| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_alloc.h" |
| #include "xfs_rtalloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_error.h" |
| #include "xfs_rw.h" |
| #include "xfs_quota.h" |
| #include "xfs_fsops.h" |
| |
| STATIC void xfs_mount_log_sbunit(xfs_mount_t *, __int64_t); |
| STATIC int xfs_uuid_mount(xfs_mount_t *); |
| STATIC void xfs_uuid_unmount(xfs_mount_t *mp); |
| STATIC void xfs_unmountfs_wait(xfs_mount_t *); |
| |
| |
| #ifdef HAVE_PERCPU_SB |
| STATIC void xfs_icsb_destroy_counters(xfs_mount_t *); |
| STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, |
| int, int); |
| STATIC void xfs_icsb_sync_counters(xfs_mount_t *); |
| STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, |
| int64_t, int); |
| STATIC int xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); |
| |
| #else |
| |
| #define xfs_icsb_destroy_counters(mp) do { } while (0) |
| #define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0) |
| #define xfs_icsb_sync_counters(mp) do { } while (0) |
| #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) |
| |
| #endif |
| |
| static const struct { |
| short offset; |
| short type; /* 0 = integer |
| * 1 = binary / string (no translation) |
| */ |
| } xfs_sb_info[] = { |
| { offsetof(xfs_sb_t, sb_magicnum), 0 }, |
| { offsetof(xfs_sb_t, sb_blocksize), 0 }, |
| { offsetof(xfs_sb_t, sb_dblocks), 0 }, |
| { offsetof(xfs_sb_t, sb_rblocks), 0 }, |
| { offsetof(xfs_sb_t, sb_rextents), 0 }, |
| { offsetof(xfs_sb_t, sb_uuid), 1 }, |
| { offsetof(xfs_sb_t, sb_logstart), 0 }, |
| { offsetof(xfs_sb_t, sb_rootino), 0 }, |
| { offsetof(xfs_sb_t, sb_rbmino), 0 }, |
| { offsetof(xfs_sb_t, sb_rsumino), 0 }, |
| { offsetof(xfs_sb_t, sb_rextsize), 0 }, |
| { offsetof(xfs_sb_t, sb_agblocks), 0 }, |
| { offsetof(xfs_sb_t, sb_agcount), 0 }, |
| { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, |
| { offsetof(xfs_sb_t, sb_logblocks), 0 }, |
| { offsetof(xfs_sb_t, sb_versionnum), 0 }, |
| { offsetof(xfs_sb_t, sb_sectsize), 0 }, |
| { offsetof(xfs_sb_t, sb_inodesize), 0 }, |
| { offsetof(xfs_sb_t, sb_inopblock), 0 }, |
| { offsetof(xfs_sb_t, sb_fname[0]), 1 }, |
| { offsetof(xfs_sb_t, sb_blocklog), 0 }, |
| { offsetof(xfs_sb_t, sb_sectlog), 0 }, |
| { offsetof(xfs_sb_t, sb_inodelog), 0 }, |
| { offsetof(xfs_sb_t, sb_inopblog), 0 }, |
| { offsetof(xfs_sb_t, sb_agblklog), 0 }, |
| { offsetof(xfs_sb_t, sb_rextslog), 0 }, |
| { offsetof(xfs_sb_t, sb_inprogress), 0 }, |
| { offsetof(xfs_sb_t, sb_imax_pct), 0 }, |
| { offsetof(xfs_sb_t, sb_icount), 0 }, |
| { offsetof(xfs_sb_t, sb_ifree), 0 }, |
| { offsetof(xfs_sb_t, sb_fdblocks), 0 }, |
| { offsetof(xfs_sb_t, sb_frextents), 0 }, |
| { offsetof(xfs_sb_t, sb_uquotino), 0 }, |
| { offsetof(xfs_sb_t, sb_gquotino), 0 }, |
| { offsetof(xfs_sb_t, sb_qflags), 0 }, |
| { offsetof(xfs_sb_t, sb_flags), 0 }, |
| { offsetof(xfs_sb_t, sb_shared_vn), 0 }, |
| { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, |
| { offsetof(xfs_sb_t, sb_unit), 0 }, |
| { offsetof(xfs_sb_t, sb_width), 0 }, |
| { offsetof(xfs_sb_t, sb_dirblklog), 0 }, |
| { offsetof(xfs_sb_t, sb_logsectlog), 0 }, |
| { offsetof(xfs_sb_t, sb_logsectsize),0 }, |
| { offsetof(xfs_sb_t, sb_logsunit), 0 }, |
| { offsetof(xfs_sb_t, sb_features2), 0 }, |
| { sizeof(xfs_sb_t), 0 } |
| }; |
| |
| /* |
| * Return a pointer to an initialized xfs_mount structure. |
| */ |
| xfs_mount_t * |
| xfs_mount_init(void) |
| { |
| xfs_mount_t *mp; |
| |
| mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP); |
| |
| if (xfs_icsb_init_counters(mp)) { |
| mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB; |
| } |
| |
| AIL_LOCKINIT(&mp->m_ail_lock, "xfs_ail"); |
| spinlock_init(&mp->m_sb_lock, "xfs_sb"); |
| mutex_init(&mp->m_ilock); |
| initnsema(&mp->m_growlock, 1, "xfs_grow"); |
| /* |
| * Initialize the AIL. |
| */ |
| xfs_trans_ail_init(mp); |
| |
| atomic_set(&mp->m_active_trans, 0); |
| |
| return mp; |
| } |
| |
| /* |
| * Free up the resources associated with a mount structure. Assume that |
| * the structure was initially zeroed, so we can tell which fields got |
| * initialized. |
| */ |
| void |
| xfs_mount_free( |
| xfs_mount_t *mp, |
| int remove_bhv) |
| { |
| if (mp->m_ihash) |
| xfs_ihash_free(mp); |
| if (mp->m_chash) |
| xfs_chash_free(mp); |
| |
| if (mp->m_perag) { |
| int agno; |
| |
| for (agno = 0; agno < mp->m_maxagi; agno++) |
| if (mp->m_perag[agno].pagb_list) |
| kmem_free(mp->m_perag[agno].pagb_list, |
| sizeof(xfs_perag_busy_t) * |
| XFS_PAGB_NUM_SLOTS); |
| kmem_free(mp->m_perag, |
| sizeof(xfs_perag_t) * mp->m_sb.sb_agcount); |
| } |
| |
| AIL_LOCK_DESTROY(&mp->m_ail_lock); |
| spinlock_destroy(&mp->m_sb_lock); |
| mutex_destroy(&mp->m_ilock); |
| freesema(&mp->m_growlock); |
| if (mp->m_quotainfo) |
| XFS_QM_DONE(mp); |
| |
| if (mp->m_fsname != NULL) |
| kmem_free(mp->m_fsname, mp->m_fsname_len); |
| if (mp->m_rtname != NULL) |
| kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1); |
| if (mp->m_logname != NULL) |
| kmem_free(mp->m_logname, strlen(mp->m_logname) + 1); |
| |
| if (remove_bhv) { |
| struct bhv_vfs *vfsp = XFS_MTOVFS(mp); |
| |
| bhv_remove_all_vfsops(vfsp, 0); |
| VFS_REMOVEBHV(vfsp, &mp->m_bhv); |
| } |
| |
| xfs_icsb_destroy_counters(mp); |
| kmem_free(mp, sizeof(xfs_mount_t)); |
| } |
| |
| /* |
| * Check size of device based on the (data/realtime) block count. |
| * Note: this check is used by the growfs code as well as mount. |
| */ |
| int |
| xfs_sb_validate_fsb_count( |
| xfs_sb_t *sbp, |
| __uint64_t nblocks) |
| { |
| ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); |
| ASSERT(sbp->sb_blocklog >= BBSHIFT); |
| |
| #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ |
| if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) |
| return E2BIG; |
| #else /* Limited by UINT_MAX of sectors */ |
| if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) |
| return E2BIG; |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Check the validity of the SB found. |
| */ |
| STATIC int |
| xfs_mount_validate_sb( |
| xfs_mount_t *mp, |
| xfs_sb_t *sbp, |
| int flags) |
| { |
| /* |
| * If the log device and data device have the |
| * same device number, the log is internal. |
| * Consequently, the sb_logstart should be non-zero. If |
| * we have a zero sb_logstart in this case, we may be trying to mount |
| * a volume filesystem in a non-volume manner. |
| */ |
| if (sbp->sb_magicnum != XFS_SB_MAGIC) { |
| xfs_fs_mount_cmn_err(flags, "bad magic number"); |
| return XFS_ERROR(EWRONGFS); |
| } |
| |
| if (!XFS_SB_GOOD_VERSION(sbp)) { |
| xfs_fs_mount_cmn_err(flags, "bad version"); |
| return XFS_ERROR(EWRONGFS); |
| } |
| |
| if (unlikely( |
| sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { |
| xfs_fs_mount_cmn_err(flags, |
| "filesystem is marked as having an external log; " |
| "specify logdev on the\nmount command line."); |
| return XFS_ERROR(EINVAL); |
| } |
| |
| if (unlikely( |
| sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { |
| xfs_fs_mount_cmn_err(flags, |
| "filesystem is marked as having an internal log; " |
| "do not specify logdev on\nthe mount command line."); |
| return XFS_ERROR(EINVAL); |
| } |
| |
| /* |
| * More sanity checking. These were stolen directly from |
| * xfs_repair. |
| */ |
| if (unlikely( |
| sbp->sb_agcount <= 0 || |
| sbp->sb_sectsize < XFS_MIN_SECTORSIZE || |
| sbp->sb_sectsize > XFS_MAX_SECTORSIZE || |
| sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || |
| sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || |
| sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || |
| sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || |
| sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || |
| sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || |
| sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || |
| sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || |
| sbp->sb_inodelog < XFS_DINODE_MIN_LOG || |
| sbp->sb_inodelog > XFS_DINODE_MAX_LOG || |
| (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || |
| (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || |
| (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || |
| (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { |
| xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| /* |
| * Sanity check AG count, size fields against data size field |
| */ |
| if (unlikely( |
