blob: 0ab5b6978cfcae8841f004c882f065857c91f75e [file] [log] [blame]
/* drivers/android/pmem.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/export.h>
#include <linux/miscdevice.h>
#include <linux/platform_device.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/fmem.h>
#include <linux/mm.h>
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/android_pmem.h>
#include <linux/mempolicy.h>
#include <linux/sched.h>
#include <linux/kobject.h>
#include <linux/pm_runtime.h>
#include <linux/memory_alloc.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <linux/mm_types.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/sizes.h>
#include <asm/mach/map.h>
#include <asm/page.h>
#define PMEM_MAX_DEVICES (10)
#define PMEM_MAX_ORDER (128)
#define PMEM_MIN_ALLOC PAGE_SIZE
#define PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS (64)
#define PMEM_32BIT_WORD_ORDER (5)
#define PMEM_BITS_PER_WORD_MASK (BITS_PER_LONG - 1)
#ifdef CONFIG_ANDROID_PMEM_DEBUG
#define PMEM_DEBUG 1
#else
#define PMEM_DEBUG 0
#endif
#define SYSTEM_ALLOC_RETRY 10
/* indicates that a refernce to this file has been taken via get_pmem_file,
* the file should not be released until put_pmem_file is called */
#define PMEM_FLAGS_BUSY 0x1
/* indicates that this is a suballocation of a larger master range */
#define PMEM_FLAGS_CONNECTED 0x1 << 1
/* indicates this is a master and not a sub allocation and that it is mmaped */
#define PMEM_FLAGS_MASTERMAP 0x1 << 2
/* submap and unsubmap flags indicate:
* 00: subregion has never been mmaped
* 10: subregion has been mmaped, reference to the mm was taken
* 11: subretion has ben released, refernece to the mm still held
* 01: subretion has been released, reference to the mm has been released
*/
#define PMEM_FLAGS_SUBMAP 0x1 << 3
#define PMEM_FLAGS_UNSUBMAP 0x1 << 4
struct pmem_data {
/* in alloc mode: an index into the bitmap
* in no_alloc mode: the size of the allocation */
int index;
/* see flags above for descriptions */
unsigned int flags;
/* protects this data field, if the mm_mmap sem will be held at the
* same time as this sem, the mm sem must be taken first (as this is
* the order for vma_open and vma_close ops */
struct rw_semaphore sem;
/* info about the mmaping process */
struct vm_area_struct *vma;
/* task struct of the mapping process */
struct task_struct *task;
/* process id of teh mapping process */
pid_t pid;
/* file descriptor of the master */
int master_fd;
/* file struct of the master */
struct file *master_file;
/* a list of currently available regions if this is a suballocation */
struct list_head region_list;
/* a linked list of data so we can access them for debugging */
struct list_head list;
#if PMEM_DEBUG
int ref;
#endif
};
struct pmem_bits {
unsigned allocated:1; /* 1 if allocated, 0 if free */
unsigned order:7; /* size of the region in pmem space */
};
struct pmem_region_node {
struct pmem_region region;
struct list_head list;
};
#define PMEM_DEBUG_MSGS 0
#if PMEM_DEBUG_MSGS
#define DLOG(fmt,args...) \
do { pr_debug("[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \
##args); } \
while (0)
#else
#define DLOG(x...) do {} while (0)
#endif
enum pmem_align {
PMEM_ALIGN_4K,
PMEM_ALIGN_1M,
};
#define PMEM_NAME_SIZE 16
struct alloc_list {
void *addr; /* physical addr of allocation */
void *aaddr; /* aligned physical addr */
unsigned int size; /* total size of allocation */
unsigned char __iomem *vaddr; /* Virtual addr */
struct list_head allocs;
};
struct pmem_info {
struct miscdevice dev;
/* physical start address of the remaped pmem space */
unsigned long base;
/* vitual start address of the remaped pmem space */
unsigned char __iomem *vbase;
/* total size of the pmem space */
unsigned long size;
/* number of entries in the pmem space */
unsigned long num_entries;
/* pfn of the garbage page in memory */
unsigned long garbage_pfn;
/* which memory type (i.e. SMI, EBI1) this PMEM device is backed by */
unsigned memory_type;
char name[PMEM_NAME_SIZE];
/* index of the garbage page in the pmem space */
int garbage_index;
/* reserved virtual address range */
struct vm_struct *area;
enum pmem_allocator_type allocator_type;
int (*allocate)(const int,
const unsigned long,
const unsigned int);
int (*free)(int, int);
int (*free_space)(int, struct pmem_freespace *);
unsigned long (*len)(int, struct pmem_data *);
unsigned long (*start_addr)(int, struct pmem_data *);
/* actual size of memory element, e.g.: (4 << 10) is 4K */
unsigned int quantum;
/* indicates maps of this region should be cached, if a mix of
* cached and uncached is desired, set this and open the device with
* O_SYNC to get an uncached region */
unsigned cached;
unsigned buffered;
union {
struct {
/* in all_or_nothing allocator mode the first mapper
* gets the whole space and sets this flag */
unsigned allocated;
} all_or_nothing;
struct {
/* the buddy allocator bitmap for the region
* indicating which entries are allocated and which
* are free.
*/
struct pmem_bits *buddy_bitmap;
} buddy_bestfit;
struct {
unsigned int bitmap_free; /* # of zero bits/quanta */
uint32_t *bitmap;
int32_t bitmap_allocs;
struct {
short bit;
unsigned short quanta;
} *bitm_alloc;
} bitmap;
struct {
unsigned long used; /* Bytes currently allocated */
struct list_head alist; /* List of allocations */
} system_mem;
} allocator;
int id;
struct kobject kobj;
/* for debugging, creates a list of pmem file structs, the
* data_list_mutex should be taken before pmem_data->sem if both are
* needed */
struct mutex data_list_mutex;
struct list_head data_list;
/* arena_mutex protects the global allocation arena
*
* IF YOU TAKE BOTH LOCKS TAKE THEM IN THIS ORDER:
* down(pmem_data->sem) => mutex_lock(arena_mutex)
*/
struct mutex arena_mutex;
long (*ioctl)(struct file *, unsigned int, unsigned long);
int (*release)(struct inode *, struct file *);
/* reference count of allocations */
atomic_t allocation_cnt;
/*
* request function for a region when the allocation count goes
* from 0 -> 1
*/
int (*mem_request)(void *);
/*
* release function for a region when the allocation count goes
* from 1 -> 0
*/
int (*mem_release)(void *);
/*
* private data for the request/release callback
*/
void *region_data;
/*
* map and unmap as needed
*/
int map_on_demand;
/*
* memory will be reused through fmem
*/
int reusable;
};
#define to_pmem_info_id(a) (container_of(a, struct pmem_info, kobj)->id)
static void ioremap_pmem(int id);
static void pmem_put_region(int id);
static int pmem_get_region(int id);
static struct pmem_info pmem[PMEM_MAX_DEVICES];
static int id_count;
#define PMEM_SYSFS_DIR_NAME "pmem_regions" /* under /sys/kernel/ */
static struct kset *pmem_kset;
#define PMEM_IS_FREE_BUDDY(id, index) \
(!(pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].allocated))
#define PMEM_BUDDY_ORDER(id, index) \
(pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].order)
#define PMEM_BUDDY_INDEX(id, index) \
(index ^ (1 << PMEM_BUDDY_ORDER(id, index)))
#define PMEM_BUDDY_NEXT_INDEX(id, index) \
(index + (1 << PMEM_BUDDY_ORDER(id, index)))
#define PMEM_OFFSET(index) (index * pmem[id].quantum)
#define PMEM_START_ADDR(id, index) \
(PMEM_OFFSET(index) + pmem[id].base)
#define PMEM_BUDDY_LEN(id, index) \
((1 << PMEM_BUDDY_ORDER(id, index)) * pmem[id].quantum)
#define PMEM_END_ADDR(id, index) \
(PMEM_START_ADDR(id, index) + PMEM_LEN(id, index))
#define PMEM_START_VADDR(id, index) \
(PMEM_OFFSET(id, index) + pmem[id].vbase)
#define PMEM_END_VADDR(id, index) \
(PMEM_START_VADDR(id, index) + PMEM_LEN(id, index))
#define PMEM_REVOKED(data) (data->flags & PMEM_FLAGS_REVOKED)
#define PMEM_IS_PAGE_ALIGNED(addr) (!((addr) & (~PAGE_MASK)))
#define PMEM_IS_SUBMAP(data) \
((data->flags & PMEM_FLAGS_SUBMAP) && \
(!(data->flags & PMEM_FLAGS_UNSUBMAP)))
static int pmem_release(struct inode *, struct file *);
static int pmem_mmap(struct file *, struct vm_area_struct *);
static int pmem_open(struct inode *, struct file *);
static long pmem_ioctl(struct file *, unsigned int, unsigned long);
struct file_operations pmem_fops = {
.release = pmem_release,
.mmap = pmem_mmap,
.open = pmem_open,
.unlocked_ioctl = pmem_ioctl,
};
#define PMEM_ATTR(_name, _mode, _show, _store) { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
}
struct pmem_attr {
struct attribute attr;
ssize_t(*show) (const int id, char * const);
ssize_t(*store) (const int id, const char * const, const size_t count);
};
#define to_pmem_attr(a) container_of(a, struct pmem_attr, attr)
#define RW_PMEM_ATTR(name) \
static struct pmem_attr pmem_attr_## name = \
PMEM_ATTR(name, S_IRUGO | S_IWUSR, show_pmem_## name, store_pmem_## name)
#define RO_PMEM_ATTR(name) \
static struct pmem_attr pmem_attr_## name = \
PMEM_ATTR(name, S_IRUGO, show_pmem_## name, NULL)
#define WO_PMEM_ATTR(name) \
static struct pmem_attr pmem_attr_## name = \
PMEM_ATTR(name, S_IWUSR, NULL, store_pmem_## name)
static ssize_t show_pmem(struct kobject *kobj,
struct attribute *attr,
char *buf)
{
struct pmem_attr *a = to_pmem_attr(attr);
return a->show ? a->show(to_pmem_info_id(kobj), buf) : -EIO;
}
static ssize_t store_pmem(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct pmem_attr *a = to_pmem_attr(attr);
return a->store ? a->store(to_pmem_info_id(kobj), buf, count) : -EIO;
}
static struct sysfs_ops pmem_ops = {
.show = show_pmem,
.store = store_pmem,
};
static ssize_t show_pmem_base(int id, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n",
pmem[id].base, pmem[id].base);
}
RO_PMEM_ATTR(base);
static ssize_t show_pmem_size(int id, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n",
pmem[id].size, pmem[id].size);
}
RO_PMEM_ATTR(size);
static ssize_t show_pmem_allocator_type(int id, char *buf)
{
switch (pmem[id].allocator_type) {
case PMEM_ALLOCATORTYPE_ALLORNOTHING:
return scnprintf(buf, PAGE_SIZE, "%s\n", "All or Nothing");
case PMEM_ALLOCATORTYPE_BUDDYBESTFIT:
return scnprintf(buf, PAGE_SIZE, "%s\n", "Buddy Bestfit");
case PMEM_ALLOCATORTYPE_BITMAP:
return scnprintf(buf, PAGE_SIZE, "%s\n", "Bitmap");
case PMEM_ALLOCATORTYPE_SYSTEM:
return scnprintf(buf, PAGE_SIZE, "%s\n", "System heap");
default:
return scnprintf(buf, PAGE_SIZE,
"??? Invalid allocator type (%d) for this region! "
"Something isn't right.\n",
pmem[id].allocator_type);
}
}
RO_PMEM_ATTR(allocator_type);
static ssize_t show_pmem_mapped_regions(int id, char *buf)
{
struct list_head *elt;
int ret;
ret = scnprintf(buf, PAGE_SIZE,
"pid #: mapped regions (offset, len) (offset,len)...\n");
mutex_lock(&pmem[id].data_list_mutex);
list_for_each(elt, &pmem[id].data_list) {
struct pmem_data *data =
list_entry(elt, struct pmem_data, list);
struct list_head *elt2;
down_read(&data->sem);
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "pid %u:",
data->pid);
list_for_each(elt2, &data->region_list) {
struct pmem_region_node *region_node = list_entry(elt2,
struct pmem_region_node,
list);
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"(%lx,%lx) ",
region_node->region.offset,
region_node->region.len);
}
up_read(&data->sem);
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
}
mutex_unlock(&pmem[id].data_list_mutex);
return ret;
}
RO_PMEM_ATTR(mapped_regions);
#define PMEM_COMMON_SYSFS_ATTRS \
&pmem_attr_base.attr, \
&pmem_attr_size.attr, \
&pmem_attr_allocator_type.attr, \
&pmem_attr_mapped_regions.attr
static ssize_t show_pmem_allocated(int id, char *buf)
{
ssize_t ret;
mutex_lock(&pmem[id].arena_mutex);
ret = scnprintf(buf, PAGE_SIZE, "%s\n",
pmem[id].allocator.all_or_nothing.allocated ?
