blob: 36342230a6deeb79ea89c5cb011c1724b1040bca [file] [log] [blame]
/*
* forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
*
* Note: This driver is a cleanroom reimplementation based on reverse
* engineered documentation written by Carl-Daniel Hailfinger
* and Andrew de Quincey.
*
* NVIDIA, nForce and other NVIDIA marks are trademarks or registered
* trademarks of NVIDIA Corporation in the United States and other
* countries.
*
* Copyright (C) 2003,4,5 Manfred Spraul
* Copyright (C) 2004 Andrew de Quincey (wol support)
* Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
* IRQ rate fixes, bigendian fixes, cleanups, verification)
* Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Changelog:
* 0.01: 05 Oct 2003: First release that compiles without warnings.
* 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
* Check all PCI BARs for the register window.
* udelay added to mii_rw.
* 0.03: 06 Oct 2003: Initialize dev->irq.
* 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
* 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
* 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
* irq mask updated
* 0.07: 14 Oct 2003: Further irq mask updates.
* 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
* added into irq handler, NULL check for drain_ring.
* 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
* requested interrupt sources.
* 0.10: 20 Oct 2003: First cleanup for release.
* 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
* MAC Address init fix, set_multicast cleanup.
* 0.12: 23 Oct 2003: Cleanups for release.
* 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
* Set link speed correctly. start rx before starting
* tx (nv_start_rx sets the link speed).
* 0.14: 25 Oct 2003: Nic dependant irq mask.
* 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
* open.
* 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
* increased to 1628 bytes.
* 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
* the tx length.
* 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
* 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
* addresses, really stop rx if already running
* in nv_start_rx, clean up a bit.
* 0.20: 07 Dec 2003: alloc fixes
* 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
* 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
* on close.
* 0.23: 26 Jan 2004: various small cleanups
* 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
* 0.25: 09 Mar 2004: wol support
* 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
* 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
* added CK804/MCP04 device IDs, code fixes
* for registers, link status and other minor fixes.
* 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
* 0.29: 31 Aug 2004: Add backup timer for link change notification.
* 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
* into nv_close, otherwise reenabling for wol can
* cause DMA to kfree'd memory.
* 0.31: 14 Nov 2004: ethtool support for getting/setting link
* capabilities.
* 0.32: 16 Apr 2005: RX_ERROR4 handling added.
* 0.33: 16 May 2005: Support for MCP51 added.
* 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
* 0.35: 26 Jun 2005: Support for MCP55 added.
* 0.36: 28 Jun 2005: Add jumbo frame support.
* 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
* 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
* per-packet flags.
* 0.39: 18 Jul 2005: Add 64bit descriptor support.
* 0.40: 19 Jul 2005: Add support for mac address change.
* 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
* of nv_remove
* 0.42: 06 Aug 2005: Fix lack of link speed initialization
* in the second (and later) nv_open call
* 0.43: 10 Aug 2005: Add support for tx checksum.
* 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
* 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
* 0.46: 20 Oct 2005: Add irq optimization modes.
* 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
* 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
* 0.49: 10 Dec 2005: Fix tso for large buffers.
* 0.50: 20 Jan 2006: Add 8021pq tagging support.
* 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
* 0.52: 20 Jan 2006: Add MSI/MSIX support.
* 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
* 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
* 0.55: 22 Mar 2006: Add flow control (pause frame).
* 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
* 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
* 0.58: 30 Oct 2006: Added support for sideband management unit.
* 0.59: 30 Oct 2006: Added support for recoverable error.
* 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
*
* Known bugs:
* We suspect that on some hardware no TX done interrupts are generated.
* This means recovery from netif_stop_queue only happens if the hw timer
* interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
* and the timer is active in the IRQMask, or if a rx packet arrives by chance.
* If your hardware reliably generates tx done interrupts, then you can remove
* DEV_NEED_TIMERIRQ from the driver_data flags.
* DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
* superfluous timer interrupts from the nic.
*/
#ifdef CONFIG_FORCEDETH_NAPI
#define DRIVERNAPI "-NAPI"
#else
#define DRIVERNAPI
#endif
#define FORCEDETH_VERSION "0.61"
#define DRV_NAME "forcedeth"
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#if 0
#define dprintk printk
#else
#define dprintk(x...) do { } while (0)
#endif
#define TX_WORK_PER_LOOP 64
#define RX_WORK_PER_LOOP 64
/*
* Hardware access:
*/
#define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
#define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
#define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
#define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
#define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
#define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
#define DEV_HAS_MSI 0x0040 /* device supports MSI */
#define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
#define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
#define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
#define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
#define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
#define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
#define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
#define DEV_HAS_CORRECT_MACADDR 0x4000 /* device supports correct mac address order */
enum {
NvRegIrqStatus = 0x000,
#define NVREG_IRQSTAT_MIIEVENT 0x040
#define NVREG_IRQSTAT_MASK 0x81ff
NvRegIrqMask = 0x004,
#define NVREG_IRQ_RX_ERROR 0x0001
#define NVREG_IRQ_RX 0x0002
#define NVREG_IRQ_RX_NOBUF 0x0004
#define NVREG_IRQ_TX_ERR 0x0008
#define NVREG_IRQ_TX_OK 0x0010
#define NVREG_IRQ_TIMER 0x0020
#define NVREG_IRQ_LINK 0x0040
#define NVREG_IRQ_RX_FORCED 0x0080
#define NVREG_IRQ_TX_FORCED 0x0100
#define NVREG_IRQ_RECOVER_ERROR 0x8000
#define NVREG_IRQMASK_THROUGHPUT 0x00df
#define NVREG_IRQMASK_CPU 0x0060
#define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
#define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
#define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
#define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
NvRegUnknownSetupReg6 = 0x008,
#define NVREG_UNKSETUP6_VAL 3
/*
* NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
* NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
*/
NvRegPollingInterval = 0x00c,
#define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
#define NVREG_POLL_DEFAULT_CPU 13
NvRegMSIMap0 = 0x020,
NvRegMSIMap1 = 0x024,
NvRegMSIIrqMask = 0x030,
#define NVREG_MSI_VECTOR_0_ENABLED 0x01
NvRegMisc1 = 0x080,
#define NVREG_MISC1_PAUSE_TX 0x01
#define NVREG_MISC1_HD 0x02
#define NVREG_MISC1_FORCE 0x3b0f3c
NvRegMacReset = 0x34,
#define NVREG_MAC_RESET_ASSERT 0x0F3
NvRegTransmitterControl = 0x084,
#define NVREG_XMITCTL_START 0x01
#define NVREG_XMITCTL_MGMT_ST 0x40000000
#define NVREG_XMITCTL_SYNC_MASK 0x000f0000
#define NVREG_XMITCTL_SYNC_NOT_READY 0x0
#define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
#define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
#define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
#define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
#define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
#define NVREG_XMITCTL_HOST_LOADED 0x00004000
#define NVREG_XMITCTL_TX_PATH_EN 0x01000000
NvRegTransmitterStatus = 0x088,
#define NVREG_XMITSTAT_BUSY 0x01
NvRegPacketFilterFlags = 0x8c,
#define NVREG_PFF_PAUSE_RX 0x08
#define NVREG_PFF_ALWAYS 0x7F0000
#define NVREG_PFF_PROMISC 0x80
#define NVREG_PFF_MYADDR 0x20
#define NVREG_PFF_LOOPBACK 0x10
NvRegOffloadConfig = 0x90,
#define NVREG_OFFLOAD_HOMEPHY 0x601
#define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
NvRegReceiverControl = 0x094,
#define NVREG_RCVCTL_START 0x01
#define NVREG_RCVCTL_RX_PATH_EN 0x01000000
NvRegReceiverStatus = 0x98,
#define NVREG_RCVSTAT_BUSY 0x01
NvRegRandomSeed = 0x9c,
#define NVREG_RNDSEED_MASK 0x00ff
#define NVREG_RNDSEED_FORCE 0x7f00
#define NVREG_RNDSEED_FORCE2 0x2d00
#define NVREG_RNDSEED_FORCE3 0x7400
NvRegTxDeferral = 0xA0,
#define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
#define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
#define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
NvRegRxDeferral = 0xA4,
#define NVREG_RX_DEFERRAL_DEFAULT 0x16
NvRegMacAddrA = 0xA8,
NvRegMacAddrB = 0xAC,
NvRegMulticastAddrA = 0xB0,
#define NVREG_MCASTADDRA_FORCE 0x01
NvRegMulticastAddrB = 0xB4,
NvRegMulticastMaskA = 0xB8,
#define NVREG_MCASTMASKA_NONE 0xffffffff
NvRegMulticastMaskB = 0xBC,
#define NVREG_MCASTMASKB_NONE 0xffff
NvRegPhyInterface = 0xC0,
#define PHY_RGMII 0x10000000
NvRegTxRingPhysAddr = 0x100,
NvRegRxRingPhysAddr = 0x104,
NvRegRingSizes = 0x108,
#define NVREG_RINGSZ_TXSHIFT 0
#define NVREG_RINGSZ_RXSHIFT 16
NvRegTransmitPoll = 0x10c,
#define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
NvRegLinkSpeed = 0x110,
#define NVREG_LINKSPEED_FORCE 0x10000
#define NVREG_LINKSPEED_10 1000
#define NVREG_LINKSPEED_100 100
#define NVREG_LINKSPEED_1000 50
#define NVREG_LINKSPEED_MASK (0xFFF)
NvRegUnknownSetupReg5 = 0x130,
#define NVREG_UNKSETUP5_BIT31 (1<<31)
NvRegTxWatermark = 0x13c,
#define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
#define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
#define NVREG_TX_WM_DESC2_3_1000 0xfe08000
NvRegTxRxControl = 0x144,
#define NVREG_TXRXCTL_KICK 0x0001
#define NVREG_TXRXCTL_BIT1 0x0002
#define NVREG_TXRXCTL_BIT2 0x0004
#define NVREG_TXRXCTL_IDLE 0x0008
#define NVREG_TXRXCTL_RESET 0x0010
#define NVREG_TXRXCTL_RXCHECK 0x0400
#define NVREG_TXRXCTL_DESC_1 0
#define NVREG_TXRXCTL_DESC_2 0x002100
#define NVREG_TXRXCTL_DESC_3 0xc02200
#define NVREG_TXRXCTL_VLANSTRIP 0x00040
#define NVREG_TXRXCTL_VLANINS 0x00080
NvRegTxRingPhysAddrHigh = 0x148,
NvRegRxRingPhysAddrHigh = 0x14C,
NvRegTxPauseFrame = 0x170,
#define NVREG_TX_PAUSEFRAME_DISABLE 0x01ff0080
#define NVREG_TX_PAUSEFRAME_ENABLE 0x01800010
NvRegMIIStatus = 0x180,
#define NVREG_MIISTAT_ERROR 0x0001
#define NVREG_MIISTAT_LINKCHANGE 0x0008
#define NVREG_MIISTAT_MASK 0x000f
#define NVREG_MIISTAT_MASK2 0x000f
NvRegMIIMask = 0x184,
#define NVREG_MII_LINKCHANGE 0x0008
NvRegAdapterControl = 0x188,
#define NVREG_ADAPTCTL_START 0x02
#define NVREG_ADAPTCTL_LINKUP 0x04
#define NVREG_ADAPTCTL_PHYVALID 0x40000
#define NVREG_ADAPTCTL_RUNNING 0x100000
#define NVREG_ADAPTCTL_PHYSHIFT 24
NvRegMIISpeed = 0x18c,
#define NVREG_MIISPEED_BIT8 (1<<8)
#define NVREG_MIIDELAY 5
NvRegMIIControl = 0x190,
#define NVREG_MIICTL_INUSE 0x08000
#define NVREG_MIICTL_WRITE 0x00400
#define NVREG_MIICTL_ADDRSHIFT 5
NvRegMIIData = 0x194,
NvRegWakeUpFlags = 0x200,
#define NVREG_WAKEUPFLAGS_VAL 0x7770
#define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
#define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
#define NVREG_WAKEUPFLAGS_D3SHIFT 12
#define NVREG_WAKEUPFLAGS_D2SHIFT 8
#define NVREG_WAKEUPFLAGS_D1SHIFT 4
#define NVREG_WAKEUPFLAGS_D0SHIFT 0
#define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
#define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
#define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
#define NVREG_WAKEUPFLAGS_ENABLE 0x1111
NvRegPatternCRC = 0x204,
NvRegPatternMask = 0x208,
NvRegPowerCap = 0x268,
#define NVREG_POWERCAP_D3SUPP (1<<30)
#define NVREG_POWERCAP_D2SUPP (1<<26)
#define NVREG_POWERCAP_D1SUPP (1<<25)
NvRegPowerState = 0x26c,
#define NVREG_POWERSTATE_POWEREDUP 0x8000
#define NVREG_POWERSTATE_VALID 0x0100
#define NVREG_POWERSTATE_MASK 0x0003
#define NVREG_POWERSTATE_D0 0x0000
#define NVREG_POWERSTATE_D1 0x0001
#define NVREG_POWERSTATE_D2 0x0002
#define NVREG_POWERSTATE_D3 0x0003
NvRegTxCnt = 0x280,
NvRegTxZeroReXmt = 0x284,
NvRegTxOneReXmt = 0x288,
NvRegTxManyReXmt = 0x28c,
NvRegTxLateCol = 0x290,
NvRegTxUnderflow = 0x294,
NvRegTxLossCarrier = 0x298,
NvRegTxExcessDef = 0x29c,
NvRegTxRetryErr = 0x2a0,
NvRegRxFrameErr = 0x2a4,
NvRegRxExtraByte = 0x2a8,
NvRegRxLateCol = 0x2ac,
NvRegRxRunt = 0x2b0,
NvRegRxFrameTooLong = 0x2b4,
NvRegRxOverflow = 0x2b8,
NvRegRxFCSErr = 0x2bc,
NvRegRxFrameAlignErr = 0x2c0,
NvRegRxLenErr = 0x2c4,
NvRegRxUnicast = 0x2c8,
NvRegRxMulticast = 0x2cc,
NvRegRxBroadcast = 0x2d0,
NvRegTxDef = 0x2d4,
NvRegTxFrame = 0x2d8,
NvRegRxCnt = 0x2dc,
NvRegTxPause = 0x2e0,
NvRegRxPause = 0x2e4,
NvRegRxDropFrame = 0x2e8,
NvRegVlanControl = 0x300,
#define NVREG_VLANCONTROL_ENABLE 0x2000
NvRegMSIXMap0 = 0x3e0,
NvRegMSIXMap1 = 0x3e4,
NvRegMSIXIrqStatus = 0x3f0,
NvRegPowerState2 = 0x600,
#define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
#define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
};
/* Big endian: should work, but is untested */
struct ring_desc {
__le32 buf;
__le32 flaglen;
};
struct ring_desc_ex {
__le32 bufhigh;
__le32 buflow;
__le32 txvlan;
__le32 flaglen;
};
union ring_type {
struct ring_desc* orig;
struct ring_desc_ex* ex;
};
#define FLAG_MASK_V1 0xffff0000
#define FLAG_MASK_V2 0xffffc000
#define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
#define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
#define NV_TX_LASTPACKET (1<<16)
#define NV_TX_RETRYERROR (1<<19)
#define NV_TX_FORCED_INTERRUPT (1<<24)
#define NV_TX_DEFERRED (1<<26)
#define NV_TX_CARRIERLOST (1<<27)
#define NV_TX_LATECOLLISION (1<<28)
#define NV_TX_UNDERFLOW (1<<29)
#define NV_TX_ERROR (1<<30)
#define NV_TX_VALID (1<<31)
#define NV_TX2_LASTPACKET (1<<29)
#define NV_TX2_RETRYERROR (1<<18)
#define NV_TX2_FORCED_INTERRUPT (1<<30)
#define NV_TX2_DEFERRED (1<<25)
#define NV_TX2_CARRIERLOST (1<<26)
#define NV_TX2_LATECOLLISION (1<<27)
#define NV_TX2_UNDERFLOW (1<<28)
/* error and valid are the same for both */
#define NV_TX2_ERROR (1<<30)
#define NV_TX2_VALID (1<<31)
#define NV_TX2_TSO (1<<28)
#define NV_TX2_TSO_SHIFT 14
#define NV_TX2_TSO_MAX_SHIFT 14
#define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
#define NV_TX2_CHECKSUM_L3 (1<<27)
#define NV_TX2_CHECKSUM_L4 (1<<26)
#define NV_TX3_VLAN_TAG_PRESENT (1<<18)
#define NV_RX_DESCRIPTORVALID (1<<16)
#define NV_RX_MISSEDFRAME (1<<17)
#define NV_RX_SUBSTRACT1 (1<<18)
#define NV_RX_ERROR1 (1<<23)
#define NV_RX_ERROR2 (1<<24)
#define NV_RX_ERROR3 (1<<25)
#define NV_RX_ERROR4 (1<<26)
#define NV_RX_CRCERR (1<<27)
#define NV_RX_OVERFLOW (1<<28)
#define NV_RX_FRAMINGERR (1<<29)
#define NV_RX_ERROR (1<<30)
#define NV_RX_AVAIL (1<<31)
#define NV_RX2_CHECKSUMMASK (0x1C000000)
#define NV_RX2_CHECKSUM_IP (0x10000000)
#define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
#define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
#define NV_RX2_DESCRIPTORVALID (1<<29)
#define NV_RX2_SUBSTRACT1 (1<<25)
#define NV_RX2_ERROR1 (1<<18)
#define NV_RX2_ERROR2 (1<<19)
#define NV_RX2_ERROR3 (1<<20)
#define NV_RX2_ERROR4 (1<<21)
#define NV_RX2_CRCERR (1<<22)
#define NV_RX2_OVERFLOW (1<<23)
#define NV_RX2_FRAMINGERR (1<<24)
/* error and avail are the same for both */
#define NV_RX2_ERROR (1<<30)
#define NV_RX2_AVAIL (1<<31)
#define NV_RX3_VLAN_TAG_PRESENT (1<<16)
#define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
/* Miscelaneous hardware related defines: */
#define NV_PCI_REGSZ_VER1 0x270
#define NV_PCI_REGSZ_VER2 0x2d4
#define NV_PCI_REGSZ_VER3 0x604
/* various timeout delays: all in usec */
#define NV_TXRX_RESET_DELAY 4
#define NV_TXSTOP_DELAY1 10
#define NV_TXSTOP_DELAY1MAX 500000
#define NV_TXSTOP_DELAY2 100
#define NV_RXSTOP_DELAY1 10
#define NV_RXSTOP_DELAY1MAX 500000
#define NV_RXSTOP_DELAY2 100
#define NV_SETUP5_DELAY 5
#define NV_SETUP5_DELAYMAX 50000
#define NV_POWERUP_DELAY 5
#define NV_POWERUP_DELAYMAX 5000
#define NV_MIIBUSY_DELAY 50
#define NV_MIIPHY_DELAY 10
#define NV_MIIPHY_DELAYMAX 10000
#define NV_MAC_RESET_DELAY 64
#define NV_WAKEUPPATTERNS 5
#define NV_WAKEUPMASKENTRIES 4
/* General driver defaults */
#define NV_WATCHDOG_TIMEO (5*HZ)
#define RX_RING_DEFAULT 128
#define TX_RING_DEFAULT 256
#define RX_RING_MIN 128
#define TX_RING_MIN 64
#define RING_MAX_DESC_VER_1 1024
#define RING_MAX_DESC_VER_2_3 16384
/* rx/tx mac addr + type + vlan + align + slack*/
#define NV_RX_HEADERS (64)
/* even more slack. */
#define NV_RX_ALLOC_PAD (64)
/* maximum mtu size */
#define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
#define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
#define OOM_REFILL (1+HZ/20)
#define POLL_WAIT (1+HZ/100)
#define LINK_TIMEOUT (3*HZ)
#define STATS_INTERVAL (10*HZ)
/*
* desc_ver values:
* The nic supports three different descriptor types:
* - DESC_VER_1: Original
* - DESC_VER_2: support for jumbo frames.
