blob: 0376c6406f4af7657165190ff9d910614360bf49 [file] [log] [blame]
/* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/rtc.h>
#include <linux/mfd/pmic8058.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/rtc/rtc-pm8058.h>
#include <linux/pm_runtime.h>
#define PM8058_RTC_CTRL 0x1E8
#define PM8058_RTC_ENABLE BIT(7)
#define PM8058_RTC_ALARM_ENABLE BIT(1)
#define PM8058_RTC_ABORT_ENABLE BIT(0)
#define PM8058_RTC_ALARM_CTRL 0x1E9
#define PM8058_RTC_ALARM_CLEAR BIT(0)
#define PM8058_RTC_TEST 0x1F6
#define PM8058_RTC_READ_BASE 0x1EE
#define PM8058_RTC_WRITE_BASE 0x1EA
#define PM8058_RTC_ALARM_BASE 0x1F2
struct pm8058_rtc {
struct rtc_device *rtc0;
u8 rtc_ctrl_reg;
int rtc_irq;
int rtc_alarm_irq;
struct pm8058_chip *pm_chip;
};
static int
pm8058_rtc_read_bytes(struct pm8058_rtc *rtc_dd, u8 *rtc_val, int base)
{
int i, rc;
/*
* Read the 32-bit RTC/Alarm Value.
* These values have to be read 8-bit at a time.
*/
for (i = 0; i < 4; i++) {
rc = pm8058_read(rtc_dd->pm_chip, base + i, &rtc_val[i], 1);
if (rc < 0) {
pr_err("%s: PM8058 read failed\n", __func__);
return rc;
}
}
return 0;
}
static int
pm8058_rtc_write_bytes(struct pm8058_rtc *rtc_dd, u8 *rtc_val, int base)
{
int i, rc;
/*
* Write the 32-bit Value.
* These values have to be written 8-bit at a time.
*/
for (i = 0; i < 4; i++) {
rc = pm8058_write(rtc_dd->pm_chip, base + i, &rtc_val[i], 1);
if (rc < 0) {
pr_err("%s: PM8058 read failed\n", __func__);
return rc;
}
}
return 0;
}
/*
* Steps to write the RTC registers.
* 1. Disable alarm if enabled.
* 2. Write 0x00 to LSB.
* 3. Write Byte[1], Byte[2], Byte[3] then Byte[0].
* 4. Enable alarm if disabled earlier.
*/
#ifdef CONFIG_RTC_PM8058_WRITE_ENABLE
static int
pm8058_rtc0_set_time(struct device *dev, struct rtc_time *tm)
{
int rc;
unsigned long secs = 0;
u8 value[4], reg = 0, alarm_enabled = 0, ctrl_reg = 0, i;
struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev);
ctrl_reg = rtc_dd->rtc_ctrl_reg;
rtc_tm_to_time(tm, &secs);
value[0] = secs & 0xFF;
value[1] = (secs >> 8) & 0xFF;
value[2] = (secs >> 16) & 0xFF;
value[3] = (secs >> 24) & 0xFF;
pr_debug("%s: Seconds value to be written to RTC = %lu\n", __func__,
secs);
/* Disable alarm before updating RTC */
if (ctrl_reg & PM8058_RTC_ALARM_ENABLE) {
alarm_enabled = 1;
ctrl_reg &= ~PM8058_RTC_ALARM_ENABLE;
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL,
&ctrl_reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return rc;
}
}
/* Write Byte[1], Byte[2], Byte[3], Byte[0] */
reg = 0;
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_WRITE_BASE, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return rc;
}
for (i = 1; i < 4; i++) {
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_WRITE_BASE + i,
&value[i], 1);
if (rc < 0) {
pr_err("%s:Write to RTC registers failed\n", __func__);
return rc;
}
}
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_WRITE_BASE,
&value[0], 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return rc;
}
if (alarm_enabled) {
ctrl_reg |= PM8058_RTC_ALARM_ENABLE;
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL,
&ctrl_reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return rc;
}
}
rtc_dd->rtc_ctrl_reg = ctrl_reg;
return 0;
}
#endif
static int
pm8058_rtc0_read_time(struct device *dev, struct rtc_time *tm)
{
int rc;
u8 value[4], reg;
unsigned long secs = 0;
struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev);
rc = pm8058_rtc_read_bytes(rtc_dd, value, PM8058_RTC_READ_BASE);
if (rc < 0) {
pr_err("%s: RTC time read failed\n", __func__);
return rc;
}
/*
* Read the LSB again and check if there has been a carry over.
