blob: f834ea83e39f5d46beaf814871def2c64ec1ed90 [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_interactive.c
*
* Copyright (C) 2010 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Mike Chan (mike@android.com)
*
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/tick.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <asm/cputime.h>
#define CREATE_TRACE_POINTS
#include <trace/events/cpufreq_interactive.h>
static atomic_t active_count = ATOMIC_INIT(0);
struct cpufreq_interactive_cpuinfo {
struct timer_list cpu_timer;
int timer_idlecancel;
u64 time_in_idle;
u64 idle_exit_time;
u64 timer_run_time;
int idling;
u64 target_set_time;
u64 target_set_time_in_idle;
struct cpufreq_policy *policy;
struct cpufreq_frequency_table *freq_table;
unsigned int target_freq;
unsigned int floor_freq;
u64 floor_validate_time;
u64 hispeed_validate_time;
int governor_enabled;
};
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
/* Workqueues handle frequency scaling */
static struct task_struct *up_task;
static struct workqueue_struct *down_wq;
static struct work_struct freq_scale_down_work;
static cpumask_t up_cpumask;
static spinlock_t up_cpumask_lock;
static cpumask_t down_cpumask;
static spinlock_t down_cpumask_lock;
static struct mutex set_speed_lock;
/* Hi speed to bump to from lo speed when load burst (default max) */
static u64 hispeed_freq;
/* Go to hi speed when CPU load at or above this value. */
#define DEFAULT_GO_HISPEED_LOAD 85
static unsigned long go_hispeed_load;
/*
* The minimum amount of time to spend at a frequency before we can ramp down.
*/
#define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC)
static unsigned long min_sample_time;
/*
* The sample rate of the timer used to increase frequency
*/
#define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC)
static unsigned long timer_rate;
/*
* Wait this long before raising speed above hispeed, by default a single
* timer interval.
*/
#define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE
static unsigned long above_hispeed_delay_val;
/*
* Boost pulse to hispeed on touchscreen input.
*/
static int input_boost_val;
struct cpufreq_interactive_inputopen {
struct input_handle *handle;
struct work_struct inputopen_work;
};
static struct cpufreq_interactive_inputopen inputopen;
/*
* Non-zero means longer-term speed boost active.
*/
static int boost_val;
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
static
#endif
struct cpufreq_governor cpufreq_gov_interactive = {
.name = "interactive",
.governor = cpufreq_governor_interactive,
.max_transition_latency = 10000000,
.owner = THIS_MODULE,
};
static void cpufreq_interactive_timer(unsigned long data)
{
unsigned int delta_idle;
unsigned int delta_time;
int cpu_load;
int load_since_change;
u64 time_in_idle;
u64 idle_exit_time;
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, data);
u64 now_idle;
unsigned int new_freq;
unsigned int index;
unsigned long flags;
smp_rmb();
if (!pcpu->governor_enabled)
goto exit;
/*
* Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
* this lets idle exit know the current idle time sample has
* been processed, and idle exit can generate a new sample and
* re-arm the timer. This prevents a concurrent idle
* exit on that CPU from writing a new set of info at the same time
* the timer function runs (the timer function can't use that info
* until more time passes).
*/
time_in_idle = pcpu->time_in_idle;
idle_exit_time = pcpu->idle_exit_time;
now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
smp_wmb();
/* If we raced with cancelling a timer, skip. */
if (!idle_exit_time)
goto exit;
delta_idle = (unsigned int)(now_idle - time_in_idle);
delta_time = (unsigned int)(pcpu->timer_run_time - idle_exit_time);
/*
* If timer ran less than 1ms after short-term sample started, retry.
*/
if (delta_time < 1000)
goto rearm;
if (delta_idle > delta_time)
cpu_load = 0;
else
cpu_load = 100 * (delta_time - delta_idle) / delta_time;
delta_idle = (unsigned int)(now_idle - pcpu->target_set_time_in_idle);
delta_time = (unsigned int)(pcpu->timer_run_time -
pcpu->target_set_time);
if ((delta_time == 0) || (delta_idle > delta_time))
load_since_change = 0;
else
load_since_change =
100 * (delta_time - delta_idle) / delta_time;
/*
* Choose greater of short-term load (since last idle timer
* started or timer function re-armed itself) or long-term load
* (since last frequency change).
