blob: 01b464ab303bd3917bf8598d7c22b813c1225000 [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/miscdevice.h>
#include <linux/poll.h>
#include <linux/uaccess.h>
#include <linux/idle_stats_device.h>
#include <linux/module.h>
DEFINE_MUTEX(device_list_lock);
LIST_HEAD(device_list);
static ktime_t us_to_ktime(__u32 us)
{
return ns_to_ktime((u64)us * NSEC_PER_USEC);
}
static struct msm_idle_stats_device *_device_from_minor(unsigned int minor)
{
struct msm_idle_stats_device *device, *ret = NULL;
mutex_lock(&device_list_lock);
list_for_each_entry(device, &device_list, list) {
if (minor == device->miscdev.minor) {
ret = device;
break;
}
}
mutex_unlock(&device_list_lock);
return ret;
}
void msm_idle_stats_update_event(struct msm_idle_stats_device *device,
__u32 event)
{
__u32 wake_up = !device->stats->event;
device->stats->event |= event;
if (wake_up)
wake_up_interruptible(&device->wait);
}
EXPORT_SYMBOL(msm_idle_stats_update_event);
static enum hrtimer_restart msm_idle_stats_busy_timer(struct hrtimer *timer)
{
struct msm_idle_stats_device *device =
container_of(timer, struct msm_idle_stats_device, busy_timer);
/* This is the only case that the event is modified without a device
* lock. However, since the timer is cancelled in the other cases we are
* assured that we have exclusive access to the event at this time.
*/
hrtimer_set_expires(&device->busy_timer, us_to_ktime(0));
msm_idle_stats_update_event(device,
MSM_IDLE_STATS_EVENT_BUSY_TIMER_EXPIRED);
return HRTIMER_NORESTART;
}
static void start_busy_timer(struct msm_idle_stats_device *device,
ktime_t relative_time)
{
hrtimer_cancel(&device->busy_timer);
hrtimer_set_expires(&device->busy_timer, us_to_ktime(0));
if (!((device->stats->event &
MSM_IDLE_STATS_EVENT_BUSY_TIMER_EXPIRED) ||
(device->stats->event & MSM_IDLE_STATS_EVENT_COLLECTION_FULL))) {
if (ktime_to_us(relative_time) > 0) {
hrtimer_start(&device->busy_timer,
relative_time,
HRTIMER_MODE_REL);
}
}
}
static unsigned int msm_idle_stats_device_poll(struct file *file,
poll_table *wait)
{
struct msm_idle_stats_device *device = file->private_data;
unsigned int mask = 0;
poll_wait(file, &device->wait, wait);
if (device->stats->event)
mask = POLLIN | POLLRDNORM;
return mask;
}
static void msm_idle_stats_add_sample(struct msm_idle_stats_device *device,
struct msm_idle_pulse *pulse)
{
hrtimer_cancel(&device->busy_timer);
hrtimer_set_expires(&device->busy_timer, us_to_ktime(0));
if (device->stats->nr_collected >= MSM_IDLE_STATS_NR_MAX_INTERVALS) {
pr_warning("idle_stats_device: Overwriting samples\n");
device->stats->nr_collected = 0;
}
device->stats->pulse_chain[device->stats->nr_collected] = *pulse;
device->stats->nr_collected++;
if (device->stats->nr_collected == device->max_samples) {
msm_idle_stats_update_event(device,
MSM_IDLE_STATS_EVENT_COLLECTION_FULL);
} else if (device->stats->nr_collected ==
((device->max_samples * 3) / 4)) {
msm_idle_stats_update_event(device,
MSM_IDLE_STATS_EVENT_COLLECTION_NEARLY_FULL);
}
}
static long ioctl_read_stats(struct msm_idle_stats_device *device,
unsigned long arg)
{
int remaining;
int requested;
struct msm_idle_pulse pulse;
struct msm_idle_read_stats *stats;
__s64 remaining_time =
ktime_to_us(hrtimer_get_remaining(&device->busy_timer));
device->get_sample(device, &pulse);
spin_lock(&device->lock);
hrtimer_cancel(&device->busy_timer);
stats = device->stats;
if (stats == &device->stats_vector[0])
device->stats = &device->stats_vector[1];
else
device->stats = &device->stats_vector[0];
device->stats->event = 0;
device->stats->nr_collected = 0;
spin_unlock(&device->lock);
