm1a_control_block), |
| ACPI_FADT_OFFSET(pm1a_control_block), |
| ACPI_FADT_OFFSET(pm1_control_length), ACPI_FADT_REQUIRED}, |
| |
| {"Pm1bControlBlock", ACPI_FADT_OFFSET(xpm1b_control_block), |
| ACPI_FADT_OFFSET(pm1b_control_block), |
| ACPI_FADT_OFFSET(pm1_control_length), 0}, |
| |
| {"Pm2ControlBlock", ACPI_FADT_OFFSET(xpm2_control_block), |
| ACPI_FADT_OFFSET(pm2_control_block), |
| ACPI_FADT_OFFSET(pm2_control_length), ACPI_FADT_SEPARATE_LENGTH}, |
| |
| {"PmTimerBlock", ACPI_FADT_OFFSET(xpm_timer_block), |
| ACPI_FADT_OFFSET(pm_timer_block), |
| ACPI_FADT_OFFSET(pm_timer_length), ACPI_FADT_REQUIRED}, |
| |
| {"Gpe0Block", ACPI_FADT_OFFSET(xgpe0_block), |
| ACPI_FADT_OFFSET(gpe0_block), |
| ACPI_FADT_OFFSET(gpe0_block_length), ACPI_FADT_SEPARATE_LENGTH}, |
| |
| {"Gpe1Block", ACPI_FADT_OFFSET(xgpe1_block), |
| ACPI_FADT_OFFSET(gpe1_block), |
| ACPI_FADT_OFFSET(gpe1_block_length), ACPI_FADT_SEPARATE_LENGTH} |
| }; |
| |
| #define ACPI_FADT_INFO_ENTRIES (sizeof (fadt_info_table) / sizeof (struct acpi_fadt_info)) |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_tb_init_generic_address |
| * |
| * PARAMETERS: generic_address - GAS struct to be initialized |
| * bit_width - Width of this register |
| * Address - Address of the register |
| * |
| * RETURN: None |
| * |
| * DESCRIPTION: Initialize a Generic Address Structure (GAS) |
| * See the ACPI specification for a full description and |
| * definition of this structure. |
| * |
| ******************************************************************************/ |
| |
| static void inline |
| acpi_tb_init_generic_address(struct acpi_generic_address *generic_address, |
| u8 bit_width, u64 address) |
| { |
| |
| /* |
| * The 64-bit Address field is non-aligned in the byte packed |
| * GAS struct. |
| */ |
| ACPI_MOVE_64_TO_64(&generic_address->address, &address); |
| |
| /* All other fields are byte-wide */ |
| |
| generic_address->space_id = ACPI_ADR_SPACE_SYSTEM_IO; |
| generic_address->bit_width = bit_width; |
| generic_address->bit_offset = 0; |
| generic_address->access_width = 0; |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_tb_parse_fadt |
| * |
| * PARAMETERS: table_index - Index for the FADT |
| * Flags - Flags |
| * |
| * RETURN: None |
| * |
| * DESCRIPTION: Initialize the FADT, DSDT and FACS tables |
| * (FADT contains the addresses of the DSDT and FACS) |
| * |
| ******************************************************************************/ |
| |
| void acpi_tb_parse_fadt(acpi_native_uint table_index, u8 flags) |
| { |
| u32 length; |
| struct acpi_table_header *table; |
| |
| /* |
| * The FADT has multiple versions with different lengths, |
| * and it contains pointers to both the DSDT and FACS tables. |
| * |
| * Get a local copy of the FADT and convert it to a common format |
| * Map entire FADT, assumed to be smaller than one page. |
| */ |
| length = acpi_gbl_root_table_list.tables[table_index].length; |
| |
| table = |
| acpi_os_map_memory(acpi_gbl_root_table_list.tables[table_index]. |
| address, length); |
| if (!table) { |
| return; |
| } |
| |
| /* |
| * Validate the FADT checksum before we copy the table. Ignore |
| * checksum error as we want to try to get the DSDT and FACS. |
| */ |
| (void)acpi_tb_verify_checksum(table, length); |
| |
| /* Obtain a local copy of the FADT in common ACPI 2.0+ format */ |
| |
| acpi_tb_create_local_fadt(table, length); |
| |
| /* All done with the real FADT, unmap it */ |
| |
| acpi_os_unmap_memory(table, length); |
| |
| /* Obtain the DSDT and FACS tables via their addresses within the FADT */ |
| |
| acpi_tb_install_table((acpi_physical_address) acpi_gbl_FADT.Xdsdt, |
| flags, ACPI_SIG_DSDT, ACPI_TABLE_INDEX_DSDT); |
| |
| acpi_tb_install_table((acpi_physical_address) acpi_gbl_FADT.Xfacs, |
| flags, ACPI_SIG_FACS, ACPI_TABLE_INDEX_FACS); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_tb_create_local_fadt |
| * |
