| /* |
| * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved. |
| * |
| * Authors: Shlomi Gridish <gridish@freescale.com> |
| * Li Yang <leoli@freescale.com> |
| * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net) |
| * |
| * Description: |
| * General Purpose functions for the global management of the |
| * QUICC Engine (QE). |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/ioport.h> |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/immap_qe.h> |
| #include <asm/qe.h> |
| #include <asm/prom.h> |
| #include <asm/rheap.h> |
| |
| static void qe_snums_init(void); |
| static void qe_muram_init(void); |
| static int qe_sdma_init(void); |
| |
| static DEFINE_SPINLOCK(qe_lock); |
| |
| /* QE snum state */ |
| enum qe_snum_state { |
| QE_SNUM_STATE_USED, |
| QE_SNUM_STATE_FREE |
| }; |
| |
| /* QE snum */ |
| struct qe_snum { |
| u8 num; |
| enum qe_snum_state state; |
| }; |
| |
| /* We allocate this here because it is used almost exclusively for |
| * the communication processor devices. |
| */ |
| struct qe_immap *qe_immr = NULL; |
| EXPORT_SYMBOL(qe_immr); |
| |
| static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */ |
| |
| static phys_addr_t qebase = -1; |
| |
| phys_addr_t get_qe_base(void) |
| { |
| struct device_node *qe; |
| |
| if (qebase != -1) |
| return qebase; |
| |
| qe = of_find_node_by_type(NULL, "qe"); |
| if (qe) { |
| unsigned int size; |
| const void *prop = of_get_property(qe, "reg", &size); |
| qebase = of_translate_address(qe, prop); |
| of_node_put(qe); |
| }; |
| |
| return qebase; |
| } |
| |
| EXPORT_SYMBOL(get_qe_base); |
| |
| void qe_reset(void) |
| { |
| if (qe_immr == NULL) |
| qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE); |
| |
| qe_snums_init(); |
| |
| qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID, |
| QE_CR_PROTOCOL_UNSPECIFIED, 0); |
| |
| /* Reclaim the MURAM memory for our use. */ |
| qe_muram_init(); |
| |
| if (qe_sdma_init()) |
| panic("sdma init failed!"); |
| } |
| |
| int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input) |
| { |
| unsigned long flags; |
| u8 mcn_shift = 0, dev_shift = 0; |
| |
| spin_lock_irqsave(&qe_lock, flags); |
| if (cmd == QE_RESET) { |
| out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG)); |
| } else { |
| if (cmd == QE_ASSIGN_PAGE) { |
| /* Here device is the SNUM, not sub-block */ |
| dev_shift = QE_CR_SNUM_SHIFT; |
| } else if (cmd == QE_ASSIGN_RISC) { |
| /* Here device is the SNUM, and mcnProtocol is |
| * e_QeCmdRiscAssignment value */ |
| dev_shift = QE_CR_SNUM_SHIFT; |
| mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT; |
| } else { |
| if (device == QE_CR_SUBBLOCK_USB) |
| mcn_shift = QE_CR_MCN_USB_SHIFT; |
| else |
| mcn_shift = QE_CR_MCN_NORMAL_SHIFT; |
| } |
| |
| out_be32(&qe_immr->cp.cecdr, cmd_input); |
| out_be32(&qe_immr->cp.cecr, |
| (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32) |
| mcn_protocol << mcn_shift)); |
| } |
| |
| /* wait for the QE_CR_FLG to clear */ |
| while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) |
| cpu_relax(); |
| spin_unlock_irqrestore(&qe_lock, flags); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(qe_issue_cmd); |
| |
| /* Set a baud rate generator. This needs lots of work. There are |
| * 16 BRGs, which can be connected to the QE channels or output |
| * as clocks. The BRGs are in two different block of internal |
| * memory mapped space. |
| * The baud rate clock is the system clock divided by something. |
| * It was set up long ago during the initial boot phase and is |
| * is given to us. |
| * Baud rate clocks are zero-based in the driver code (as that maps |
| * to port numbers). Documentation uses 1-based numbering. |
| */ |
| static unsigned int brg_clk = 0; |
| |
| unsigned int get_brg_clk(void) |
| { |
| struct device_node *qe; |
| if (brg_clk) |
| return brg_clk; |
| |
| qe = of_find_node_by_type(NULL, "qe"); |
| if (qe) { |
| unsigned int size; |
| const u32 *prop = of_get_property(qe, "brg-frequency", &size); |
| brg_clk = *prop; |
| of_node_put(qe); |
| }; |
| return brg_clk; |
| } |
| |
| /* This function is used by UARTS, or anything else that uses a 16x |
| * oversampled clock. |
| */ |
| void qe_setbrg(u32 brg, u32 rate) |
| { |
| volatile u32 *bp; |
| u32 divisor, tempval; |
| int div16 = 0; |
| |
| bp = &qe_immr->brg.brgc[brg]; |
| |