*/
if (load_since_change > cpu_load)
cpu_load = load_since_change;
if (cpu_load >= go_hispeed_load || boost_val) {
if (pcpu->target_freq <= pcpu->policy->min) {
new_freq = hispeed_freq;
} else {
new_freq = pcpu->policy->max * cpu_load / 100;
if (new_freq < hispeed_freq)
new_freq = hispeed_freq;
if (pcpu->target_freq == hispeed_freq &&
new_freq > hispeed_freq &&
pcpu->timer_run_time - pcpu->hispeed_validate_time
< above_hispeed_delay_val) {
trace_cpufreq_interactive_notyet(data, cpu_load,
pcpu->target_freq,
new_freq);
goto rearm;
}
}
} else {
new_freq = pcpu->policy->max * cpu_load / 100;
}
if (new_freq <= hispeed_freq)
pcpu->hispeed_validate_time = pcpu->timer_run_time;
if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
new_freq, CPUFREQ_RELATION_H,
&index)) {
pr_warn_once("timer %d: cpufreq_frequency_table_target error\n",
(int) data);
goto rearm;
}
new_freq = pcpu->freq_table[index].frequency;
/*
* Do not scale below floor_freq unless we have been at or above the
* floor frequency for the minimum sample time since last validated.
*/
if (new_freq < pcpu->floor_freq) {
if (pcpu->timer_run_time - pcpu->floor_validate_time
< min_sample_time) {
trace_cpufreq_interactive_notyet(data, cpu_load,
pcpu->target_freq, new_freq);
goto rearm;
}
}
pcpu->floor_freq = new_freq;
pcpu->floor_validate_time = pcpu->timer_run_time;
if (pcpu->target_freq == new_freq) {
trace_cpufreq_interactive_already(data, cpu_load,
pcpu->target_freq, new_freq);
goto rearm_if_notmax;
}
trace_cpufreq_interactive_target(data, cpu_load, pcpu->target_freq,
new_freq);
pcpu->target_set_time_in_idle = now_idle;
pcpu->target_set_time = pcpu->timer_run_time;
if (new_freq < pcpu->target_freq) {
pcpu->target_freq = new_freq;
spin_lock_irqsave(&down_cpumask_lock, flags);
cpumask_set_cpu(data, &down_cpumask);
spin_unlock_irqrestore(&down_cpumask_lock, flags);
queue_work(down_wq, &freq_scale_down_work);
} else {
pcpu->target_freq = new_freq;
spin_lock_irqsave(&up_cpumask_lock, flags);
cpumask_set_cpu(data, &up_cpumask);
spin_unlock_irqrestore(&up_cpumask_lock, flags);
wake_up_process(up_task);
}
rearm_if_notmax:
/*
* Already set max speed and don't see a need to change that,
* wait until next idle to re-evaluate, don't need timer.
*/
if (pcpu->target_freq == pcpu->policy->max)
goto exit;
rearm:
if (!timer_pending(&pcpu->cpu_timer)) {
/*
* If already at min: if that CPU is idle, don't set timer.
* Else cancel the timer if that CPU goes idle. We don't
* need to re-evaluate speed until the next idle exit.
*/
if (pcpu->target_freq == pcpu->policy->min) {
smp_rmb();
if (pcpu->idling)
goto exit;
pcpu->timer_idlecancel = 1;
}
pcpu->time_in_idle = get_cpu_idle_time_us(
data, &pcpu->idle_exit_time);
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
}
exit:
return;
}
static void cpufreq_interactive_idle_start(void)
{
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, smp_processor_id());
int pending;
if (!pcpu->governor_enabled)
return;
pcpu->idling = 1;
smp_wmb();
pending = timer_pending(&pcpu->cpu_timer);
if (pcpu->target_freq != pcpu->policy->min) {
#ifdef CONFIG_SMP
/*
* Entering idle while not at lowest speed. On some
* platforms this can hold the other CPU(s) at that speed
* even though the CPU is idle. Set a timer to re-evaluate
* speed so this idle CPU doesn't hold the other CPUs above
* min indefinitely. This should probably be a quirk of
* the CPUFreq driver.
*/
if (!pending) {
pcpu->time_in_idle = get_cpu_idle_time_us(
smp_processor_id(), &pcpu->idle_exit_time);
pcpu->timer_idlecancel = 0;
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
}
#endif
} else {
/*
* If at min speed and entering idle after load has
* already been evaluated, and a timer has been set just in
* case the CPU suddenly goes busy, cancel that timer. The
* CPU didn't go busy; we'll recheck things upon idle exit.
*/
if (pending && pcpu->timer_idlecancel) {
del_timer(&pcpu->cpu_timer);
/*
* Ensure last timer run time is after current idle
* sample start time, so next idle exit will always
* start a new idle sampling period.