* - DESC_VER_3: 64-bit format.
*/
#define DESC_VER_1 1
#define DESC_VER_2 2
#define DESC_VER_3 3
/* PHY defines */
#define PHY_OUI_MARVELL 0x5043
#define PHY_OUI_CICADA 0x03f1
#define PHY_OUI_VITESSE 0x01c1
#define PHY_OUI_REALTEK 0x0732
#define PHYID1_OUI_MASK 0x03ff
#define PHYID1_OUI_SHFT 6
#define PHYID2_OUI_MASK 0xfc00
#define PHYID2_OUI_SHFT 10
#define PHYID2_MODEL_MASK 0x03f0
#define PHY_MODEL_MARVELL_E3016 0x220
#define PHY_MARVELL_E3016_INITMASK 0x0300
#define PHY_CICADA_INIT1 0x0f000
#define PHY_CICADA_INIT2 0x0e00
#define PHY_CICADA_INIT3 0x01000
#define PHY_CICADA_INIT4 0x0200
#define PHY_CICADA_INIT5 0x0004
#define PHY_CICADA_INIT6 0x02000
#define PHY_VITESSE_INIT_REG1 0x1f
#define PHY_VITESSE_INIT_REG2 0x10
#define PHY_VITESSE_INIT_REG3 0x11
#define PHY_VITESSE_INIT_REG4 0x12
#define PHY_VITESSE_INIT_MSK1 0xc
#define PHY_VITESSE_INIT_MSK2 0x0180
#define PHY_VITESSE_INIT1 0x52b5
#define PHY_VITESSE_INIT2 0xaf8a
#define PHY_VITESSE_INIT3 0x8
#define PHY_VITESSE_INIT4 0x8f8a
#define PHY_VITESSE_INIT5 0xaf86
#define PHY_VITESSE_INIT6 0x8f86
#define PHY_VITESSE_INIT7 0xaf82
#define PHY_VITESSE_INIT8 0x0100
#define PHY_VITESSE_INIT9 0x8f82
#define PHY_VITESSE_INIT10 0x0
#define PHY_REALTEK_INIT_REG1 0x1f
#define PHY_REALTEK_INIT_REG2 0x19
#define PHY_REALTEK_INIT_REG3 0x13
#define PHY_REALTEK_INIT1 0x0000
#define PHY_REALTEK_INIT2 0x8e00
#define PHY_REALTEK_INIT3 0x0001
#define PHY_REALTEK_INIT4 0xad17
#define PHY_GIGABIT 0x0100
#define PHY_TIMEOUT 0x1
#define PHY_ERROR 0x2
#define PHY_100 0x1
#define PHY_1000 0x2
#define PHY_HALF 0x100
#define NV_PAUSEFRAME_RX_CAPABLE 0x0001
#define NV_PAUSEFRAME_TX_CAPABLE 0x0002
#define NV_PAUSEFRAME_RX_ENABLE 0x0004
#define NV_PAUSEFRAME_TX_ENABLE 0x0008
#define NV_PAUSEFRAME_RX_REQ 0x0010
#define NV_PAUSEFRAME_TX_REQ 0x0020
#define NV_PAUSEFRAME_AUTONEG 0x0040
/* MSI/MSI-X defines */
#define NV_MSI_X_MAX_VECTORS 8
#define NV_MSI_X_VECTORS_MASK 0x000f
#define NV_MSI_CAPABLE 0x0010
#define NV_MSI_X_CAPABLE 0x0020
#define NV_MSI_ENABLED 0x0040
#define NV_MSI_X_ENABLED 0x0080
#define NV_MSI_X_VECTOR_ALL 0x0
#define NV_MSI_X_VECTOR_RX 0x0
#define NV_MSI_X_VECTOR_TX 0x1
#define NV_MSI_X_VECTOR_OTHER 0x2
/* statistics */
struct nv_ethtool_str {
char name[ETH_GSTRING_LEN];
};
static const struct nv_ethtool_str nv_estats_str[] = {
{ "tx_bytes" },
{ "tx_zero_rexmt" },
{ "tx_one_rexmt" },
{ "tx_many_rexmt" },
{ "tx_late_collision" },
{ "tx_fifo_errors" },
{ "tx_carrier_errors" },
{ "tx_excess_deferral" },
{ "tx_retry_error" },
{ "rx_frame_error" },
{ "rx_extra_byte" },
{ "rx_late_collision" },
{ "rx_runt" },
{ "rx_frame_too_long" },
{ "rx_over_errors" },
{ "rx_crc_errors" },
{ "rx_frame_align_error" },
{ "rx_length_error" },
{ "rx_unicast" },
{ "rx_multicast" },
{ "rx_broadcast" },
{ "rx_packets" },
{ "rx_errors_total" },
{ "tx_errors_total" },
/* version 2 stats */
{ "tx_deferral" },
{ "tx_packets" },
{ "rx_bytes" },
{ "tx_pause" },
{ "rx_pause" },
{ "rx_drop_frame" }
};
struct nv_ethtool_stats {
u64 tx_bytes;
u64 tx_zero_rexmt;
u64 tx_one_rexmt;
u64 tx_many_rexmt;
u64 tx_late_collision;
u64 tx_fifo_errors;
u64 tx_carrier_errors;
u64 tx_excess_deferral;
u64 tx_retry_error;
u64 rx_frame_error;
u64 rx_extra_byte;
u64 rx_late_collision;
u64 rx_runt;
u64 rx_frame_too_long;
u64 rx_over_errors;
u64 rx_crc_errors;
u64 rx_frame_align_error;
u64 rx_length_error;
u64 rx_unicast;
u64 rx_multicast;
u64 rx_broadcast;
u64 rx_packets;
u64 rx_errors_total;
u64 tx_errors_total;
/* version 2 stats */
u64 tx_deferral;
u64 tx_packets;
u64 rx_bytes;
u64 tx_pause;
u64 rx_pause;
u64 rx_drop_frame;
};
#define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
#define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
/* diagnostics */
#define NV_TEST_COUNT_BASE 3
#define NV_TEST_COUNT_EXTENDED 4
static const struct nv_ethtool_str nv_etests_str[] = {
{ "link (online/offline)" },
{ "register (offline) " },
{ "interrupt (offline) " },
{ "loopback (offline) " }
};
struct register_test {
__u32 reg;
__u32 mask;
};
static const struct register_test nv_registers_test[] = {
{ NvRegUnknownSetupReg6, 0x01 },
{ NvRegMisc1, 0x03c },
{ NvRegOffloadConfig, 0x03ff },
{ NvRegMulticastAddrA, 0xffffffff },
{ NvRegTxWatermark, 0x0ff },
{ NvRegWakeUpFlags, 0x07777 },
{ 0,0 }
};
struct nv_skb_map {
struct sk_buff *skb;
dma_addr_t dma;
unsigned int dma_len;
};
/*
* SMP locking:
* All hardware access under dev->priv->lock, except the performance
* critical parts:
* - rx is (pseudo-) lockless: it relies on the single-threading provided
* by the arch code for interrupts.
* - tx setup is lockless: it relies on netif_tx_lock. Actual submission
* needs dev->priv->lock :-(
* - set_multicast_list: preparation lockless, relies on netif_tx_lock.
*/
/* in dev: base, irq */
struct fe_priv {
spinlock_t lock;
struct net_device *dev;
struct napi_struct napi;
/* General data:
* Locking: spin_lock(&np->lock); */
struct nv_ethtool_stats estats;
int in_shutdown;
u32 linkspeed;
int duplex;
int autoneg;
int fixed_mode;
int phyaddr;
int wolenabled;
unsigned int phy_oui;
unsigned int phy_model;
u16 gigabit;
int intr_test;
int recover_error;
/* General data: RO fields */
dma_addr_t ring_addr;
struct pci_dev *pci_dev;
u32 orig_mac[2];
u32 irqmask;
u32 desc_ver;
u32 txrxctl_bits;
u32 vlanctl_bits;
u32 driver_data;
u32 register_size;
int rx_csum;
u32 mac_in_use;
void __iomem *base;
/* rx specific fields.
* Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
*/
union ring_type get_rx, put_rx, first_rx, last_rx;
struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
struct nv_skb_map *rx_skb;
union ring_type rx_ring;
unsigned int rx_buf_sz;
unsigned int pkt_limit;
struct timer_list oom_kick;
struct timer_list nic_poll;
struct timer_list stats_poll;
u32 nic_poll_irq;
int rx_ring_size;
/* media detection workaround.
* Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
*/
int need_linktimer;
unsigned long link_timeout;
/*
* tx specific fields.
*/
union ring_type get_tx, put_tx, first_tx, last_tx;
struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
struct nv_skb_map *tx_skb;
union ring_type tx_ring;
u32 tx_flags;
int tx_ring_size;
int tx_stop;
/* vlan fields */
struct vlan_group *vlangrp;
/* msi/msi-x fields */
u32 msi_flags;
struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
/* flow control */
u32 pause_flags;
};
/*
* Maximum number of loops until we assume that a bit in the irq mask
* is stuck. Overridable with module param.
*/
static int max_interrupt_work = 5;
/*
* Optimization can be either throuput mode or cpu mode
*
* Throughput Mode: Every tx and rx packet will generate an interrupt.
* CPU Mode: Interrupts are controlled by a timer.
*/
enum {
NV_OPTIMIZATION_MODE_THROUGHPUT,
NV_OPTIMIZATION_MODE_CPU
};
static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
/*
* Poll interval for timer irq
*
* This interval determines how frequent an interrupt is generated.