"is allocated" : "is NOT allocated");
mutex_unlock(&pmem[id].arena_mutex);
return ret;
}
RO_PMEM_ATTR(allocated);
static struct attribute *pmem_allornothing_attrs[] = {
PMEM_COMMON_SYSFS_ATTRS,
&pmem_attr_allocated.attr,
NULL
};
static struct kobj_type pmem_allornothing_ktype = {
.sysfs_ops = &pmem_ops,
.default_attrs = pmem_allornothing_attrs,
};
static ssize_t show_pmem_total_entries(int id, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%lu\n", pmem[id].num_entries);
}
RO_PMEM_ATTR(total_entries);
static ssize_t show_pmem_quantum_size(int id, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%u (%#x)\n",
pmem[id].quantum, pmem[id].quantum);
}
RO_PMEM_ATTR(quantum_size);
static ssize_t show_pmem_buddy_bitmap_dump(int id, char *buf)
{
int ret, i;
mutex_lock(&pmem[id].data_list_mutex);
ret = scnprintf(buf, PAGE_SIZE, "index\torder\tlength\tallocated\n");
for (i = 0; i < pmem[id].num_entries && (PAGE_SIZE - ret);
i = PMEM_BUDDY_NEXT_INDEX(id, i))
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%d\t%d\t%d\t%d\n",
i, PMEM_BUDDY_ORDER(id, i),
PMEM_BUDDY_LEN(id, i),
!PMEM_IS_FREE_BUDDY(id, i));
mutex_unlock(&pmem[id].data_list_mutex);
return ret;
}
RO_PMEM_ATTR(buddy_bitmap_dump);
#define PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS \
&pmem_attr_quantum_size.attr, \
&pmem_attr_total_entries.attr
static struct attribute *pmem_buddy_bestfit_attrs[] = {
PMEM_COMMON_SYSFS_ATTRS,
PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS,
&pmem_attr_buddy_bitmap_dump.attr,
NULL
};
static struct kobj_type pmem_buddy_bestfit_ktype = {
.sysfs_ops = &pmem_ops,
.default_attrs = pmem_buddy_bestfit_attrs,
};
static ssize_t show_pmem_free_quanta(int id, char *buf)
{
ssize_t ret;
mutex_lock(&pmem[id].arena_mutex);
ret = scnprintf(buf, PAGE_SIZE, "%u\n",
pmem[id].allocator.bitmap.bitmap_free);
mutex_unlock(&pmem[id].arena_mutex);
return ret;
}
RO_PMEM_ATTR(free_quanta);
static ssize_t show_pmem_bits_allocated(int id, char *buf)
{
ssize_t ret;
unsigned int i;
mutex_lock(&pmem[id].arena_mutex);
ret = scnprintf(buf, PAGE_SIZE,
"id: %d\nbitnum\tindex\tquanta allocated\n", id);
for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++)
if (pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1)
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
"%u\t%u\t%u\n",
i,
pmem[id].allocator.bitmap.bitm_alloc[i].bit,
pmem[id].allocator.bitmap.bitm_alloc[i].quanta
);
mutex_unlock(&pmem[id].arena_mutex);
return ret;
}
RO_PMEM_ATTR(bits_allocated);
static struct attribute *pmem_bitmap_attrs[] = {
PMEM_COMMON_SYSFS_ATTRS,
PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS,
&pmem_attr_free_quanta.attr,
&pmem_attr_bits_allocated.attr,
NULL
};
static struct attribute *pmem_system_attrs[] = {
PMEM_COMMON_SYSFS_ATTRS,
NULL
};
static struct kobj_type pmem_bitmap_ktype = {
.sysfs_ops = &pmem_ops,
.default_attrs = pmem_bitmap_attrs,
};
static struct kobj_type pmem_system_ktype = {
.sysfs_ops = &pmem_ops,
.default_attrs = pmem_system_attrs,
};
static int pmem_allocate_from_id(const int id, const unsigned long size,
const unsigned int align)
{
int ret;
ret = pmem_get_region(id);
if (ret)
return -1;
ret = pmem[id].allocate(id, size, align);
if (ret < 0)
pmem_put_region(id);
return ret;
}
static int pmem_free_from_id(const int id, const int index)
{
pmem_put_region(id);
return pmem[id].free(id, index);
}
static int pmem_get_region(int id)
{
/* Must be called with arena mutex locked */
atomic_inc(&pmem[id].allocation_cnt);
if (!pmem[id].vbase) {
DLOG("PMEMDEBUG: mapping for %s", pmem[id].name);
if (pmem[id].mem_request) {
int ret = pmem[id].mem_request(pmem[id].region_data);
if (ret) {
atomic_dec(&pmem[id].allocation_cnt);
return 1;
}
}
ioremap_pmem(id);
}
if (pmem[id].vbase) {
return 0;
} else {
if (pmem[id].mem_release)
pmem[id].mem_release(pmem[id].region_data);
atomic_dec(&pmem[id].allocation_cnt);
return 1;
}
}
static void pmem_put_region(int id)
{
/* Must be called with arena mutex locked */
if (atomic_dec_and_test(&pmem[id].allocation_cnt)) {
DLOG("PMEMDEBUG: unmapping for %s", pmem[id].name);
BUG_ON(!pmem[id].vbase);
if (pmem[id].map_on_demand) {
/* unmap_kernel_range() flushes the caches
* and removes the page table entries
*/
unmap_kernel_range((unsigned long)pmem[id].vbase,
pmem[id].size);
pmem[id].vbase = NULL;
if (pmem[id].mem_release) {
int ret = pmem[id].mem_release(
pmem[id].region_data);
WARN(ret, "mem_release failed");
}
}
}
}
static int get_id(struct file *file)
{
return MINOR(file->f_dentry->d_inode->i_rdev);
}
static char *get_name(struct file *file)
{
int id = get_id(file);
return pmem[id].name;
}
static int is_pmem_file(struct file *file)
{
int id;
if (unlikely(!file || !file->f_dentry || !file->f_dentry->d_inode))
return 0;
id = get_id(file);
return (unlikely(id >= PMEM_MAX_DEVICES ||
file->f_dentry->d_inode->i_rdev !=
MKDEV(MISC_MAJOR, pmem[id].dev.minor))) ? 0 : 1;
}
static int has_allocation(struct file *file)
{
/* must be called with at least read lock held on
* ((struct pmem_data *)(file->private_data))->sem which
* means that file is guaranteed not to be NULL upon entry!!
* check is_pmem_file first if not accessed via pmem_file_ops */
struct pmem_data *pdata = file->private_data;
return pdata && pdata->index != -1;
}
static int is_master_owner(struct file *file)
{
struct file *master_file;
struct pmem_data *data = file->private_data;
int put_needed, ret = 0;
if (!has_allocation(file))
return 0;
if (PMEM_FLAGS_MASTERMAP & data->flags)
return 1;
master_file = fget_light(data->master_fd, &put_needed);
if (master_file && data->master_file == master_file)
ret = 1;
if (master_file)
fput_light(master_file, put_needed);
return ret;
}
static int pmem_free_all_or_nothing(int id, int index)
{
/* caller should hold the lock on arena_mutex! */
DLOG("index %d\n", index);
pmem[id].allocator.all_or_nothing.allocated = 0;
return 0;
}
static int pmem_free_space_all_or_nothing(int id,
struct pmem_freespace *fs)
{
/* caller should hold the lock on arena_mutex! */
fs->total = (unsigned long)
pmem[id].allocator.all_or_nothing.allocated == 0 ?