| sbp->sb_dblocks == 0 || |
| sbp->sb_dblocks > |
| (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || |
| sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * |
| sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { |
| xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || |
| xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { |
| xfs_fs_mount_cmn_err(flags, |
| "file system too large to be mounted on this system."); |
| return XFS_ERROR(E2BIG); |
| } |
| |
| if (unlikely(sbp->sb_inprogress)) { |
| xfs_fs_mount_cmn_err(flags, "file system busy"); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| /* |
| * Version 1 directory format has never worked on Linux. |
| */ |
| if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) { |
| xfs_fs_mount_cmn_err(flags, |
| "file system using version 1 directory format"); |
| return XFS_ERROR(ENOSYS); |
| } |
| |
| /* |
| * Until this is fixed only page-sized or smaller data blocks work. |
| */ |
| if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { |
| xfs_fs_mount_cmn_err(flags, |
| "file system with blocksize %d bytes", |
| sbp->sb_blocksize); |
| xfs_fs_mount_cmn_err(flags, |
| "only pagesize (%ld) or less will currently work.", |
| PAGE_SIZE); |
| return XFS_ERROR(ENOSYS); |
| } |
| |
| return 0; |
| } |
| |
| xfs_agnumber_t |
| xfs_initialize_perag( |
| bhv_vfs_t *vfs, |
| xfs_mount_t *mp, |
| xfs_agnumber_t agcount) |
| { |
| xfs_agnumber_t index, max_metadata; |
| xfs_perag_t *pag; |
| xfs_agino_t agino; |
| xfs_ino_t ino; |
| xfs_sb_t *sbp = &mp->m_sb; |
| xfs_ino_t max_inum = XFS_MAXINUMBER_32; |
| |
| /* Check to see if the filesystem can overflow 32 bit inodes */ |
| agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); |
| ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); |
| |
| /* Clear the mount flag if no inode can overflow 32 bits |
| * on this filesystem, or if specifically requested.. |
| */ |
| if ((vfs->vfs_flag & VFS_32BITINODES) && ino > max_inum) { |
| mp->m_flags |= XFS_MOUNT_32BITINODES; |
| } else { |
| mp->m_flags &= ~XFS_MOUNT_32BITINODES; |
| } |
| |
| /* If we can overflow then setup the ag headers accordingly */ |
| if (mp->m_flags & XFS_MOUNT_32BITINODES) { |
| /* Calculate how much should be reserved for inodes to |
| * meet the max inode percentage. |
| */ |
| if (mp->m_maxicount) { |
| __uint64_t icount; |
| |
| icount = sbp->sb_dblocks * sbp->sb_imax_pct; |
| do_div(icount, 100); |
| icount += sbp->sb_agblocks - 1; |
| do_div(icount, sbp->sb_agblocks); |
| max_metadata = icount; |
| } else { |
| max_metadata = agcount; |
| } |
| for (index = 0; index < agcount; index++) { |
| ino = XFS_AGINO_TO_INO(mp, index, agino); |
| if (ino > max_inum) { |
| index++; |
| break; |
| } |
| |
| /* This ag is preferred for inodes */ |
| pag = &mp->m_perag[index]; |
| pag->pagi_inodeok = 1; |
| if (index < max_metadata) |
| pag->pagf_metadata = 1; |
| } |
| } else { |
| /* Setup default behavior for smaller filesystems */ |
| for (index = 0; index < agcount; index++) { |
| pag = &mp->m_perag[index]; |
| pag->pagi_inodeok = 1; |
| } |
| } |
| return index; |
| } |
| |
| /* |
| * xfs_xlatesb |
| * |
| * data - on disk version of sb |
| * sb - a superblock |
| * dir - conversion direction: <0 - convert sb to buf |
| * >0 - convert buf to sb |
| * fields - which fields to copy (bitmask) |
| */ |
| void |
| xfs_xlatesb( |
| void *data, |
| xfs_sb_t *sb, |
| int dir, |
| __int64_t fields) |
| { |
| xfs_caddr_t buf_ptr; |
| xfs_caddr_t mem_ptr; |
| xfs_sb_field_t f; |
| int first; |
| int size; |
| |
| ASSERT(dir); |
| ASSERT(fields); |
| |
| if (!fields) |
| return; |
| |
| buf_ptr = (xfs_caddr_t)data; |
| mem_ptr = (xfs_caddr_t)sb; |
| |
| while (fields) { |
| f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); |
| first = xfs_sb_info[f].offset; |
| size = xfs_sb_info[f + 1].offset - first; |
| |
| ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); |
| |
| if (size == 1 || xfs_sb_info[f].type == 1) { |
| if (dir > 0) { |
| memcpy(mem_ptr + first, buf_ptr + first, size); |
| } else { |
| memcpy(buf_ptr + first, mem_ptr + first, size); |
| } |
| } else { |
| switch (size) { |
| case 2: |
| INT_XLATE(*(__uint16_t*)(buf_ptr+first), |
| *(__uint16_t*)(mem_ptr+first), |
| dir, ARCH_CONVERT); |
| break; |
| case 4: |
| INT_XLATE(*(__uint32_t*)(buf_ptr+first), |
| *(__uint32_t*)(mem_ptr+first), |
| dir, ARCH_CONVERT); |
| break; |
| case 8: |
| INT_XLATE(*(__uint64_t*)(buf_ptr+first), |
| *(__uint64_t*)(mem_ptr+first), dir, ARCH_CONVERT); |
| break; |
| default: |
| ASSERT(0); |
| } |
| } |
| |
| fields &= ~(1LL << f); |
| } |
| } |
| |
| /* |
| * xfs_readsb |
| * |
| * Does the initial read of the superblock. |
| */ |
| int |
| xfs_readsb(xfs_mount_t *mp, int flags) |
| { |
| unsigned int sector_size; |
| unsigned int extra_flags; |
| xfs_buf_t *bp; |
| xfs_sb_t *sbp; |
| int error; |
| |
| ASSERT(mp->m_sb_bp == NULL); |
| ASSERT(mp->m_ddev_targp != NULL); |
| |
| /* |
| * Allocate a (locked) buffer to hold the superblock. |
| * This will be kept around at all times to optimize |
| * access to the superblock. |
| */ |
| sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); |
| extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; |
| |
| bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, |
| BTOBB(sector_size), extra_flags); |
| if (!bp || XFS_BUF_ISERROR(bp)) { |
| xfs_fs_mount_cmn_err(flags, "SB read failed"); |
| error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; |
| goto fail; |
| } |
| ASSERT(XFS_BUF_ISBUSY(bp)); |
| ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); |
| |
| /* |
| * Initialize the mount structure from the superblock. |
| * But first do some basic consistency checking. |
| */ |
| sbp = XFS_BUF_TO_SBP(bp); |
| xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), 1, XFS_SB_ALL_BITS); |
| |
| error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); |
| if (error) { |
| xfs_fs_mount_cmn_err(flags, "SB validate failed"); |
| goto fail; |
| } |
| |
| /* |
| * We must be able to do sector-sized and sector-aligned IO. |
| */ |
| if (sector_size > mp->m_sb.sb_sectsize) { |
| xfs_fs_mount_cmn_err(flags, |
| "device supports only %u byte sectors (not %u)", |
| sector_size, mp->m_sb.sb_sectsize); |
| error = ENOSYS; |
| goto fail; |
| } |
| |
| /* |
| * If device sector size is smaller than the superblock size, |
| * re-read the superblock so the buffer is correctly sized. |
| */ |
| if (sector_size < mp->m_sb.sb_sectsize) { |
| XFS_BUF_UNMANAGE(bp); |
| xfs_buf_relse(bp); |
| sector_size = mp->m_sb.sb_sectsize; |
| bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, |
| BTOBB(sector_size), extra_flags); |
| if (!bp || XFS_BUF_ISERROR(bp)) { |
| xfs_fs_mount_cmn_err(flags, "SB re-read failed"); |
| error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; |
| goto fail; |
| } |
| ASSERT(XFS_BUF_ISBUSY(bp)); |
| ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); |
| } |
| |
| /* Initialize per-cpu counters */ |
| xfs_icsb_reinit_counters(mp); |
| |
| mp->m_sb_bp = bp; |
| xfs_buf_relse(bp); |
| ASSERT(XFS_BUF_VALUSEMA(bp) > 0); |
| return 0; |
| |
| fail: |
| if (bp) { |
| XFS_BUF_UNMANAGE(bp); |
| xfs_buf_relse(bp); |
| } |
| return error; |
| } |
| |
| |
| /* |
| * xfs_mount_common |
| * |
| * Mount initialization code establishing various mount |
| * fields from the superblock associated with the given |
| * mount structure |
| */ |
| STATIC void |
| xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) |
| { |
| int i; |
| |
| mp->m_agfrotor = mp->m_agirotor = 0; |
| spinlock_init(&mp->m_agirotor_lock, "m_agirotor_lock"); |
| mp->m_maxagi = mp->m_sb.sb_agcount; |
| mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; |
| mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; |
| mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; |
| mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; |
| mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; |
| mp->m_litino = sbp->sb_inodesize - |
| ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t)); |
| mp->m_blockmask = sbp->sb_blocksize - 1; |
| mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; |
| mp->m_blockwmask = mp->m_blockwsize - 1; |
| INIT_LIST_HEAD(&mp->m_del_inodes); |
| |
| /* |
| * Setup for attributes, in case they get created. |