* The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
* Min = 0, and Max = 65535
*/
static int poll_interval = -1;
/*
* MSI interrupts
*/
enum {
NV_MSI_INT_DISABLED,
NV_MSI_INT_ENABLED
};
static int msi = NV_MSI_INT_ENABLED;
/*
* MSIX interrupts
*/
enum {
NV_MSIX_INT_DISABLED,
NV_MSIX_INT_ENABLED
};
static int msix = NV_MSIX_INT_DISABLED;
/*
* DMA 64bit
*/
enum {
NV_DMA_64BIT_DISABLED,
NV_DMA_64BIT_ENABLED
};
static int dma_64bit = NV_DMA_64BIT_ENABLED;
static inline struct fe_priv *get_nvpriv(struct net_device *dev)
{
return netdev_priv(dev);
}
static inline u8 __iomem *get_hwbase(struct net_device *dev)
{
return ((struct fe_priv *)netdev_priv(dev))->base;
}
static inline void pci_push(u8 __iomem *base)
{
/* force out pending posted writes */
readl(base);
}
static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
{
return le32_to_cpu(prd->flaglen)
& ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
}
static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
{
return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
}
static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
int delay, int delaymax, const char *msg)
{
u8 __iomem *base = get_hwbase(dev);
pci_push(base);
do {
udelay(delay);
delaymax -= delay;
if (delaymax < 0) {
if (msg)
printk(msg);
return 1;
}
} while ((readl(base + offset) & mask) != target);
return 0;
}
#define NV_SETUP_RX_RING 0x01
#define NV_SETUP_TX_RING 0x02
static inline u32 dma_low(dma_addr_t addr)
{
return addr;
}
static inline u32 dma_high(dma_addr_t addr)
{
return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
}
static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
if (rxtx_flags & NV_SETUP_RX_RING) {
writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
}
if (rxtx_flags & NV_SETUP_TX_RING) {
writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
}
} else {
if (rxtx_flags & NV_SETUP_RX_RING) {
writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
}
if (rxtx_flags & NV_SETUP_TX_RING) {
writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
}
}
}
static void free_rings(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
if (np->rx_ring.orig)
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
np->rx_ring.orig, np->ring_addr);
} else {
if (np->rx_ring.ex)
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
np->rx_ring.ex, np->ring_addr);
}
if (np->rx_skb)
kfree(np->rx_skb);
if (np->tx_skb)
kfree(np->tx_skb);
}
static int using_multi_irqs(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
((np->msi_flags & NV_MSI_X_ENABLED) &&
((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
return 0;
else
return 1;
}
static void nv_enable_irq(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
if (!using_multi_irqs(dev)) {
if (np->msi_flags & NV_MSI_X_ENABLED)
enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
else
enable_irq(np->pci_dev->irq);
} else {
enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
}
}
static void nv_disable_irq(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
if (!using_multi_irqs(dev)) {
if (np->msi_flags & NV_MSI_X_ENABLED)
disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
else
disable_irq(np->pci_dev->irq);
} else {
disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
}
}
/* In MSIX mode, a write to irqmask behaves as XOR */
static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
{
u8 __iomem *base = get_hwbase(dev);
writel(mask, base + NvRegIrqMask);
}
static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
if (np->msi_flags & NV_MSI_X_ENABLED) {
writel(mask, base + NvRegIrqMask);
} else {
if (np->msi_flags & NV_MSI_ENABLED)
writel(0, base + NvRegMSIIrqMask);
writel(0, base + NvRegIrqMask);
}
}
#define MII_READ (-1)
/* mii_rw: read/write a register on the PHY.
*
* Caller must guarantee serialization
*/
static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
{
u8 __iomem *base = get_hwbase(dev);
u32 reg;
int retval;
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
reg = readl(base + NvRegMIIControl);
if (reg & NVREG_MIICTL_INUSE) {
writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
udelay(NV_MIIBUSY_DELAY);
}
reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
if (value != MII_READ) {
writel(value, base + NvRegMIIData);
reg |= NVREG_MIICTL_WRITE;
}
writel(reg, base + NvRegMIIControl);
if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
dev->name, miireg, addr);
retval = -1;
} else if (value != MII_READ) {
/* it was a write operation - fewer failures are detectable */
dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
dev->name, value, miireg, addr);
retval = 0;
} else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
dev->name, miireg, addr);
retval = -1;
} else {
retval = readl(base + NvRegMIIData);
dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
dev->name, miireg, addr, retval);
}
return retval;
}
static int phy_reset(struct net_device *dev, u32 bmcr_setup)
{
struct fe_priv *np = netdev_priv(dev);
u32 miicontrol;
unsigned int tries = 0;
miicontrol = BMCR_RESET | bmcr_setup;
if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
return -1;
}
/* wait for 500ms */
msleep(500);
/* must wait till reset is deasserted */
while (miicontrol & BMCR_RESET) {
msleep(10);
miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
/* FIXME: 100 tries seem excessive */
if (tries++ > 100)
return -1;
}
return 0;
}
static int phy_init(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
/* phy errata for E3016 phy */
if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
reg &= ~PHY_MARVELL_E3016_INITMASK;
if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
if (np->phy_oui == PHY_OUI_REALTEK) {
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
/* set advertise register */
reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
/* get phy interface type */
phyinterface = readl(base + NvRegPhyInterface);
/* see if gigabit phy */
mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
if (mii_status & PHY_GIGABIT) {
np->gigabit = PHY_GIGABIT;
mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
mii_control_1000 &= ~ADVERTISE_1000HALF;
if (phyinterface & PHY_RGMII)
mii_control_1000 |= ADVERTISE_1000FULL;
else
mii_control_1000 &= ~ADVERTISE_1000FULL;
if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
else
np->gigabit = 0;
mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
mii_control |= BMCR_ANENABLE;
/* reset the phy
* (certain phys need bmcr to be setup with reset)
*/
if (phy_reset(dev, mii_control)) {
printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
/* phy vendor specific configuration */
if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
phy_reserved |= PHY_CICADA_INIT5;
if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
if (np->phy_oui == PHY_OUI_CICADA) {
phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
phy_reserved |= PHY_CICADA_INIT6;
if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
if (np->phy_oui == PHY_OUI_VITESSE) {
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
phy_reserved |= PHY_VITESSE_INIT3;
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
phy_reserved |= PHY_VITESSE_INIT3;
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
phy_reserved |= PHY_VITESSE_INIT8;
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
if (np->phy_oui == PHY_OUI_REALTEK) {
/* reset could have cleared these out, set them back */
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
/* some phys clear out pause advertisment on reset, set it back */
mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
/* restart auto negotiation */
mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
return PHY_ERROR;
}
return 0;
}
static void nv_start_rx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 rx_ctrl = readl(base + NvRegReceiverControl);
dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
/* Already running? Stop it. */
if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
rx_ctrl &= ~NVREG_RCVCTL_START;
writel(rx_ctrl, base + NvRegReceiverControl);
pci_push(base);
}
writel(np->linkspeed, base + NvRegLinkSpeed);
pci_push(base);
rx_ctrl |= NVREG_RCVCTL_START;
if (np->mac_in_use)
rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
writel(rx_ctrl, base + NvRegReceiverControl);
dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
dev->name, np->duplex, np->linkspeed);
pci_push(base);
}
static void nv_stop_rx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 rx_ctrl = readl(base + NvRegReceiverControl);
dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
if (!np->mac_in_use)
rx_ctrl &= ~NVREG_RCVCTL_START;
else
rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
writel(rx_ctrl, base + NvRegReceiverControl);
reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
udelay(NV_RXSTOP_DELAY2);
if (!np->mac_in_use)
writel(0, base + NvRegLinkSpeed);
}
static void nv_start_tx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 tx_ctrl = readl(base + NvRegTransmitterControl);
dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
tx_ctrl |= NVREG_XMITCTL_START;
if (np->mac_in_use)
tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
writel(tx_ctrl, base + NvRegTransmitterControl);
pci_push(base);
}
static void nv_stop_tx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 tx_ctrl = readl(base + NvRegTransmitterControl);
dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
if (!np->mac_in_use)
tx_ctrl &= ~NVREG_XMITCTL_START;
else
tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
writel(tx_ctrl, base + NvRegTransmitterControl);
reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
udelay(NV_TXSTOP_DELAY2);
if (!np->mac_in_use)
writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
base + NvRegTransmitPoll);
}
static void nv_txrx_reset(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
pci_push(base);
udelay(NV_TXRX_RESET_DELAY);
writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
pci_push(base);
}
static void nv_mac_reset(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
pci_push(base);
writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
pci_push(base);
udelay(NV_MAC_RESET_DELAY);
writel(0, base + NvRegMacReset);
pci_push(base);
udelay(NV_MAC_RESET_DELAY);
writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
pci_push(base);
}
static void nv_get_hw_stats(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
np->estats.tx_bytes += readl(base + NvRegTxCnt);
np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
np->estats.rx_runt += readl(base + NvRegRxRunt);
np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
np->estats.rx_length_error += readl(base + NvRegRxLenErr);
np->estats.rx_unicast += readl(base + NvRegRxUnicast);
np->estats.rx_multicast += readl(base + NvRegRxMulticast);
np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
np->estats.rx_packets =
np->estats.rx_unicast +
np->estats.rx_multicast +
np->estats.rx_broadcast;
np->estats.rx_errors_total =
np->estats.rx_crc_errors +
np->estats.rx_over_errors +
np->estats.rx_frame_error +
(np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
np->estats.rx_late_collision +
np->estats.rx_runt +
np->estats.rx_frame_too_long;
np->estats.tx_errors_total =
np->estats.tx_late_collision +
np->estats.tx_fifo_errors +
np->estats.tx_carrier_errors +
np->estats.tx_excess_deferral +
np->estats.tx_retry_error;
if (np->driver_data & DEV_HAS_STATISTICS_V2) {
np->estats.tx_deferral += readl(base + NvRegTxDef);
np->estats.tx_packets += readl(base + NvRegTxFrame);
np->estats.rx_bytes += readl(base + NvRegRxCnt);
np->estats.tx_pause += readl(base + NvRegTxPause);
np->estats.rx_pause += readl(base + NvRegRxPause);
np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
}
}
/*
* nv_get_stats: dev->get_stats function
* Get latest stats value from the nic.
* Called with read_lock(&dev_base_lock) held for read -
* only synchronized against unregister_netdevice.
*/
static struct net_device_stats *nv_get_stats(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
/* If the nic supports hw counters then retrieve latest values */
if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
nv_get_hw_stats(dev);
/* copy to net_device stats */
dev->stats.tx_bytes = np->estats.tx_bytes;
dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
dev->stats.rx_over_errors = np->estats.rx_over_errors;
dev->stats.rx_errors = np->estats.rx_errors_total;
dev->stats.tx_errors = np->estats.tx_errors_total;
}
return &dev->stats;
}
/*
* nv_alloc_rx: fill rx ring entries.
* Return 1 if the allocations for the skbs failed and the
* rx engine is without Available descriptors
*/
static int nv_alloc_rx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
struct ring_desc* less_rx;
less_rx = np->get_rx.orig;
if (less_rx-- == np->first_rx.orig)
less_rx = np->last_rx.orig;
while (np->put_rx.orig != less_rx) {
struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
if (skb) {
np->put_rx_ctx->skb = skb;
np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
skb->data,
skb_tailroom(skb),
PCI_DMA_FROMDEVICE);
np->put_rx_ctx->dma_len = skb_tailroom(skb);
np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
wmb();
np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
np->put_rx.orig = np->first_rx.orig;
if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
np->put_rx_ctx = np->first_rx_ctx;
} else {
return 1;
}
}
return 0;
}
static int nv_alloc_rx_optimized(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
struct ring_desc_ex* less_rx;
less_rx = np->get_rx.ex;
if (less_rx-- == np->first_rx.ex)
less_rx = np->last_rx.ex;
while (np->put_rx.ex != less_rx) {
struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
if (skb) {
np->put_rx_ctx->skb = skb;
np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
skb->data,
skb_tailroom(skb),
PCI_DMA_FROMDEVICE);
np->put_rx_ctx->dma_len = skb_tailroom(skb);
np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
wmb();
np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
np->put_rx.ex = np->first_rx.ex;
if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
np->put_rx_ctx = np->first_rx_ctx;
} else {
return 1;
}
}
return 0;
}
/* If rx bufs are exhausted called after 50ms to attempt to refresh */
#ifdef CONFIG_FORCEDETH_NAPI
static void nv_do_rx_refill(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
/* Just reschedule NAPI rx processing */
netif_rx_schedule(dev, &np->napi);
}
#else
static void nv_do_rx_refill(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
int retcode;
if (!using_multi_irqs(dev)) {
if (np->msi_flags & NV_MSI_X_ENABLED)
disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
else
disable_irq(np->pci_dev->irq);
} else {
disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
}
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
retcode = nv_alloc_rx(dev);
else
retcode = nv_alloc_rx_optimized(dev);
if (retcode) {
spin_lock_irq(&np->lock);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock_irq(&np->lock);
}
if (!using_multi_irqs(dev)) {
if (np->msi_flags & NV_MSI_X_ENABLED)
enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
else
enable_irq(np->pci_dev->irq);
} else {
enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
}
}
#endif
static void nv_init_rx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
int i;
np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
else
np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
for (i = 0; i < np->rx_ring_size; i++) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->rx_ring.orig[i].flaglen = 0;
np->rx_ring.orig[i].buf = 0;
} else {
np->rx_ring.ex[i].flaglen = 0;
np->rx_ring.ex[i].txvlan = 0;
np->rx_ring.ex[i].bufhigh = 0;
np->rx_ring.ex[i].buflow = 0;
}
np->rx_skb[i].skb = NULL;
np->rx_skb[i].dma = 0;
}
}
static void nv_init_tx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
int i;
np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
else
np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
for (i = 0; i < np->tx_ring_size; i++) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->tx_ring.orig[i].flaglen = 0;
np->tx_ring.orig[i].buf = 0;
} else {
np->tx_ring.ex[i].flaglen = 0;
np->tx_ring.ex[i].txvlan = 0;
np->tx_ring.ex[i].bufhigh = 0;
np->tx_ring.ex[i].buflow = 0;
}
np->tx_skb[i].skb = NULL;
np->tx_skb[i].dma = 0;
}
}
static int nv_init_ring(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
nv_init_tx(dev);
nv_init_rx(dev);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
return nv_alloc_rx(dev);
else
return nv_alloc_rx_optimized(dev);
}
static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
{
struct fe_priv *np = netdev_priv(dev);
if (tx_skb->dma) {
pci_unmap_page(np->pci_dev, tx_skb->dma,
tx_skb->dma_len,
PCI_DMA_TODEVICE);
tx_skb->dma = 0;
}
if (tx_skb->skb) {
dev_kfree_skb_any(tx_skb->skb);
tx_skb->skb = NULL;
return 1;
} else {
return 0;
}
}
static void nv_drain_tx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
unsigned int i;
for (i = 0; i < np->tx_ring_size; i++) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->tx_ring.orig[i].flaglen = 0;
np->tx_ring.orig[i].buf = 0;
} else {
np->tx_ring.ex[i].flaglen = 0;
np->tx_ring.ex[i].txvlan = 0;
np->tx_ring.ex[i].bufhigh = 0;
np->tx_ring.ex[i].buflow = 0;
}
if (nv_release_txskb(dev, &np->tx_skb[i]))
dev->stats.tx_dropped++;
}
}
static void nv_drain_rx(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
int i;
for (i = 0; i < np->rx_ring_size; i++) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->rx_ring.orig[i].flaglen = 0;
np->rx_ring.orig[i].buf = 0;
} else {
np->rx_ring.ex[i].flaglen = 0;
np->rx_ring.ex[i].txvlan = 0;
np->rx_ring.ex[i].bufhigh = 0;
np->rx_ring.ex[i].buflow = 0;
}
wmb();
if (np->rx_skb[i].skb) {
pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
(skb_end_pointer(np->rx_skb[i].skb) -
np->rx_skb[i].skb->data),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(np->rx_skb[i].skb);
np->rx_skb[i].skb = NULL;
}
}
}
static void drain_ring(struct net_device *dev)
{
nv_drain_tx(dev);
nv_drain_rx(dev);
}
static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
{
return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
}
/*
* nv_start_xmit: dev->hard_start_xmit function
* Called with netif_tx_lock held.