if (stats->nr_collected >= device->max_samples) {
stats->nr_collected = device->max_samples;
} else {
stats->pulse_chain[stats->nr_collected] = pulse;
stats->nr_collected++;
if (stats->nr_collected == device->max_samples)
stats->event |= MSM_IDLE_STATS_EVENT_COLLECTION_FULL;
else if (stats->nr_collected ==
((device->max_samples * 3) / 4))
stats->event |=
MSM_IDLE_STATS_EVENT_COLLECTION_NEARLY_FULL;
}
if (remaining_time < 0) {
stats->busy_timer_remaining = 0;
} else {
stats->busy_timer_remaining = remaining_time;
if ((__s64)stats->busy_timer_remaining != remaining_time)
stats->busy_timer_remaining = -1;
}
stats->return_timestamp = ktime_to_us(ktime_get());
requested =
((sizeof(*stats) - sizeof(stats->pulse_chain)) +
(sizeof(stats->pulse_chain[0]) * stats->nr_collected));
remaining = copy_to_user((void __user *)arg, stats, requested);
if (remaining > 0)
return -EFAULT;
return 0;
}
static long ioctl_write_stats(struct msm_idle_stats_device *device,
unsigned long arg)
{
struct msm_idle_write_stats stats;
int remaining;
int ret = 0;
remaining = copy_from_user(&stats, (void __user *) arg, sizeof(stats));
if (remaining > 0) {
ret = -EFAULT;
} else {
spin_lock(&device->lock);
device->busy_timer_interval = us_to_ktime(stats.next_busy_timer);
if (ktime_to_us(device->idle_start) == 0)
start_busy_timer(device, us_to_ktime(stats.busy_timer));
if ((stats.max_samples > 0) &&
(stats.max_samples <= MSM_IDLE_STATS_NR_MAX_INTERVALS))
device->max_samples = stats.max_samples;
spin_unlock(&device->lock);
}
return ret;
}
void msm_idle_stats_prepare_idle_start(struct msm_idle_stats_device *device)
{
spin_lock(&device->lock);
hrtimer_cancel(&device->busy_timer);
spin_unlock(&device->lock);
}
EXPORT_SYMBOL(msm_idle_stats_prepare_idle_start);
void msm_idle_stats_abort_idle_start(struct msm_idle_stats_device *device)
{
spin_lock(&device->lock);
if (ktime_to_us(hrtimer_get_expires(&device->busy_timer)) > 0)
hrtimer_restart(&device->busy_timer);
spin_unlock(&device->lock);
}
EXPORT_SYMBOL(msm_idle_stats_abort_idle_start);
void msm_idle_stats_idle_start(struct msm_idle_stats_device *device)
{
spin_lock(&device->lock);
hrtimer_cancel(&device->busy_timer);
device->idle_start = ktime_get();
if (ktime_to_us(hrtimer_get_expires(&device->busy_timer)) > 0) {
device->remaining_time =
hrtimer_get_remaining(&device->busy_timer);
if (ktime_to_us(device->remaining_time) <= 0)
device->remaining_time = us_to_ktime(0);
} else {
device->remaining_time = us_to_ktime(0);
}
spin_unlock(&device->lock);
}
EXPORT_SYMBOL(msm_idle_stats_idle_start);
void msm_idle_stats_idle_end(struct msm_idle_stats_device *device,
struct msm_idle_pulse *pulse)
{
int tmp;
u32 idle_time = 0;
spin_lock(&device->lock);
if (ktime_to_us(device->idle_start) != 0) {
idle_time = ktime_to_us(ktime_get())
- ktime_to_us(device->idle_start);
device->idle_start = us_to_ktime(0);
msm_idle_stats_add_sample(device, pulse);
if (device->stats->event &
MSM_IDLE_STATS_EVENT_BUSY_TIMER_EXPIRED) {
device->stats->event &=
~MSM_IDLE_STATS_EVENT_BUSY_TIMER_EXPIRED;
msm_idle_stats_update_event(device,
MSM_IDLE_STATS_EVENT_BUSY_TIMER_EXPIRED_RESET);
} else if (ktime_to_us(device->busy_timer_interval) > 0) {
ktime_t busy_timer = device->busy_timer_interval;
/* if it is serialized, it would be full busy,
* checking 80%
*/
if ((pulse->wait_interval*5 >= idle_time*4) &&
(ktime_to_us(device->remaining_time) > 0) &&
(ktime_to_us(device->remaining_time) <
ktime_to_us(busy_timer)))
busy_timer = device->remaining_time;
start_busy_timer(device, busy_timer);
/* If previous busy interval exceeds the current submit,
* raise a busy timer expired event intentionally.