pmem[id].size : 0;
fs->largest = fs->total;
return 0;
}
static int pmem_free_buddy_bestfit(int id, int index)
{
/* caller should hold the lock on arena_mutex! */
int curr = index;
DLOG("index %d\n", index);
/* clean up the bitmap, merging any buddies */
pmem[id].allocator.buddy_bestfit.buddy_bitmap[curr].allocated = 0;
/* find a slots buddy Buddy# = Slot# ^ (1 << order)
* if the buddy is also free merge them
* repeat until the buddy is not free or end of the bitmap is reached
*/
do {
int buddy = PMEM_BUDDY_INDEX(id, curr);
if (buddy < pmem[id].num_entries &&
PMEM_IS_FREE_BUDDY(id, buddy) &&
PMEM_BUDDY_ORDER(id, buddy) ==
PMEM_BUDDY_ORDER(id, curr)) {
PMEM_BUDDY_ORDER(id, buddy)++;
PMEM_BUDDY_ORDER(id, curr)++;
curr = min(buddy, curr);
} else {
break;
}
} while (curr < pmem[id].num_entries);
return 0;
}
static int pmem_free_space_buddy_bestfit(int id,
struct pmem_freespace *fs)
{
/* caller should hold the lock on arena_mutex! */
int curr;
unsigned long size;
fs->total = 0;
fs->largest = 0;
for (curr = 0; curr < pmem[id].num_entries;
curr = PMEM_BUDDY_NEXT_INDEX(id, curr)) {
if (PMEM_IS_FREE_BUDDY(id, curr)) {
size = PMEM_BUDDY_LEN(id, curr);
if (size > fs->largest)
fs->largest = size;
fs->total += size;
}
}
return 0;
}
static inline uint32_t start_mask(int bit_start)
{
return (uint32_t)(~0) << (bit_start & PMEM_BITS_PER_WORD_MASK);
}
static inline uint32_t end_mask(int bit_end)
{
return (uint32_t)(~0) >>
((BITS_PER_LONG - bit_end) & PMEM_BITS_PER_WORD_MASK);
}
static inline int compute_total_words(int bit_end, int word_index)
{
return ((bit_end + BITS_PER_LONG - 1) >>
PMEM_32BIT_WORD_ORDER) - word_index;
}
static void bitmap_bits_clear_all(uint32_t *bitp, int bit_start, int bit_end)
{
int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words;
total_words = compute_total_words(bit_end, word_index);
if (total_words > 0) {
if (total_words == 1) {
bitp[word_index] &=
~(start_mask(bit_start) & end_mask(bit_end));
} else {
bitp[word_index++] &= ~start_mask(bit_start);
if (total_words > 2) {
int total_bytes;
total_words -= 2;
total_bytes = total_words << 2;
memset(&bitp[word_index], 0, total_bytes);
word_index += total_words;
}
bitp[word_index] &= ~end_mask(bit_end);
}
}
}
static int pmem_free_bitmap(int id, int bitnum)
{
/* caller should hold the lock on arena_mutex! */
int i;
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
DLOG("bitnum %d\n", bitnum);
for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++) {
const int curr_bit =
pmem[id].allocator.bitmap.bitm_alloc[i].bit;
if (curr_bit == bitnum) {
const int curr_quanta =
pmem[id].allocator.bitmap.bitm_alloc[i].quanta;
bitmap_bits_clear_all(pmem[id].allocator.bitmap.bitmap,
curr_bit, curr_bit + curr_quanta);
pmem[id].allocator.bitmap.bitmap_free += curr_quanta;
pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1;
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
return 0;
}
}
printk(KERN_ALERT "pmem: %s: Attempt to free unallocated index %d, id"
" %d, pid %d(%s)\n", __func__, bitnum, id, current->pid,
get_task_comm(currtask_name, current));
return -1;
}
static int pmem_free_system(int id, int index)
{
/* caller should hold the lock on arena_mutex! */
struct alloc_list *item;
DLOG("index %d\n", index);
if (index != 0)
item = (struct alloc_list *)index;
else
return 0;
if (item->vaddr != NULL) {
iounmap(item->vaddr);
kfree(__va(item->addr));
list_del(&item->allocs);
kfree(item);
}
return 0;
}
static int pmem_free_space_bitmap(int id, struct pmem_freespace *fs)
{
int i, j;
int max_allocs = pmem[id].allocator.bitmap.bitmap_allocs;
int alloc_start = 0;
int next_alloc;
unsigned long size = 0;
fs->total = 0;
fs->largest = 0;
for (i = 0; i < max_allocs; i++) {
int alloc_quanta = 0;
int alloc_idx = 0;
next_alloc = pmem[id].num_entries;
/* Look for the lowest bit where next allocation starts */
for (j = 0; j < max_allocs; j++) {
const int curr_alloc = pmem[id].allocator.
bitmap.bitm_alloc[j].bit;
if (curr_alloc != -1) {
if (alloc_start == curr_alloc)
alloc_idx = j;
if (alloc_start >= curr_alloc)
continue;
if (curr_alloc < next_alloc)
next_alloc = curr_alloc;
}
}
alloc_quanta = pmem[id].allocator.bitmap.
bitm_alloc[alloc_idx].quanta;
size = (next_alloc - (alloc_start + alloc_quanta)) *
pmem[id].quantum;
if (size > fs->largest)
fs->largest = size;
fs->total += size;
if (next_alloc == pmem[id].num_entries)
break;
else
alloc_start = next_alloc;
}
return 0;
}
static int pmem_free_space_system(int id, struct pmem_freespace *fs)
{
fs->total = pmem[id].size;
fs->largest = pmem[id].size;
return 0;
}
static void pmem_revoke(struct file *file, struct pmem_data *data);
static int pmem_release(struct inode *inode, struct file *file)
{
struct pmem_data *data = file->private_data;
struct pmem_region_node *region_node;
struct list_head *elt, *elt2;
int id = get_id(file), ret = 0;
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("releasing memory pid %u(%s) file %p(%ld) dev %s(id: %d)\n",
current->pid, get_task_comm(currtask_name, current),
file, file_count(file), get_name(file), id);
mutex_lock(&pmem[id].data_list_mutex);
/* if this file is a master, revoke all the memory in the connected
* files */
if (PMEM_FLAGS_MASTERMAP & data->flags) {
list_for_each(elt, &pmem[id].data_list) {
struct pmem_data *sub_data =
list_entry(elt, struct pmem_data, list);
int is_master;
down_read(&sub_data->sem);
is_master = (PMEM_IS_SUBMAP(sub_data) &&
file == sub_data->master_file);
up_read(&sub_data->sem);
if (is_master)
pmem_revoke(file, sub_data);
}
}
list_del(&data->list);
mutex_unlock(&pmem[id].data_list_mutex);
down_write(&data->sem);
/* if it is not a connected file and it has an allocation, free it */
if (!(PMEM_FLAGS_CONNECTED & data->flags) && has_allocation(file)) {
mutex_lock(&pmem[id].arena_mutex);
ret = pmem_free_from_id(id, data->index);
mutex_unlock(&pmem[id].arena_mutex);
}
/* if this file is a submap (mapped, connected file), downref the
* task struct */
if (PMEM_FLAGS_SUBMAP & data->flags)
if (data->task) {
put_task_struct(data->task);
data->task = NULL;
}
file->private_data = NULL;
list_for_each_safe(elt, elt2, &data->region_list) {
region_node = list_entry(elt, struct pmem_region_node, list);
list_del(elt);
kfree(region_node);
}
BUG_ON(!list_empty(&data->region_list));
up_write(&data->sem);
kfree(data);
if (pmem[id].release)
ret = pmem[id].release(inode, file);
return ret;
}
static int pmem_open(struct inode *inode, struct file *file)
{
struct pmem_data *data;
int id = get_id(file);
int ret = 0;
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("pid %u(%s) file %p(%ld) dev %s(id: %d)\n",
current->pid, get_task_comm(currtask_name, current),
file, file_count(file), get_name(file), id);
data = kmalloc(sizeof(struct pmem_data), GFP_KERNEL);
if (!data) {
printk(KERN_ALERT "pmem: %s: unable to allocate memory for "
"pmem metadata.", __func__);
return -1;
}
data->flags = 0;
data->index = -1;
data->task = NULL;
data->vma = NULL;
data->pid = 0;
data->master_file = NULL;
#if PMEM_DEBUG
data->ref = 0;
#endif
INIT_LIST_HEAD(&data->region_list);
init_rwsem(&data->sem);
file->private_data = data;
INIT_LIST_HEAD(&data->list);
mutex_lock(&pmem[id].data_list_mutex);
list_add(&data->list, &pmem[id].data_list);
mutex_unlock(&pmem[id].data_list_mutex);
return ret;
}
static unsigned long pmem_order(unsigned long len, int id)
{
int i;
len = (len + pmem[id].quantum - 1)/pmem[id].quantum;
len--;
for (i = 0; i < sizeof(len)*8; i++)
if (len >> i == 0)
break;
return i;
}
static int pmem_allocator_all_or_nothing(const int id,
const unsigned long len,
const unsigned int align)
{
/* caller should hold the lock on arena_mutex! */
DLOG("all or nothing\n");
if ((len > pmem[id].size) ||
pmem[id].allocator.all_or_nothing.allocated)
return -1;
pmem[id].allocator.all_or_nothing.allocated = 1;
return len;
}
static int pmem_allocator_buddy_bestfit(const int id,
const unsigned long len,
unsigned int align)
{
/* caller should hold the lock on arena_mutex! */
int curr;
int best_fit = -1;
unsigned long order;
DLOG("buddy bestfit\n");
order = pmem_order(len, id);
if (order > PMEM_MAX_ORDER)
goto out;
DLOG("order %lx\n", order);
/* Look through the bitmap.
* If a free slot of the correct order is found, use it.
* Otherwise, use the best fit (smallest with size > order) slot.