*/
static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u32 tx_flags = 0;
u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
unsigned int fragments = skb_shinfo(skb)->nr_frags;
unsigned int i;
u32 offset = 0;
u32 bcnt;
u32 size = skb->len-skb->data_len;
u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
u32 empty_slots;
struct ring_desc* put_tx;
struct ring_desc* start_tx;
struct ring_desc* prev_tx;
struct nv_skb_map* prev_tx_ctx;
/* add fragments to entries count */
for (i = 0; i < fragments; i++) {
entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
}
empty_slots = nv_get_empty_tx_slots(np);
if (unlikely(empty_slots <= entries)) {
spin_lock_irq(&np->lock);
netif_stop_queue(dev);
np->tx_stop = 1;
spin_unlock_irq(&np->lock);
return NETDEV_TX_BUSY;
}
start_tx = put_tx = np->put_tx.orig;
/* setup the header buffer */
do {
prev_tx = put_tx;
prev_tx_ctx = np->put_tx_ctx;
bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
PCI_DMA_TODEVICE);
np->put_tx_ctx->dma_len = bcnt;
put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
tx_flags = np->tx_flags;
offset += bcnt;
size -= bcnt;
if (unlikely(put_tx++ == np->last_tx.orig))
put_tx = np->first_tx.orig;
if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
np->put_tx_ctx = np->first_tx_ctx;
} while (size);
/* setup the fragments */
for (i = 0; i < fragments; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
u32 size = frag->size;
offset = 0;
do {
prev_tx = put_tx;
prev_tx_ctx = np->put_tx_ctx;
bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
PCI_DMA_TODEVICE);
np->put_tx_ctx->dma_len = bcnt;
put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
offset += bcnt;
size -= bcnt;
if (unlikely(put_tx++ == np->last_tx.orig))
put_tx = np->first_tx.orig;
if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
np->put_tx_ctx = np->first_tx_ctx;
} while (size);
}
/* set last fragment flag */
prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
/* save skb in this slot's context area */
prev_tx_ctx->skb = skb;
if (skb_is_gso(skb))
tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
else
tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
spin_lock_irq(&np->lock);
/* set tx flags */
start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
np->put_tx.orig = put_tx;
spin_unlock_irq(&np->lock);
dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
dev->name, entries, tx_flags_extra);
{
int j;
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)skb->data)[j]);
}
dprintk("\n");
}
dev->trans_start = jiffies;
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
return NETDEV_TX_OK;
}
static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u32 tx_flags = 0;
u32 tx_flags_extra;
unsigned int fragments = skb_shinfo(skb)->nr_frags;
unsigned int i;
u32 offset = 0;
u32 bcnt;
u32 size = skb->len-skb->data_len;
u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
u32 empty_slots;
struct ring_desc_ex* put_tx;
struct ring_desc_ex* start_tx;
struct ring_desc_ex* prev_tx;
struct nv_skb_map* prev_tx_ctx;
/* add fragments to entries count */
for (i = 0; i < fragments; i++) {
entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
}
empty_slots = nv_get_empty_tx_slots(np);
if (unlikely(empty_slots <= entries)) {
spin_lock_irq(&np->lock);
netif_stop_queue(dev);
np->tx_stop = 1;
spin_unlock_irq(&np->lock);
return NETDEV_TX_BUSY;
}
start_tx = put_tx = np->put_tx.ex;
/* setup the header buffer */
do {
prev_tx = put_tx;
prev_tx_ctx = np->put_tx_ctx;
bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
PCI_DMA_TODEVICE);
np->put_tx_ctx->dma_len = bcnt;
put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
tx_flags = NV_TX2_VALID;
offset += bcnt;
size -= bcnt;
if (unlikely(put_tx++ == np->last_tx.ex))
put_tx = np->first_tx.ex;
if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
np->put_tx_ctx = np->first_tx_ctx;
} while (size);
/* setup the fragments */
for (i = 0; i < fragments; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
u32 size = frag->size;
offset = 0;
do {
prev_tx = put_tx;
prev_tx_ctx = np->put_tx_ctx;
bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
PCI_DMA_TODEVICE);
np->put_tx_ctx->dma_len = bcnt;
put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
offset += bcnt;
size -= bcnt;
if (unlikely(put_tx++ == np->last_tx.ex))
put_tx = np->first_tx.ex;
if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
np->put_tx_ctx = np->first_tx_ctx;
} while (size);
}
/* set last fragment flag */
prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
/* save skb in this slot's context area */
prev_tx_ctx->skb = skb;
if (skb_is_gso(skb))
tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
else
tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
/* vlan tag */
if (likely(!np->vlangrp)) {
start_tx->txvlan = 0;
} else {
if (vlan_tx_tag_present(skb))
start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
else
start_tx->txvlan = 0;
}
spin_lock_irq(&np->lock);
/* set tx flags */
start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
np->put_tx.ex = put_tx;
spin_unlock_irq(&np->lock);
dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
dev->name, entries, tx_flags_extra);
{
int j;
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)skb->data)[j]);
}
dprintk("\n");
}
dev->trans_start = jiffies;
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
return NETDEV_TX_OK;
}
/*
* nv_tx_done: check for completed packets, release the skbs.
*
* Caller must own np->lock.
*/
static void nv_tx_done(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u32 flags;
struct ring_desc* orig_get_tx = np->get_tx.orig;
while ((np->get_tx.orig != np->put_tx.orig) &&
!((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
dev->name, flags);
pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
np->get_tx_ctx->dma_len,
PCI_DMA_TODEVICE);
np->get_tx_ctx->dma = 0;
if (np->desc_ver == DESC_VER_1) {
if (flags & NV_TX_LASTPACKET) {
if (flags & NV_TX_ERROR) {
if (flags & NV_TX_UNDERFLOW)
dev->stats.tx_fifo_errors++;
if (flags & NV_TX_CARRIERLOST)
dev->stats.tx_carrier_errors++;
dev->stats.tx_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
}
dev_kfree_skb_any(np->get_tx_ctx->skb);
np->get_tx_ctx->skb = NULL;
}
} else {
if (flags & NV_TX2_LASTPACKET) {
if (flags & NV_TX2_ERROR) {
if (flags & NV_TX2_UNDERFLOW)
dev->stats.tx_fifo_errors++;
if (flags & NV_TX2_CARRIERLOST)
dev->stats.tx_carrier_errors++;
dev->stats.tx_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
}
dev_kfree_skb_any(np->get_tx_ctx->skb);
np->get_tx_ctx->skb = NULL;
}
}
if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
np->get_tx.orig = np->first_tx.orig;
if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
np->get_tx_ctx = np->first_tx_ctx;
}
if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
np->tx_stop = 0;
netif_wake_queue(dev);
}
}
static void nv_tx_done_optimized(struct net_device *dev, int limit)
{
struct fe_priv *np = netdev_priv(dev);
u32 flags;
struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
while ((np->get_tx.ex != np->put_tx.ex) &&
!((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
(limit-- > 0)) {
dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
dev->name, flags);
pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
np->get_tx_ctx->dma_len,
PCI_DMA_TODEVICE);
np->get_tx_ctx->dma = 0;
if (flags & NV_TX2_LASTPACKET) {
if (!(flags & NV_TX2_ERROR))
dev->stats.tx_packets++;
dev_kfree_skb_any(np->get_tx_ctx->skb);
np->get_tx_ctx->skb = NULL;
}
if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
np->get_tx.ex = np->first_tx.ex;
if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
np->get_tx_ctx = np->first_tx_ctx;
}
if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
np->tx_stop = 0;
netif_wake_queue(dev);
}
}
/*
* nv_tx_timeout: dev->tx_timeout function
* Called with netif_tx_lock held.
*/
static void nv_tx_timeout(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 status;
if (np->msi_flags & NV_MSI_X_ENABLED)
status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
else
status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
{
int i;
printk(KERN_INFO "%s: Ring at %lx\n",
dev->name, (unsigned long)np->ring_addr);
printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
for (i=0;i<=np->register_size;i+= 32) {
printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
i,
readl(base + i + 0), readl(base + i + 4),
readl(base + i + 8), readl(base + i + 12),
readl(base + i + 16), readl(base + i + 20),
readl(base + i + 24), readl(base + i + 28));
}
printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
for (i=0;i<np->tx_ring_size;i+= 4) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
i,
le32_to_cpu(np->tx_ring.orig[i].buf),
le32_to_cpu(np->tx_ring.orig[i].flaglen),
le32_to_cpu(np->tx_ring.orig[i+1].buf),
le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
le32_to_cpu(np->tx_ring.orig[i+2].buf),
le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
le32_to_cpu(np->tx_ring.orig[i+3].buf),
le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
} else {
printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
i,
le32_to_cpu(np->tx_ring.ex[i].bufhigh),
le32_to_cpu(np->tx_ring.ex[i].buflow),
le32_to_cpu(np->tx_ring.ex[i].flaglen),
le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
le32_to_cpu(np->tx_ring.ex[i+1].buflow),
le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
le32_to_cpu(np->tx_ring.ex[i+2].buflow),
le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
le32_to_cpu(np->tx_ring.ex[i+3].buflow),
le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
}
}
}
spin_lock_irq(&np->lock);
/* 1) stop tx engine */
nv_stop_tx(dev);
/* 2) check that the packets were not sent already: */
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
nv_tx_done(dev);
else
nv_tx_done_optimized(dev, np->tx_ring_size);
/* 3) if there are dead entries: clear everything */
if (np->get_tx_ctx != np->put_tx_ctx) {
printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
nv_drain_tx(dev);
nv_init_tx(dev);
setup_hw_rings(dev, NV_SETUP_TX_RING);
}
netif_wake_queue(dev);
/* 4) restart tx engine */
nv_start_tx(dev);
spin_unlock_irq(&np->lock);
}
/*
* Called when the nic notices a mismatch between the actual data len on the
* wire and the len indicated in the 802 header
*/
static int nv_getlen(struct net_device *dev, void *packet, int datalen)
{
int hdrlen; /* length of the 802 header */
int protolen; /* length as stored in the proto field */
/* 1) calculate len according to header */
if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
hdrlen = VLAN_HLEN;
} else {
protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
hdrlen = ETH_HLEN;
}
dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
dev->name, datalen, protolen, hdrlen);
if (protolen > ETH_DATA_LEN)
return datalen; /* Value in proto field not a len, no checks possible */
protolen += hdrlen;
/* consistency checks: */
if (datalen > ETH_ZLEN) {
if (datalen >= protolen) {
/* more data on wire than in 802 header, trim of
* additional data.
*/
dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
dev->name, protolen);
return protolen;
} else {
/* less data on wire than mentioned in header.
* Discard the packet.
*/
dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
dev->name);
return -1;
}
} else {
/* short packet. Accept only if 802 values are also short */
if (protolen > ETH_ZLEN) {
dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
dev->name);
return -1;
}
dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
dev->name, datalen);
return datalen;
}
}
static int nv_rx_process(struct net_device *dev, int limit)
{
struct fe_priv *np = netdev_priv(dev);
u32 flags;
int rx_work = 0;
struct sk_buff *skb;
int len;
while((np->get_rx.orig != np->put_rx.orig) &&
!((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
(rx_work < limit)) {
dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
dev->name, flags);
/*
* the packet is for us - immediately tear down the pci mapping.
* TODO: check if a prefetch of the first cacheline improves
* the performance.
*/
pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
np->get_rx_ctx->dma_len,
PCI_DMA_FROMDEVICE);
skb = np->get_rx_ctx->skb;
np->get_rx_ctx->skb = NULL;
{
int j;
dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)skb->data)[j]);
}
dprintk("\n");
}
/* look at what we actually got: */
if (np->desc_ver == DESC_VER_1) {
if (likely(flags & NV_RX_DESCRIPTORVALID)) {
len = flags & LEN_MASK_V1;
if (unlikely(flags & NV_RX_ERROR)) {
if (flags & NV_RX_ERROR4) {
len = nv_getlen(dev, skb->data, len);
if (len < 0) {
dev->stats.rx_errors++;
dev_kfree_skb(skb);
goto next_pkt;
}
}
/* framing errors are soft errors */
else if (flags & NV_RX_FRAMINGERR) {
if (flags & NV_RX_SUBSTRACT1) {
len--;
}
}
/* the rest are hard errors */
else {
if (flags & NV_RX_MISSEDFRAME)
dev->stats.rx_missed_errors++;
if (flags & NV_RX_CRCERR)
dev->stats.rx_crc_errors++;
if (flags & NV_RX_OVERFLOW)
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
dev_kfree_skb(skb);
goto next_pkt;
}
}
} else {
dev_kfree_skb(skb);
goto next_pkt;
}
} else {
if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
len = flags & LEN_MASK_V2;
if (unlikely(flags & NV_RX2_ERROR)) {
if (flags & NV_RX2_ERROR4) {
len = nv_getlen(dev, skb->data, len);
if (len < 0) {
dev->stats.rx_errors++;
dev_kfree_skb(skb);
goto next_pkt;
}
}
/* framing errors are soft errors */
else if (flags & NV_RX2_FRAMINGERR) {
if (flags & NV_RX2_SUBSTRACT1) {
len--;
}
}
/* the rest are hard errors */
else {
if (flags & NV_RX2_CRCERR)
dev->stats.rx_crc_errors++;
if (flags & NV_RX2_OVERFLOW)
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
dev_kfree_skb(skb);
goto next_pkt;
}
}
if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
dev_kfree_skb(skb);
goto next_pkt;
}
}
/* got a valid packet - forward it to the network core */
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
dev->name, len, skb->protocol);
#ifdef CONFIG_FORCEDETH_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
dev->last_rx = jiffies;
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
next_pkt:
if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
np->get_rx.orig = np->first_rx.orig;
if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
np->get_rx_ctx = np->first_rx_ctx;
rx_work++;
}
return rx_work;
}
static int nv_rx_process_optimized(struct net_device *dev, int limit)
{
struct fe_priv *np = netdev_priv(dev);
u32 flags;
u32 vlanflags = 0;
int rx_work = 0;
struct sk_buff *skb;
int len;
while((np->get_rx.ex != np->put_rx.ex) &&
!((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
(rx_work < limit)) {
dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
dev->name, flags);
/*
* the packet is for us - immediately tear down the pci mapping.
* TODO: check if a prefetch of the first cacheline improves
* the performance.
*/
pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
np->get_rx_ctx->dma_len,
PCI_DMA_FROMDEVICE);
skb = np->get_rx_ctx->skb;
np->get_rx_ctx->skb = NULL;
{
int j;
dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)skb->data)[j]);
}
dprintk("\n");
}
/* look at what we actually got: */
if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
len = flags & LEN_MASK_V2;
if (unlikely(flags & NV_RX2_ERROR)) {
if (flags & NV_RX2_ERROR4) {
len = nv_getlen(dev, skb->data, len);
if (len < 0) {
dev_kfree_skb(skb);
goto next_pkt;
}
}
/* framing errors are soft errors */
else if (flags & NV_RX2_FRAMINGERR) {
if (flags & NV_RX2_SUBSTRACT1) {
len--;
}
}
/* the rest are hard errors */
else {
dev_kfree_skb(skb);
goto next_pkt;
}
}
if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* got a valid packet - forward it to the network core */
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
prefetch(skb->data);
dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
dev->name, len, skb->protocol);
if (likely(!np->vlangrp)) {
#ifdef CONFIG_FORCEDETH_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
} else {
vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
#ifdef CONFIG_FORCEDETH_NAPI
vlan_hwaccel_receive_skb(skb, np->vlangrp,
vlanflags & NV_RX3_VLAN_TAG_MASK);
#else
vlan_hwaccel_rx(skb, np->vlangrp,
vlanflags & NV_RX3_VLAN_TAG_MASK);
#endif
} else {
#ifdef CONFIG_FORCEDETH_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
}
}
dev->last_rx = jiffies;
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
} else {
dev_kfree_skb(skb);
}
next_pkt:
if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
np->get_rx.ex = np->first_rx.ex;
if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
np->get_rx_ctx = np->first_rx_ctx;
rx_work++;
}
return rx_work;
}
static void set_bufsize(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
if (dev->mtu <= ETH_DATA_LEN)
np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
else
np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
}
/*
* nv_change_mtu: dev->change_mtu function
* Called with dev_base_lock held for read.