| divisor = (get_brg_clk() / rate); |
| if (divisor > QE_BRGC_DIVISOR_MAX + 1) { |
| div16 = 1; |
| divisor /= 16; |
| } |
| |
| tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE; |
| if (div16) |
| tempval |= QE_BRGC_DIV16; |
| |
| out_be32(bp, tempval); |
| } |
| |
| /* Initialize SNUMs (thread serial numbers) according to |
| * QE Module Control chapter, SNUM table |
| */ |
| static void qe_snums_init(void) |
| { |
| int i; |
| static const u8 snum_init[] = { |
| 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D, |
| 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89, |
| 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9, |
| 0xD8, 0xD9, 0xE8, 0xE9, |
| }; |
| |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| snums[i].num = snum_init[i]; |
| snums[i].state = QE_SNUM_STATE_FREE; |
| } |
| } |
| |
| int qe_get_snum(void) |
| { |
| unsigned long flags; |
| int snum = -EBUSY; |
| int i; |
| |
| spin_lock_irqsave(&qe_lock, flags); |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| if (snums[i].state == QE_SNUM_STATE_FREE) { |
| snums[i].state = QE_SNUM_STATE_USED; |
| snum = snums[i].num; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&qe_lock, flags); |
| |
| return snum; |
| } |
| EXPORT_SYMBOL(qe_get_snum); |
| |
| void qe_put_snum(u8 snum) |
| { |
| int i; |
| |
| for (i = 0; i < QE_NUM_OF_SNUM; i++) { |
| if (snums[i].num == snum) { |
| snums[i].state = QE_SNUM_STATE_FREE; |
| break; |
| } |
| } |
| } |
| EXPORT_SYMBOL(qe_put_snum); |
| |
| static int qe_sdma_init(void) |
| { |
| struct sdma *sdma = &qe_immr->sdma; |
| u32 sdma_buf_offset; |
| |
| if (!sdma) |
| return -ENODEV; |
| |
| /* allocate 2 internal temporary buffers (512 bytes size each) for |
| * the SDMA */ |
| sdma_buf_offset = qe_muram_alloc(512 * 2, 4096); |
| if (IS_MURAM_ERR(sdma_buf_offset)) |
| return -ENOMEM; |
| |
| out_be32(&sdma->sdebcr, sdma_buf_offset & QE_SDEBCR_BA_MASK); |
| out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK | |
| (0x1 << QE_SDMR_CEN_SHIFT))); |
| |
| return 0; |
| } |
| |
| /* |
| * muram_alloc / muram_free bits. |
| */ |
| static DEFINE_SPINLOCK(qe_muram_lock); |
| |
| /* 16 blocks should be enough to satisfy all requests |
| * until the memory subsystem goes up... */ |
| static rh_block_t qe_boot_muram_rh_block[16]; |
| static rh_info_t qe_muram_info; |
| |
| static void qe_muram_init(void) |
| { |
| struct device_node *np; |
| u32 address; |
| u64 size; |
| unsigned int flags; |
| |
| /* initialize the info header */ |
| rh_init(&qe_muram_info, 1, |
| sizeof(qe_boot_muram_rh_block) / |
| sizeof(qe_boot_muram_rh_block[0]), qe_boot_muram_rh_block); |
| |
| /* Attach the usable muram area */ |
| /* XXX: This is a subset of the available muram. It |
| * varies with the processor and the microcode patches activated. |
| */ |
| if ((np = of_find_node_by_name(NULL, "data-only")) != NULL) { |
| address = *of_get_address(np, 0, &size, &flags); |
| of_node_put(np); |
| rh_attach_region(&qe_muram_info, |
| (void *)address, (int)size); |
| } |
| } |
| |
| /* This function returns an index into the MURAM area. |
| */ |
| u32 qe_muram_alloc(u32 size, u32 align) |
| { |
| void *start; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qe_muram_lock, flags); |
| start = rh_alloc_align(&qe_muram_info, size, align, "QE"); |
| spin_unlock_irqrestore(&qe_muram_lock, flags); |
| |
| return (u32) start; |
| } |
| EXPORT_SYMBOL(qe_muram_alloc); |
| |
| int qe_muram_free(u32 offset) |
| { |
| int ret; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qe_muram_lock, flags); |
| ret = rh_free(&qe_muram_info, (void *)offset); |
| spin_unlock_irqrestore(&qe_muram_lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(qe_muram_free); |
| |
| /* not sure if this is ever needed */ |
| u32 qe_muram_alloc_fixed(u32 offset, u32 size) |
| { |
| void *start; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qe_muram_lock, flags); |
| start = rh_alloc_fixed(&qe_muram_info, (void *)offset, size, "commproc"); |
| spin_unlock_irqrestore(&qe_muram_lock, flags); |
| |
| return (u32) start; |
| } |
| EXPORT_SYMBOL(qe_muram_alloc_fixed); |
| |
| void qe_muram_dump(void) |
| { |
| rh_dump(&qe_muram_info); |
| } |
| EXPORT_SYMBOL(qe_muram_dump); |
| |
| void *qe_muram_addr(u32 offset) |
| { |
| return (void *)&qe_immr->muram[offset]; |
| } |
| EXPORT_SYMBOL(qe_muram_addr); |