*/
for (curr = 0;
curr < pmem[id].num_entries;
curr = PMEM_BUDDY_NEXT_INDEX(id, curr))
if (PMEM_IS_FREE_BUDDY(id, curr)) {
if (PMEM_BUDDY_ORDER(id, curr) ==
(unsigned char)order) {
/* set the not free bit and clear others */
best_fit = curr;
break;
}
if (PMEM_BUDDY_ORDER(id, curr) >
(unsigned char)order &&
(best_fit < 0 ||
PMEM_BUDDY_ORDER(id, curr) <
PMEM_BUDDY_ORDER(id, best_fit)))
best_fit = curr;
}
/* if best_fit < 0, there are no suitable slots; return an error */
if (best_fit < 0) {
#if PMEM_DEBUG
printk(KERN_ALERT "pmem: %s: no space left to allocate!\n",
__func__);
#endif
goto out;
}
/* now partition the best fit:
* split the slot into 2 buddies of order - 1
* repeat until the slot is of the correct order
*/
while (PMEM_BUDDY_ORDER(id, best_fit) > (unsigned char)order) {
int buddy;
PMEM_BUDDY_ORDER(id, best_fit) -= 1;
buddy = PMEM_BUDDY_INDEX(id, best_fit);
PMEM_BUDDY_ORDER(id, buddy) = PMEM_BUDDY_ORDER(id, best_fit);
}
pmem[id].allocator.buddy_bestfit.buddy_bitmap[best_fit].allocated = 1;
out:
return best_fit;
}
static inline unsigned long paddr_from_bit(const int id, const int bitnum)
{
return pmem[id].base + pmem[id].quantum * bitnum;
}
static inline unsigned long bit_from_paddr(const int id,
const unsigned long paddr)
{
return (paddr - pmem[id].base) / pmem[id].quantum;
}
static void bitmap_bits_set_all(uint32_t *bitp, int bit_start, int bit_end)
{
int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words;
total_words = compute_total_words(bit_end, word_index);
if (total_words > 0) {
if (total_words == 1) {
bitp[word_index] |=
(start_mask(bit_start) & end_mask(bit_end));
} else {
bitp[word_index++] |= start_mask(bit_start);
if (total_words > 2) {
int total_bytes;
total_words -= 2;
total_bytes = total_words << 2;
memset(&bitp[word_index], ~0, total_bytes);
word_index += total_words;
}
bitp[word_index] |= end_mask(bit_end);
}
}
}
static int
bitmap_allocate_contiguous(uint32_t *bitp, int num_bits_to_alloc,
int total_bits, int spacing, int start_bit)
{
int bit_start, last_bit, word_index;
if (num_bits_to_alloc <= 0)
return -1;
for (bit_start = start_bit; ;
bit_start = ((last_bit +
(word_index << PMEM_32BIT_WORD_ORDER) + spacing - 1)
& ~(spacing - 1)) + start_bit) {
int bit_end = bit_start + num_bits_to_alloc, total_words;
if (bit_end > total_bits)
return -1; /* out of contiguous memory */
word_index = bit_start >> PMEM_32BIT_WORD_ORDER;
total_words = compute_total_words(bit_end, word_index);
if (total_words <= 0)
return -1;
if (total_words == 1) {
last_bit = fls(bitp[word_index] &
(start_mask(bit_start) &
end_mask(bit_end)));
if (last_bit)
continue;
} else {
int end_word = word_index + (total_words - 1);
last_bit =
fls(bitp[word_index] & start_mask(bit_start));
if (last_bit)
continue;
for (word_index++;
word_index < end_word;
word_index++) {
last_bit = fls(bitp[word_index]);
if (last_bit)
break;
}
if (last_bit)
continue;
last_bit = fls(bitp[word_index] & end_mask(bit_end));
if (last_bit)
continue;
}
bitmap_bits_set_all(bitp, bit_start, bit_end);
return bit_start;
}
return -1;
}
static int reserve_quanta(const unsigned int quanta_needed,
const int id,
unsigned int align)
{
/* alignment should be a valid power of 2 */
int ret = -1, start_bit = 0, spacing = 1;
/* Sanity check */
if (quanta_needed > pmem[id].allocator.bitmap.bitmap_free) {
#if PMEM_DEBUG
printk(KERN_ALERT "pmem: %s: request (%d) too big for"
" available free (%d)\n", __func__, quanta_needed,
pmem[id].allocator.bitmap.bitmap_free);
#endif
return -1;
}
start_bit = bit_from_paddr(id,
(pmem[id].base + align - 1) & ~(align - 1));
if (start_bit <= -1) {
#if PMEM_DEBUG
printk(KERN_ALERT
"pmem: %s: bit_from_paddr fails for"
" %u alignment.\n", __func__, align);
#endif
return -1;
}
spacing = align / pmem[id].quantum;
spacing = spacing > 1 ? spacing : 1;
ret = bitmap_allocate_contiguous(pmem[id].allocator.bitmap.bitmap,
quanta_needed,
(pmem[id].size + pmem[id].quantum - 1) / pmem[id].quantum,
spacing,
start_bit);
#if PMEM_DEBUG
if (ret < 0)
printk(KERN_ALERT "pmem: %s: not enough contiguous bits free "
"in bitmap! Region memory is either too fragmented or"
" request is too large for available memory.\n",
__func__);
#endif
return ret;
}
static int pmem_allocator_bitmap(const int id,
const unsigned long len,
const unsigned int align)
{
/* caller should hold the lock on arena_mutex! */
int bitnum, i;
unsigned int quanta_needed;
DLOG("bitmap id %d, len %ld, align %u\n", id, len, align);
if (!pmem[id].allocator.bitmap.bitm_alloc) {
#if PMEM_DEBUG
printk(KERN_ALERT "pmem: bitm_alloc not present! id: %d\n",
id);
#endif
return -1;
}
quanta_needed = (len + pmem[id].quantum - 1) / pmem[id].quantum;
DLOG("quantum size %u quanta needed %u free %u id %d\n",
pmem[id].quantum, quanta_needed,
pmem[id].allocator.bitmap.bitmap_free, id);
if (pmem[id].allocator.bitmap.bitmap_free < quanta_needed) {
#if PMEM_DEBUG
printk(KERN_ALERT "pmem: memory allocation failure. "
"PMEM memory region exhausted, id %d."
" Unable to comply with allocation request.\n", id);
#endif
return -1;
}
bitnum = reserve_quanta(quanta_needed, id, align);
if (bitnum == -1)
goto leave;
for (i = 0;
i < pmem[id].allocator.bitmap.bitmap_allocs &&
pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1;
i++)
;
if (i >= pmem[id].allocator.bitmap.bitmap_allocs) {
void *temp;
int32_t new_bitmap_allocs =
pmem[id].allocator.bitmap.bitmap_allocs << 1;
int j;
if (!new_bitmap_allocs) { /* failed sanity check!! */
#if PMEM_DEBUG
pr_alert("pmem: bitmap_allocs number"
" wrapped around to zero! Something "
"is VERY wrong.\n");
#endif
return -1;
}
if (new_bitmap_allocs > pmem[id].num_entries) {
/* failed sanity check!! */
#if PMEM_DEBUG
pr_alert("pmem: required bitmap_allocs"
" number exceeds maximum entries possible"
" for current quanta\n");
#endif
return -1;
}
temp = krealloc(pmem[id].allocator.bitmap.bitm_alloc,
new_bitmap_allocs *
sizeof(*pmem[id].allocator.bitmap.bitm_alloc),
GFP_KERNEL);
if (!temp) {
#if PMEM_DEBUG
pr_alert("pmem: can't realloc bitmap_allocs,"
"id %d, current num bitmap allocs %d\n",
id, pmem[id].allocator.bitmap.bitmap_allocs);
#endif
return -1;
}
pmem[id].allocator.bitmap.bitmap_allocs = new_bitmap_allocs;
pmem[id].allocator.bitmap.bitm_alloc = temp;
for (j = i; j < new_bitmap_allocs; j++) {
pmem[id].allocator.bitmap.bitm_alloc[j].bit = -1;
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
}
DLOG("increased # of allocated regions to %d for id %d\n",
pmem[id].allocator.bitmap.bitmap_allocs, id);
}
DLOG("bitnum %d, bitm_alloc index %d\n", bitnum, i);
pmem[id].allocator.bitmap.bitmap_free -= quanta_needed;
pmem[id].allocator.bitmap.bitm_alloc[i].bit = bitnum;
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = quanta_needed;
leave:
return bitnum;
}
static int pmem_allocator_system(const int id,
const unsigned long len,
const unsigned int align)
{
/* caller should hold the lock on arena_mutex! */
struct alloc_list *list;
unsigned long aligned_len;
int count = SYSTEM_ALLOC_RETRY;
void *buf;
DLOG("system id %d, len %ld, align %u\n", id, len, align);
if ((pmem[id].allocator.system_mem.used + len) > pmem[id].size) {
DLOG("requested size would be larger than quota\n");
return -1;
}
/* Handle alignment */
aligned_len = len + align;
/* Attempt allocation */
list = kmalloc(sizeof(struct alloc_list), GFP_KERNEL);
if (list == NULL) {
printk(KERN_ERR "pmem: failed to allocate system metadata\n");
return -1;
}
list->vaddr = NULL;
buf = NULL;
while ((buf == NULL) && count--) {
buf = kmalloc((aligned_len), GFP_KERNEL);
if (buf == NULL) {
DLOG("pmem: kmalloc %d temporarily failed len= %ld\n",
count, aligned_len);
}
}
if (!buf) {
printk(KERN_CRIT "pmem: kmalloc failed for id= %d len= %ld\n",
id, aligned_len);
kfree(list);
return -1;
}
list->size = aligned_len;
list->addr = (void *)__pa(buf);
list->aaddr = (void *)(((unsigned int)(list->addr) + (align - 1)) &
~(align - 1));
if (!pmem[id].cached)
list->vaddr = ioremap(__pa(buf), aligned_len);
else
list->vaddr = ioremap_cached(__pa(buf), aligned_len);
INIT_LIST_HEAD(&list->allocs);
list_add(&list->allocs, &pmem[id].allocator.system_mem.alist);
return (int)list;
}
static pgprot_t pmem_phys_mem_access_prot(struct file *file, pgprot_t vma_prot)
{
int id = get_id(file);
#ifdef pgprot_writecombine
if (pmem[id].cached == 0 || file->f_flags & O_SYNC)
/* on ARMv6 and ARMv7 this expands to Normal Noncached */
return pgprot_writecombine(vma_prot);
#endif
#ifdef pgprot_ext_buffered
else if (pmem[id].buffered)
return pgprot_ext_buffered(vma_prot);
#endif
return vma_prot;
}
static unsigned long pmem_start_addr_all_or_nothing(int id,
struct pmem_data *data)
{
return PMEM_START_ADDR(id, 0);
}
static unsigned long pmem_start_addr_buddy_bestfit(int id,
struct pmem_data *data)
{
return PMEM_START_ADDR(id, data->index);
}
static unsigned long pmem_start_addr_bitmap(int id, struct pmem_data *data)
{