*/
static int nv_change_mtu(struct net_device *dev, int new_mtu)
{
struct fe_priv *np = netdev_priv(dev);
int old_mtu;
if (new_mtu < 64 || new_mtu > np->pkt_limit)
return -EINVAL;
old_mtu = dev->mtu;
dev->mtu = new_mtu;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu == new_mtu)
return 0;
/* synchronized against open : rtnl_lock() held by caller */
if (netif_running(dev)) {
u8 __iomem *base = get_hwbase(dev);
/*
* It seems that the nic preloads valid ring entries into an
* internal buffer. The procedure for flushing everything is
* guessed, there is probably a simpler approach.
* Changing the MTU is a rare event, it shouldn't matter.
*/
nv_disable_irq(dev);
netif_tx_lock_bh(dev);
spin_lock(&np->lock);
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
nv_txrx_reset(dev);
/* drain rx queue */
nv_drain_rx(dev);
nv_drain_tx(dev);
/* reinit driver view of the rx queue */
set_bufsize(dev);
if (nv_init_ring(dev)) {
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
}
/* reinit nic view of the rx queue */
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
pci_push(base);
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
pci_push(base);
/* restart rx engine */
nv_start_rx(dev);
nv_start_tx(dev);
spin_unlock(&np->lock);
netif_tx_unlock_bh(dev);
nv_enable_irq(dev);
}
return 0;
}
static void nv_copy_mac_to_hw(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
u32 mac[2];
mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
(dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
writel(mac[0], base + NvRegMacAddrA);
writel(mac[1], base + NvRegMacAddrB);
}
/*
* nv_set_mac_address: dev->set_mac_address function
* Called with rtnl_lock() held.
*/
static int nv_set_mac_address(struct net_device *dev, void *addr)
{
struct fe_priv *np = netdev_priv(dev);
struct sockaddr *macaddr = (struct sockaddr*)addr;
if (!is_valid_ether_addr(macaddr->sa_data))
return -EADDRNOTAVAIL;
/* synchronized against open : rtnl_lock() held by caller */
memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
if (netif_running(dev)) {
netif_tx_lock_bh(dev);
spin_lock_irq(&np->lock);
/* stop rx engine */
nv_stop_rx(dev);
/* set mac address */
nv_copy_mac_to_hw(dev);
/* restart rx engine */
nv_start_rx(dev);
spin_unlock_irq(&np->lock);
netif_tx_unlock_bh(dev);
} else {
nv_copy_mac_to_hw(dev);
}
return 0;
}
/*
* nv_set_multicast: dev->set_multicast function
* Called with netif_tx_lock held.
*/
static void nv_set_multicast(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 addr[2];
u32 mask[2];
u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
memset(addr, 0, sizeof(addr));
memset(mask, 0, sizeof(mask));
if (dev->flags & IFF_PROMISC) {
pff |= NVREG_PFF_PROMISC;
} else {
pff |= NVREG_PFF_MYADDR;
if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
u32 alwaysOff[2];
u32 alwaysOn[2];
alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
if (dev->flags & IFF_ALLMULTI) {
alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
} else {
struct dev_mc_list *walk;
walk = dev->mc_list;
while (walk != NULL) {
u32 a, b;
a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
alwaysOn[0] &= a;
alwaysOff[0] &= ~a;
alwaysOn[1] &= b;
alwaysOff[1] &= ~b;
walk = walk->next;
}
}
addr[0] = alwaysOn[0];
addr[1] = alwaysOn[1];
mask[0] = alwaysOn[0] | alwaysOff[0];
mask[1] = alwaysOn[1] | alwaysOff[1];
} else {
mask[0] = NVREG_MCASTMASKA_NONE;
mask[1] = NVREG_MCASTMASKB_NONE;
}
}
addr[0] |= NVREG_MCASTADDRA_FORCE;
pff |= NVREG_PFF_ALWAYS;
spin_lock_irq(&np->lock);
nv_stop_rx(dev);
writel(addr[0], base + NvRegMulticastAddrA);
writel(addr[1], base + NvRegMulticastAddrB);
writel(mask[0], base + NvRegMulticastMaskA);
writel(mask[1], base + NvRegMulticastMaskB);
writel(pff, base + NvRegPacketFilterFlags);
dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
dev->name);
nv_start_rx(dev);
spin_unlock_irq(&np->lock);
}
static void nv_update_pause(struct net_device *dev, u32 pause_flags)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
} else {
writel(pff, base + NvRegPacketFilterFlags);
}
}
if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
} else {
writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
writel(regmisc, base + NvRegMisc1);
}
}
}
/**
* nv_update_linkspeed: Setup the MAC according to the link partner
* @dev: Network device to be configured
*
* The function queries the PHY and checks if there is a link partner.
* If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
* set to 10 MBit HD.
*
* The function returns 0 if there is no link partner and 1 if there is
* a good link partner.
*/
static int nv_update_linkspeed(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
int adv = 0;
int lpa = 0;
int adv_lpa, adv_pause, lpa_pause;
int newls = np->linkspeed;
int newdup = np->duplex;
int mii_status;
int retval = 0;
u32 control_1000, status_1000, phyreg, pause_flags, txreg;
/* BMSR_LSTATUS is latched, read it twice:
* we want the current value.
*/
mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
if (!(mii_status & BMSR_LSTATUS)) {
dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
dev->name);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
retval = 0;
goto set_speed;
}
if (np->autoneg == 0) {
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
dev->name, np->fixed_mode);
if (np->fixed_mode & LPA_100FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 1;
} else if (np->fixed_mode & LPA_100HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 0;
} else if (np->fixed_mode & LPA_10FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 1;
} else {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
}
retval = 1;
goto set_speed;
}
/* check auto negotiation is complete */
if (!(mii_status & BMSR_ANEGCOMPLETE)) {
/* still in autonegotiation - configure nic for 10 MBit HD and wait. */
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
retval = 0;
dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
goto set_speed;
}
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
dev->name, adv, lpa);
retval = 1;
if (np->gigabit == PHY_GIGABIT) {
control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
if ((control_1000 & ADVERTISE_1000FULL) &&
(status_1000 & LPA_1000FULL)) {
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
dev->name);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
newdup = 1;
goto set_speed;
}
}
/* FIXME: handle parallel detection properly */
adv_lpa = lpa & adv;
if (adv_lpa & LPA_100FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 1;
} else if (adv_lpa & LPA_100HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 0;
} else if (adv_lpa & LPA_10FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 1;
} else if (adv_lpa & LPA_10HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
} else {
dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
}
set_speed:
if (np->duplex == newdup && np->linkspeed == newls)
return retval;
dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
dev->name, np->linkspeed, np->duplex, newls, newdup);
np->duplex = newdup;
np->linkspeed = newls;
if (np->gigabit == PHY_GIGABIT) {
phyreg = readl(base + NvRegRandomSeed);
phyreg &= ~(0x3FF00);
if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
phyreg |= NVREG_RNDSEED_FORCE3;
else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
phyreg |= NVREG_RNDSEED_FORCE2;
else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
phyreg |= NVREG_RNDSEED_FORCE;
writel(phyreg, base + NvRegRandomSeed);
}
phyreg = readl(base + NvRegPhyInterface);
phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
if (np->duplex == 0)
phyreg |= PHY_HALF;
if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
phyreg |= PHY_100;
else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
phyreg |= PHY_1000;
writel(phyreg, base + NvRegPhyInterface);
if (phyreg & PHY_RGMII) {
if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
txreg = NVREG_TX_DEFERRAL_RGMII_1000;
else
txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
} else {
txreg = NVREG_TX_DEFERRAL_DEFAULT;
}
writel(txreg, base + NvRegTxDeferral);
if (np->desc_ver == DESC_VER_1) {
txreg = NVREG_TX_WM_DESC1_DEFAULT;
} else {
if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
txreg = NVREG_TX_WM_DESC2_3_1000;
else
txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
}
writel(txreg, base + NvRegTxWatermark);
writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
base + NvRegMisc1);
pci_push(base);
writel(np->linkspeed, base + NvRegLinkSpeed);
pci_push(base);
pause_flags = 0;
/* setup pause frame */
if (np->duplex != 0) {
if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
switch (adv_pause) {
case ADVERTISE_PAUSE_CAP:
if (lpa_pause & LPA_PAUSE_CAP) {
pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
}
break;
case ADVERTISE_PAUSE_ASYM:
if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
{
pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
}
break;
case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
if (lpa_pause & LPA_PAUSE_CAP)
{
pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
}
if (lpa_pause == LPA_PAUSE_ASYM)
{
pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
}
break;
}
} else {
pause_flags = np->pause_flags;
}
}
nv_update_pause(dev, pause_flags);
return retval;
}
static void nv_linkchange(struct net_device *dev)
{
if (nv_update_linkspeed(dev)) {
if (!netif_carrier_ok(dev)) {
netif_carrier_on(dev);
printk(KERN_INFO "%s: link up.\n", dev->name);
nv_start_rx(dev);
}
} else {
if (netif_carrier_ok(dev)) {
netif_carrier_off(dev);
printk(KERN_INFO "%s: link down.\n", dev->name);
nv_stop_rx(dev);
}
}
}
static void nv_link_irq(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
u32 miistat;
miistat = readl(base + NvRegMIIStatus);
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
if (miistat & (NVREG_MIISTAT_LINKCHANGE))
nv_linkchange(dev);
dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
}
static irqreturn_t nv_nic_irq(int foo, void *data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
int i;
dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
for (i=0; ; i++) {
if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
} else {
events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
}
dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
if (!(events & np->irqmask))
break;
spin_lock(&np->lock);
nv_tx_done(dev);
spin_unlock(&np->lock);
#ifdef CONFIG_FORCEDETH_NAPI
if (events & NVREG_IRQ_RX_ALL) {
netif_rx_schedule(dev, &np->napi);
/* Disable furthur receive irq's */
spin_lock(&np->lock);
np->irqmask &= ~NVREG_IRQ_RX_ALL;
if (np->msi_flags & NV_MSI_X_ENABLED)
writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
else
writel(np->irqmask, base + NvRegIrqMask);
spin_unlock(&np->lock);
}
#else
if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
if (unlikely(nv_alloc_rx(dev))) {
spin_lock(&np->lock);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock(&np->lock);
}
}
#endif
if (unlikely(events & NVREG_IRQ_LINK)) {
spin_lock(&np->lock);
nv_link_irq(dev);
spin_unlock(&np->lock);
}
if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
spin_lock(&np->lock);
nv_linkchange(dev);
spin_unlock(&np->lock);
np->link_timeout = jiffies + LINK_TIMEOUT;
}
if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
dev->name, events);
}
if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
dev->name, events);
}
if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
spin_lock(&np->lock);
/* disable interrupts on the nic */
if (!(np->msi_flags & NV_MSI_X_ENABLED))
writel(0, base + NvRegIrqMask);
else
writel(np->irqmask, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq = np->irqmask;
np->recover_error = 1;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock(&np->lock);
break;
}
if (unlikely(i > max_interrupt_work)) {
spin_lock(&np->lock);
/* disable interrupts on the nic */
if (!(np->msi_flags & NV_MSI_X_ENABLED))
writel(0, base + NvRegIrqMask);
else
writel(np->irqmask, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq = np->irqmask;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock(&np->lock);
printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
break;
}
}
dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
return IRQ_RETVAL(i);
}
/**
* All _optimized functions are used to help increase performance
* (reduce CPU and increase throughput). They use descripter version 3,
* compiler directives, and reduce memory accesses.
*/
static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
int i;
dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
for (i=0; ; i++) {
if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
} else {
events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
}
dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
if (!(events & np->irqmask))
break;
spin_lock(&np->lock);
nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
spin_unlock(&np->lock);
#ifdef CONFIG_FORCEDETH_NAPI
if (events & NVREG_IRQ_RX_ALL) {
netif_rx_schedule(dev, &np->napi);
/* Disable furthur receive irq's */
spin_lock(&np->lock);
np->irqmask &= ~NVREG_IRQ_RX_ALL;
if (np->msi_flags & NV_MSI_X_ENABLED)
writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
else
writel(np->irqmask, base + NvRegIrqMask);
spin_unlock(&np->lock);
}
#else
if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
if (unlikely(nv_alloc_rx_optimized(dev))) {
spin_lock(&np->lock);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock(&np->lock);
}
}
#endif
if (unlikely(events & NVREG_IRQ_LINK)) {
spin_lock(&np->lock);
nv_link_irq(dev);
spin_unlock(&np->lock);
}
if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
spin_lock(&np->lock);
nv_linkchange(dev);
spin_unlock(&np->lock);
np->link_timeout = jiffies + LINK_TIMEOUT;
}
if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
dev->name, events);
}
if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
dev->name, events);
}
if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
spin_lock(&np->lock);
/* disable interrupts on the nic */
if (!(np->msi_flags & NV_MSI_X_ENABLED))
writel(0, base + NvRegIrqMask);
else
writel(np->irqmask, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq = np->irqmask;
np->recover_error = 1;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock(&np->lock);
break;
}
if (unlikely(i > max_interrupt_work)) {
spin_lock(&np->lock);
/* disable interrupts on the nic */
if (!(np->msi_flags & NV_MSI_X_ENABLED))
writel(0, base + NvRegIrqMask);
else
writel(np->irqmask, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq = np->irqmask;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock(&np->lock);
printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
break;
}
}
dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
return IRQ_RETVAL(i);
}
static irqreturn_t nv_nic_irq_tx(int foo, void *data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
int i;
unsigned long flags;
dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
for (i=0; ; i++) {
events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
if (!(events & np->irqmask))
break;
spin_lock_irqsave(&np->lock, flags);
nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
spin_unlock_irqrestore(&np->lock, flags);
if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
dev->name, events);
}
if (unlikely(i > max_interrupt_work)) {
spin_lock_irqsave(&np->lock, flags);
/* disable interrupts on the nic */
writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock_irqrestore(&np->lock, flags);
printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
break;
}
}
dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
return IRQ_RETVAL(i);
}
#ifdef CONFIG_FORCEDETH_NAPI
static int nv_napi_poll(struct napi_struct *napi, int budget)
{
struct fe_priv *np = container_of(napi, struct fe_priv, napi);
struct net_device *dev = np->dev;
u8 __iomem *base = get_hwbase(dev);
unsigned long flags;
int pkts, retcode;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
pkts = nv_rx_process(dev, budget);
retcode = nv_alloc_rx(dev);
} else {
pkts = nv_rx_process_optimized(dev, budget);
retcode = nv_alloc_rx_optimized(dev);
}
if (retcode) {
spin_lock_irqsave(&np->lock, flags);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock_irqrestore(&np->lock, flags);
}
if (pkts < budget) {
/* re-enable receive interrupts */
spin_lock_irqsave(&np->lock, flags);
__netif_rx_complete(dev, napi);
np->irqmask |= NVREG_IRQ_RX_ALL;
if (np->msi_flags & NV_MSI_X_ENABLED)
writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
else
writel(np->irqmask, base + NvRegIrqMask);
spin_unlock_irqrestore(&np->lock, flags);
}
return pkts;
}
#endif
#ifdef CONFIG_FORCEDETH_NAPI
static irqreturn_t nv_nic_irq_rx(int foo, void *data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
if (events) {
netif_rx_schedule(dev, &np->napi);
/* disable receive interrupts on the nic */
writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
pci_push(base);
}
return IRQ_HANDLED;
}
#else
static irqreturn_t nv_nic_irq_rx(int foo, void *data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
int i;
unsigned long flags;
dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
for (i=0; ; i++) {
events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
if (!(events & np->irqmask))
break;
if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
if (unlikely(nv_alloc_rx_optimized(dev))) {
spin_lock_irqsave(&np->lock, flags);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock_irqrestore(&np->lock, flags);
}
}
if (unlikely(i > max_interrupt_work)) {
spin_lock_irqsave(&np->lock, flags);
/* disable interrupts on the nic */
writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock_irqrestore(&np->lock, flags);
printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
break;
}
}
dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
return IRQ_RETVAL(i);
}
#endif
static irqreturn_t nv_nic_irq_other(int foo, void *data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
int i;
unsigned long flags;
dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
for (i=0; ; i++) {
events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
if (!(events & np->irqmask))
break;
/* check tx in case we reached max loop limit in tx isr */
spin_lock_irqsave(&np->lock, flags);
nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
spin_unlock_irqrestore(&np->lock, flags);
if (events & NVREG_IRQ_LINK) {
spin_lock_irqsave(&np->lock, flags);
nv_link_irq(dev);
spin_unlock_irqrestore(&np->lock, flags);
}
if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
spin_lock_irqsave(&np->lock, flags);
nv_linkchange(dev);
spin_unlock_irqrestore(&np->lock, flags);
np->link_timeout = jiffies + LINK_TIMEOUT;
}
if (events & NVREG_IRQ_RECOVER_ERROR) {
spin_lock_irq(&np->lock);
/* disable interrupts on the nic */
writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq |= NVREG_IRQ_OTHER;
np->recover_error = 1;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock_irq(&np->lock);
break;
}
if (events & (NVREG_IRQ_UNKNOWN)) {
printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
dev->name, events);
}
if (unlikely(i > max_interrupt_work)) {
spin_lock_irqsave(&np->lock, flags);
/* disable interrupts on the nic */
writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown) {
np->nic_poll_irq |= NVREG_IRQ_OTHER;
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
}
spin_unlock_irqrestore(&np->lock, flags);
printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
break;
}
}
dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
return IRQ_RETVAL(i);
}
static irqreturn_t nv_nic_irq_test(int foo, void *data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
} else {
events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
}
pci_push(base);
dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
if (!(events & NVREG_IRQ_TIMER))
return IRQ_RETVAL(0);
spin_lock(&np->lock);
np->intr_test = 1;
spin_unlock(&np->lock);
dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
return IRQ_RETVAL(1);
}
static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
{
u8 __iomem *base = get_hwbase(dev);
int i;
u32 msixmap = 0;
/* Each interrupt bit can be mapped to a MSIX vector (4 bits).
* MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
* the remaining 8 interrupts.
*/
for (i = 0; i < 8; i++) {
if ((irqmask >> i) & 0x1) {
msixmap |= vector << (i << 2);
}
}
writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
msixmap = 0;
for (i = 0; i < 8; i++) {
if ((irqmask >> (i + 8)) & 0x1) {
msixmap |= vector << (i << 2);
}
}
writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
}
static int nv_request_irq(struct net_device *dev, int intr_test)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
int ret = 1;
int i;
irqreturn_t (*handler)(int foo, void *data);
if (intr_test) {
handler = nv_nic_irq_test;
} else {
if (np->desc_ver == DESC_VER_3)
handler = nv_nic_irq_optimized;
else
handler = nv_nic_irq;
}
if (np->msi_flags & NV_MSI_X_CAPABLE) {
for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
np->msi_x_entry[i].entry = i;
}
if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
np->msi_flags |= NV_MSI_X_ENABLED;
if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
/* Request irq for rx handling */
if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
pci_disable_msix(np->pci_dev);
np->msi_flags &= ~NV_MSI_X_ENABLED;
goto out_err;
}
/* Request irq for tx handling */
if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
pci_disable_msix(np->pci_dev);
np->msi_flags &= ~NV_MSI_X_ENABLED;
goto out_free_rx;
}
/* Request irq for link and timer handling */
if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
pci_disable_msix(np->pci_dev);
np->msi_flags &= ~NV_MSI_X_ENABLED;
goto out_free_tx;
}
/* map interrupts to their respective vector */
writel(0, base + NvRegMSIXMap0);
writel(0, base + NvRegMSIXMap1);
set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
} else {
/* Request irq for all interrupts */
if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
pci_disable_msix(np->pci_dev);
np->msi_flags &= ~NV_MSI_X_ENABLED;
goto out_err;
}
/* map interrupts to vector 0 */
writel(0, base + NvRegMSIXMap0);
writel(0, base + NvRegMSIXMap1);
}
}
}
if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
np->msi_flags |= NV_MSI_ENABLED;
dev->irq = np->pci_dev->irq;
if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
pci_disable_msi(np->pci_dev);
np->msi_flags &= ~NV_MSI_ENABLED;
dev->irq = np->pci_dev->irq;
goto out_err;
}
/* map interrupts to vector 0 */
writel(0, base + NvRegMSIMap0);
writel(0, base + NvRegMSIMap1);
/* enable msi vector 0 */
writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
}
}
if (ret != 0) {
if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
goto out_err;
}
return 0;
out_free_tx:
free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
out_free_rx:
free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
out_err:
return 1;
}
static void nv_free_irq(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
if (np->msi_flags & NV_MSI_X_ENABLED) {
for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
free_irq(np->msi_x_entry[i].vector, dev);
}
pci_disable_msix(np->pci_dev);
np->msi_flags &= ~NV_MSI_X_ENABLED;
} else {
free_irq(np->pci_dev->irq, dev);
if (np->msi_flags & NV_MSI_ENABLED) {
pci_disable_msi(np->pci_dev);
np->msi_flags &= ~NV_MSI_ENABLED;
}
}
}
static void nv_do_nic_poll(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 mask = 0;
/*
* First disable irq(s) and then
* reenable interrupts on the nic, we have to do this before calling
* nv_nic_irq because that may decide to do otherwise
*/
if (!using_multi_irqs(dev)) {
if (np->msi_flags & NV_MSI_X_ENABLED)
disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
else
disable_irq_lockdep(np->pci_dev->irq);
mask = np->irqmask;
} else {
if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
mask |= NVREG_IRQ_RX_ALL;
}
if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
mask |= NVREG_IRQ_TX_ALL;
}
if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
mask |= NVREG_IRQ_OTHER;
}
}
np->nic_poll_irq = 0;
/* disable_irq() contains synchronize_irq, thus no irq handler can run now */
if (np->recover_error) {
np->recover_error = 0;
printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
if (netif_running(dev)) {
netif_tx_lock_bh(dev);
spin_lock(&np->lock);
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
nv_txrx_reset(dev);
/* drain rx queue */
nv_drain_rx(dev);
nv_drain_tx(dev);
/* reinit driver view of the rx queue */
set_bufsize(dev);
if (nv_init_ring(dev)) {
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
}
/* reinit nic view of the rx queue */
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
pci_push(base);
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
pci_push(base);
/* restart rx engine */
nv_start_rx(dev);
nv_start_tx(dev);
spin_unlock(&np->lock);
netif_tx_unlock_bh(dev);
}
}
writel(mask, base + NvRegIrqMask);
pci_push(base);
if (!using_multi_irqs(dev)) {
if (np->desc_ver == DESC_VER_3)
nv_nic_irq_optimized(0, dev);
else
nv_nic_irq(0, dev);
if (np->msi_flags & NV_MSI_X_ENABLED)
enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
else
enable_irq_lockdep(np->pci_dev->irq);
} else {
if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
nv_nic_irq_rx(0, dev);
enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
}
if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
nv_nic_irq_tx(0, dev);
enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
}
if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
nv_nic_irq_other(0, dev);
enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
}
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void nv_poll_controller(struct net_device *dev)
{
nv_do_nic_poll((unsigned long) dev);
}
#endif
static void nv_do_stats_poll(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = netdev_priv(dev);
nv_get_hw_stats(dev);
if (!np->in_shutdown)
mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
}
static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct fe_priv *np = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, FORCEDETH_VERSION);
strcpy(info->bus_info, pci_name(np->pci_dev));
}
static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
struct fe_priv *np = netdev_priv(dev);
wolinfo->supported = WAKE_MAGIC;
spin_lock_irq(&np->lock);
if (np->wolenabled)
wolinfo->wolopts = WAKE_MAGIC;
spin_unlock_irq(&np->lock);
}
static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 flags = 0;
if (wolinfo->wolopts == 0) {
np->wolenabled = 0;
} else if (wolinfo->wolopts & WAKE_MAGIC) {
np->wolenabled = 1;
flags = NVREG_WAKEUPFLAGS_ENABLE;
}
if (netif_running(dev)) {
spin_lock_irq(&np->lock);
writel(flags, base + NvRegWakeUpFlags);
spin_unlock_irq(&np->lock);
}
return 0;
}
static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct fe_priv *np = netdev_priv(dev);
int adv;
spin_lock_irq(&np->lock);
ecmd->port = PORT_MII;
if (!netif_running(dev)) {
/* We do not track link speed / duplex setting if the
* interface is disabled. Force a link check */
if (nv_update_linkspeed(dev)) {
if (!netif_carrier_ok(dev))
netif_carrier_on(dev);
} else {
if (netif_carrier_ok(dev))
netif_carrier_off(dev);
}
}
if (netif_carrier_ok(dev)) {
switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
case NVREG_LINKSPEED_10:
ecmd->speed = SPEED_10;
break;
case NVREG_LINKSPEED_100:
ecmd->speed = SPEED_100;
break;
case NVREG_LINKSPEED_1000:
ecmd->speed = SPEED_1000;
break;
}
ecmd->duplex = DUPLEX_HALF;
if (np->duplex)
ecmd->duplex = DUPLEX_FULL;
} else {
ecmd->speed = -1;
ecmd->duplex = -1;
}
ecmd->autoneg = np->autoneg;
ecmd->advertising = ADVERTISED_MII;
if (np->autoneg) {
ecmd->advertising |= ADVERTISED_Autoneg;
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
if (adv & ADVERTISE_10HALF)
ecmd->advertising |= ADVERTISED_10baseT_Half;
if (adv & ADVERTISE_10FULL)
ecmd->advertising |= ADVERTISED_10baseT_Full;
if (adv & ADVERTISE_100HALF)
ecmd->advertising |= ADVERTISED_100baseT_Half;
if (adv & ADVERTISE_100FULL)
ecmd->advertising |= ADVERTISED_100baseT_Full;
if (np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
if (adv & ADVERTISE_1000FULL)
ecmd->advertising |= ADVERTISED_1000baseT_Full;
}
}
ecmd->supported = (SUPPORTED_Autoneg |
SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
SUPPORTED_MII);
if (np->gigabit == PHY_GIGABIT)
ecmd->supported |= SUPPORTED_1000baseT_Full;
ecmd->phy_address = np->phyaddr;
ecmd->transceiver = XCVR_EXTERNAL;
/* ignore maxtxpkt, maxrxpkt for now */
spin_unlock_irq(&np->lock);
return 0;
}
static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct fe_priv *np = netdev_priv(dev);
if (ecmd->port != PORT_MII)
return -EINVAL;
if (ecmd->transceiver != XCVR_EXTERNAL)
return -EINVAL;
if (ecmd->phy_address != np->phyaddr) {
/* TODO: support switching between multiple phys. Should be
* trivial, but not enabled due to lack of test hardware. */
return -EINVAL;
}
if (ecmd->autoneg == AUTONEG_ENABLE) {
u32 mask;
mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
if (np->gigabit == PHY_GIGABIT)
mask |= ADVERTISED_1000baseT_Full;
if ((ecmd->advertising & mask) == 0)
return -EINVAL;
} else if (ecmd->autoneg == AUTONEG_DISABLE) {
/* Note: autonegotiation disable, speed 1000 intentionally
* forbidden - noone should need that. */
if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
return -EINVAL;
if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
return -EINVAL;
} else {
return -EINVAL;
}
netif_carrier_off(dev);
if (netif_running(dev)) {
nv_disable_irq(dev);
netif_tx_lock_bh(dev);
spin_lock(&np->lock);
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
spin_unlock(&np->lock);
netif_tx_unlock_bh(dev);
}
if (ecmd->autoneg == AUTONEG_ENABLE) {
int adv, bmcr;
np->autoneg = 1;
/* advertise only what has been requested */
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
if (ecmd->advertising & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (ecmd->advertising & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (ecmd->advertising & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (ecmd->advertising & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
adv |= ADVERTISE_PAUSE_ASYM;
mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
if (np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
adv &= ~ADVERTISE_1000FULL;
if (ecmd->advertising & ADVERTISED_1000baseT_Full)
adv |= ADVERTISE_1000FULL;
mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
}
if (netif_running(dev))
printk(KERN_INFO "%s: link down.\n", dev->name);
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
bmcr |= BMCR_ANENABLE;
/* reset the phy in order for settings to stick,
* and cause autoneg to start */
if (phy_reset(dev, bmcr)) {
printk(KERN_INFO "%s: phy reset failed\n", dev->name);
return -EINVAL;
}
} else {
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
}
} else {
int adv, bmcr;
np->autoneg = 0;
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
adv |= ADVERTISE_10HALF;
if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
adv |= ADVERTISE_10FULL;
if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
adv |= ADVERTISE_100HALF;
if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
adv |= ADVERTISE_100FULL;
np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
}
if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
adv |= ADVERTISE_PAUSE_ASYM;
np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
}
mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
np->fixed_mode = adv;
if (np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
adv &= ~ADVERTISE_1000FULL;
mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
}
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
bmcr |= BMCR_FULLDPLX;
if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
bmcr |= BMCR_SPEED100;
if (np->phy_oui == PHY_OUI_MARVELL) {
/* reset the phy in order for forced mode settings to stick */
if (phy_reset(dev, bmcr)) {
printk(KERN_INFO "%s: phy reset failed\n", dev->name);
return -EINVAL;
}
} else {
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
if (netif_running(dev)) {
/* Wait a bit and then reconfigure the nic. */
udelay(10);
nv_linkchange(dev);
}
}
}
if (netif_running(dev)) {
nv_start_rx(dev);
nv_start_tx(dev);
nv_enable_irq(dev);
}
return 0;
}
#define FORCEDETH_REGS_VER 1
static int nv_get_regs_len(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
return np->register_size;
}
static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 *rbuf = buf;
int i;
regs->version = FORCEDETH_REGS_VER;
spin_lock_irq(&np->lock);
for (i = 0;i <= np->register_size/sizeof(u32); i++)
rbuf[i] = readl(base + i*sizeof(u32));
spin_unlock_irq(&np->lock);
}
static int nv_nway_reset(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
int ret;
if (np->autoneg) {
int bmcr;
netif_carrier_off(dev);
if (netif_running(dev)) {
nv_disable_irq(dev);
netif_tx_lock_bh(dev);
spin_lock(&np->lock);
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
spin_unlock(&np->lock);
netif_tx_unlock_bh(dev);
printk(KERN_INFO "%s: link down.\n", dev->name);
}
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
bmcr |= BMCR_ANENABLE;
/* reset the phy in order for settings to stick*/
if (phy_reset(dev, bmcr)) {
printk(KERN_INFO "%s: phy reset failed\n", dev->name);
return -EINVAL;
}
} else {
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
}
if (netif_running(dev)) {
nv_start_rx(dev);
nv_start_tx(dev);
nv_enable_irq(dev);
}
ret = 0;
} else {
ret = -EINVAL;
}
return ret;
}
static int nv_set_tso(struct net_device *dev, u32 value)
{
struct fe_priv *np = netdev_priv(dev);
if ((np->driver_data & DEV_HAS_CHECKSUM))
return ethtool_op_set_tso(dev, value);
else
return -EOPNOTSUPP;
}
static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
struct fe_priv *np = netdev_priv(dev);
ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
ring->rx_mini_max_pending = 0;
ring->rx_jumbo_max_pending = 0;
ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
ring->rx_pending = np->rx_ring_size;
ring->rx_mini_pending = 0;
ring->rx_jumbo_pending = 0;
ring->tx_pending = np->tx_ring_size;
}
static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
dma_addr_t ring_addr;
if (ring->rx_pending < RX_RING_MIN ||
ring->tx_pending < TX_RING_MIN ||
ring->rx_mini_pending != 0 ||
ring->rx_jumbo_pending != 0 ||
(np->desc_ver == DESC_VER_1 &&
(ring->rx_pending > RING_MAX_DESC_VER_1 ||
ring->tx_pending > RING_MAX_DESC_VER_1)) ||
(np->desc_ver != DESC_VER_1 &&
(ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
return -EINVAL;
}
/* allocate new rings */
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
rxtx_ring = pci_alloc_consistent(np->pci_dev,
sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
&ring_addr);
} else {
rxtx_ring = pci_alloc_consistent(np->pci_dev,
sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
&ring_addr);
}
rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
/* fall back to old rings */
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
if (rxtx_ring)
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
rxtx_ring, ring_addr);
} else {
if (rxtx_ring)
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
rxtx_ring, ring_addr);
}
if (rx_skbuff)
kfree(rx_skbuff);
if (tx_skbuff)
kfree(tx_skbuff);
goto exit;
}
if (netif_running(dev)) {
nv_disable_irq(dev);
netif_tx_lock_bh(dev);
spin_lock(&np->lock);
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
nv_txrx_reset(dev);
/* drain queues */
nv_drain_rx(dev);
nv_drain_tx(dev);
/* delete queues */