| * This value is for inodes getting attributes for the first time, |
| * the per-inode value is for old attribute values. |
| */ |
| ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048); |
| switch (sbp->sb_inodesize) { |
| case 256: |
| mp->m_attroffset = XFS_LITINO(mp) - |
| XFS_BMDR_SPACE_CALC(MINABTPTRS); |
| break; |
| case 512: |
| case 1024: |
| case 2048: |
| mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS); |
| break; |
| default: |
| ASSERT(0); |
| } |
| ASSERT(mp->m_attroffset < XFS_LITINO(mp)); |
| |
| for (i = 0; i < 2; i++) { |
| mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, |
| xfs_alloc, i == 0); |
| mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, |
| xfs_alloc, i == 0); |
| } |
| for (i = 0; i < 2; i++) { |
| mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, |
| xfs_bmbt, i == 0); |
| mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, |
| xfs_bmbt, i == 0); |
| } |
| for (i = 0; i < 2; i++) { |
| mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, |
| xfs_inobt, i == 0); |
| mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, |
| xfs_inobt, i == 0); |
| } |
| |
| mp->m_bsize = XFS_FSB_TO_BB(mp, 1); |
| mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, |
| sbp->sb_inopblock); |
| mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; |
| } |
| |
| /* |
| * xfs_initialize_perag_data |
| * |
| * Read in each per-ag structure so we can count up the number of |
| * allocated inodes, free inodes and used filesystem blocks as this |
| * information is no longer persistent in the superblock. Once we have |
| * this information, write it into the in-core superblock structure. |
| */ |
| STATIC int |
| xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) |
| { |
| xfs_agnumber_t index; |
| xfs_perag_t *pag; |
| xfs_sb_t *sbp = &mp->m_sb; |
| uint64_t ifree = 0; |
| uint64_t ialloc = 0; |
| uint64_t bfree = 0; |
| uint64_t bfreelst = 0; |
| uint64_t btree = 0; |
| int error; |
| int s; |
| |
| for (index = 0; index < agcount; index++) { |
| /* |
| * read the agf, then the agi. This gets us |
| * all the inforamtion we need and populates the |
| * per-ag structures for us. |
| */ |
| error = xfs_alloc_pagf_init(mp, NULL, index, 0); |
| if (error) |
| return error; |
| |
| error = xfs_ialloc_pagi_init(mp, NULL, index); |
| if (error) |
| return error; |
| pag = &mp->m_perag[index]; |
| ifree += pag->pagi_freecount; |
| ialloc += pag->pagi_count; |
| bfree += pag->pagf_freeblks; |
| bfreelst += pag->pagf_flcount; |
| btree += pag->pagf_btreeblks; |
| } |
| /* |
| * Overwrite incore superblock counters with just-read data |
| */ |
| s = XFS_SB_LOCK(mp); |
| sbp->sb_ifree = ifree; |
| sbp->sb_icount = ialloc; |
| sbp->sb_fdblocks = bfree + bfreelst + btree; |
| XFS_SB_UNLOCK(mp, s); |
| |
| /* Fixup the per-cpu counters as well. */ |
| xfs_icsb_reinit_counters(mp); |
| |
| return 0; |
| } |
| |
| /* |
| * xfs_mountfs |
| * |
| * This function does the following on an initial mount of a file system: |
| * - reads the superblock from disk and init the mount struct |
| * - if we're a 32-bit kernel, do a size check on the superblock |
| * so we don't mount terabyte filesystems |
| * - init mount struct realtime fields |
| * - allocate inode hash table for fs |
| * - init directory manager |
| * - perform recovery and init the log manager |
| */ |
| int |
| xfs_mountfs( |
| bhv_vfs_t *vfsp, |
| xfs_mount_t *mp, |
| int mfsi_flags) |
| { |
| xfs_buf_t *bp; |
| xfs_sb_t *sbp = &(mp->m_sb); |
| xfs_inode_t *rip; |
| bhv_vnode_t *rvp = NULL; |
| int readio_log, writeio_log; |
| xfs_daddr_t d; |
| __uint64_t resblks; |
| __int64_t update_flags; |
| uint quotamount, quotaflags; |
| int agno; |
| int uuid_mounted = 0; |
| int error = 0; |
| |
| if (mp->m_sb_bp == NULL) { |
| if ((error = xfs_readsb(mp, mfsi_flags))) { |
| return error; |
| } |
| } |
| xfs_mount_common(mp, sbp); |
| |
| /* |
| * Check if sb_agblocks is aligned at stripe boundary |
| * If sb_agblocks is NOT aligned turn off m_dalign since |
| * allocator alignment is within an ag, therefore ag has |
| * to be aligned at stripe boundary. |
| */ |
| update_flags = 0LL; |
| if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) { |
| /* |
| * If stripe unit and stripe width are not multiples |
| * of the fs blocksize turn off alignment. |
| */ |
| if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || |
| (BBTOB(mp->m_swidth) & mp->m_blockmask)) { |
| if (mp->m_flags & XFS_MOUNT_RETERR) { |
| cmn_err(CE_WARN, |
| "XFS: alignment check 1 failed"); |
| error = XFS_ERROR(EINVAL); |
| goto error1; |
| } |
| mp->m_dalign = mp->m_swidth = 0; |
| } else { |
| /* |
| * Convert the stripe unit and width to FSBs. |
| */ |
| mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); |
| if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { |
| if (mp->m_flags & XFS_MOUNT_RETERR) { |
| error = XFS_ERROR(EINVAL); |
| goto error1; |
| } |
| xfs_fs_cmn_err(CE_WARN, mp, |
| "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", |
| mp->m_dalign, mp->m_swidth, |
| sbp->sb_agblocks); |
| |
| mp->m_dalign = 0; |
| mp->m_swidth = 0; |
| } else if (mp->m_dalign) { |
| mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); |
| } else { |
| if (mp->m_flags & XFS_MOUNT_RETERR) { |
| xfs_fs_cmn_err(CE_WARN, mp, |
| "stripe alignment turned off: sunit(%d) less than bsize(%d)", |
| mp->m_dalign, |
| mp->m_blockmask +1); |
| error = XFS_ERROR(EINVAL); |
| goto error1; |
| } |
| mp->m_swidth = 0; |
| } |
| } |
| |
| /* |
| * Update superblock with new values |
| * and log changes |
| */ |
| if (XFS_SB_VERSION_HASDALIGN(sbp)) { |
| if (sbp->sb_unit != mp->m_dalign) { |
| sbp->sb_unit = mp->m_dalign; |
| update_flags |= XFS_SB_UNIT; |
| } |
| if (sbp->sb_width != mp->m_swidth) { |
| sbp->sb_width = mp->m_swidth; |
| update_flags |= XFS_SB_WIDTH; |
| } |
| } |
| } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && |
| XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) { |
| mp->m_dalign = sbp->sb_unit; |
| mp->m_swidth = sbp->sb_width; |
| } |
| |
| xfs_alloc_compute_maxlevels(mp); |
| xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); |
| xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); |
| xfs_ialloc_compute_maxlevels(mp); |
| |
| if (sbp->sb_imax_pct) { |
| __uint64_t icount; |
| |
| /* Make sure the maximum inode count is a multiple of the |
| * units we allocate inodes in. |
| */ |
| |
| icount = sbp->sb_dblocks * sbp->sb_imax_pct; |
| do_div(icount, 100); |
| do_div(icount, mp->m_ialloc_blks); |
| mp->m_maxicount = (icount * mp->m_ialloc_blks) << |
| sbp->sb_inopblog; |
| } else |
| mp->m_maxicount = 0; |
| |
| mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); |
| |
| /* |
| * XFS uses the uuid from the superblock as the unique |
| * identifier for fsid. We can not use the uuid from the volume |
| * since a single partition filesystem is identical to a single |
| * partition volume/filesystem. |
| */ |
| if ((mfsi_flags & XFS_MFSI_SECOND) == 0 && |
| (mp->m_flags & XFS_MOUNT_NOUUID) == 0) { |
| __uint64_t ret64; |
| if (xfs_uuid_mount(mp)) { |
| error = XFS_ERROR(EINVAL); |
| goto error1; |
| } |
| uuid_mounted=1; |
| ret64 = uuid_hash64(&sbp->sb_uuid); |
| memcpy(&vfsp->vfs_fsid, &ret64, sizeof(ret64)); |
| } |
| |
| /* |
| * Set the default minimum read and write sizes unless |
| * already specified in a mount option. |
| * We use smaller I/O sizes when the file system |
| * is being used for NFS service (wsync mount option). |
| */ |
| if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { |
| if (mp->m_flags & XFS_MOUNT_WSYNC) { |
| readio_log = XFS_WSYNC_READIO_LOG; |
| writeio_log = XFS_WSYNC_WRITEIO_LOG; |
| } else { |
| readio_log = XFS_READIO_LOG_LARGE; |
| writeio_log = XFS_WRITEIO_LOG_LARGE; |
| } |
| } else { |
| readio_log = mp->m_readio_log; |
| writeio_log = mp->m_writeio_log; |
| } |
| |
| if (sbp->sb_blocklog > readio_log) { |
| mp->m_readio_log = sbp->sb_blocklog; |
| } else { |
| mp->m_readio_log = readio_log; |
| } |
| mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); |
| if (sbp->sb_blocklog > writeio_log) { |
| mp->m_writeio_log = sbp->sb_blocklog; |
| } else { |
| mp->m_writeio_log = writeio_log; |
| } |
| mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); |
| |
| /* |
| * Set the inode cluster size. |
| * This may still be overridden by the file system |