return data->index * pmem[id].quantum + pmem[id].base;
}
static unsigned long pmem_start_addr_system(int id, struct pmem_data *data)
{
return (unsigned long)(((struct alloc_list *)(data->index))->aaddr);
}
static void *pmem_start_vaddr(int id, struct pmem_data *data)
{
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM)
return ((struct alloc_list *)(data->index))->vaddr;
else
return pmem[id].start_addr(id, data) - pmem[id].base + pmem[id].vbase;
}
static unsigned long pmem_len_all_or_nothing(int id, struct pmem_data *data)
{
return data->index;
}
static unsigned long pmem_len_buddy_bestfit(int id, struct pmem_data *data)
{
return PMEM_BUDDY_LEN(id, data->index);
}
static unsigned long pmem_len_bitmap(int id, struct pmem_data *data)
{
int i;
unsigned long ret = 0;
mutex_lock(&pmem[id].arena_mutex);
for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++)
if (pmem[id].allocator.bitmap.bitm_alloc[i].bit ==
data->index) {
ret = pmem[id].allocator.bitmap.bitm_alloc[i].quanta *
pmem[id].quantum;
break;
}
mutex_unlock(&pmem[id].arena_mutex);
#if PMEM_DEBUG
if (i >= pmem[id].allocator.bitmap.bitmap_allocs)
pr_alert("pmem: %s: can't find bitnum %d in "
"alloc'd array!\n", __func__, data->index);
#endif
return ret;
}
static unsigned long pmem_len_system(int id, struct pmem_data *data)
{
unsigned long ret = 0;
mutex_lock(&pmem[id].arena_mutex);
ret = ((struct alloc_list *)data->index)->size;
mutex_unlock(&pmem[id].arena_mutex);
return ret;
}
static int pmem_map_garbage(int id, struct vm_area_struct *vma,
struct pmem_data *data, unsigned long offset,
unsigned long len)
{
int i, garbage_pages = len >> PAGE_SHIFT;
vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP | VM_SHARED | VM_WRITE;
for (i = 0; i < garbage_pages; i++) {
if (vm_insert_pfn(vma, vma->vm_start + offset + (i * PAGE_SIZE),
pmem[id].garbage_pfn))
return -EAGAIN;
}
return 0;
}
static int pmem_unmap_pfn_range(int id, struct vm_area_struct *vma,
struct pmem_data *data, unsigned long offset,
unsigned long len)
{
int garbage_pages;
DLOG("unmap offset %lx len %lx\n", offset, len);
BUG_ON(!PMEM_IS_PAGE_ALIGNED(len));
garbage_pages = len >> PAGE_SHIFT;
zap_page_range(vma, vma->vm_start + offset, len, NULL);
pmem_map_garbage(id, vma, data, offset, len);
return 0;
}
static int pmem_map_pfn_range(int id, struct vm_area_struct *vma,
struct pmem_data *data, unsigned long offset,
unsigned long len)
{
int ret;
DLOG("map offset %lx len %lx\n", offset, len);
BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_start));
BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_end));
BUG_ON(!PMEM_IS_PAGE_ALIGNED(len));
BUG_ON(!PMEM_IS_PAGE_ALIGNED(offset));
ret = io_remap_pfn_range(vma, vma->vm_start + offset,
(pmem[id].start_addr(id, data) + offset) >> PAGE_SHIFT,
len, vma->vm_page_prot);
if (ret) {
#if PMEM_DEBUG
pr_alert("pmem: %s: io_remap_pfn_range fails with "
"return value: %d!\n", __func__, ret);
#endif
ret = -EAGAIN;
}
return ret;
}
static int pmem_remap_pfn_range(int id, struct vm_area_struct *vma,
struct pmem_data *data, unsigned long offset,
unsigned long len)
{
/* hold the mm semp for the vma you are modifying when you call this */
BUG_ON(!vma);
zap_page_range(vma, vma->vm_start + offset, len, NULL);
return pmem_map_pfn_range(id, vma, data, offset, len);
}
static void pmem_vma_open(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
struct pmem_data *data = file->private_data;
int id = get_id(file);
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n",
get_name(file), id, current->pid,
get_task_comm(currtask_name, current),
current->parent->pid, file, file_count(file));
/* this should never be called as we don't support copying pmem
* ranges via fork */
down_read(&data->sem);
BUG_ON(!has_allocation(file));
/* remap the garbage pages, forkers don't get access to the data */
pmem_unmap_pfn_range(id, vma, data, 0, vma->vm_start - vma->vm_end);
up_read(&data->sem);
}
static void pmem_vma_close(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
struct pmem_data *data = file->private_data;
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n",
get_name(file), get_id(file), current->pid,
get_task_comm(currtask_name, current),
current->parent->pid, file, file_count(file));
if (unlikely(!is_pmem_file(file))) {
pr_warning("pmem: something is very wrong, you are "
"closing a vm backing an allocation that doesn't "
"exist!\n");
return;
}
down_write(&data->sem);
if (unlikely(!has_allocation(file))) {
up_write(&data->sem);
pr_warning("pmem: something is very wrong, you are "
"closing a vm backing an allocation that doesn't "
"exist!\n");
return;
}
if (data->vma == vma) {
data->vma = NULL;
if ((data->flags & PMEM_FLAGS_CONNECTED) &&
(data->flags & PMEM_FLAGS_SUBMAP))
data->flags |= PMEM_FLAGS_UNSUBMAP;
}
/* the kernel is going to free this vma now anyway */
up_write(&data->sem);
}
static struct vm_operations_struct vm_ops = {
.open = pmem_vma_open,
.close = pmem_vma_close,
};
static int pmem_mmap(struct file *file, struct vm_area_struct *vma)
{
struct pmem_data *data = file->private_data;
int index = -1;
unsigned long vma_size = vma->vm_end - vma->vm_start;
int ret = 0, id = get_id(file);
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
if (!data) {
pr_err("pmem: Invalid file descriptor, no private data\n");
return -EINVAL;
}
DLOG("pid %u(%s) mmap vma_size %lu on dev %s(id: %d)\n", current->pid,
get_task_comm(currtask_name, current), vma_size,
get_name(file), id);
if (vma->vm_pgoff || !PMEM_IS_PAGE_ALIGNED(vma_size)) {
#if PMEM_DEBUG
pr_err("pmem: mmaps must be at offset zero, aligned"
" and a multiple of pages_size.\n");
#endif
return -EINVAL;
}
down_write(&data->sem);
/* check this file isn't already mmaped, for submaps check this file
* has never been mmaped */
if ((data->flags & PMEM_FLAGS_SUBMAP) ||
(data->flags & PMEM_FLAGS_UNSUBMAP)) {
#if PMEM_DEBUG
pr_err("pmem: you can only mmap a pmem file once, "
"this file is already mmaped. %x\n", data->flags);
#endif
ret = -EINVAL;
goto error;
}
/* if file->private_data == unalloced, alloc*/
if (data->index == -1) {
mutex_lock(&pmem[id].arena_mutex);
index = pmem_allocate_from_id(id,
vma->vm_end - vma->vm_start,
SZ_4K);
mutex_unlock(&pmem[id].arena_mutex);
/* either no space was available or an error occured */
if (index == -1) {
pr_err("pmem: mmap unable to allocate memory"
"on %s\n", get_name(file));
ret = -ENOMEM;
goto error;
}
/* store the index of a successful allocation */
data->index = index;
}
if (pmem[id].len(id, data) < vma_size) {
#if PMEM_DEBUG
pr_err("pmem: mmap size [%lu] does not match"
" size of backing region [%lu].\n", vma_size,
pmem[id].len(id, data));
#endif
ret = -EINVAL;
goto error;
}
vma->vm_pgoff = pmem[id].start_addr(id, data) >> PAGE_SHIFT;
vma->vm_page_prot = pmem_phys_mem_access_prot(file, vma->vm_page_prot);
if (data->flags & PMEM_FLAGS_CONNECTED) {
struct pmem_region_node *region_node;
struct list_head *elt;
if (pmem_map_garbage(id, vma, data, 0, vma_size)) {
pr_alert("pmem: mmap failed in kernel!\n");
ret = -EAGAIN;
goto error;
}
list_for_each(elt, &data->region_list) {
region_node = list_entry(elt, struct pmem_region_node,
list);
DLOG("remapping file: %p %lx %lx\n", file,
region_node->region.offset,
region_node->region.len);
if (pmem_remap_pfn_range(id, vma, data,
region_node->region.offset,
region_node->region.len)) {
ret = -EAGAIN;
goto error;
}
}
data->flags |= PMEM_FLAGS_SUBMAP;
get_task_struct(current->group_leader);
data->task = current->group_leader;
data->vma = vma;
#if PMEM_DEBUG
data->pid = current->pid;
#endif
DLOG("submmapped file %p vma %p pid %u\n", file, vma,
current->pid);
} else {
if (pmem_map_pfn_range(id, vma, data, 0, vma_size)) {
pr_err("pmem: mmap failed in kernel!\n");
ret = -EAGAIN;
goto error;
}
data->flags |= PMEM_FLAGS_MASTERMAP;
data->pid = current->pid;
}
vma->vm_ops = &vm_ops;
error:
up_write(&data->sem);
return ret;
}
/* the following are the api for accessing pmem regions by other drivers
* from inside the kernel */
int get_pmem_user_addr(struct file *file, unsigned long *start,
unsigned long *len)
{
int ret = -1;
if (is_pmem_file(file)) {
struct pmem_data *data = file->private_data;
down_read(&data->sem);
if (has_allocation(file)) {
if (data->vma) {
*start = data->vma->vm_start;
*len = data->vma->vm_end - data->vma->vm_start;
} else {
*start = *len = 0;
#if PMEM_DEBUG
pr_err("pmem: %s: no vma present.\n",
__func__);
#endif
}
ret = 0;
}
up_read(&data->sem);
}
#if PMEM_DEBUG
if (ret)
pr_err("pmem: %s: requested pmem data from invalid"
"file.\n", __func__);
#endif
return ret;
}
int get_pmem_addr(struct file *file, unsigned long *start,
unsigned long *vstart, unsigned long *len)
{
int ret = -1;
if (is_pmem_file(file)) {
struct pmem_data *data = file->private_data;
down_read(&data->sem);
if (has_allocation(file)) {
int id = get_id(file);
*start = pmem[id].start_addr(id, data);
*len = pmem[id].len(id, data);