free_rings(dev);
}
/* set new values */
np->rx_ring_size = ring->rx_pending;
np->tx_ring_size = ring->tx_pending;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
} else {
np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
}
np->rx_skb = (struct nv_skb_map*)rx_skbuff;
np->tx_skb = (struct nv_skb_map*)tx_skbuff;
np->ring_addr = ring_addr;
memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
if (netif_running(dev)) {
/* reinit driver view of the queues */
set_bufsize(dev);
if (nv_init_ring(dev)) {
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
}
/* reinit nic view of the queues */
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
pci_push(base);
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
pci_push(base);
/* restart engines */
nv_start_rx(dev);
nv_start_tx(dev);
spin_unlock(&np->lock);
netif_tx_unlock_bh(dev);
nv_enable_irq(dev);
}
return 0;
exit:
return -ENOMEM;
}
static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
{
struct fe_priv *np = netdev_priv(dev);
pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
}
static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
{
struct fe_priv *np = netdev_priv(dev);
int adv, bmcr;
if ((!np->autoneg && np->duplex == 0) ||
(np->autoneg && !pause->autoneg && np->duplex == 0)) {
printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
dev->name);
return -EINVAL;
}
if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
return -EINVAL;
}
netif_carrier_off(dev);
if (netif_running(dev)) {
nv_disable_irq(dev);
netif_tx_lock_bh(dev);
spin_lock(&np->lock);
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
spin_unlock(&np->lock);
netif_tx_unlock_bh(dev);
}
np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
if (pause->rx_pause)
np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
if (pause->tx_pause)
np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
if (np->autoneg && pause->autoneg) {
np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
adv |= ADVERTISE_PAUSE_ASYM;
mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
if (netif_running(dev))
printk(KERN_INFO "%s: link down.\n", dev->name);
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
} else {
np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
if (pause->rx_pause)
np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
if (pause->tx_pause)
np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
if (!netif_running(dev))
nv_update_linkspeed(dev);
else
nv_update_pause(dev, np->pause_flags);
}
if (netif_running(dev)) {
nv_start_rx(dev);
nv_start_tx(dev);
nv_enable_irq(dev);
}
return 0;
}
static u32 nv_get_rx_csum(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
return (np->rx_csum) != 0;
}
static int nv_set_rx_csum(struct net_device *dev, u32 data)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
int retcode = 0;
if (np->driver_data & DEV_HAS_CHECKSUM) {
if (data) {
np->rx_csum = 1;
np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
} else {
np->rx_csum = 0;
/* vlan is dependent on rx checksum offload */
if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
}
if (netif_running(dev)) {
spin_lock_irq(&np->lock);
writel(np->txrxctl_bits, base + NvRegTxRxControl);
spin_unlock_irq(&np->lock);
}
} else {
return -EINVAL;
}
return retcode;
}
static int nv_set_tx_csum(struct net_device *dev, u32 data)
{
struct fe_priv *np = netdev_priv(dev);
if (np->driver_data & DEV_HAS_CHECKSUM)
return ethtool_op_set_tx_hw_csum(dev, data);
else
return -EOPNOTSUPP;
}
static int nv_set_sg(struct net_device *dev, u32 data)
{
struct fe_priv *np = netdev_priv(dev);
if (np->driver_data & DEV_HAS_CHECKSUM)
return ethtool_op_set_sg(dev, data);
else
return -EOPNOTSUPP;
}
static int nv_get_sset_count(struct net_device *dev, int sset)
{
struct fe_priv *np = netdev_priv(dev);
switch (sset) {
case ETH_SS_TEST:
if (np->driver_data & DEV_HAS_TEST_EXTENDED)
return NV_TEST_COUNT_EXTENDED;
else
return NV_TEST_COUNT_BASE;
case ETH_SS_STATS:
if (np->driver_data & DEV_HAS_STATISTICS_V1)
return NV_DEV_STATISTICS_V1_COUNT;
else if (np->driver_data & DEV_HAS_STATISTICS_V2)
return NV_DEV_STATISTICS_V2_COUNT;
else
return 0;
default:
return -EOPNOTSUPP;
}
}
static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
{
struct fe_priv *np = netdev_priv(dev);
/* update stats */
nv_do_stats_poll((unsigned long)dev);
memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
}
static int nv_link_test(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
int mii_status;
mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
/* check phy link status */
if (!(mii_status & BMSR_LSTATUS))
return 0;
else
return 1;
}
static int nv_register_test(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
int i = 0;
u32 orig_read, new_read;
do {
orig_read = readl(base + nv_registers_test[i].reg);
/* xor with mask to toggle bits */
orig_read ^= nv_registers_test[i].mask;
writel(orig_read, base + nv_registers_test[i].reg);
new_read = readl(base + nv_registers_test[i].reg);
if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
return 0;
/* restore original value */
orig_read ^= nv_registers_test[i].mask;
writel(orig_read, base + nv_registers_test[i].reg);
} while (nv_registers_test[++i].reg != 0);
return 1;
}
static int nv_interrupt_test(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
int ret = 1;
int testcnt;
u32 save_msi_flags, save_poll_interval = 0;
if (netif_running(dev)) {
/* free current irq */
nv_free_irq(dev);
save_poll_interval = readl(base+NvRegPollingInterval);
}
/* flag to test interrupt handler */
np->intr_test = 0;
/* setup test irq */
save_msi_flags = np->msi_flags;
np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
np->msi_flags |= 0x001; /* setup 1 vector */
if (nv_request_irq(dev, 1))
return 0;
/* setup timer interrupt */
writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
/* wait for at least one interrupt */
msleep(100);
spin_lock_irq(&np->lock);
/* flag should be set within ISR */
testcnt = np->intr_test;
if (!testcnt)
ret = 2;
nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
if (!(np->msi_flags & NV_MSI_X_ENABLED))
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
else
writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
spin_unlock_irq(&np->lock);
nv_free_irq(dev);
np->msi_flags = save_msi_flags;
if (netif_running(dev)) {
writel(save_poll_interval, base + NvRegPollingInterval);
writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
/* restore original irq */
if (nv_request_irq(dev, 0))
return 0;
}
return ret;
}
static int nv_loopback_test(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
struct sk_buff *tx_skb, *rx_skb;
dma_addr_t test_dma_addr;
u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
u32 flags;
int len, i, pkt_len;
u8 *pkt_data;
u32 filter_flags = 0;
u32 misc1_flags = 0;
int ret = 1;
if (netif_running(dev)) {
nv_disable_irq(dev);
filter_flags = readl(base + NvRegPacketFilterFlags);
misc1_flags = readl(base + NvRegMisc1);
} else {
nv_txrx_reset(dev);
}
/* reinit driver view of the rx queue */
set_bufsize(dev);
nv_init_ring(dev);
/* setup hardware for loopback */
writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
/* reinit nic view of the rx queue */
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
pci_push(base);
/* restart rx engine */
nv_start_rx(dev);
nv_start_tx(dev);
/* setup packet for tx */
pkt_len = ETH_DATA_LEN;
tx_skb = dev_alloc_skb(pkt_len);
if (!tx_skb) {
printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
" of %s\n", dev->name);
ret = 0;
goto out;
}
test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
skb_tailroom(tx_skb),
PCI_DMA_FROMDEVICE);
pkt_data = skb_put(tx_skb, pkt_len);
for (i = 0; i < pkt_len; i++)
pkt_data[i] = (u8)(i & 0xff);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
} else {
np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
}
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
pci_push(get_hwbase(dev));
msleep(500);
/* check for rx of the packet */
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
} else {
flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
}
if (flags & NV_RX_AVAIL) {
ret = 0;
} else if (np->desc_ver == DESC_VER_1) {
if (flags & NV_RX_ERROR)
ret = 0;
} else {
if (flags & NV_RX2_ERROR) {
ret = 0;
}
}
if (ret) {
if (len != pkt_len) {
ret = 0;
dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
dev->name, len, pkt_len);
} else {
rx_skb = np->rx_skb[0].skb;
for (i = 0; i < pkt_len; i++) {
if (rx_skb->data[i] != (u8)(i & 0xff)) {
ret = 0;
dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
dev->name, i);
break;
}
}
}
} else {
dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
}
pci_unmap_page(np->pci_dev, test_dma_addr,
(skb_end_pointer(tx_skb) - tx_skb->data),
PCI_DMA_TODEVICE);
dev_kfree_skb_any(tx_skb);
out:
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
nv_txrx_reset(dev);
/* drain rx queue */
nv_drain_rx(dev);
nv_drain_tx(dev);
if (netif_running(dev)) {
writel(misc1_flags, base + NvRegMisc1);
writel(filter_flags, base + NvRegPacketFilterFlags);
nv_enable_irq(dev);
}
return ret;
}
static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
int result;
memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
if (!nv_link_test(dev)) {
test->flags |= ETH_TEST_FL_FAILED;
buffer[0] = 1;
}
if (test->flags & ETH_TEST_FL_OFFLINE) {
if (netif_running(dev)) {
netif_stop_queue(dev);
#ifdef CONFIG_FORCEDETH_NAPI
napi_disable(&np->napi);
#endif
netif_tx_lock_bh(dev);
spin_lock_irq(&np->lock);
nv_disable_hw_interrupts(dev, np->irqmask);
if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
} else {
writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
}
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
nv_txrx_reset(dev);
/* drain rx queue */
nv_drain_rx(dev);
nv_drain_tx(dev);
spin_unlock_irq(&np->lock);
netif_tx_unlock_bh(dev);
}
if (!nv_register_test(dev)) {
test->flags |= ETH_TEST_FL_FAILED;
buffer[1] = 1;
}
result = nv_interrupt_test(dev);
if (result != 1) {
test->flags |= ETH_TEST_FL_FAILED;
buffer[2] = 1;
}
if (result == 0) {
/* bail out */
return;
}
if (!nv_loopback_test(dev)) {
test->flags |= ETH_TEST_FL_FAILED;
buffer[3] = 1;
}
if (netif_running(dev)) {
/* reinit driver view of the rx queue */
set_bufsize(dev);
if (nv_init_ring(dev)) {
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
}
/* reinit nic view of the rx queue */
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
pci_push(base);
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
pci_push(base);
/* restart rx engine */
nv_start_rx(dev);
nv_start_tx(dev);
netif_start_queue(dev);
#ifdef CONFIG_FORCEDETH_NAPI
napi_enable(&np->napi);
#endif
nv_enable_hw_interrupts(dev, np->irqmask);
}
}
}
static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
break;
case ETH_SS_TEST:
memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
break;
}
}
static const struct ethtool_ops ops = {
.get_drvinfo = nv_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_wol = nv_get_wol,
.set_wol = nv_set_wol,
.get_settings = nv_get_settings,
.set_settings = nv_set_settings,
.get_regs_len = nv_get_regs_len,
.get_regs = nv_get_regs,
.nway_reset = nv_nway_reset,
.set_tso = nv_set_tso,
.get_ringparam = nv_get_ringparam,
.set_ringparam = nv_set_ringparam,
.get_pauseparam = nv_get_pauseparam,
.set_pauseparam = nv_set_pauseparam,
.get_rx_csum = nv_get_rx_csum,
.set_rx_csum = nv_set_rx_csum,
.set_tx_csum = nv_set_tx_csum,
.set_sg = nv_set_sg,
.get_strings = nv_get_strings,
.get_ethtool_stats = nv_get_ethtool_stats,
.get_sset_count = nv_get_sset_count,
.self_test = nv_self_test,
};
static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct fe_priv *np = get_nvpriv(dev);
spin_lock_irq(&np->lock);
/* save vlan group */
np->vlangrp = grp;
if (grp) {
/* enable vlan on MAC */
np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
} else {
/* disable vlan on MAC */
np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
}
writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
spin_unlock_irq(&np->lock);
}
/* The mgmt unit and driver use a semaphore to access the phy during init */
static int nv_mgmt_acquire_sema(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
int i;
u32 tx_ctrl, mgmt_sema;
for (i = 0; i < 10; i++) {
mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
break;
msleep(500);
}
if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
return 0;
for (i = 0; i < 2; i++) {
tx_ctrl = readl(base + NvRegTransmitterControl);
tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
writel(tx_ctrl, base + NvRegTransmitterControl);
/* verify that semaphore was acquired */
tx_ctrl = readl(base + NvRegTransmitterControl);
if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
return 1;
else
udelay(50);
}
return 0;
}
static int nv_open(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
int ret = 1;
int oom, i;
dprintk(KERN_DEBUG "nv_open: begin\n");
/* erase previous misconfiguration */
if (np->driver_data & DEV_HAS_POWER_CNTRL)
nv_mac_reset(dev);
writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
writel(0, base + NvRegMulticastAddrB);
writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
writel(0, base + NvRegPacketFilterFlags);
writel(0, base + NvRegTransmitterControl);
writel(0, base + NvRegReceiverControl);
writel(0, base + NvRegAdapterControl);
if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
/* initialize descriptor rings */
set_bufsize(dev);
oom = nv_init_ring(dev);
writel(0, base + NvRegLinkSpeed);
writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
nv_txrx_reset(dev);
writel(0, base + NvRegUnknownSetupReg6);
np->in_shutdown = 0;
/* give hw rings */
setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
writel(np->linkspeed, base + NvRegLinkSpeed);
if (np->desc_ver == DESC_VER_1)
writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
else
writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
writel(np->txrxctl_bits, base + NvRegTxRxControl);
writel(np->vlanctl_bits, base + NvRegVlanControl);
pci_push(base);
writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
writel(0, base + NvRegMIIMask);
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
get_random_bytes(&i, sizeof(i));
writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
if (poll_interval == -1) {
if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
else
writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
}
else
writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
base + NvRegAdapterControl);
writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
if (np->wolenabled)
writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
i = readl(base + NvRegPowerState);
if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
pci_push(base);
udelay(10);
writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
nv_disable_hw_interrupts(dev, np->irqmask);
pci_push(base);
writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
pci_push(base);
if (nv_request_irq(dev, 0)) {
goto out_drain;
}
/* ask for interrupts */
nv_enable_hw_interrupts(dev, np->irqmask);
spin_lock_irq(&np->lock);
writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
writel(0, base + NvRegMulticastAddrB);
writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
/* One manual link speed update: Interrupts are enabled, future link
* speed changes cause interrupts and are handled by nv_link_irq().