| * block size if it is larger than the chosen cluster size. |
| */ |
| mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; |
| |
| /* |
| * Set whether we're using inode alignment. |
| */ |
| if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) && |
| mp->m_sb.sb_inoalignmt >= |
| XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) |
| mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; |
| else |
| mp->m_inoalign_mask = 0; |
| /* |
| * If we are using stripe alignment, check whether |
| * the stripe unit is a multiple of the inode alignment |
| */ |
| if (mp->m_dalign && mp->m_inoalign_mask && |
| !(mp->m_dalign & mp->m_inoalign_mask)) |
| mp->m_sinoalign = mp->m_dalign; |
| else |
| mp->m_sinoalign = 0; |
| /* |
| * Check that the data (and log if separate) are an ok size. |
| */ |
| d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { |
| cmn_err(CE_WARN, "XFS: size check 1 failed"); |
| error = XFS_ERROR(E2BIG); |
| goto error1; |
| } |
| error = xfs_read_buf(mp, mp->m_ddev_targp, |
| d - XFS_FSS_TO_BB(mp, 1), |
| XFS_FSS_TO_BB(mp, 1), 0, &bp); |
| if (!error) { |
| xfs_buf_relse(bp); |
| } else { |
| cmn_err(CE_WARN, "XFS: size check 2 failed"); |
| if (error == ENOSPC) { |
| error = XFS_ERROR(E2BIG); |
| } |
| goto error1; |
| } |
| |
| if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) && |
| mp->m_logdev_targp != mp->m_ddev_targp) { |
| d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); |
| if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { |
| cmn_err(CE_WARN, "XFS: size check 3 failed"); |
| error = XFS_ERROR(E2BIG); |
| goto error1; |
| } |
| error = xfs_read_buf(mp, mp->m_logdev_targp, |
| d - XFS_FSB_TO_BB(mp, 1), |
| XFS_FSB_TO_BB(mp, 1), 0, &bp); |
| if (!error) { |
| xfs_buf_relse(bp); |
| } else { |
| cmn_err(CE_WARN, "XFS: size check 3 failed"); |
| if (error == ENOSPC) { |
| error = XFS_ERROR(E2BIG); |
| } |
| goto error1; |
| } |
| } |
| |
| /* |
| * Initialize realtime fields in the mount structure |
| */ |
| if ((error = xfs_rtmount_init(mp))) { |
| cmn_err(CE_WARN, "XFS: RT mount failed"); |
| goto error1; |
| } |
| |
| /* |
| * For client case we are done now |
| */ |
| if (mfsi_flags & XFS_MFSI_CLIENT) { |
| return 0; |
| } |
| |
| /* |
| * Copies the low order bits of the timestamp and the randomly |
| * set "sequence" number out of a UUID. |
| */ |
| uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); |
| |
| /* |
| * The vfs structure needs to have a file system independent |
| * way of checking for the invariant file system ID. Since it |
| * can't look at mount structures it has a pointer to the data |
| * in the mount structure. |
| * |
| * File systems that don't support user level file handles (i.e. |
| * all of them except for XFS) will leave vfs_altfsid as NULL. |
| */ |
| vfsp->vfs_altfsid = (xfs_fsid_t *)mp->m_fixedfsid; |
| mp->m_dmevmask = 0; /* not persistent; set after each mount */ |
| |
| xfs_dir_mount(mp); |
| |
| /* |
| * Initialize the attribute manager's entries. |
| */ |
| mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; |
| |
| /* |
| * Initialize the precomputed transaction reservations values. |
| */ |
| xfs_trans_init(mp); |
| |
| /* |
| * Allocate and initialize the inode hash table for this |
| * file system. |
| */ |
| xfs_ihash_init(mp); |
| xfs_chash_init(mp); |
| |
| /* |
| * Allocate and initialize the per-ag data. |
| */ |
| init_rwsem(&mp->m_peraglock); |
| mp->m_perag = |
| kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP); |
| |
| mp->m_maxagi = xfs_initialize_perag(vfsp, mp, sbp->sb_agcount); |
| |
| /* |
| * log's mount-time initialization. Perform 1st part recovery if needed |
| */ |
| if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */ |
| error = xfs_log_mount(mp, mp->m_logdev_targp, |
| XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), |
| XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); |
| if (error) { |
| cmn_err(CE_WARN, "XFS: log mount failed"); |
| goto error2; |
| } |
| } else { /* No log has been defined */ |
| cmn_err(CE_WARN, "XFS: no log defined"); |
| XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto error2; |
| } |
| |
| /* |
| * Now the log is mounted, we know if it was an unclean shutdown or |
| * not. If it was, with the first phase of recovery has completed, we |
| * have consistent AG blocks on disk. We have not recovered EFIs yet, |
| * but they are recovered transactionally in the second recovery phase |
| * later. |
| * |
| * Hence we can safely re-initialise incore superblock counters from |
| * the per-ag data. These may not be correct if the filesystem was not |
| * cleanly unmounted, so we need to wait for recovery to finish before |
| * doing this. |
| * |
| * If the filesystem was cleanly unmounted, then we can trust the |
| * values in the superblock to be correct and we don't need to do |
| * anything here. |
| * |
| * If we are currently making the filesystem, the initialisation will |
| * fail as the perag data is in an undefined state. |
| */ |
| |
| if (xfs_sb_version_haslazysbcount(&mp->m_sb) && |
| !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && |
| !mp->m_sb.sb_inprogress) { |
| error = xfs_initialize_perag_data(mp, sbp->sb_agcount); |
| if (error) { |
| goto error2; |
| } |
| } |
| /* |
| * Get and sanity-check the root inode. |
| * Save the pointer to it in the mount structure. |
| */ |
| error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); |
| if (error) { |
| cmn_err(CE_WARN, "XFS: failed to read root inode"); |
| goto error3; |
| } |
| |
| ASSERT(rip != NULL); |
| rvp = XFS_ITOV(rip); |
| |
| if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { |
| cmn_err(CE_WARN, "XFS: corrupted root inode"); |
| cmn_err(CE_WARN, "Device %s - root %llu is not a directory", |
| XFS_BUFTARG_NAME(mp->m_ddev_targp), |
| (unsigned long long)rip->i_ino); |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, |
| mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto error4; |
| } |
| mp->m_rootip = rip; /* save it */ |
| |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| |
| /* |
| * Initialize realtime inode pointers in the mount structure |
| */ |
| if ((error = xfs_rtmount_inodes(mp))) { |
| /* |
| * Free up the root inode. |
| */ |
| cmn_err(CE_WARN, "XFS: failed to read RT inodes"); |
| goto error4; |
| } |
| |
| /* |
| * If fs is not mounted readonly, then update the superblock |
| * unit and width changes. |
| */ |
| if (update_flags && !(vfsp->vfs_flag & VFS_RDONLY)) |
| xfs_mount_log_sbunit(mp, update_flags); |
| |
| /* |
| * Initialise the XFS quota management subsystem for this mount |
| */ |
| if ((error = XFS_QM_INIT(mp, "amount, "aflags))) |
| goto error4; |
| |
| /* |
| * Finish recovering the file system. This part needed to be |
| * delayed until after the root and real-time bitmap inodes |
| * were consistently read in. |
| */ |
| error = xfs_log_mount_finish(mp, mfsi_flags); |
| if (error) { |
| cmn_err(CE_WARN, "XFS: log mount finish failed"); |
| goto error4; |
| } |
| |
| /* |
| * Complete the quota initialisation, post-log-replay component. |
| */ |
| if ((error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags))) |
| goto error4; |
| |
| /* |
| * Now we are mounted, reserve a small amount of unused space for |
| * privileged transactions. This is needed so that transaction |
| * space required for critical operations can dip into this pool |
| * when at ENOSPC. This is needed for operations like create with |
| * attr, unwritten extent conversion at ENOSPC, etc. Data allocations |
| * are not allowed to use this reserved space. |
| * |
| * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. |
| * This may drive us straight to ENOSPC on mount, but that implies |
| * we were already there on the last unmount. |
| */ |
| resblks = mp->m_sb.sb_dblocks; |
| do_div(resblks, 20); |
| resblks = min_t(__uint64_t, resblks, 1024); |
| xfs_reserve_blocks(mp, &resblks, NULL); |
| |
| return 0; |
| |
| error4: |
| /* |
| * Free up the root inode. |
| */ |
| VN_RELE(rvp); |
| error3: |
| xfs_log_unmount_dealloc(mp); |
| error2: |
| xfs_ihash_free(mp); |
| xfs_chash_free(mp); |
| for (agno = 0; agno < sbp->sb_agcount; agno++) |
| if (mp->m_perag[agno].pagb_list) |
| kmem_free(mp->m_perag[agno].pagb_list, |
| sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS); |
| kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t)); |
| mp->m_perag = NULL; |
| /* FALLTHROUGH */ |
| error1: |
| if (uuid_mounted) |
| xfs_uuid_unmount(mp); |
| xfs_freesb(mp); |
| return error; |
| } |
| |
| /* |
| * xfs_unmountfs |
| * |
| * This flushes out the inodes,dquots and the superblock, unmounts the |
| * log and makes sure that incore structures are freed. |
| */ |
| int |
| xfs_unmountfs(xfs_mount_t *mp, struct cred *cr) |
| { |
| struct bhv_vfs *vfsp = XFS_MTOVFS(mp); |
| #if defined(DEBUG) || defined(INDUCE_IO_ERROR) |
| int64_t fsid; |
| #endif |
| __uint64_t resblks; |
| |
| /* |
| * We can potentially deadlock here if we have an inode cluster |
| * that has been freed has it's buffer still pinned in memory because |
| * the transaction is still sitting in a iclog. The stale inodes |
| * on that buffer will have their flush locks held until the |
| * transaction hits the disk and the callbacks run. the inode |
| * flush takes the flush lock unconditionally and with nothing to |
| * push out the iclog we will never get that unlocked. hence we |
| * need to force the log first. |
| */ |
| xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); |
| xfs_iflush_all(mp); |
| |
| XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); |
| |
| /* |
| * Flush out the log synchronously so that we know for sure |
| * that nothing is pinned. This is important because bflush() |
| * will skip pinned buffers. |
| */ |
| xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); |
| |
| xfs_binval(mp->m_ddev_targp); |
| if (mp->m_rtdev_targp) { |
| xfs_binval(mp->m_rtdev_targp); |
| } |
| |
| /* |
| * Unreserve any blocks we have so that when we unmount we don't account |
| * the reserved free space as used. This is really only necessary for |
| * lazy superblock counting because it trusts the incore superblock |
| * counters to be aboslutely correct on clean unmount. |
| * |
| * We don't bother correcting this elsewhere for lazy superblock |
| * counting because on mount of an unclean filesystem we reconstruct the |
| * correct counter value and this is irrelevant. |
| * |
| * For non-lazy counter filesystems, this doesn't matter at all because |
| * we only every apply deltas to the superblock and hence the incore |
| * value does not matter.... |
| */ |
| resblks = 0; |
| xfs_reserve_blocks(mp, &resblks, NULL); |
| |
| xfs_log_sbcount(mp, 1); |
| xfs_unmountfs_writesb(mp); |
| xfs_unmountfs_wait(mp); /* wait for async bufs */ |
| xfs_log_unmount(mp); /* Done! No more fs ops. */ |
| |
| xfs_freesb(mp); |
| |
| /* |
| * All inodes from this mount point should be freed. |
| */ |
| ASSERT(mp->m_inodes == NULL); |
| |
| xfs_unmountfs_close(mp, cr); |
| if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) |
| xfs_uuid_unmount(mp); |
| |
| #if defined(DEBUG) || defined(INDUCE_IO_ERROR) |
| /* |
| * clear all error tags on this filesystem |
| */ |
| memcpy(&fsid, &vfsp->vfs_fsid, sizeof(int64_t)); |
| xfs_errortag_clearall_umount(fsid, mp->m_fsname, 0); |
| #endif |
| XFS_IODONE(vfsp); |
| xfs_mount_free(mp, 1); |
| return 0; |
| } |
| |
| void |
| xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr) |
| { |
| if (mp->m_logdev_targp != mp->m_ddev_targp) |
| xfs_free_buftarg(mp->m_logdev_targp, 1); |
| if (mp->m_rtdev_targp) |
| xfs_free_buftarg(mp->m_rtdev_targp, 1); |
| xfs_free_buftarg(mp->m_ddev_targp, 0); |
| } |
| |
| STATIC void |
| xfs_unmountfs_wait(xfs_mount_t *mp) |
| { |
| if (mp->m_logdev_targp != mp->m_ddev_targp) |
| xfs_wait_buftarg(mp->m_logdev_targp); |
| if (mp->m_rtdev_targp) |
| xfs_wait_buftarg(mp->m_rtdev_targp); |
| xfs_wait_buftarg(mp->m_ddev_targp); |
| } |
| |
| int |
| xfs_fs_writable(xfs_mount_t *mp) |
| { |
| bhv_vfs_t *vfsp = XFS_MTOVFS(mp); |
| |
| return !(vfs_test_for_freeze(vfsp) || XFS_FORCED_SHUTDOWN(mp) || |
| (vfsp->vfs_flag & VFS_RDONLY)); |
| } |
| |
| /* |
| * xfs_log_sbcount |
| * |
| * Called either periodically to keep the on disk superblock values |
| * roughly up to date or from unmount to make sure the values are |
| * correct on a clean unmount. |
| * |
| * Note this code can be called during the process of freezing, so |
| * we may need to use the transaction allocator which does not not |
| * block when the transaction subsystem is in its frozen state. |
| */ |
| int |
| xfs_log_sbcount( |
| xfs_mount_t *mp, |
| uint sync) |
| { |
| xfs_trans_t *tp; |
| int error; |
| |
| if (!xfs_fs_writable(mp)) |
| return 0; |
| |
| xfs_icsb_sync_counters(mp); |
| |
| /* |
| * we don't need to do this if we are updating the superblock |
| * counters on every modification. |
| */ |
| if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| return 0; |
| |
| tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); |
| error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, |
| XFS_DEFAULT_LOG_COUNT); |
| if (error) { |
| xfs_trans_cancel(tp, 0); |
| return error; |
| } |
| |
| xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); |
| if (sync) |
| xfs_trans_set_sync(tp); |
| xfs_trans_commit(tp, 0); |
| |
| return 0; |
| } |
| |
| int |
| xfs_unmountfs_writesb(xfs_mount_t *mp) |
| { |
| xfs_buf_t *sbp; |
| xfs_sb_t *sb; |
| int error = 0; |
| |
| /* |
| * skip superblock write if fs is read-only, or |
| * if we are doing a forced umount. |
| */ |
| if (!(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY || |
| XFS_FORCED_SHUTDOWN(mp))) { |
| |
| sbp = xfs_getsb(mp, 0); |
| sb = XFS_BUF_TO_SBP(sbp); |
| |
| /* |
| * mark shared-readonly if desired |
| */ |
| if (mp->m_mk_sharedro) { |
| if (!(sb->sb_flags & XFS_SBF_READONLY)) |
| sb->sb_flags |= XFS_SBF_READONLY; |
| if (!XFS_SB_VERSION_HASSHARED(sb)) |
| XFS_SB_VERSION_ADDSHARED(sb); |
| xfs_fs_cmn_err(CE_NOTE, mp, |
| "Unmounting, marking shared read-only"); |
| } |
| |
| XFS_BUF_UNDONE(sbp); |
| XFS_BUF_UNREAD(sbp); |
| XFS_BUF_UNDELAYWRITE(sbp); |
| XFS_BUF_WRITE(sbp); |
| XFS_BUF_UNASYNC(sbp); |
| ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); |
| xfsbdstrat(mp, sbp); |
| /* Nevermind errors we might get here. */ |
| error = xfs_iowait(sbp); |
| if (error) |
| xfs_ioerror_alert("xfs_unmountfs_writesb", |
| mp, sbp, XFS_BUF_ADDR(sbp)); |
| if (error && mp->m_mk_sharedro) |
| xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly"); |
| xfs_buf_relse(sbp); |
| } |
| return error; |
| } |
| |
| /* |
| * xfs_mod_sb() can be used to copy arbitrary changes to the |
| * in-core superblock into the superblock buffer to be logged. |
| * It does not provide the higher level of locking that is |
| * needed to protect the in-core superblock from concurrent |
| * access. |
| */ |
| void |
| xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) |
| { |
| xfs_buf_t *bp; |
| int first; |
| int last; |
| xfs_mount_t *mp; |
| xfs_sb_t *sbp; |
| xfs_sb_field_t f; |
| |
| ASSERT(fields); |
| if (!fields) |
| return; |
| mp = tp->t_mountp; |
| bp = xfs_trans_getsb(tp, mp, 0); |
| sbp = XFS_BUF_TO_SBP(bp); |
| first = sizeof(xfs_sb_t); |
| last = 0; |
| |
| /* translate/copy */ |
| |
| xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), -1, fields); |
| |
| /* find modified range */ |
| |
| f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); |
| ASSERT((1LL << f) & XFS_SB_MOD_BITS); |
| first = xfs_sb_info[f].offset; |
| |
| f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); |
| ASSERT((1LL << f) & XFS_SB_MOD_BITS); |
| last = xfs_sb_info[f + 1].offset - 1; |
| |
| xfs_trans_log_buf(tp, bp, first, last); |
| } |
| |
| |
| /* |
| * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply |
| * a delta to a specified field in the in-core superblock. Simply |
| * switch on the field indicated and apply the delta to that field. |
| * Fields are not allowed to dip below zero, so if the delta would |
| * do this do not apply it and return EINVAL. |
| * |
| * The SB_LOCK must be held when this routine is called. |
| */ |
| int |
| xfs_mod_incore_sb_unlocked( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| int64_t delta, |
| int rsvd) |
| { |
| int scounter; /* short counter for 32 bit fields */ |
| long long lcounter; /* long counter for 64 bit fields */ |
| long long res_used, rem; |
| |
| /* |
| * With the in-core superblock spin lock held, switch |
| * on the indicated field. Apply the delta to the |
| * proper field. If the fields value would dip below |
| * 0, then do not apply the delta and return EINVAL. |