| * PARAMETERS: Table - Pointer to BIOS FADT |
| * Length - Length of the table |
| * |
| * RETURN: None |
| * |
| * DESCRIPTION: Get a local copy of the FADT and convert it to a common format. |
| * Performs validation on some important FADT fields. |
| * |
| ******************************************************************************/ |
| |
| void acpi_tb_create_local_fadt(struct acpi_table_header *table, u32 length) |
| { |
| |
| /* |
| * Check if the FADT is larger than what we know about (ACPI 2.0 version). |
| * Truncate the table, but make some noise. |
| */ |
| if (length > sizeof(struct acpi_table_fadt)) { |
| ACPI_WARNING((AE_INFO, |
| "FADT (revision %u) is longer than ACPI 2.0 version, truncating length 0x%X to 0x%zX", |
| table->revision, (unsigned)length, |
| sizeof(struct acpi_table_fadt))); |
| } |
| |
| /* Copy the entire FADT locally. Zero first for tb_convert_fadt */ |
| |
| ACPI_MEMSET(&acpi_gbl_FADT, 0, sizeof(struct acpi_table_fadt)); |
| |
| ACPI_MEMCPY(&acpi_gbl_FADT, table, |
| ACPI_MIN(length, sizeof(struct acpi_table_fadt))); |
| |
| /* |
| * 1) Convert the local copy of the FADT to the common internal format |
| * 2) Validate some of the important values within the FADT |
| */ |
| acpi_tb_convert_fadt(); |
| acpi_tb_validate_fadt(); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_tb_convert_fadt |
| * |
| * PARAMETERS: None, uses acpi_gbl_FADT |
| * |
| * RETURN: None |
| * |
| * DESCRIPTION: Converts all versions of the FADT to a common internal format. |
| * -> Expand all 32-bit addresses to 64-bit. |
| * |
| * NOTE: acpi_gbl_FADT must be of size (struct acpi_table_fadt), |
| * and must contain a copy of the actual FADT. |
| * |
| * ACPICA will use the "X" fields of the FADT for all addresses. |
| * |
| * "X" fields are optional extensions to the original V1.0 fields. Even if |
| * they are present in the structure, they can be optionally not used by |
| * setting them to zero. Therefore, we must selectively expand V1.0 fields |
| * if the corresponding X field is zero. |
| * |
| * For ACPI 1.0 FADTs, all address fields are expanded to the corresponding |
| * "X" fields. |
| * |
| * For ACPI 2.0 FADTs, any "X" fields that are NULL are filled in by |
| * expanding the corresponding ACPI 1.0 field. |
| * |
| ******************************************************************************/ |
| |
| static void acpi_tb_convert_fadt(void) |
| { |
| u8 pm1_register_length; |
| struct acpi_generic_address *target; |
| acpi_native_uint i; |
| |
| /* Update the local FADT table header length */ |
| |
| acpi_gbl_FADT.header.length = sizeof(struct acpi_table_fadt); |
| |
| /* Expand the 32-bit FACS and DSDT addresses to 64-bit as necessary */ |
| |
| if (!acpi_gbl_FADT.Xfacs) { |
| acpi_gbl_FADT.Xfacs = (u64) acpi_gbl_FADT.facs; |
| } |
| |
| if (!acpi_gbl_FADT.Xdsdt) { |
| acpi_gbl_FADT.Xdsdt = (u64) acpi_gbl_FADT.dsdt; |
| } |
| |
| /* |
| * Expand the 32-bit V1.0 addresses to the 64-bit "X" generic address |
| * structures as necessary. |
| */ |
| for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { |
| target = |
| ACPI_ADD_PTR(struct acpi_generic_address, &acpi_gbl_FADT, |
| fadt_info_table[i].target); |
| |
| /* Expand only if the X target is null */ |
| |
| if (!target->address) { |
| acpi_tb_init_generic_address(target, |
| *ACPI_ADD_PTR(u8, |
| &acpi_gbl_FADT, |
| fadt_info_table |
| [i].length), |
| (u64) * ACPI_ADD_PTR(u32, |
| &acpi_gbl_FADT, |
| fadt_info_table |
| [i]. |
| source)); |
| } |
| } |
| |
| /* |
| * Calculate separate GAS structs for the PM1 Enable registers. |
| * These addresses do not appear (directly) in the FADT, so it is |
| * useful to calculate them once, here. |
| * |
| * The PM event blocks are split into two register blocks, first is the |
| * PM Status Register block, followed immediately by the PM Enable Register |
| * block. Each is of length (pm1_event_length/2) |
| */ |
| pm1_register_length = (u8) ACPI_DIV_2(acpi_gbl_FADT.pm1_event_length); |