*vstart = (unsigned long)
pmem_start_vaddr(id, data);
up_read(&data->sem);
#if PMEM_DEBUG
down_write(&data->sem);
data->ref++;
up_write(&data->sem);
#endif
DLOG("returning start %#lx len %lu "
"vstart %#lx\n",
*start, *len, *vstart);
ret = 0;
} else {
up_read(&data->sem);
}
}
return ret;
}
int get_pmem_file(unsigned int fd, unsigned long *start, unsigned long *vstart,
unsigned long *len, struct file **filp)
{
int ret = -1;
struct file *file = fget(fd);
if (unlikely(file == NULL)) {
pr_err("pmem: %s: requested data from file "
"descriptor that doesn't exist.\n", __func__);
} else {
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("filp %p rdev %d pid %u(%s) file %p(%ld)"
" dev %s(id: %d)\n", filp,
file->f_dentry->d_inode->i_rdev,
current->pid, get_task_comm(currtask_name, current),
file, file_count(file), get_name(file), get_id(file));
if (!get_pmem_addr(file, start, vstart, len)) {
if (filp)
*filp = file;
ret = 0;
} else {
fput(file);
}
}
return ret;
}
EXPORT_SYMBOL(get_pmem_file);
int get_pmem_fd(int fd, unsigned long *start, unsigned long *len)
{
unsigned long vstart;
return get_pmem_file(fd, start, &vstart, len, NULL);
}
EXPORT_SYMBOL(get_pmem_fd);
void put_pmem_file(struct file *file)
{
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("rdev %d pid %u(%s) file %p(%ld)" " dev %s(id: %d)\n",
file->f_dentry->d_inode->i_rdev, current->pid,
get_task_comm(currtask_name, current), file,
file_count(file), get_name(file), get_id(file));
if (is_pmem_file(file)) {
#if PMEM_DEBUG
struct pmem_data *data = file->private_data;
down_write(&data->sem);
if (!data->ref--) {
data->ref++;
pr_alert("pmem: pmem_put > pmem_get %s "
"(pid %d)\n",
pmem[get_id(file)].dev.name, data->pid);
BUG();
}
up_write(&data->sem);
#endif
fput(file);
}
}
EXPORT_SYMBOL(put_pmem_file);
void put_pmem_fd(int fd)
{
int put_needed;
struct file *file = fget_light(fd, &put_needed);
if (file) {
put_pmem_file(file);
fput_light(file, put_needed);
}
}
void flush_pmem_fd(int fd, unsigned long offset, unsigned long len)
{
int fput_needed;
struct file *file = fget_light(fd, &fput_needed);
if (file) {
flush_pmem_file(file, offset, len);
fput_light(file, fput_needed);
}
}
void flush_pmem_file(struct file *file, unsigned long offset, unsigned long len)
{
struct pmem_data *data;
int id;
void *vaddr;
struct pmem_region_node *region_node;
struct list_head *elt;
void *flush_start, *flush_end;
#ifdef CONFIG_OUTER_CACHE
unsigned long phy_start, phy_end;
#endif
if (!is_pmem_file(file))
return;
id = get_id(file);
if (!pmem[id].cached)
return;
/* is_pmem_file fails if !file */
data = file->private_data;
down_read(&data->sem);
if (!has_allocation(file))
goto end;
vaddr = pmem_start_vaddr(id, data);
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM) {
dmac_flush_range(vaddr,
(void *)((unsigned long)vaddr +
((struct alloc_list *)(data->index))->size));
#ifdef CONFIG_OUTER_CACHE
phy_start = pmem_start_addr_system(id, data);
phy_end = phy_start +
((struct alloc_list *)(data->index))->size;
outer_flush_range(phy_start, phy_end);
#endif
goto end;
}
/* if this isn't a submmapped file, flush the whole thing */
if (unlikely(!(data->flags & PMEM_FLAGS_CONNECTED))) {
dmac_flush_range(vaddr, vaddr + pmem[id].len(id, data));
#ifdef CONFIG_OUTER_CACHE
phy_start = (unsigned long)vaddr -
(unsigned long)pmem[id].vbase + pmem[id].base;
phy_end = phy_start + pmem[id].len(id, data);
outer_flush_range(phy_start, phy_end);
#endif
goto end;
}
/* otherwise, flush the region of the file we are drawing */
list_for_each(elt, &data->region_list) {
region_node = list_entry(elt, struct pmem_region_node, list);
if ((offset >= region_node->region.offset) &&
((offset + len) <= (region_node->region.offset +
region_node->region.len))) {
flush_start = vaddr + region_node->region.offset;
flush_end = flush_start + region_node->region.len;
dmac_flush_range(flush_start, flush_end);
#ifdef CONFIG_OUTER_CACHE
phy_start = (unsigned long)flush_start -
(unsigned long)pmem[id].vbase + pmem[id].base;
phy_end = phy_start + region_node->region.len;
outer_flush_range(phy_start, phy_end);
#endif
break;
}
}
end:
up_read(&data->sem);
}
int pmem_cache_maint(struct file *file, unsigned int cmd,
struct pmem_addr *pmem_addr)
{
struct pmem_data *data;
int id;
unsigned long vaddr, paddr, length, offset,
pmem_len, pmem_start_addr;
/* Called from kernel-space so file may be NULL */
if (!file)
return -EBADF;
/*
* check that the vaddr passed for flushing is valid
* so that you don't crash the kernel
*/
if (!pmem_addr->vaddr)
return -EINVAL;
data = file->private_data;
id = get_id(file);
if (!pmem[id].cached)
return 0;
offset = pmem_addr->offset;
length = pmem_addr->length;
down_read(&data->sem);
if (!has_allocation(file)) {
up_read(&data->sem);
return -EINVAL;
}
pmem_len = pmem[id].len(id, data);
pmem_start_addr = pmem[id].start_addr(id, data);
up_read(&data->sem);
if (offset + length > pmem_len)
return -EINVAL;
vaddr = pmem_addr->vaddr;
paddr = pmem_start_addr + offset;
DLOG("pmem cache maint on dev %s(id: %d)"
"(vaddr %lx paddr %lx len %lu bytes)\n",
get_name(file), id, vaddr, paddr, length);
if (cmd == PMEM_CLEAN_INV_CACHES)
clean_and_invalidate_caches(vaddr,
length, paddr);
else if (cmd == PMEM_CLEAN_CACHES)
clean_caches(vaddr, length, paddr);
else if (cmd == PMEM_INV_CACHES)
invalidate_caches(vaddr, length, paddr);
return 0;
}
EXPORT_SYMBOL(pmem_cache_maint);
static int pmem_connect(unsigned long connect, struct file *file)
{
int ret = 0, put_needed;
struct file *src_file;
if (!file) {
pr_err("pmem: %s: NULL file pointer passed in, "
"bailing out!\n", __func__);
ret = -EINVAL;
goto leave;
}
src_file = fget_light(connect, &put_needed);
if (!src_file) {
pr_err("pmem: %s: src file not found!\n", __func__);
ret = -EBADF;
goto leave;
}
if (src_file == file) { /* degenerative case, operator error */
pr_err("pmem: %s: src_file and passed in file are "
"the same; refusing to connect to self!\n", __func__);
ret = -EINVAL;
goto put_src_file;
}
if (unlikely(!is_pmem_file(src_file))) {
pr_err("pmem: %s: src file is not a pmem file!\n",
__func__);
ret = -EINVAL;
goto put_src_file;
} else {
struct pmem_data *src_data = src_file->private_data;
if (!src_data) {
pr_err("pmem: %s: src file pointer has no"
"private data, bailing out!\n", __func__);
ret = -EINVAL;
goto put_src_file;
}
down_read(&src_data->sem);
if (unlikely(!has_allocation(src_file))) {
up_read(&src_data->sem);
pr_err("pmem: %s: src file has no allocation!\n",
__func__);
ret = -EINVAL;
} else {
struct pmem_data *data;
int src_index = src_data->index;
up_read(&src_data->sem);
data = file->private_data;
if (!data) {
pr_err("pmem: %s: passed in file "
"pointer has no private data, bailing"
" out!\n", __func__);
ret = -EINVAL;
goto put_src_file;
}
down_write(&data->sem);
if (has_allocation(file) &&
(data->index != src_index)) {
up_write(&data->sem);
pr_err("pmem: %s: file is already "
"mapped but doesn't match this "
"src_file!\n", __func__);
ret = -EINVAL;
} else {
data->index = src_index;
data->flags |= PMEM_FLAGS_CONNECTED;
data->master_fd = connect;
data->master_file = src_file;
up_write(&data->sem);
DLOG("connect %p to %p\n", file, src_file);
}
}
}
put_src_file:
fput_light(src_file, put_needed);
leave:
return ret;
}
static void pmem_unlock_data_and_mm(struct pmem_data *data,
struct mm_struct *mm)
{
up_write(&data->sem);
if (mm != NULL) {
up_write(&mm->mmap_sem);
mmput(mm);
}
}
static int pmem_lock_data_and_mm(struct file *file, struct pmem_data *data,
struct mm_struct **locked_mm)
{
int ret = 0;
struct mm_struct *mm = NULL;
#if PMEM_DEBUG_MSGS
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("pid %u(%s) file %p(%ld)\n",
current->pid, get_task_comm(currtask_name, current),
file, file_count(file));
*locked_mm = NULL;
lock_mm:
down_read(&data->sem);
if (PMEM_IS_SUBMAP(data)) {
mm = get_task_mm(data->task);
if (!mm) {
up_read(&data->sem);
#if PMEM_DEBUG
pr_alert("pmem: can't remap - task is gone!\n");
#endif
return -1;
}
}
up_read(&data->sem);
if (mm)
down_write(&mm->mmap_sem);
down_write(&data->sem);
/* check that the file didn't get mmaped before we could take the
* data sem, this should be safe b/c you can only submap each file
* once */
if (PMEM_IS_SUBMAP(data) && !mm) {
pmem_unlock_data_and_mm(data, mm);
DLOG("mapping contention, repeating mmap op\n");
goto lock_mm;
}
/* now check that vma.mm is still there, it could have been
* deleted by vma_close before we could get the data->sem */
if ((data->flags & PMEM_FLAGS_UNSUBMAP) && (mm != NULL)) {
/* might as well release this */
if (data->flags & PMEM_FLAGS_SUBMAP) {
put_task_struct(data->task);
data->task = NULL;
/* lower the submap flag to show the mm is gone */
data->flags &= ~(PMEM_FLAGS_SUBMAP);
}
pmem_unlock_data_and_mm(data, mm);
#if PMEM_DEBUG
pr_alert("pmem: vma.mm went away!\n");
#endif
return -1;
}
*locked_mm = mm;
return ret;
}