| */ |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| lcounter = (long long)mp->m_sb.sb_icount; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_icount = lcounter; |
| return 0; |
| case XFS_SBS_IFREE: |
| lcounter = (long long)mp->m_sb.sb_ifree; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_ifree = lcounter; |
| return 0; |
| case XFS_SBS_FDBLOCKS: |
| lcounter = (long long) |
| mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); |
| res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); |
| |
| if (delta > 0) { /* Putting blocks back */ |
| if (res_used > delta) { |
| mp->m_resblks_avail += delta; |
| } else { |
| rem = delta - res_used; |
| mp->m_resblks_avail = mp->m_resblks; |
| lcounter += rem; |
| } |
| } else { /* Taking blocks away */ |
| |
| lcounter += delta; |
| |
| /* |
| * If were out of blocks, use any available reserved blocks if |
| * were allowed to. |
| */ |
| |
| if (lcounter < 0) { |
| if (rsvd) { |
| lcounter = (long long)mp->m_resblks_avail + delta; |
| if (lcounter < 0) { |
| return XFS_ERROR(ENOSPC); |
| } |
| mp->m_resblks_avail = lcounter; |
| return 0; |
| } else { /* not reserved */ |
| return XFS_ERROR(ENOSPC); |
| } |
| } |
| } |
| |
| mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); |
| return 0; |
| case XFS_SBS_FREXTENTS: |
| lcounter = (long long)mp->m_sb.sb_frextents; |
| lcounter += delta; |
| if (lcounter < 0) { |
| return XFS_ERROR(ENOSPC); |
| } |
| mp->m_sb.sb_frextents = lcounter; |
| return 0; |
| case XFS_SBS_DBLOCKS: |
| lcounter = (long long)mp->m_sb.sb_dblocks; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_dblocks = lcounter; |
| return 0; |
| case XFS_SBS_AGCOUNT: |
| scounter = mp->m_sb.sb_agcount; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_agcount = scounter; |
| return 0; |
| case XFS_SBS_IMAX_PCT: |
| scounter = mp->m_sb.sb_imax_pct; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_imax_pct = scounter; |
| return 0; |
| case XFS_SBS_REXTSIZE: |
| scounter = mp->m_sb.sb_rextsize; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rextsize = scounter; |
| return 0; |
| case XFS_SBS_RBMBLOCKS: |
| scounter = mp->m_sb.sb_rbmblocks; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rbmblocks = scounter; |
| return 0; |
| case XFS_SBS_RBLOCKS: |
| lcounter = (long long)mp->m_sb.sb_rblocks; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rblocks = lcounter; |
| return 0; |
| case XFS_SBS_REXTENTS: |
| lcounter = (long long)mp->m_sb.sb_rextents; |
| lcounter += delta; |
| if (lcounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rextents = lcounter; |
| return 0; |
| case XFS_SBS_REXTSLOG: |
| scounter = mp->m_sb.sb_rextslog; |
| scounter += delta; |
| if (scounter < 0) { |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| mp->m_sb.sb_rextslog = scounter; |
| return 0; |
| default: |
| ASSERT(0); |
| return XFS_ERROR(EINVAL); |
| } |
| } |
| |
| /* |
| * xfs_mod_incore_sb() is used to change a field in the in-core |
| * superblock structure by the specified delta. This modification |
| * is protected by the SB_LOCK. Just use the xfs_mod_incore_sb_unlocked() |
| * routine to do the work. |
| */ |
| int |
| xfs_mod_incore_sb( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| int64_t delta, |
| int rsvd) |
| { |
| unsigned long s; |
| int status; |
| |
| /* check for per-cpu counters */ |
| switch (field) { |
| #ifdef HAVE_PERCPU_SB |
| case XFS_SBS_ICOUNT: |
| case XFS_SBS_IFREE: |
| case XFS_SBS_FDBLOCKS: |
| if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { |
| status = xfs_icsb_modify_counters(mp, field, |
| delta, rsvd); |
| break; |
| } |
| /* FALLTHROUGH */ |
| #endif |
| default: |
| s = XFS_SB_LOCK(mp); |
| status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); |
| XFS_SB_UNLOCK(mp, s); |
| break; |
| } |
| |
| return status; |
| } |
| |
| /* |
| * xfs_mod_incore_sb_batch() is used to change more than one field |
| * in the in-core superblock structure at a time. This modification |
| * is protected by a lock internal to this module. The fields and |
| * changes to those fields are specified in the array of xfs_mod_sb |
| * structures passed in. |
| * |
| * Either all of the specified deltas will be applied or none of |
| * them will. If any modified field dips below 0, then all modifications |
| * will be backed out and EINVAL will be returned. |
| */ |
| int |
| xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) |
| { |
| unsigned long s; |
| int status=0; |
| xfs_mod_sb_t *msbp; |
| |
| /* |
| * Loop through the array of mod structures and apply each |
| * individually. If any fail, then back out all those |
| * which have already been applied. Do all of this within |
| * the scope of the SB_LOCK so that all of the changes will |
| * be atomic. |
| */ |
| s = XFS_SB_LOCK(mp); |
| msbp = &msb[0]; |
| for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { |
| /* |
| * Apply the delta at index n. If it fails, break |
| * from the loop so we'll fall into the undo loop |
| * below. |
| */ |
| switch (msbp->msb_field) { |
| #ifdef HAVE_PERCPU_SB |
| case XFS_SBS_ICOUNT: |
| case XFS_SBS_IFREE: |
| case XFS_SBS_FDBLOCKS: |
| if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { |
| XFS_SB_UNLOCK(mp, s); |
| status = xfs_icsb_modify_counters(mp, |
| msbp->msb_field, |
| msbp->msb_delta, rsvd); |
| s = XFS_SB_LOCK(mp); |
| break; |
| } |
| /* FALLTHROUGH */ |
| #endif |
| default: |
| status = xfs_mod_incore_sb_unlocked(mp, |
| msbp->msb_field, |
| msbp->msb_delta, rsvd); |
| break; |
| } |
| |
| if (status != 0) { |
| break; |
| } |
| } |
| |
| /* |
| * If we didn't complete the loop above, then back out |
| * any changes made to the superblock. If you add code |
| * between the loop above and here, make sure that you |
| * preserve the value of status. Loop back until |
| * we step below the beginning of the array. Make sure |
| * we don't touch anything back there. |
| */ |
| if (status != 0) { |
| msbp--; |
| while (msbp >= msb) { |
| switch (msbp->msb_field) { |
| #ifdef HAVE_PERCPU_SB |
| case XFS_SBS_ICOUNT: |
| case XFS_SBS_IFREE: |
| case XFS_SBS_FDBLOCKS: |
| if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { |
| XFS_SB_UNLOCK(mp, s); |
| status = xfs_icsb_modify_counters(mp, |
| msbp->msb_field, |
| -(msbp->msb_delta), |
| rsvd); |
| s = XFS_SB_LOCK(mp); |
| break; |
| } |
| /* FALLTHROUGH */ |
| #endif |
| default: |
| status = xfs_mod_incore_sb_unlocked(mp, |
| msbp->msb_field, |
| -(msbp->msb_delta), |
| rsvd); |
| break; |
| } |
| ASSERT(status == 0); |
| msbp--; |
| } |
| } |
| XFS_SB_UNLOCK(mp, s); |
| return status; |
| } |
| |
| /* |
| * xfs_getsb() is called to obtain the buffer for the superblock. |
| * The buffer is returned locked and read in from disk. |
| * The buffer should be released with a call to xfs_brelse(). |
| * |
| * If the flags parameter is BUF_TRYLOCK, then we'll only return |
| * the superblock buffer if it can be locked without sleeping. |
| * If it can't then we'll return NULL. |
| */ |
| xfs_buf_t * |
| xfs_getsb( |
| xfs_mount_t *mp, |
| int flags) |
| { |
| xfs_buf_t *bp; |
| |
| ASSERT(mp->m_sb_bp != NULL); |
| bp = mp->m_sb_bp; |
| if (flags & XFS_BUF_TRYLOCK) { |
| if (!XFS_BUF_CPSEMA(bp)) { |
| return NULL; |
| } |
| } else { |
| XFS_BUF_PSEMA(bp, PRIBIO); |
| } |
| XFS_BUF_HOLD(bp); |
| ASSERT(XFS_BUF_ISDONE(bp)); |
| return bp; |
| } |
| |
| /* |
| * Used to free the superblock along various error paths. |
| */ |
| void |
| xfs_freesb( |
| xfs_mount_t *mp) |
| { |
| xfs_buf_t *bp; |
| |
| /* |
| * Use xfs_getsb() so that the buffer will be locked |
| * when we call xfs_buf_relse(). |
| */ |
| bp = xfs_getsb(mp, 0); |
| XFS_BUF_UNMANAGE(bp); |
| xfs_buf_relse(bp); |
| mp->m_sb_bp = NULL; |
| } |
| |
| /* |
| * See if the UUID is unique among mounted XFS filesystems. |
| * Mount fails if UUID is nil or a FS with the same UUID is already mounted. |
| */ |
| STATIC int |
| xfs_uuid_mount( |
| xfs_mount_t *mp) |
| { |
| if (uuid_is_nil(&mp->m_sb.sb_uuid)) { |
| cmn_err(CE_WARN, |
| "XFS: Filesystem %s has nil UUID - can't mount", |
| mp->m_fsname); |
| return -1; |
| } |
| if (!uuid_table_insert(&mp->m_sb.sb_uuid)) { |
| cmn_err(CE_WARN, |
| "XFS: Filesystem %s has duplicate UUID - can't mount", |
| mp->m_fsname); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Remove filesystem from the UUID table. |