*/
pcpu->idle_exit_time = 0;
pcpu->timer_idlecancel = 0;
}
}
}
static void cpufreq_interactive_idle_end(void)
{
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, smp_processor_id());
pcpu->idling = 0;
smp_wmb();
/*
* Arm the timer for 1-2 ticks later if not already, and if the timer
* function has already processed the previous load sampling
* interval. (If the timer is not pending but has not processed
* the previous interval, it is probably racing with us on another
* CPU. Let it compute load based on the previous sample and then
* re-arm the timer for another interval when it's done, rather
* than updating the interval start time to be "now", which doesn't
* give the timer function enough time to make a decision on this
* run.)
*/
if (timer_pending(&pcpu->cpu_timer) == 0 &&
pcpu->timer_run_time >= pcpu->idle_exit_time &&
pcpu->governor_enabled) {
pcpu->time_in_idle =
get_cpu_idle_time_us(smp_processor_id(),
&pcpu->idle_exit_time);
pcpu->timer_idlecancel = 0;
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
}
}
static int cpufreq_interactive_up_task(void *data)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&up_cpumask_lock, flags);
if (cpumask_empty(&up_cpumask)) {
spin_unlock_irqrestore(&up_cpumask_lock, flags);
schedule();
if (kthread_should_stop())
break;
spin_lock_irqsave(&up_cpumask_lock, flags);
}
set_current_state(TASK_RUNNING);
tmp_mask = up_cpumask;
cpumask_clear(&up_cpumask);
spin_unlock_irqrestore(&up_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
unsigned int j;
unsigned int max_freq = 0;
pcpu = &per_cpu(cpuinfo, cpu);
smp_rmb();
if (!pcpu->governor_enabled)
continue;
mutex_lock(&set_speed_lock);
for_each_cpu(j, pcpu->policy->cpus) {
struct cpufreq_interactive_cpuinfo *pjcpu =
&per_cpu(cpuinfo, j);
if (pjcpu->target_freq > max_freq)
max_freq = pjcpu->target_freq;
}
if (max_freq != pcpu->policy->cur)
__cpufreq_driver_target(pcpu->policy,
max_freq,
CPUFREQ_RELATION_H);
mutex_unlock(&set_speed_lock);
trace_cpufreq_interactive_up(cpu, pcpu->target_freq,
pcpu->policy->cur);
}
}
return 0;
}
static void cpufreq_interactive_freq_down(struct work_struct *work)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
spin_lock_irqsave(&down_cpumask_lock, flags);
tmp_mask = down_cpumask;
cpumask_clear(&down_cpumask);
spin_unlock_irqrestore(&down_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
unsigned int j;
unsigned int max_freq = 0;
pcpu = &per_cpu(cpuinfo, cpu);
smp_rmb();
if (!pcpu->governor_enabled)
continue;
mutex_lock(&set_speed_lock);
for_each_cpu(j, pcpu->policy->cpus) {
struct cpufreq_interactive_cpuinfo *pjcpu =
&per_cpu(cpuinfo, j);
if (pjcpu->target_freq > max_freq)
max_freq = pjcpu->target_freq;
}
if (max_freq != pcpu->policy->cur)
__cpufreq_driver_target(pcpu->policy, max_freq,
CPUFREQ_RELATION_H);
mutex_unlock(&set_speed_lock);
trace_cpufreq_interactive_down(cpu, pcpu->target_freq,
pcpu->policy->cur);
}
}
static void cpufreq_interactive_boost(void)
{
int i;
int anyboost = 0;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
spin_lock_irqsave(&up_cpumask_lock, flags);
for_each_online_cpu(i) {
pcpu = &per_cpu(cpuinfo, i);
if (pcpu->target_freq < hispeed_freq) {
pcpu->target_freq = hispeed_freq;
cpumask_set_cpu(i, &up_cpumask);
pcpu->target_set_time_in_idle =
get_cpu_idle_time_us(i, &pcpu->target_set_time);
pcpu->hispeed_validate_time = pcpu->target_set_time;
anyboost = 1;
}
/*
* Set floor freq and (re)start timer for when last
* validated.
*/
pcpu->floor_freq = hispeed_freq;
pcpu->floor_validate_time = ktime_to_us(ktime_get());
}
spin_unlock_irqrestore(&up_cpumask_lock, flags);
if (anyboost)
wake_up_process(up_task);
}
/*
* Pulsed boost on input event raises CPUs to hispeed_freq and lets
* usual algorithm of min_sample_time decide when to allow speed
* to drop.