int pmem_remap(struct pmem_region *region, struct file *file,
unsigned operation)
{
int ret;
struct pmem_region_node *region_node;
struct mm_struct *mm = NULL;
struct list_head *elt, *elt2;
int id = get_id(file);
struct pmem_data *data;
DLOG("operation %#x, region offset %ld, region len %ld\n",
operation, region->offset, region->len);
if (!is_pmem_file(file)) {
#if PMEM_DEBUG
pr_err("pmem: remap request for non-pmem file descriptor\n");
#endif
return -EINVAL;
}
/* is_pmem_file fails if !file */
data = file->private_data;
/* pmem region must be aligned on a page boundry */
if (unlikely(!PMEM_IS_PAGE_ALIGNED(region->offset) ||
!PMEM_IS_PAGE_ALIGNED(region->len))) {
#if PMEM_DEBUG
pr_err("pmem: request for unaligned pmem"
"suballocation %lx %lx\n",
region->offset, region->len);
#endif
return -EINVAL;
}
/* if userspace requests a region of len 0, there's nothing to do */
if (region->len == 0)
return 0;
/* lock the mm and data */
ret = pmem_lock_data_and_mm(file, data, &mm);
if (ret)
return 0;
/* only the owner of the master file can remap the client fds
* that back in it */
if (!is_master_owner(file)) {
#if PMEM_DEBUG
pr_err("pmem: remap requested from non-master process\n");
#endif
ret = -EINVAL;
goto err;
}
/* check that the requested range is within the src allocation */
if (unlikely((region->offset > pmem[id].len(id, data)) ||
(region->len > pmem[id].len(id, data)) ||
(region->offset + region->len > pmem[id].len(id, data)))) {
#if PMEM_DEBUG
pr_err("pmem: suballoc doesn't fit in src_file!\n");
#endif
ret = -EINVAL;
goto err;
}
if (operation == PMEM_MAP) {
region_node = kmalloc(sizeof(struct pmem_region_node),
GFP_KERNEL);
if (!region_node) {
ret = -ENOMEM;
#if PMEM_DEBUG
pr_alert("pmem: No space to allocate remap metadata!");
#endif
goto err;
}
region_node->region = *region;
list_add(&region_node->list, &data->region_list);
} else if (operation == PMEM_UNMAP) {
int found = 0;
list_for_each_safe(elt, elt2, &data->region_list) {
region_node = list_entry(elt, struct pmem_region_node,
list);
if (region->len == 0 ||
(region_node->region.offset == region->offset &&
region_node->region.len == region->len)) {
list_del(elt);
kfree(region_node);
found = 1;
}
}
if (!found) {
#if PMEM_DEBUG
pr_err("pmem: Unmap region does not map any"
" mapped region!");
#endif
ret = -EINVAL;
goto err;
}
}
if (data->vma && PMEM_IS_SUBMAP(data)) {
if (operation == PMEM_MAP)
ret = pmem_remap_pfn_range(id, data->vma, data,
region->offset, region->len);
else if (operation == PMEM_UNMAP)
ret = pmem_unmap_pfn_range(id, data->vma, data,
region->offset, region->len);
}
err:
pmem_unlock_data_and_mm(data, mm);
return ret;
}
static void pmem_revoke(struct file *file, struct pmem_data *data)
{
struct pmem_region_node *region_node;
struct list_head *elt, *elt2;
struct mm_struct *mm = NULL;
int id = get_id(file);
int ret = 0;
data->master_file = NULL;
ret = pmem_lock_data_and_mm(file, data, &mm);
/* if lock_data_and_mm fails either the task that mapped the fd, or
* the vma that mapped it have already gone away, nothing more
* needs to be done */
if (ret)
return;
/* unmap everything */
/* delete the regions and region list nothing is mapped any more */
if (data->vma)
list_for_each_safe(elt, elt2, &data->region_list) {
region_node = list_entry(elt, struct pmem_region_node,
list);
pmem_unmap_pfn_range(id, data->vma, data,
region_node->region.offset,
region_node->region.len);
list_del(elt);
kfree(region_node);
}
/* delete the master file */
pmem_unlock_data_and_mm(data, mm);
}
static void pmem_get_size(struct pmem_region *region, struct file *file)
{
/* called via ioctl file op, so file guaranteed to be not NULL */
struct pmem_data *data = file->private_data;
int id = get_id(file);
down_read(&data->sem);
if (!has_allocation(file)) {
region->offset = 0;
region->len = 0;
} else {
region->offset = pmem[id].start_addr(id, data);
region->len = pmem[id].len(id, data);
}
up_read(&data->sem);
DLOG("offset 0x%lx len 0x%lx\n", region->offset, region->len);
}
static long pmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
/* called from user space as file op, so file guaranteed to be not
* NULL
*/
struct pmem_data *data = file->private_data;
int id = get_id(file);
#if PMEM_DEBUG_MSGS
char currtask_name[
FIELD_SIZEOF(struct task_struct, comm) + 1];
#endif
DLOG("pid %u(%s) file %p(%ld) cmd %#x, dev %s(id: %d)\n",
current->pid, get_task_comm(currtask_name, current),
file, file_count(file), cmd, get_name(file), id);
switch (cmd) {
case PMEM_GET_PHYS:
{
struct pmem_region region;
DLOG("get_phys\n");
down_read(&data->sem);
if (!has_allocation(file)) {
region.offset = 0;
region.len = 0;
} else {
region.offset = pmem[id].start_addr(id, data);
region.len = pmem[id].len(id, data);
}
up_read(&data->sem);
if (copy_to_user((void __user *)arg, &region,
sizeof(struct pmem_region)))
return -EFAULT;
DLOG("pmem: successful request for "
"physical address of pmem region id %d, "
"offset 0x%lx, len 0x%lx\n",
id, region.offset, region.len);
break;
}
case PMEM_MAP:
{
struct pmem_region region;
DLOG("map\n");
if (copy_from_user(&region, (void __user *)arg,
sizeof(struct pmem_region)))
return -EFAULT;
return pmem_remap(&region, file, PMEM_MAP);
}
break;
case PMEM_UNMAP:
{
struct pmem_region region;
DLOG("unmap\n");
if (copy_from_user(&region, (void __user *)arg,
sizeof(struct pmem_region)))
return -EFAULT;
return pmem_remap(&region, file, PMEM_UNMAP);
break;
}
case PMEM_GET_SIZE:
{
struct pmem_region region;
DLOG("get_size\n");
pmem_get_size(&region, file);
if (copy_to_user((void __user *)arg, &region,
sizeof(struct pmem_region)))
return -EFAULT;
break;
}
case PMEM_GET_TOTAL_SIZE:
{
struct pmem_region region;
DLOG("get total size\n");
region.offset = 0;
get_id(file);
region.len = pmem[id].size;
if (copy_to_user((void __user *)arg, &region,
sizeof(struct pmem_region)))
return -EFAULT;
break;
}
case PMEM_GET_FREE_SPACE:
{
struct pmem_freespace fs;
DLOG("get freespace on %s(id: %d)\n",
get_name(file), id);
mutex_lock(&pmem[id].arena_mutex);
pmem[id].free_space(id, &fs);
mutex_unlock(&pmem[id].arena_mutex);
DLOG("%s(id: %d) total free %lu, largest %lu\n",
get_name(file), id, fs.total, fs.largest);
if (copy_to_user((void __user *)arg, &fs,
sizeof(struct pmem_freespace)))
return -EFAULT;
break;
}
case PMEM_ALLOCATE:
{
int ret = 0;
DLOG("allocate, id %d\n", id);
down_write(&data->sem);
if (has_allocation(file)) {
pr_err("pmem: Existing allocation found on "
"this file descrpitor\n");
up_write(&data->sem);
return -EINVAL;
}
mutex_lock(&pmem[id].arena_mutex);
data->index = pmem_allocate_from_id(id,
arg,
SZ_4K);
mutex_unlock(&pmem[id].arena_mutex);
ret = data->index == -1 ? -ENOMEM :
data->index;
up_write(&data->sem);
return ret;
}
case PMEM_ALLOCATE_ALIGNED:
{
struct pmem_allocation alloc;
int ret = 0;
if (copy_from_user(&alloc, (void __user *)arg,
sizeof(struct pmem_allocation)))
return -EFAULT;
DLOG("allocate id align %d %u\n", id, alloc.align);
down_write(&data->sem);
if (has_allocation(file)) {
pr_err("pmem: Existing allocation found on "
"this file descrpitor\n");
up_write(&data->sem);
return -EINVAL;
}
if (alloc.align & (alloc.align - 1)) {
pr_err("pmem: Alignment is not a power of 2\n");
return -EINVAL;
}
if (alloc.align != SZ_4K &&
(pmem[id].allocator_type !=
PMEM_ALLOCATORTYPE_BITMAP)) {
pr_err("pmem: Non 4k alignment requires bitmap"
" allocator on %s\n", pmem[id].name);
return -EINVAL;
}
if (alloc.align > SZ_1M ||
alloc.align < SZ_4K) {
pr_err("pmem: Invalid Alignment (%u) "
"specified\n", alloc.align);
return -EINVAL;
}
mutex_lock(&pmem[id].arena_mutex);
data->index = pmem_allocate_from_id(id,
alloc.size,
alloc.align);
mutex_unlock(&pmem[id].arena_mutex);
ret = data->index == -1 ? -ENOMEM :
data->index;
up_write(&data->sem);
return ret;
}
case PMEM_CONNECT:
DLOG("connect\n");
return pmem_connect(arg, file);
case PMEM_CLEAN_INV_CACHES:
case PMEM_CLEAN_CACHES:
case PMEM_INV_CACHES:
{
struct pmem_addr pmem_addr;
if (copy_from_user(&pmem_addr, (void __user *)arg,
sizeof(struct pmem_addr)))
return -EFAULT;
return pmem_cache_maint(file, cmd, &pmem_addr);
}
default:
if (pmem[id].ioctl)
return pmem[id].ioctl(file, cmd, arg);
DLOG("ioctl invalid (%#x)\n", cmd);
return -EINVAL;
}
return 0;
}
static void ioremap_pmem(int id)
{
unsigned long addr;
const struct mem_type *type;
DLOG("PMEMDEBUG: ioremaping for %s\n", pmem[id].name);
if (pmem[id].map_on_demand) {
addr = (unsigned long)pmem[id].area->addr;
if (pmem[id].cached)
type = get_mem_type(MT_DEVICE_CACHED);
else
type = get_mem_type(MT_DEVICE);
DLOG("PMEMDEBUG: Remap phys %lx to virt %lx on %s\n",
pmem[id].base, addr, pmem[id].name);
if (ioremap_pages(addr, pmem[id].base, pmem[id].size, type)) {
pr_err("pmem: Failed to map pages\n");
BUG();
}
pmem[id].vbase = pmem[id].area->addr;
/* Flush the cache after installing page table entries to avoid
* aliasing when these pages are remapped to user space.