*/
tmp = device->stats->nr_collected - 1;
if (tmp > 0) {
if ((device->stats->pulse_chain[tmp - 1].busy_start_time
+ device->stats->pulse_chain[tmp - 1].busy_interval) >
device->stats->pulse_chain[tmp].busy_start_time)
msm_idle_stats_update_event(device,
MSM_IDLE_STATS_EVENT_BUSY_TIMER_EXPIRED);
}
}
}
spin_unlock(&device->lock);
}
EXPORT_SYMBOL(msm_idle_stats_idle_end);
static long msm_idle_stats_device_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct msm_idle_stats_device *device = file->private_data;
int ret;
switch (cmd) {
case MSM_IDLE_STATS_IOC_READ_STATS:
ret = ioctl_read_stats(device, arg);
break;
case MSM_IDLE_STATS_IOC_WRITE_STATS:
ret = ioctl_write_stats(device, arg);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int msm_idle_stats_device_release
(struct inode *inode, struct file *filep)
{
return 0;
}
static int msm_idle_stats_device_open(struct inode *inode, struct file *filep)
{
struct msm_idle_stats_device *device;
device = _device_from_minor(iminor(inode));
if (device == NULL)
return -EPERM;
filep->private_data = device;
return 0;
}
static const struct file_operations msm_idle_stats_fops = {
.open = msm_idle_stats_device_open,
.release = msm_idle_stats_device_release,
.unlocked_ioctl = msm_idle_stats_device_ioctl,
.poll = msm_idle_stats_device_poll,
};
int msm_idle_stats_register_device(struct msm_idle_stats_device *device)
{
int ret = -ENOMEM;
spin_lock_init(&device->lock);
init_waitqueue_head(&device->wait);
hrtimer_init(&device->busy_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
device->busy_timer.function = msm_idle_stats_busy_timer;
device->stats_vector[0].event = 0;
device->stats_vector[0].nr_collected = 0;
device->stats_vector[1].event = 0;
device->stats_vector[1].nr_collected = 0;
device->stats = &device->stats_vector[0];
device->busy_timer_interval = us_to_ktime(0);
device->max_samples = MSM_IDLE_STATS_NR_MAX_INTERVALS;
mutex_lock(&device_list_lock);
list_add(&device->list, &device_list);
mutex_unlock(&device_list_lock);
device->miscdev.minor = MISC_DYNAMIC_MINOR;
device->miscdev.name = device->name;
device->miscdev.fops = &msm_idle_stats_fops;
ret = misc_register(&device->miscdev);
if (ret)
goto err_list;
return ret;
err_list:
mutex_lock(&device_list_lock);
list_del(&device->list);
mutex_unlock(&device_list_lock);
return ret;
}
EXPORT_SYMBOL(msm_idle_stats_register_device);
int msm_idle_stats_deregister_device(struct msm_idle_stats_device *device)
{
if (device == NULL)
return 0;
mutex_lock(&device_list_lock);
spin_lock(&device->lock);
hrtimer_cancel(&device->busy_timer);
list_del(&device->list);
spin_unlock(&device->lock);
mutex_unlock(&device_list_lock);
return misc_deregister(&device->miscdev);
}
EXPORT_SYMBOL(msm_idle_stats_deregister_device);