| |
| /* The PM1A register block is required */ |
| |
| acpi_tb_init_generic_address(&acpi_gbl_xpm1a_enable, |
| pm1_register_length, |
| (acpi_gbl_FADT.xpm1a_event_block.address + |
| pm1_register_length)); |
| /* Don't forget to copy space_id of the GAS */ |
| acpi_gbl_xpm1a_enable.space_id = acpi_gbl_FADT.xpm1a_event_block.space_id; |
| |
| /* The PM1B register block is optional, ignore if not present */ |
| |
| if (acpi_gbl_FADT.xpm1b_event_block.address) { |
| acpi_tb_init_generic_address(&acpi_gbl_xpm1b_enable, |
| pm1_register_length, |
| (acpi_gbl_FADT.xpm1b_event_block. |
| address + pm1_register_length)); |
| /* Don't forget to copy space_id of the GAS */ |
| acpi_gbl_xpm1b_enable.space_id = acpi_gbl_FADT.xpm1a_event_block.space_id; |
| |
| } |
| |
| /* |
| * For ACPI 1.0 FADTs, ensure that reserved fields (which should be zero) |
| * are indeed zero. This will workaround BIOSs that inadvertently placed |
| * values in these fields. |
| */ |
| if (acpi_gbl_FADT.header.revision < 3) { |
| acpi_gbl_FADT.preferred_profile = 0; |
| acpi_gbl_FADT.pstate_control = 0; |
| acpi_gbl_FADT.cst_control = 0; |
| acpi_gbl_FADT.boot_flags = 0; |
| } |
| } |
| |
| /****************************************************************************** |
| * |
| * FUNCTION: acpi_tb_validate_fadt |
| * |
| * PARAMETERS: Table - Pointer to the FADT to be validated |
| * |
| * RETURN: None |
| * |
| * DESCRIPTION: Validate various important fields within the FADT. If a problem |
| * is found, issue a message, but no status is returned. |
| * Used by both the table manager and the disassembler. |
| * |
| * Possible additional checks: |
| * (acpi_gbl_FADT.pm1_event_length >= 4) |
| * (acpi_gbl_FADT.pm1_control_length >= 2) |
| * (acpi_gbl_FADT.pm_timer_length >= 4) |
| * Gpe block lengths must be multiple of 2 |
| * |
| ******************************************************************************/ |
| |
| static void acpi_tb_validate_fadt(void) |
| { |
| u32 *address32; |
| struct acpi_generic_address *address64; |
| u8 length; |
| acpi_native_uint i; |
| |
| /* Examine all of the 64-bit extended address fields (X fields) */ |
| |
| for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { |
| |
| /* Generate pointers to the 32-bit and 64-bit addresses and get the length */ |
| |
| address64 = |
| ACPI_ADD_PTR(struct acpi_generic_address, &acpi_gbl_FADT, |
| fadt_info_table[i].target); |
| address32 = |
| ACPI_ADD_PTR(u32, &acpi_gbl_FADT, |
| fadt_info_table[i].source); |
| length = |
| *ACPI_ADD_PTR(u8, &acpi_gbl_FADT, |
| fadt_info_table[i].length); |
| |
| if (fadt_info_table[i].type & ACPI_FADT_REQUIRED) { |
| /* |
| * Field is required (Pm1a_event, Pm1a_control, pm_timer). |
| * Both the address and length must be non-zero. |
| */ |
| if (!address64->address || !length) { |
| ACPI_ERROR((AE_INFO, |
| "Required field \"%s\" has zero address and/or length: %8.8X%8.8X/%X", |
| fadt_info_table[i].name, |
| ACPI_FORMAT_UINT64(address64-> |
| address), |
| length)); |
| } |
| } else if (fadt_info_table[i].type & ACPI_FADT_SEPARATE_LENGTH) { |
| /* |
| * Field is optional (PM2Control, GPE0, GPE1) AND has its own |
| * length field. If present, both the address and length must be valid. |
| */ |
| if ((address64->address && !length) |
| || (!address64->address && length)) { |
| ACPI_WARNING((AE_INFO, |
| "Optional field \"%s\" has zero address or length: %8.8X%8.8X/%X", |
| fadt_info_table[i].name, |
| ACPI_FORMAT_UINT64(address64-> |
| address), |
| length)); |
| } |
| } |
| |
| /* If both 32- and 64-bit addresses are valid (non-zero), they must match */ |
| |
| if (address64->address && *address32 && |
| (address64->address != (u64) * address32)) { |
| ACPI_ERROR((AE_INFO, |
| "32/64X address mismatch in \"%s\": [%8.8X] [%8.8X%8.8X], using 64X", |
| fadt_info_table[i].name, *address32, |
| ACPI_FORMAT_UINT64(address64->address))); |
| } |
| } |
| } |