| #ifndef __PPC64_MMU_CONTEXT_H |
| #define __PPC64_MMU_CONTEXT_H |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <asm/mmu.h> |
| #include <asm/cputable.h> |
| |
| /* |
| * Copyright (C) 2001 PPC 64 Team, IBM Corp |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 64; |
| return __ffs(b[2]) + 128; |
| } |
| |
| static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) |
| { |
| } |
| |
| #define NO_CONTEXT 0 |
| #define MAX_CONTEXT (0x100000-1) |
| |
| extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm); |
| extern void destroy_context(struct mm_struct *mm); |
| |
| extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm); |
| extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm); |
| |
| /* |
| * switch_mm is the entry point called from the architecture independent |
| * code in kernel/sched.c |
| */ |
| static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, |
| struct task_struct *tsk) |
| { |
| if (!cpu_isset(smp_processor_id(), next->cpu_vm_mask)) |
| cpu_set(smp_processor_id(), next->cpu_vm_mask); |
| |
| /* No need to flush userspace segments if the mm doesnt change */ |
| if (prev == next) |
| return; |
| |
| #ifdef CONFIG_ALTIVEC |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| asm volatile ("dssall"); |
| #endif /* CONFIG_ALTIVEC */ |
| |
| if (cpu_has_feature(CPU_FTR_SLB)) |
| switch_slb(tsk, next); |
| else |
| switch_stab(tsk, next); |
| } |
| |
| #define deactivate_mm(tsk,mm) do { } while (0) |
| |
| /* |
| * After we have set current->mm to a new value, this activates |
| * the context for the new mm so we see the new mappings. |
| */ |
| static inline void activate_mm(struct mm_struct *prev, struct mm_struct *next) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| switch_mm(prev, next, current); |
| local_irq_restore(flags); |
| } |
| |
| /* VSID allocation |
| * =============== |
| * |
| * We first generate a 36-bit "proto-VSID". For kernel addresses this |
| * is equal to the ESID, for user addresses it is: |
| * (context << 15) | (esid & 0x7fff) |
| * |
| * The two forms are distinguishable because the top bit is 0 for user |
| * addresses, whereas the top two bits are 1 for kernel addresses. |
| * Proto-VSIDs with the top two bits equal to 0b10 are reserved for |
| * now. |
| * |
| * The proto-VSIDs are then scrambled into real VSIDs with the |
| * multiplicative hash: |
| * |
| * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS |
| * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 |
| * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF |
| * |
| * This scramble is only well defined for proto-VSIDs below |
| * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are |
| * reserved. VSID_MULTIPLIER is prime, so in particular it is |
| * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. |
| * Because the modulus is 2^n-1 we can compute it efficiently without |
| * a divide or extra multiply (see below). |
| * |
| * This scheme has several advantages over older methods: |
| * |
| * - We have VSIDs allocated for every kernel address |
| * (i.e. everything above 0xC000000000000000), except the very top |
| * segment, which simplifies several things. |
| * |
| * - We allow for 15 significant bits of ESID and 20 bits of |
| * context for user addresses. i.e. 8T (43 bits) of address space for |
| * up to 1M contexts (although the page table structure and context |
| * allocation will need changes to take advantage of this). |
| * |
| * - The scramble function gives robust scattering in the hash |
| * table (at least based on some initial results). The previous |
| * method was more susceptible to pathological cases giving excessive |
| * hash collisions. |
| */ |
| |
| /* |
| * WARNING - If you change these you must make sure the asm |
| * implementations in slb_allocate(), do_stab_bolted and mmu.h |
| * (ASM_VSID_SCRAMBLE macro) are changed accordingly. |
| * |
| * You'll also need to change the precomputed VSID values in head.S |
| * which are used by the iSeries firmware. |
| */ |
| |
| static inline unsigned long vsid_scramble(unsigned long protovsid) |
| { |
| #if 0 |
| /* The code below is equivalent to this function for arguments |
| * < 2^VSID_BITS, which is all this should ever be called |
| * with. However gcc is not clever enough to compute the |
| * modulus (2^n-1) without a second multiply. */ |
| return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS); |
| #else /* 1 */ |
| unsigned long x; |
| |
| x = protovsid * VSID_MULTIPLIER; |
| x = (x >> VSID_BITS) + (x & VSID_MODULUS); |
| return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS; |
| #endif /* 1 */ |
| } |
| |
| /* This is only valid for addresses >= KERNELBASE */ |
| static inline unsigned long get_kernel_vsid(unsigned long ea) |
| { |
| return vsid_scramble(ea >> SID_SHIFT); |
| } |
| |
| /* This is only valid for user addresses (which are below 2^41) */ |
| static inline unsigned long get_vsid(unsigned long context, unsigned long ea) |
| { |
| return vsid_scramble((context << USER_ESID_BITS) |
| | (ea >> SID_SHIFT)); |
| } |
| |
| #endif /* __PPC64_MMU_CONTEXT_H */ |