*/
static void cpufreq_interactive_input_event(struct input_handle *handle,
unsigned int type,
unsigned int code, int value)
{
if (input_boost_val && type == EV_SYN && code == SYN_REPORT) {
trace_cpufreq_interactive_boost("input");
cpufreq_interactive_boost();
}
}
static void cpufreq_interactive_input_open(struct work_struct *w)
{
struct cpufreq_interactive_inputopen *io =
container_of(w, struct cpufreq_interactive_inputopen,
inputopen_work);
int error;
error = input_open_device(io->handle);
if (error)
input_unregister_handle(io->handle);
}
static int cpufreq_interactive_input_connect(struct input_handler *handler,
struct input_dev *dev,
const struct input_device_id *id)
{
struct input_handle *handle;
int error;
pr_info("%s: connect to %s\n", __func__, dev->name);
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "cpufreq_interactive";
error = input_register_handle(handle);
if (error)
goto err;
inputopen.handle = handle;
queue_work(down_wq, &inputopen.inputopen_work);
return 0;
err:
kfree(handle);
return error;
}
static void cpufreq_interactive_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id cpufreq_interactive_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.evbit = { BIT_MASK(EV_ABS) },
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
}, /* multi-touch touchscreen */
{
.flags = INPUT_DEVICE_ID_MATCH_KEYBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) },
.absbit = { [BIT_WORD(ABS_X)] =
BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) },
}, /* touchpad */
{ },
};
static struct input_handler cpufreq_interactive_input_handler = {
.event = cpufreq_interactive_input_event,
.connect = cpufreq_interactive_input_connect,
.disconnect = cpufreq_interactive_input_disconnect,
.name = "cpufreq_interactive",
.id_table = cpufreq_interactive_ids,
};
static ssize_t show_hispeed_freq(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%llu\n", hispeed_freq);
}
static ssize_t store_hispeed_freq(struct kobject *kobj,
struct attribute *attr, const char *buf,
size_t count)
{
int ret;
u64 val;
ret = strict_strtoull(buf, 0, &val);
if (ret < 0)
return ret;
hispeed_freq = val;
return count;
}
static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644,
show_hispeed_freq, store_hispeed_freq);
static ssize_t show_go_hispeed_load(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", go_hispeed_load);
}
static ssize_t store_go_hispeed_load(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
go_hispeed_load = val;
return count;
}
static struct global_attr go_hispeed_load_attr = __ATTR(go_hispeed_load, 0644,
show_go_hispeed_load, store_go_hispeed_load);
static ssize_t show_min_sample_time(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", min_sample_time);
}
static ssize_t store_min_sample_time(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
min_sample_time = val;
return count;
}
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
show_min_sample_time, store_min_sample_time);
static ssize_t show_above_hispeed_delay(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", above_hispeed_delay_val);
}
static ssize_t store_above_hispeed_delay(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
above_hispeed_delay_val = val;
return count;
}
define_one_global_rw(above_hispeed_delay);
static ssize_t show_timer_rate(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", timer_rate);
}
static ssize_t store_timer_rate(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
timer_rate = val;
return count;
}
static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644,
show_timer_rate, store_timer_rate);
static ssize_t show_input_boost(struct kobject *kobj, struct attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", input_boost_val);
}
static ssize_t store_input_boost(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
input_boost_val = val;
return count;
}
define_one_global_rw(input_boost);
static ssize_t show_boost(struct kobject *kobj, struct attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", boost_val);
}
static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
boost_val = val;
if (boost_val) {
trace_cpufreq_interactive_boost("on");
cpufreq_interactive_boost();
} else {
trace_cpufreq_interactive_unboost("off");
}
return count;
}
define_one_global_rw(boost);
static ssize_t store_boostpulse(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
trace_cpufreq_interactive_boost("pulse");
cpufreq_interactive_boost();
return count;
}
static struct global_attr boostpulse =
__ATTR(boostpulse, 0200, NULL, store_boostpulse);
static struct attribute *interactive_attributes[] = {
&hispeed_freq_attr.attr,
&go_hispeed_load_attr.attr,
&above_hispeed_delay.attr,
&min_sample_time_attr.attr,
&timer_rate_attr.attr,
&input_boost.attr,
&boost.attr,
&boostpulse.attr,
NULL,
};
static struct attribute_group interactive_attr_group = {
.attrs = interactive_attributes,
.name = "interactive",
};
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event)
{
int rc;
unsigned int j;
struct cpufreq_interactive_cpuinfo *pcpu;
struct cpufreq_frequency_table *freq_table;
switch (event) {
case CPUFREQ_GOV_START:
if (!cpu_online(policy->cpu))
return -EINVAL;
freq_table =
cpufreq_frequency_get_table(policy->cpu);
for_each_cpu(j, policy->cpus) {
pcpu = &per_cpu(cpuinfo, j);
pcpu->policy = policy;
pcpu->target_freq = policy->cur;
pcpu->freq_table = freq_table;
pcpu->target_set_time_in_idle =
get_cpu_idle_time_us(j,
&pcpu->target_set_time);
pcpu->floor_freq = pcpu->target_freq;
pcpu->floor_validate_time =
pcpu->target_set_time;
pcpu->hispeed_validate_time =
pcpu->target_set_time;
pcpu->governor_enabled = 1;
pcpu->idle_exit_time = pcpu->target_set_time;
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
smp_wmb();
}
if (!hispeed_freq)
hispeed_freq = policy->max;
/*
* Do not register the idle hook and create sysfs
* entries if we have already done so.