* If there is, redo the read operation.
*/
rc = pm8058_read(rtc_dd->pm_chip, PM8058_RTC_READ_BASE, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 read failed\n", __func__);
return rc;
}
if (unlikely(reg < value[0])) {
rc = pm8058_rtc_read_bytes(rtc_dd, value,
PM8058_RTC_READ_BASE);
if (rc < 0) {
pr_err("%s: RTC time read failed\n", __func__);
return rc;
}
}
secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24);
rtc_time_to_tm(secs, tm);
rc = rtc_valid_tm(tm);
if (rc < 0) {
pr_err("%s: Invalid time read from PMIC8058\n", __func__);
return rc;
}
pr_debug("%s: secs = %lu, h::m:s == %d::%d::%d, d/m/y = %d/%d/%d\n",
__func__, secs, tm->tm_hour, tm->tm_min, tm->tm_sec,
tm->tm_mday, tm->tm_mon, tm->tm_year);
return 0;
}
static int
pm8058_rtc0_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
int rc;
u8 value[4], reg;
struct rtc_time rtc_tm;
unsigned long secs_alarm, secs_rtc;
struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev);
reg = rtc_dd->rtc_ctrl_reg;
/* Check if the alarm is valid */
rc = rtc_valid_tm(&alarm->time);
if (rc < 0) {
pr_err("%s: Alarm time invalid\n", __func__);
return -EINVAL;
}
rtc_tm_to_time(&alarm->time, &secs_alarm);
/*
* Read the current RTC time and verify if the alarm time is in the
* past. If yes, return invalid.
*/
rc = pm8058_rtc0_read_time(dev, &rtc_tm);
if (rc) {
pr_err("%s: Unable to read RTC time\n", __func__);
return -EINVAL;
}
rtc_tm_to_time(&rtc_tm, &secs_rtc);
if (secs_alarm < secs_rtc) {
pr_err("%s: Trying to set alarm in the past\n", __func__);
return -EINVAL;
}
value[0] = secs_alarm & 0xFF;
value[1] = (secs_alarm >> 8) & 0xFF;
value[2] = (secs_alarm >> 16) & 0xFF;
value[3] = (secs_alarm >> 24) & 0xFF;
rc = pm8058_rtc_write_bytes(rtc_dd, value, PM8058_RTC_ALARM_BASE);
if (rc < 0) {
pr_err("%s: Alarm could not be set\n", __func__);
return rc;
}
reg = (alarm->enabled) ? (reg | PM8058_RTC_ALARM_ENABLE) :
(reg & ~PM8058_RTC_ALARM_ENABLE);
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return rc;
}
rtc_dd->rtc_ctrl_reg = reg;
pr_debug("%s: Alarm Set for h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n",
__func__, alarm->time.tm_hour, alarm->time.tm_min,
alarm->time.tm_sec, alarm->time.tm_mday,
alarm->time.tm_mon, alarm->time.tm_year);
return 0;
}
static int
pm8058_rtc0_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
int rc;
u8 value[4], reg;
unsigned long secs = 0;
struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev);
reg = rtc_dd->rtc_ctrl_reg;
alarm->enabled = !!(reg & PM8058_RTC_ALARM_ENABLE);
rc = pm8058_rtc_read_bytes(rtc_dd, value,
PM8058_RTC_ALARM_BASE);
if (rc < 0) {
pr_err("%s: RTC alarm time read failed\n", __func__);
return rc;
}
secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24);
rtc_time_to_tm(secs, &alarm->time);
rc = rtc_valid_tm(&alarm->time);
if (rc < 0) {
pr_err("%s: Invalid time read from PMIC8058\n", __func__);
return rc;
}
pr_debug("%s: Alarm set for - h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n",
__func__, alarm->time.tm_hour, alarm->time.tm_min,
alarm->time.tm_sec, alarm->time.tm_mday,
alarm->time.tm_mon, alarm->time.tm_year);