*/
flush_cache_vmap(addr, addr + pmem[id].size);
} else {
if (pmem[id].cached)
pmem[id].vbase = ioremap_cached(pmem[id].base,
pmem[id].size);
#ifdef ioremap_ext_buffered
else if (pmem[id].buffered)
pmem[id].vbase = ioremap_ext_buffered(pmem[id].base,
pmem[id].size);
#endif
else
pmem[id].vbase = ioremap(pmem[id].base, pmem[id].size);
}
}
int pmem_setup(struct android_pmem_platform_data *pdata,
long (*ioctl)(struct file *, unsigned int, unsigned long),
int (*release)(struct inode *, struct file *))
{
int i, index = 0, id;
struct vm_struct *pmem_vma = NULL;
struct page *page;
if (id_count >= PMEM_MAX_DEVICES) {
pr_alert("pmem: %s: unable to register driver(%s) - no more "
"devices available!\n", __func__, pdata->name);
goto err_no_mem;
}
if (!pdata->size) {
pr_alert("pmem: %s: unable to register pmem driver(%s) - zero "
"size passed in!\n", __func__, pdata->name);
goto err_no_mem;
}
id = id_count++;
pmem[id].id = id;
if (pmem[id].allocate) {
pr_alert("pmem: %s: unable to register pmem driver - "
"duplicate registration of %s!\n",
__func__, pdata->name);
goto err_no_mem;
}
pmem[id].allocator_type = pdata->allocator_type;
/* 'quantum' is a "hidden" variable that defaults to 0 in the board
* files */
pmem[id].quantum = pdata->quantum ?: PMEM_MIN_ALLOC;
if (pmem[id].quantum < PMEM_MIN_ALLOC ||
!is_power_of_2(pmem[id].quantum)) {
pr_alert("pmem: %s: unable to register pmem driver %s - "
"invalid quantum value (%#x)!\n",
__func__, pdata->name, pmem[id].quantum);
goto err_reset_pmem_info;
}
if (pdata->size % pmem[id].quantum) {
/* bad alignment for size! */
pr_alert("pmem: %s: Unable to register driver %s - "
"memory region size (%#lx) is not a multiple of "
"quantum size(%#x)!\n", __func__, pdata->name,
pdata->size, pmem[id].quantum);
goto err_reset_pmem_info;
}
pmem[id].cached = pdata->cached;
pmem[id].buffered = pdata->buffered;
pmem[id].size = pdata->size;
pmem[id].memory_type = pdata->memory_type;
strlcpy(pmem[id].name, pdata->name, PMEM_NAME_SIZE);
pmem[id].num_entries = pmem[id].size / pmem[id].quantum;
memset(&pmem[id].kobj, 0, sizeof(pmem[0].kobj));
pmem[id].kobj.kset = pmem_kset;
switch (pmem[id].allocator_type) {
case PMEM_ALLOCATORTYPE_ALLORNOTHING:
pmem[id].allocate = pmem_allocator_all_or_nothing;
pmem[id].free = pmem_free_all_or_nothing;
pmem[id].free_space = pmem_free_space_all_or_nothing;
pmem[id].len = pmem_len_all_or_nothing;
pmem[id].start_addr = pmem_start_addr_all_or_nothing;
pmem[id].num_entries = 1;
pmem[id].quantum = pmem[id].size;
pmem[id].allocator.all_or_nothing.allocated = 0;
if (kobject_init_and_add(&pmem[id].kobj,
&pmem_allornothing_ktype, NULL,
"%s", pdata->name))
goto out_put_kobj;
break;
case PMEM_ALLOCATORTYPE_BUDDYBESTFIT:
pmem[id].allocator.buddy_bestfit.buddy_bitmap = kmalloc(
pmem[id].num_entries * sizeof(struct pmem_bits),
GFP_KERNEL);
if (!pmem[id].allocator.buddy_bestfit.buddy_bitmap)
goto err_reset_pmem_info;
memset(pmem[id].allocator.buddy_bestfit.buddy_bitmap, 0,
sizeof(struct pmem_bits) * pmem[id].num_entries);
for (i = sizeof(pmem[id].num_entries) * 8 - 1; i >= 0; i--)
if ((pmem[id].num_entries) & 1<<i) {
PMEM_BUDDY_ORDER(id, index) = i;
index = PMEM_BUDDY_NEXT_INDEX(id, index);
}
pmem[id].allocate = pmem_allocator_buddy_bestfit;
pmem[id].free = pmem_free_buddy_bestfit;
pmem[id].free_space = pmem_free_space_buddy_bestfit;
pmem[id].len = pmem_len_buddy_bestfit;
pmem[id].start_addr = pmem_start_addr_buddy_bestfit;
if (kobject_init_and_add(&pmem[id].kobj,
&pmem_buddy_bestfit_ktype, NULL,
"%s", pdata->name))
goto out_put_kobj;
break;
case PMEM_ALLOCATORTYPE_BITMAP: /* 0, default if not explicit */
pmem[id].allocator.bitmap.bitm_alloc = kmalloc(
PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS *
sizeof(*pmem[id].allocator.bitmap.bitm_alloc),
GFP_KERNEL);
if (!pmem[id].allocator.bitmap.bitm_alloc) {
pr_alert("pmem: %s: Unable to register pmem "
"driver %s - can't allocate "
"bitm_alloc!\n",
__func__, pdata->name);
goto err_reset_pmem_info;
}
if (kobject_init_and_add(&pmem[id].kobj,
&pmem_bitmap_ktype, NULL,
"%s", pdata->name))
goto out_put_kobj;
for (i = 0; i < PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS; i++) {
pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1;
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
}
pmem[id].allocator.bitmap.bitmap_allocs =
PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS;
pmem[id].allocator.bitmap.bitmap =
kcalloc((pmem[id].num_entries + 31) / 32,
sizeof(unsigned int), GFP_KERNEL);
if (!pmem[id].allocator.bitmap.bitmap) {
pr_alert("pmem: %s: Unable to register pmem "
"driver - can't allocate bitmap!\n",
__func__);
goto err_cant_register_device;
}
pmem[id].allocator.bitmap.bitmap_free = pmem[id].num_entries;
pmem[id].allocate = pmem_allocator_bitmap;
pmem[id].free = pmem_free_bitmap;
pmem[id].free_space = pmem_free_space_bitmap;
pmem[id].len = pmem_len_bitmap;
pmem[id].start_addr = pmem_start_addr_bitmap;
DLOG("bitmap allocator id %d (%s), num_entries %u, raw size "
"%lu, quanta size %u\n",
id, pdata->name, pmem[id].allocator.bitmap.bitmap_free,
pmem[id].size, pmem[id].quantum);
break;
case PMEM_ALLOCATORTYPE_SYSTEM:
INIT_LIST_HEAD(&pmem[id].allocator.system_mem.alist);
pmem[id].allocator.system_mem.used = 0;
pmem[id].vbase = NULL;
if (kobject_init_and_add(&pmem[id].kobj,
&pmem_system_ktype, NULL,
"%s", pdata->name))
goto out_put_kobj;
pmem[id].allocate = pmem_allocator_system;
pmem[id].free = pmem_free_system;
pmem[id].free_space = pmem_free_space_system;
pmem[id].len = pmem_len_system;
pmem[id].start_addr = pmem_start_addr_system;
pmem[id].num_entries = 0;
pmem[id].quantum = PAGE_SIZE;
DLOG("system allocator id %d (%s), raw size %lu\n",
id, pdata->name, pmem[id].size);
break;
default:
pr_alert("Invalid allocator type (%d) for pmem driver\n",
pdata->allocator_type);
goto err_reset_pmem_info;
}
pmem[id].ioctl = ioctl;
pmem[id].release = release;
mutex_init(&pmem[id].arena_mutex);
mutex_init(&pmem[id].data_list_mutex);
INIT_LIST_HEAD(&pmem[id].data_list);
pmem[id].dev.name = pdata->name;
pmem[id].dev.minor = id;
pmem[id].dev.fops = &pmem_fops;
pmem[id].reusable = pdata->reusable;
pr_info("pmem: Initializing %s as %s\n",
pdata->name, pdata->cached ? "cached" : "non-cached");
if (misc_register(&pmem[id].dev)) {
pr_alert("Unable to register pmem driver!\n");
goto err_cant_register_device;
}
if (!pmem[id].reusable) {
pmem[id].base = allocate_contiguous_memory_nomap(pmem[id].size,
pmem[id].memory_type, PAGE_SIZE);
if (!pmem[id].base) {
pr_err("pmem: Cannot allocate from reserved memory for %s\n",
pdata->name);
goto err_misc_deregister;
}
}
/* reusable pmem requires map on demand */
pmem[id].map_on_demand = pdata->map_on_demand || pdata->reusable;
if (pmem[id].map_on_demand) {
if (pmem[id].reusable) {
const struct fmem_data *fmem_info = fmem_get_info();
pmem[id].area = fmem_info->area;
pmem[id].base = fmem_info->phys;
} else {
pmem_vma = get_vm_area(pmem[id].size, VM_IOREMAP);
if (!pmem_vma) {
pr_err("pmem: Failed to allocate virtual space for "
"%s\n", pdata->name);
goto err_free;
}
pr_err("pmem: Reserving virtual address range %lx - %lx for"
" %s\n", (unsigned long) pmem_vma->addr,
(unsigned long) pmem_vma->addr + pmem[id].size,
pdata->name);
pmem[id].area = pmem_vma;
}
} else
pmem[id].area = NULL;
page = alloc_page(GFP_KERNEL);
if (!page) {
pr_err("pmem: Failed to allocate page for %s\n", pdata->name);
goto cleanup_vm;
}
pmem[id].garbage_pfn = page_to_pfn(page);
atomic_set(&pmem[id].allocation_cnt, 0);
if (pdata->setup_region)
pmem[id].region_data = pdata->setup_region();
if (pdata->request_region)
pmem[id].mem_request = pdata->request_region;
if (pdata->release_region)
pmem[id].mem_release = pdata->release_region;
pr_info("allocating %lu bytes at %lx physical for %s\n",
pmem[id].size, pmem[id].base, pmem[id].name);
return 0;
cleanup_vm:
if (!pmem[id].reusable)
remove_vm_area(pmem_vma);
err_free:
if (!pmem[id].reusable)
free_contiguous_memory_by_paddr(pmem[id].base);
err_misc_deregister:
misc_deregister(&pmem[id].dev);
err_cant_register_device:
out_put_kobj:
kobject_put(&pmem[id].kobj);
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BUDDYBESTFIT)
kfree(pmem[id].allocator.buddy_bestfit.buddy_bitmap);
else if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BITMAP) {
kfree(pmem[id].allocator.bitmap.bitmap);
kfree(pmem[id].allocator.bitmap.bitm_alloc);
}
err_reset_pmem_info:
pmem[id].allocate = 0;
pmem[id].dev.minor = -1;
err_no_mem:
return -1;
}
static int pmem_probe(struct platform_device *pdev)
{
struct android_pmem_platform_data *pdata;
if (!pdev || !pdev->dev.platform_data) {
pr_alert("Unable to probe pmem!\n");
return -1;
}
pdata = pdev->dev.platform_data;
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return pmem_setup(pdata, NULL, NULL);
}
static int pmem_remove(struct platform_device *pdev)
{
int id = pdev->id;
__free_page(pfn_to_page(pmem[id].garbage_pfn));
pm_runtime_disable(&pdev->dev);
if (pmem[id].vbase)
iounmap(pmem[id].vbase);
if (pmem[id].map_on_demand && !pmem[id].reusable && pmem[id].area)
free_vm_area(pmem[id].area);
if (pmem[id].base)
free_contiguous_memory_by_paddr(pmem[id].base);
kobject_put(&pmem[id].kobj);
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BUDDYBESTFIT)
kfree(pmem[id].allocator.buddy_bestfit.buddy_bitmap);
else if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BITMAP) {
kfree(pmem[id].allocator.bitmap.bitmap);
kfree(pmem[id].allocator.bitmap.bitm_alloc);
}
misc_deregister(&pmem[id].dev);
return 0;
}
static int pmem_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "pm_runtime: suspending...\n");
return 0;
}
static int pmem_runtime_resume(struct device *dev)
{
dev_dbg(dev, "pm_runtime: resuming...\n");
return 0;
}
static const struct dev_pm_ops pmem_dev_pm_ops = {
.runtime_suspend = pmem_runtime_suspend,
.runtime_resume = pmem_runtime_resume,
};
static struct platform_driver pmem_driver = {
.probe = pmem_probe,
.remove = pmem_remove,
.driver = { .name = "android_pmem",
.pm = &pmem_dev_pm_ops,
}
};
static int __init pmem_init(void)
{
/* create /sys/kernel/<PMEM_SYSFS_DIR_NAME> directory */
pmem_kset = kset_create_and_add(PMEM_SYSFS_DIR_NAME,
NULL, kernel_kobj);
if (!pmem_kset) {
pr_err("pmem(%s):kset_create_and_add fail\n", __func__);
return -ENOMEM;
}
return platform_driver_register(&pmem_driver);
}
static void __exit pmem_exit(void)
{
platform_driver_unregister(&pmem_driver);
}
module_init(pmem_init);
module_exit(pmem_exit);