ext4: implement writeback livelock avoidance using page tagging
This is analogous to Jan Kara's commit,
f446daaea9d4a420d16c606f755f3689dcb2d0ce
mm: implement writeback livelock avoidance using page tagging
but since we forked write_cache_pages, we need to reimplement
it there (and in ext4_da_writepages, since range_cyclic handling
was moved to there)
If you start a large buffered IO to a file, and then set
fsync after it, you'll find that fsync does not complete
until the other IO stops.
If you continue re-dirtying the file (say, putting dd
with conv=notrunc in a loop), when fsync finally completes
(after all IO is done), it reports via tracing that
it has written many more pages than the file contains;
in other words it has synced and re-synced pages in
the file multiple times.
This then leads to problems with our writeback_index
update, since it advances it by pages written, and
essentially sets writeback_index off the end of the
file...
With the following patch, we only sync as much as was
dirty at the time of the sync.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
diff --git a/include/linux/writeback.h b/include/linux/writeback.h
index 72a5d64..3d132bf 100644
--- a/include/linux/writeback.h
+++ b/include/linux/writeback.h
@@ -143,6 +143,8 @@
int generic_writepages(struct address_space *mapping,
struct writeback_control *wbc);
+void tag_pages_for_writeback(struct address_space *mapping,
+ pgoff_t start, pgoff_t end);
int write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc, writepage_t writepage,
void *data);