return 0;
}
static int
pm8058_rtc0_alarm_irq_enable(struct device *dev, unsigned int enable)
{
int rc;
struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev);
u8 reg;
reg = rtc_dd->rtc_ctrl_reg;
reg = (enable) ? (reg | PM8058_RTC_ALARM_ENABLE) :
(reg & ~PM8058_RTC_ALARM_ENABLE);
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return rc;
}
rtc_dd->rtc_ctrl_reg = reg;
return rc;
}
static struct rtc_class_ops pm8058_rtc0_ops = {
.read_time = pm8058_rtc0_read_time,
.set_alarm = pm8058_rtc0_set_alarm,
.read_alarm = pm8058_rtc0_read_alarm,
.alarm_irq_enable = pm8058_rtc0_alarm_irq_enable,
};
static irqreturn_t pm8058_alarm_trigger(int irq, void *dev_id)
{
u8 reg;
int rc;
unsigned long events = 0;
struct pm8058_rtc *rtc_dd = dev_id;
events = RTC_IRQF | RTC_AF;
rtc_update_irq(rtc_dd->rtc0, 1, events);
pr_debug("%s: Alarm Triggered !!\n", __func__);
/* Clear the alarm enable bit */
reg = rtc_dd->rtc_ctrl_reg;
reg &= ~PM8058_RTC_ALARM_ENABLE;
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL,
&reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
goto rtc_alarm_handled;
}
rtc_dd->rtc_ctrl_reg = reg;
/* Clear RTC alarm register */
rc = pm8058_read(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 read failed\n", __func__);
goto rtc_alarm_handled;
}
reg &= ~PM8058_RTC_ALARM_CLEAR;
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
goto rtc_alarm_handled;
}
rtc_alarm_handled:
return IRQ_HANDLED;
}
static int __devinit pm8058_rtc_probe(struct platform_device *pdev)
{
int rc;
u8 reg, reg_alarm;
struct pm8058_rtc *rtc_dd;
struct pm8058_chip *pm_chip;
pm_chip = dev_get_drvdata(pdev->dev.parent);
if (pm_chip == NULL) {
pr_err("%s: Invalid driver information\n", __func__);
return -ENXIO;
}
rtc_dd = kzalloc(sizeof(*rtc_dd), GFP_KERNEL);
if (rtc_dd == NULL) {
pr_err("%s: Unable to allocate memory\n", __func__);
return -ENOMEM;
}
/* Enable runtime PM ops, start in ACTIVE mode */
rc = pm_runtime_set_active(&pdev->dev);
if (rc < 0)
dev_dbg(&pdev->dev, "unable to set runtime pm state\n");
pm_runtime_enable(&pdev->dev);
rtc_dd->rtc_irq = platform_get_irq(pdev, 0);
rtc_dd->rtc_alarm_irq = platform_get_irq(pdev, 1);
if (!rtc_dd->rtc_alarm_irq || !rtc_dd->rtc_irq) {
pr_err("%s: RTC Alarm IRQ absent\n", __func__);
rc = -ENXIO;
goto fail_rtc_enable;
}
rtc_dd->pm_chip = pm_chip;
rc = pm8058_read(pm_chip, PM8058_RTC_CTRL, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 read failed\n", __func__);
goto fail_rtc_enable;
}
/* Enable RTC, ABORT enable and disable alarm */
reg |= ((PM8058_RTC_ENABLE | PM8058_RTC_ABORT_ENABLE) &
~PM8058_RTC_ALARM_ENABLE);
rc = pm8058_write(pm_chip, PM8058_RTC_CTRL, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
goto fail_rtc_enable;
}
/* Clear RTC alarm control register */
rc = pm8058_read(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL,
&reg_alarm, 1);
if (rc < 0) {
pr_err("%s: PM8058 read failed\n", __func__);
goto fail_rtc_enable;
}
reg_alarm &= ~PM8058_RTC_ALARM_CLEAR;
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL,
&reg_alarm, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
goto fail_rtc_enable;