*/
{
u32 miistat;
miistat = readl(base + NvRegMIIStatus);
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
}
/* set linkspeed to invalid value, thus force nv_update_linkspeed
* to init hw */
np->linkspeed = 0;
ret = nv_update_linkspeed(dev);
nv_start_rx(dev);
nv_start_tx(dev);
netif_start_queue(dev);
#ifdef CONFIG_FORCEDETH_NAPI
napi_enable(&np->napi);
#endif
if (ret) {
netif_carrier_on(dev);
} else {
printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
netif_carrier_off(dev);
}
if (oom)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
/* start statistics timer */
if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
spin_unlock_irq(&np->lock);
return 0;
out_drain:
drain_ring(dev);
return ret;
}
static int nv_close(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base;
spin_lock_irq(&np->lock);
np->in_shutdown = 1;
spin_unlock_irq(&np->lock);
#ifdef CONFIG_FORCEDETH_NAPI
napi_disable(&np->napi);
#endif
synchronize_irq(np->pci_dev->irq);
del_timer_sync(&np->oom_kick);
del_timer_sync(&np->nic_poll);
del_timer_sync(&np->stats_poll);
netif_stop_queue(dev);
spin_lock_irq(&np->lock);
nv_stop_tx(dev);
nv_stop_rx(dev);
nv_txrx_reset(dev);
/* disable interrupts on the nic or we will lock up */
base = get_hwbase(dev);
nv_disable_hw_interrupts(dev, np->irqmask);
pci_push(base);
dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
spin_unlock_irq(&np->lock);
nv_free_irq(dev);
drain_ring(dev);
if (np->wolenabled) {
writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
nv_start_rx(dev);
}
/* FIXME: power down nic */
return 0;
}
static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
struct net_device *dev;
struct fe_priv *np;
unsigned long addr;
u8 __iomem *base;
int err, i;
u32 powerstate, txreg;
u32 phystate_orig = 0, phystate;
int phyinitialized = 0;
DECLARE_MAC_BUF(mac);
static int printed_version;
if (!printed_version++)
printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
" driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
dev = alloc_etherdev(sizeof(struct fe_priv));
err = -ENOMEM;
if (!dev)
goto out;
np = netdev_priv(dev);
np->dev = dev;
np->pci_dev = pci_dev;
spin_lock_init(&np->lock);
SET_NETDEV_DEV(dev, &pci_dev->dev);
init_timer(&np->oom_kick);
np->oom_kick.data = (unsigned long) dev;
np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
init_timer(&np->nic_poll);
np->nic_poll.data = (unsigned long) dev;
np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
init_timer(&np->stats_poll);
np->stats_poll.data = (unsigned long) dev;
np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
err = pci_enable_device(pci_dev);
if (err)
goto out_free;
pci_set_master(pci_dev);
err = pci_request_regions(pci_dev, DRV_NAME);
if (err < 0)
goto out_disable;
if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
np->register_size = NV_PCI_REGSZ_VER3;
else if (id->driver_data & DEV_HAS_STATISTICS_V1)
np->register_size = NV_PCI_REGSZ_VER2;
else
np->register_size = NV_PCI_REGSZ_VER1;
err = -EINVAL;
addr = 0;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
pci_resource_len(pci_dev, i),
pci_resource_flags(pci_dev, i));
if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
pci_resource_len(pci_dev, i) >= np->register_size) {
addr = pci_resource_start(pci_dev, i);
break;
}
}
if (i == DEVICE_COUNT_RESOURCE) {
dev_printk(KERN_INFO, &pci_dev->dev,
"Couldn't find register window\n");
goto out_relreg;
}
/* copy of driver data */
np->driver_data = id->driver_data;
/* handle different descriptor versions */
if (id->driver_data & DEV_HAS_HIGH_DMA) {
/* packet format 3: supports 40-bit addressing */
np->desc_ver = DESC_VER_3;
np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
if (dma_64bit) {
if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
dev_printk(KERN_INFO, &pci_dev->dev,
"64-bit DMA failed, using 32-bit addressing\n");
else
dev->features |= NETIF_F_HIGHDMA;
if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
dev_printk(KERN_INFO, &pci_dev->dev,
"64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
}
}
} else if (id->driver_data & DEV_HAS_LARGEDESC) {
/* packet format 2: supports jumbo frames */
np->desc_ver = DESC_VER_2;
np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
} else {
/* original packet format */
np->desc_ver = DESC_VER_1;
np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
}
np->pkt_limit = NV_PKTLIMIT_1;
if (id->driver_data & DEV_HAS_LARGEDESC)
np->pkt_limit = NV_PKTLIMIT_2;
if (id->driver_data & DEV_HAS_CHECKSUM) {
np->rx_csum = 1;
np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
dev->features |= NETIF_F_TSO;
}
np->vlanctl_bits = 0;
if (id->driver_data & DEV_HAS_VLAN) {
np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
dev->vlan_rx_register = nv_vlan_rx_register;
}
np->msi_flags = 0;
if ((id->driver_data & DEV_HAS_MSI) && msi) {
np->msi_flags |= NV_MSI_CAPABLE;
}
if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
np->msi_flags |= NV_MSI_X_CAPABLE;
}
np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
}
err = -ENOMEM;
np->base = ioremap(addr, np->register_size);
if (!np->base)
goto out_relreg;
dev->base_addr = (unsigned long)np->base;
dev->irq = pci_dev->irq;
np->rx_ring_size = RX_RING_DEFAULT;
np->tx_ring_size = TX_RING_DEFAULT;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->rx_ring.orig = pci_alloc_consistent(pci_dev,
sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
&np->ring_addr);
if (!np->rx_ring.orig)
goto out_unmap;
np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
} else {
np->rx_ring.ex = pci_alloc_consistent(pci_dev,
sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
&np->ring_addr);
if (!np->rx_ring.ex)
goto out_unmap;
np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
}
np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
if (!np->rx_skb || !np->tx_skb)
goto out_freering;
dev->open = nv_open;
dev->stop = nv_close;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
dev->hard_start_xmit = nv_start_xmit;
else
dev->hard_start_xmit = nv_start_xmit_optimized;
dev->get_stats = nv_get_stats;
dev->change_mtu = nv_change_mtu;
dev->set_mac_address = nv_set_mac_address;
dev->set_multicast_list = nv_set_multicast;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = nv_poll_controller;
#endif
#ifdef CONFIG_FORCEDETH_NAPI
netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
#endif
SET_ETHTOOL_OPS(dev, &ops);
dev->tx_timeout = nv_tx_timeout;
dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
pci_set_drvdata(pci_dev, dev);
/* read the mac address */
base = get_hwbase(dev);
np->orig_mac[0] = readl(base + NvRegMacAddrA);
np->orig_mac[1] = readl(base + NvRegMacAddrB);
/* check the workaround bit for correct mac address order */
txreg = readl(base + NvRegTransmitPoll);
if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
(id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
/* mac address is already in correct order */
dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
} else {
/* need to reverse mac address to correct order */
dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
}
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
if (!is_valid_ether_addr(dev->perm_addr)) {
/*
* Bad mac address. At least one bios sets the mac address
* to 01:23:45:67:89:ab
*/
dev_printk(KERN_ERR, &pci_dev->dev,
"Invalid Mac address detected: %s\n",
print_mac(mac, dev->dev_addr));
dev_printk(KERN_ERR, &pci_dev->dev,
"Please complain to your hardware vendor. Switching to a random MAC.\n");
dev->dev_addr[0] = 0x00;
dev->dev_addr[1] = 0x00;
dev->dev_addr[2] = 0x6c;
get_random_bytes(&dev->dev_addr[3], 3);
}
dprintk(KERN_DEBUG "%s: MAC Address %s\n",
pci_name(pci_dev), print_mac(mac, dev->dev_addr));
/* set mac address */
nv_copy_mac_to_hw(dev);
/* disable WOL */
writel(0, base + NvRegWakeUpFlags);
np->wolenabled = 0;
if (id->driver_data & DEV_HAS_POWER_CNTRL) {
/* take phy and nic out of low power mode */
powerstate = readl(base + NvRegPowerState2);
powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
pci_dev->revision >= 0xA3)
powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
writel(powerstate, base + NvRegPowerState2);
}
if (np->desc_ver == DESC_VER_1) {
np->tx_flags = NV_TX_VALID;
} else {
np->tx_flags = NV_TX2_VALID;
}
if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
np->irqmask = NVREG_IRQMASK_THROUGHPUT;
if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
np->msi_flags |= 0x0003;
} else {
np->irqmask = NVREG_IRQMASK_CPU;
if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
np->msi_flags |= 0x0001;
}
if (id->driver_data & DEV_NEED_TIMERIRQ)
np->irqmask |= NVREG_IRQ_TIMER;
if (id->driver_data & DEV_NEED_LINKTIMER) {
dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
np->need_linktimer = 1;
np->link_timeout = jiffies + LINK_TIMEOUT;
} else {
dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
np->need_linktimer = 0;
}
/* clear phy state and temporarily halt phy interrupts */
writel(0, base + NvRegMIIMask);
phystate = readl(base + NvRegAdapterControl);
if (phystate & NVREG_ADAPTCTL_RUNNING) {
phystate_orig = 1;
phystate &= ~NVREG_ADAPTCTL_RUNNING;
writel(phystate, base + NvRegAdapterControl);
}
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
if (id->driver_data & DEV_HAS_MGMT_UNIT) {
/* management unit running on the mac? */
if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
if (nv_mgmt_acquire_sema(dev)) {
/* management unit setup the phy already? */
if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
NVREG_XMITCTL_SYNC_PHY_INIT) {
/* phy is inited by mgmt unit */
phyinitialized = 1;
dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
} else {
/* we need to init the phy */
}
}
}
}
/* find a suitable phy */
for (i = 1; i <= 32; i++) {
int id1, id2;
int phyaddr = i & 0x1F;
spin_lock_irq(&np->lock);
id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
spin_unlock_irq(&np->lock);
if (id1 < 0 || id1 == 0xffff)
continue;
spin_lock_irq(&np->lock);
id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
spin_unlock_irq(&np->lock);
if (id2 < 0 || id2 == 0xffff)
continue;
np->phy_model = id2 & PHYID2_MODEL_MASK;
id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
pci_name(pci_dev), id1, id2, phyaddr);
np->phyaddr = phyaddr;
np->phy_oui = id1 | id2;
break;
}
if (i == 33) {
dev_printk(KERN_INFO, &pci_dev->dev,
"open: Could not find a valid PHY.\n");
goto out_error;
}
if (!phyinitialized) {
/* reset it */
phy_init(dev);
} else {
/* see if it is a gigabit phy */
u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
if (mii_status & PHY_GIGABIT) {
np->gigabit = PHY_GIGABIT;
}
}
/* set default link speed settings */
np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
np->duplex = 0;
np->autoneg = 1;
err = register_netdev(dev);
if (err) {
dev_printk(KERN_INFO, &pci_dev->dev,
"unable to register netdev: %d\n", err);
goto out_error;
}
dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
"addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
dev->name,
np->phy_oui,
np->phyaddr,
dev->dev_addr[0],
dev->dev_addr[1],
dev->dev_addr[2],
dev->dev_addr[3],
dev->dev_addr[4],
dev->dev_addr[5]);
dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
"csum " : "",
dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
"vlan " : "",
id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
np->gigabit == PHY_GIGABIT ? "gbit " : "",
np->need_linktimer ? "lnktim " : "",
np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
np->desc_ver);
return 0;
out_error:
if (phystate_orig)
writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
pci_set_drvdata(pci_dev, NULL);
out_freering:
free_rings(dev);
out_unmap:
iounmap(get_hwbase(dev));
out_relreg:
pci_release_regions(pci_dev);
out_disable:
pci_disable_device(pci_dev);
out_free:
free_netdev(dev);
out:
return err;
}
static void __devexit nv_remove(struct pci_dev *pci_dev)
{
struct net_device *dev = pci_get_drvdata(pci_dev);
struct fe_priv *np = netdev_priv(dev);
u8 __iomem *base = get_hwbase(dev);
unregister_netdev(dev);
/* special op: write back the misordered MAC address - otherwise
* the next nv_probe would see a wrong address.
*/
writel(np->orig_mac[0], base + NvRegMacAddrA);
writel(np->orig_mac[1], base + NvRegMacAddrB);
writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
base + NvRegTransmitPoll);
/* free all structures */
free_rings(dev);
iounmap(get_hwbase(dev));
pci_release_regions(pci_dev);
pci_disable_device(pci_dev);
free_netdev(dev);
pci_set_drvdata(pci_dev, NULL);
}
#ifdef CONFIG_PM
static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct fe_priv *np = netdev_priv(dev);
if (!netif_running(dev))
goto out;
netif_device_detach(dev);
// Gross.
nv_close(dev);
pci_save_state(pdev);
pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
out:
return 0;
}
static int nv_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
int rc = 0;
if (!netif_running(dev))
goto out;
netif_device_attach(dev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D0, 0);
rc = nv_open(dev);
out:
return rc;
}
#else
#define nv_suspend NULL
#define nv_resume NULL
#endif /* CONFIG_PM */
static struct pci_device_id pci_tbl[] = {
{ /* nForce Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce2 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* CK804 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
},
{ /* CK804 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
},
{ /* MCP04 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
},
{ /* MCP04 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
},
{ /* MCP51 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
},
{ /* MCP51 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
},
{ /* MCP55 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
},
{ /* MCP55 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
},
{ /* MCP61 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP61 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP61 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP61 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP65 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP65 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP65 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP65 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP67 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP67 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP67 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP67 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP73 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP73 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP73 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP73 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP77 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP77 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP77 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP77 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP79 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP79 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP79 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{ /* MCP79 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
},
{0,},
};
static struct pci_driver driver = {
.name = DRV_NAME,
.id_table = pci_tbl,
.probe = nv_probe,
.remove = __devexit_p(nv_remove),
.suspend = nv_suspend,
.resume = nv_resume,
};
static int __init init_nic(void)
{
return pci_register_driver(&driver);
}
static void __exit exit_nic(void)
{
pci_unregister_driver(&driver);
}
module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
module_param(optimization_mode, int, 0);
MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
module_param(poll_interval, int, 0);
MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
module_param(msi, int, 0);
MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
module_param(msix, int, 0);
MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
module_param(dma_64bit, int, 0);
MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pci_tbl);
module_init(init_nic);
module_exit(exit_nic);