| */ |
| STATIC void |
| xfs_uuid_unmount( |
| xfs_mount_t *mp) |
| { |
| uuid_table_remove(&mp->m_sb.sb_uuid); |
| } |
| |
| /* |
| * Used to log changes to the superblock unit and width fields which could |
| * be altered by the mount options. Only the first superblock is updated. |
| */ |
| STATIC void |
| xfs_mount_log_sbunit( |
| xfs_mount_t *mp, |
| __int64_t fields) |
| { |
| xfs_trans_t *tp; |
| |
| ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID)); |
| |
| tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); |
| if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, |
| XFS_DEFAULT_LOG_COUNT)) { |
| xfs_trans_cancel(tp, 0); |
| return; |
| } |
| xfs_mod_sb(tp, fields); |
| xfs_trans_commit(tp, 0); |
| } |
| |
| |
| #ifdef HAVE_PERCPU_SB |
| /* |
| * Per-cpu incore superblock counters |
| * |
| * Simple concept, difficult implementation |
| * |
| * Basically, replace the incore superblock counters with a distributed per cpu |
| * counter for contended fields (e.g. free block count). |
| * |
| * Difficulties arise in that the incore sb is used for ENOSPC checking, and |
| * hence needs to be accurately read when we are running low on space. Hence |
| * there is a method to enable and disable the per-cpu counters based on how |
| * much "stuff" is available in them. |
| * |
| * Basically, a counter is enabled if there is enough free resource to justify |
| * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local |
| * ENOSPC), then we disable the counters to synchronise all callers and |
| * re-distribute the available resources. |
| * |
| * If, once we redistributed the available resources, we still get a failure, |
| * we disable the per-cpu counter and go through the slow path. |
| * |
| * The slow path is the current xfs_mod_incore_sb() function. This means that |
| * when we disable a per-cpu counter, we need to drain it's resources back to |
| * the global superblock. We do this after disabling the counter to prevent |
| * more threads from queueing up on the counter. |
| * |
| * Essentially, this means that we still need a lock in the fast path to enable |
| * synchronisation between the global counters and the per-cpu counters. This |
| * is not a problem because the lock will be local to a CPU almost all the time |
| * and have little contention except when we get to ENOSPC conditions. |
| * |
| * Basically, this lock becomes a barrier that enables us to lock out the fast |
| * path while we do things like enabling and disabling counters and |
| * synchronising the counters. |
| * |
| * Locking rules: |
| * |
| * 1. XFS_SB_LOCK() before picking up per-cpu locks |
| * 2. per-cpu locks always picked up via for_each_online_cpu() order |
| * 3. accurate counter sync requires XFS_SB_LOCK + per cpu locks |
| * 4. modifying per-cpu counters requires holding per-cpu lock |
| * 5. modifying global counters requires holding XFS_SB_LOCK |
| * 6. enabling or disabling a counter requires holding the XFS_SB_LOCK |
| * and _none_ of the per-cpu locks. |
| * |
| * Disabled counters are only ever re-enabled by a balance operation |
| * that results in more free resources per CPU than a given threshold. |
| * To ensure counters don't remain disabled, they are rebalanced when |
| * the global resource goes above a higher threshold (i.e. some hysteresis |
| * is present to prevent thrashing). |
| */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * hot-plug CPU notifier support. |
| * |
| * We need a notifier per filesystem as we need to be able to identify |
| * the filesystem to balance the counters out. This is achieved by |
| * having a notifier block embedded in the xfs_mount_t and doing pointer |
| * magic to get the mount pointer from the notifier block address. |
| */ |
| STATIC int |
| xfs_icsb_cpu_notify( |
| struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| xfs_icsb_cnts_t *cntp; |
| xfs_mount_t *mp; |
| int s; |
| |
| mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); |
| cntp = (xfs_icsb_cnts_t *) |
| per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| /* Easy Case - initialize the area and locks, and |
| * then rebalance when online does everything else for us. */ |
| memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); |
| break; |
| case CPU_ONLINE: |
| case CPU_ONLINE_FROZEN: |
| xfs_icsb_lock(mp); |
| xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0); |
| xfs_icsb_unlock(mp); |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| /* Disable all the counters, then fold the dead cpu's |
| * count into the total on the global superblock and |
| * re-enable the counters. */ |
| xfs_icsb_lock(mp); |
| s = XFS_SB_LOCK(mp); |
| xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); |
| xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); |
| xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); |
| |
| mp->m_sb.sb_icount += cntp->icsb_icount; |
| mp->m_sb.sb_ifree += cntp->icsb_ifree; |
| mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; |
| |
| memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); |
| |
| xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, |
| XFS_ICSB_SB_LOCKED, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, |
| XFS_ICSB_SB_LOCKED, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, |
| XFS_ICSB_SB_LOCKED, 0); |
| XFS_SB_UNLOCK(mp, s); |
| xfs_icsb_unlock(mp); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| int |
| xfs_icsb_init_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); |
| if (mp->m_sb_cnts == NULL) |
| return -ENOMEM; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; |
| mp->m_icsb_notifier.priority = 0; |
| register_hotcpu_notifier(&mp->m_icsb_notifier); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); |
| } |
| |
| mutex_init(&mp->m_icsb_mutex); |
| |
| /* |
| * start with all counters disabled so that the |
| * initial balance kicks us off correctly |
| */ |
| mp->m_icsb_counters = -1; |
| return 0; |
| } |
| |
| void |
| xfs_icsb_reinit_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_lock(mp); |
| /* |
| * start with all counters disabled so that the |
| * initial balance kicks us off correctly |
| */ |
| mp->m_icsb_counters = -1; |
| xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0); |
| xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0); |
| xfs_icsb_unlock(mp); |
| } |
| |
| STATIC void |
| xfs_icsb_destroy_counters( |
| xfs_mount_t *mp) |
| { |
| if (mp->m_sb_cnts) { |
| unregister_hotcpu_notifier(&mp->m_icsb_notifier); |
| free_percpu(mp->m_sb_cnts); |
| } |
| mutex_destroy(&mp->m_icsb_mutex); |
| } |
| |
| STATIC_INLINE void |
| xfs_icsb_lock_cntr( |
| xfs_icsb_cnts_t *icsbp) |
| { |
| while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { |
| ndelay(1000); |
| } |
| } |
| |
| STATIC_INLINE void |
| xfs_icsb_unlock_cntr( |
| xfs_icsb_cnts_t *icsbp) |
| { |
| clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); |
| } |
| |
| |
| STATIC_INLINE void |
| xfs_icsb_lock_all_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| xfs_icsb_lock_cntr(cntp); |
| } |
| } |
| |
| STATIC_INLINE void |
| xfs_icsb_unlock_all_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| xfs_icsb_unlock_cntr(cntp); |
| } |
| } |
| |
| STATIC void |
| xfs_icsb_count( |
| xfs_mount_t *mp, |
| xfs_icsb_cnts_t *cnt, |
| int flags) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); |
| |
| if (!(flags & XFS_ICSB_LAZY_COUNT)) |
| xfs_icsb_lock_all_counters(mp); |
| |
| for_each_online_cpu(i) { |
| cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); |
| cnt->icsb_icount += cntp->icsb_icount; |
| cnt->icsb_ifree += cntp->icsb_ifree; |
| cnt->icsb_fdblocks += cntp->icsb_fdblocks; |
| } |
| |
| if (!(flags & XFS_ICSB_LAZY_COUNT)) |
| xfs_icsb_unlock_all_counters(mp); |
| } |
| |
| STATIC int |
| xfs_icsb_counter_disabled( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field) |
| { |
| ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); |
| return test_bit(field, &mp->m_icsb_counters); |
| } |
| |
| STATIC int |
| xfs_icsb_disable_counter( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field) |
| { |
| xfs_icsb_cnts_t cnt; |
| |
| ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); |
| |
| /* |
| * If we are already disabled, then there is nothing to do |
| * here. We check before locking all the counters to avoid |