}
rtc_dd->rtc_ctrl_reg = reg;
#ifdef CONFIG_RTC_PM8058_WRITE_ENABLE
pm8058_rtc0_ops.set_time = pm8058_rtc0_set_time;
#endif
platform_set_drvdata(pdev, rtc_dd);
/* Register the RTC device */
rtc_dd->rtc0 = rtc_device_register("pm8058_rtc0", &pdev->dev,
&pm8058_rtc0_ops, THIS_MODULE);
if (IS_ERR(rtc_dd->rtc0)) {
pr_err("%s: RTC device registration failed (%ld)\n",
__func__, PTR_ERR(rtc_dd->rtc0));
rc = PTR_ERR(rtc_dd->rtc0);
goto fail_rtc_enable;
}
/* Request the alarm IRQ */
rc = request_threaded_irq(rtc_dd->rtc_alarm_irq, NULL,
pm8058_alarm_trigger, IRQF_TRIGGER_RISING,
"pm8058_rtc_alarm", rtc_dd);
if (rc < 0) {
pr_err("%s: Request IRQ failed (%d)\n", __func__, rc);
goto fail_req_irq;
}
device_init_wakeup(&pdev->dev, 1);
pr_debug("%s: Probe success !!\n", __func__);
return 0;
fail_req_irq:
rtc_device_unregister(rtc_dd->rtc0);
fail_rtc_enable:
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_disable(&pdev->dev);
kfree(rtc_dd);
return rc;
}
#ifdef CONFIG_PM
static int pm8058_rtc_resume(struct device *dev)
{
struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(rtc_dd->rtc_alarm_irq);
return 0;
}
static int pm8058_rtc_suspend(struct device *dev)
{
struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(rtc_dd->rtc_alarm_irq);
return 0;
}
static struct dev_pm_ops pm8058_rtc_pm_ops = {
.suspend = pm8058_rtc_suspend,
.resume = pm8058_rtc_resume,
};
#endif
static int __devexit pm8058_rtc_remove(struct platform_device *pdev)
{
struct pm8058_rtc *rtc_dd = platform_get_drvdata(pdev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_disable(&pdev->dev);
device_init_wakeup(&pdev->dev, 0);
free_irq(rtc_dd->rtc_alarm_irq, rtc_dd);
rtc_device_unregister(rtc_dd->rtc0);
kfree(rtc_dd);
return 0;
}
static void pm8058_rtc_shutdown(struct platform_device *pdev)
{
u8 reg;
int rc, i;
bool rtc_alarm_powerup = false;
struct pm8058_rtc *rtc_dd = platform_get_drvdata(pdev);
struct pm8058_rtc_platform_data *pdata = pdev->dev.platform_data;
if (pdata != NULL)
rtc_alarm_powerup = pdata->rtc_alarm_powerup;
if (!rtc_alarm_powerup) {
dev_dbg(&pdev->dev, "Disabling alarm interrupts\n");
/* Disable RTC alarms */
reg = rtc_dd->rtc_ctrl_reg;
reg &= ~PM8058_RTC_ALARM_ENABLE;
rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return;
}
/* Clear Alarm register */
reg = 0x0;
for (i = 0; i < 4; i++) {
rc = pm8058_write(rtc_dd->pm_chip,
PM8058_RTC_ALARM_BASE + i, &reg, 1);
if (rc < 0) {
pr_err("%s: PM8058 write failed\n", __func__);
return;
}
}
}
}
static struct platform_driver pm8058_rtc_driver = {
.probe = pm8058_rtc_probe,
.remove = __devexit_p(pm8058_rtc_remove),
.shutdown = pm8058_rtc_shutdown,
.driver = {
.name = "pm8058-rtc",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &pm8058_rtc_pm_ops,
#endif
},
};
static int __init pm8058_rtc_init(void)
{
return platform_driver_register(&pm8058_rtc_driver);
}
static void __exit pm8058_rtc_exit(void)
{
platform_driver_unregister(&pm8058_rtc_driver);
}
module_init(pm8058_rtc_init);
module_exit(pm8058_rtc_exit);
MODULE_ALIAS("platform:pm8058-rtc");
MODULE_DESCRIPTION("PMIC8058 RTC driver");
MODULE_LICENSE("GPL v2");