*/
if (atomic_inc_return(&active_count) > 1)
return 0;
rc = sysfs_create_group(cpufreq_global_kobject,
&interactive_attr_group);
if (rc)
return rc;
rc = input_register_handler(&cpufreq_interactive_input_handler);
if (rc)
pr_warn("%s: failed to register input handler\n",
__func__);
break;
case CPUFREQ_GOV_STOP:
for_each_cpu(j, policy->cpus) {
pcpu = &per_cpu(cpuinfo, j);
pcpu->governor_enabled = 0;
smp_wmb();
del_timer_sync(&pcpu->cpu_timer);
/*
* Reset idle exit time since we may cancel the timer
* before it can run after the last idle exit time,
* to avoid tripping the check in idle exit for a timer
* that is trying to run.
*/
pcpu->idle_exit_time = 0;
}
flush_work(&freq_scale_down_work);
if (atomic_dec_return(&active_count) > 0)
return 0;
input_unregister_handler(&cpufreq_interactive_input_handler);
sysfs_remove_group(cpufreq_global_kobject,
&interactive_attr_group);
break;
case CPUFREQ_GOV_LIMITS:
if (policy->max < policy->cur)
__cpufreq_driver_target(policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > policy->cur)
__cpufreq_driver_target(policy,
policy->min, CPUFREQ_RELATION_L);
break;
}
return 0;
}
static int cpufreq_interactive_idle_notifier(struct notifier_block *nb,
unsigned long val,
void *data)
{
switch (val) {
case IDLE_START:
cpufreq_interactive_idle_start();
break;
case IDLE_END:
cpufreq_interactive_idle_end();
break;
}
return 0;
}
static struct notifier_block cpufreq_interactive_idle_nb = {
.notifier_call = cpufreq_interactive_idle_notifier,
};
static int __init cpufreq_interactive_init(void)
{
unsigned int i;
struct cpufreq_interactive_cpuinfo *pcpu;
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
go_hispeed_load = DEFAULT_GO_HISPEED_LOAD;
min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
above_hispeed_delay_val = DEFAULT_ABOVE_HISPEED_DELAY;
timer_rate = DEFAULT_TIMER_RATE;
/* Initalize per-cpu timers */
for_each_possible_cpu(i) {
pcpu = &per_cpu(cpuinfo, i);
init_timer(&pcpu->cpu_timer);
pcpu->cpu_timer.function = cpufreq_interactive_timer;
pcpu->cpu_timer.data = i;
}
up_task = kthread_create(cpufreq_interactive_up_task, NULL,
"kinteractiveup");
if (IS_ERR(up_task))
return PTR_ERR(up_task);
sched_setscheduler_nocheck(up_task, SCHED_FIFO, &param);
get_task_struct(up_task);
/* No rescuer thread, bind to CPU queuing the work for possibly
warm cache (probably doesn't matter much). */
down_wq = alloc_workqueue("knteractive_down", 0, 1);
if (!down_wq)
goto err_freeuptask;
INIT_WORK(&freq_scale_down_work,
cpufreq_interactive_freq_down);
spin_lock_init(&up_cpumask_lock);
spin_lock_init(&down_cpumask_lock);
mutex_init(&set_speed_lock);
idle_notifier_register(&cpufreq_interactive_idle_nb);
INIT_WORK(&inputopen.inputopen_work, cpufreq_interactive_input_open);
return cpufreq_register_governor(&cpufreq_gov_interactive);
err_freeuptask:
put_task_struct(up_task);
return -ENOMEM;
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
fs_initcall(cpufreq_interactive_init);
#else
module_init(cpufreq_interactive_init);
#endif
static void __exit cpufreq_interactive_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_interactive);
kthread_stop(up_task);
put_task_struct(up_task);
destroy_workqueue(down_wq);
}
module_exit(cpufreq_interactive_exit);
MODULE_AUTHOR("Mike Chan <mike@android.com>");
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
"Latency sensitive workloads");
MODULE_LICENSE("GPL");