| * the expensive lock operation when being called in the |
| * slow path and the counter is already disabled. This is |
| * safe because the only time we set or clear this state is under |
| * the m_icsb_mutex. |
| */ |
| if (xfs_icsb_counter_disabled(mp, field)) |
| return 0; |
| |
| xfs_icsb_lock_all_counters(mp); |
| if (!test_and_set_bit(field, &mp->m_icsb_counters)) { |
| /* drain back to superblock */ |
| |
| xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT); |
| switch(field) { |
| case XFS_SBS_ICOUNT: |
| mp->m_sb.sb_icount = cnt.icsb_icount; |
| break; |
| case XFS_SBS_IFREE: |
| mp->m_sb.sb_ifree = cnt.icsb_ifree; |
| break; |
| case XFS_SBS_FDBLOCKS: |
| mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| xfs_icsb_unlock_all_counters(mp); |
| |
| return 0; |
| } |
| |
| STATIC void |
| xfs_icsb_enable_counter( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| uint64_t count, |
| uint64_t resid) |
| { |
| xfs_icsb_cnts_t *cntp; |
| int i; |
| |
| ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); |
| |
| xfs_icsb_lock_all_counters(mp); |
| for_each_online_cpu(i) { |
| cntp = per_cpu_ptr(mp->m_sb_cnts, i); |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| cntp->icsb_icount = count + resid; |
| break; |
| case XFS_SBS_IFREE: |
| cntp->icsb_ifree = count + resid; |
| break; |
| case XFS_SBS_FDBLOCKS: |
| cntp->icsb_fdblocks = count + resid; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| resid = 0; |
| } |
| clear_bit(field, &mp->m_icsb_counters); |
| xfs_icsb_unlock_all_counters(mp); |
| } |
| |
| void |
| xfs_icsb_sync_counters_flags( |
| xfs_mount_t *mp, |
| int flags) |
| { |
| xfs_icsb_cnts_t cnt; |
| int s; |
| |
| /* Pass 1: lock all counters */ |
| if ((flags & XFS_ICSB_SB_LOCKED) == 0) |
| s = XFS_SB_LOCK(mp); |
| |
| xfs_icsb_count(mp, &cnt, flags); |
| |
| /* Step 3: update mp->m_sb fields */ |
| if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) |
| mp->m_sb.sb_icount = cnt.icsb_icount; |
| if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) |
| mp->m_sb.sb_ifree = cnt.icsb_ifree; |
| if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) |
| mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; |
| |
| if ((flags & XFS_ICSB_SB_LOCKED) == 0) |
| XFS_SB_UNLOCK(mp, s); |
| } |
| |
| /* |
| * Accurate update of per-cpu counters to incore superblock |
| */ |
| STATIC void |
| xfs_icsb_sync_counters( |
| xfs_mount_t *mp) |
| { |
| xfs_icsb_sync_counters_flags(mp, 0); |
| } |
| |
| /* |
| * Balance and enable/disable counters as necessary. |
| * |
| * Thresholds for re-enabling counters are somewhat magic. inode counts are |
| * chosen to be the same number as single on disk allocation chunk per CPU, and |
| * free blocks is something far enough zero that we aren't going thrash when we |
| * get near ENOSPC. We also need to supply a minimum we require per cpu to |
| * prevent looping endlessly when xfs_alloc_space asks for more than will |
| * be distributed to a single CPU but each CPU has enough blocks to be |
| * reenabled. |
| * |
| * Note that we can be called when counters are already disabled. |
| * xfs_icsb_disable_counter() optimises the counter locking in this case to |
| * prevent locking every per-cpu counter needlessly. |
| */ |
| |
| #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 |
| #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ |
| (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) |
| STATIC void |
| xfs_icsb_balance_counter( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| int flags, |
| int min_per_cpu) |
| { |
| uint64_t count, resid; |
| int weight = num_online_cpus(); |
| int s; |
| uint64_t min = (uint64_t)min_per_cpu; |
| |
| if (!(flags & XFS_ICSB_SB_LOCKED)) |
| s = XFS_SB_LOCK(mp); |
| |
| /* disable counter and sync counter */ |
| xfs_icsb_disable_counter(mp, field); |
| |
| /* update counters - first CPU gets residual*/ |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| count = mp->m_sb.sb_icount; |
| resid = do_div(count, weight); |
| if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) |
| goto out; |
| break; |
| case XFS_SBS_IFREE: |
| count = mp->m_sb.sb_ifree; |
| resid = do_div(count, weight); |
| if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) |
| goto out; |
| break; |
| case XFS_SBS_FDBLOCKS: |
| count = mp->m_sb.sb_fdblocks; |
| resid = do_div(count, weight); |
| if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) |
| goto out; |
| break; |
| default: |
| BUG(); |
| count = resid = 0; /* quiet, gcc */ |
| break; |
| } |
| |
| xfs_icsb_enable_counter(mp, field, count, resid); |
| out: |
| if (!(flags & XFS_ICSB_SB_LOCKED)) |
| XFS_SB_UNLOCK(mp, s); |
| } |
| |
| int |
| xfs_icsb_modify_counters( |
| xfs_mount_t *mp, |
| xfs_sb_field_t field, |
| int64_t delta, |
| int rsvd) |
| { |
| xfs_icsb_cnts_t *icsbp; |
| long long lcounter; /* long counter for 64 bit fields */ |
| int cpu, ret = 0, s; |
| |
| might_sleep(); |
| again: |
| cpu = get_cpu(); |
| icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); |
| |
| /* |
| * if the counter is disabled, go to slow path |
| */ |
| if (unlikely(xfs_icsb_counter_disabled(mp, field))) |
| goto slow_path; |
| xfs_icsb_lock_cntr(icsbp); |
| if (unlikely(xfs_icsb_counter_disabled(mp, field))) { |
| xfs_icsb_unlock_cntr(icsbp); |
| goto slow_path; |
| } |
| |
| switch (field) { |
| case XFS_SBS_ICOUNT: |
| lcounter = icsbp->icsb_icount; |
| lcounter += delta; |
| if (unlikely(lcounter < 0)) |
| goto balance_counter; |
| icsbp->icsb_icount = lcounter; |
| break; |
| |
| case XFS_SBS_IFREE: |
| lcounter = icsbp->icsb_ifree; |
| lcounter += delta; |
| if (unlikely(lcounter < 0)) |
| goto balance_counter; |
| icsbp->icsb_ifree = lcounter; |
| break; |
| |
| case XFS_SBS_FDBLOCKS: |
| BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); |
| |
| lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); |
| lcounter += delta; |
| if (unlikely(lcounter < 0)) |
| goto balance_counter; |
| icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| xfs_icsb_unlock_cntr(icsbp); |
| put_cpu(); |
| return 0; |
| |
| slow_path: |
| put_cpu(); |
| |
| /* |
| * serialise with a mutex so we don't burn lots of cpu on |
| * the superblock lock. We still need to hold the superblock |
| * lock, however, when we modify the global structures. |
| */ |
| xfs_icsb_lock(mp); |
| |
| /* |
| * Now running atomically. |
| * |
| * If the counter is enabled, someone has beaten us to rebalancing. |
| * Drop the lock and try again in the fast path.... |
| */ |
| if (!(xfs_icsb_counter_disabled(mp, field))) { |
| xfs_icsb_unlock(mp); |
| goto again; |
| } |
| |
| /* |
| * The counter is currently disabled. Because we are |
| * running atomically here, we know a rebalance cannot |
| * be in progress. Hence we can go straight to operating |
| * on the global superblock. We do not call xfs_mod_incore_sb() |
| * here even though we need to get the SB_LOCK. Doing so |
| * will cause us to re-enter this function and deadlock. |
| * Hence we get the SB_LOCK ourselves and then call |
| * xfs_mod_incore_sb_unlocked() as the unlocked path operates |
| * directly on the global counters. |
| */ |
| s = XFS_SB_LOCK(mp); |
| ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); |
| XFS_SB_UNLOCK(mp, s); |
| |
| /* |
| * Now that we've modified the global superblock, we |
| * may be able to re-enable the distributed counters |
| * (e.g. lots of space just got freed). After that |
| * we are done. |
| */ |
| if (ret != ENOSPC) |
| xfs_icsb_balance_counter(mp, field, 0, 0); |
| xfs_icsb_unlock(mp); |
| return ret; |
| |
| balance_counter: |
| xfs_icsb_unlock_cntr(icsbp); |
| put_cpu(); |
| |
| /* |
| * We may have multiple threads here if multiple per-cpu |
| * counters run dry at the same time. This will mean we can |
| * do more balances than strictly necessary but it is not |
| * the common slowpath case. |
| */ |
| xfs_icsb_lock(mp); |
| |
| /* |
| * running atomically. |
| * |
| * This will leave the counter in the correct state for future |
| * accesses. After the rebalance, we simply try again and our retry |
| * will either succeed through the fast path or slow path without |
| * another balance operation being required. |
| */ |
| xfs_icsb_balance_counter(mp, field, 0, delta); |
| xfs_icsb_unlock(mp); |
| goto again; |
| } |
| |
| #endif |