blob: 0d5771bd859ed5f97de1eda46738e6626fc685d9 [file] [log] [blame]
/* Copyright (c) 2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/debugfs.h>
#include <linux/mfd/wcd9xxx/core.h>
#include <linux/mfd/wcd9xxx/wcd9xxx_registers.h>
#include <linux/mfd/wcd9xxx/wcd9304_registers.h>
#include <linux/mfd/wcd9xxx/pdata.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/jack.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/kernel.h>
#include <linux/gpio.h>
#include <linux/wait.h>
#include "wcd9304.h"
#define WCD9304_RATES (SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000|\
SNDRV_PCM_RATE_32000|SNDRV_PCM_RATE_48000)
#define ADC_DMIC_SEL_ADC 0
#define ADC_DMIC_SEL_DMIC 1
#define NUM_AMIC 3
#define NUM_DECIMATORS 4
#define NUM_INTERPOLATORS 3
#define BITS_PER_REG 8
enum {
AIF1_PB = 0,
AIF1_CAP,
NUM_CODEC_DAIS,
};
struct wcd9xxx_ch sitar_rx_chs[SITAR_RX_MAX] = {
WCD9XXX_CH(10, 0),
WCD9XXX_CH(11, 1),
WCD9XXX_CH(12, 2),
WCD9XXX_CH(13, 3),
WCD9XXX_CH(14, 4)
};
struct wcd9xxx_ch sitar_tx_chs[SITAR_TX_MAX] = {
WCD9XXX_CH(0, 0),
WCD9XXX_CH(1, 1),
WCD9XXX_CH(2, 2),
WCD9XXX_CH(3, 3),
WCD9XXX_CH(4, 4),
};
#define SITAR_CFILT_FAST_MODE 0x00
#define SITAR_CFILT_SLOW_MODE 0x40
#define MBHC_FW_READ_ATTEMPTS 15
#define MBHC_FW_READ_TIMEOUT 2000000
#define SLIM_CLOSE_TIMEOUT 1000
#define SITAR_JACK_MASK (SND_JACK_HEADSET | SND_JACK_OC_HPHL | SND_JACK_OC_HPHR)
#define SITAR_I2S_MASTER_MODE_MASK 0x08
#define SITAR_OCP_ATTEMPT 1
#define SITAR_MCLK_RATE_12288KHZ 12288000
#define SITAR_MCLK_RATE_9600KHZ 9600000
#define SITAR_FAKE_INS_THRESHOLD_MS 2500
#define SITAR_FAKE_REMOVAL_MIN_PERIOD_MS 50
#define SITAR_MBHC_BUTTON_MIN 0x8000
#define SITAR_GPIO_IRQ_DEBOUNCE_TIME_US 5000
#define SITAR_ACQUIRE_LOCK(x) do { mutex_lock(&x); } while (0)
#define SITAR_RELEASE_LOCK(x) do { mutex_unlock(&x); } while (0)
#define MBHC_NUM_DCE_PLUG_DETECT 3
#define SITAR_MBHC_FAKE_INSERT_LOW 10
#define SITAR_MBHC_FAKE_INSERT_HIGH 80
#define SITAR_MBHC_FAKE_INSERT_VOLT_DELTA_MV 500
#define SITAR_HS_DETECT_PLUG_TIME_MS (5 * 1000)
#define SITAR_HS_DETECT_PLUG_INERVAL_MS 100
#define NUM_ATTEMPTS_TO_REPORT 5
#define SITAR_MBHC_STATUS_REL_DETECTION 0x0C
#define SITAR_MBHC_GPIO_REL_DEBOUNCE_TIME_MS 200
static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
static const DECLARE_TLV_DB_SCALE(line_gain, 0, 7, 1);
static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 25, 1);
static struct snd_soc_dai_driver sitar_dai[];
static int sitar_codec_enable_slimtx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event);
static int sitar_codec_enable_slimrx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event);
enum sitar_bandgap_type {
SITAR_BANDGAP_OFF = 0,
SITAR_BANDGAP_AUDIO_MODE,
SITAR_BANDGAP_MBHC_MODE,
};
struct mbhc_micbias_regs {
u16 cfilt_val;
u16 cfilt_ctl;
u16 mbhc_reg;
u16 int_rbias;
u16 ctl_reg;
u8 cfilt_sel;
};
/* Codec supports 2 IIR filters */
enum {
IIR1 = 0,
IIR2,
IIR_MAX,
};
/* Codec supports 5 bands */
enum {
BAND1 = 0,
BAND2,
BAND3,
BAND4,
BAND5,
BAND_MAX,
};
/* Flags to track of PA and DAC state.
* PA and DAC should be tracked separately as AUXPGA loopback requires
* only PA to be turned on without DAC being on. */
enum sitar_priv_ack_flags {
SITAR_HPHL_PA_OFF_ACK = 0,
SITAR_HPHR_PA_OFF_ACK,
SITAR_HPHL_DAC_OFF_ACK,
SITAR_HPHR_DAC_OFF_ACK
};
/* Data used by MBHC */
struct mbhc_internal_cal_data {
u16 dce_z;
u16 dce_mb;
u16 sta_z;
u16 sta_mb;
u32 t_sta_dce;
u32 t_dce;
u32 t_sta;
u32 micb_mv;
u16 v_ins_hu;
u16 v_ins_h;
u16 v_b1_hu;
u16 v_b1_h;
u16 v_b1_huc;
u16 v_brh;
u16 v_brl;
u16 v_no_mic;
u8 npoll;
u8 nbounce_wait;
};
enum sitar_mbhc_plug_type {
PLUG_TYPE_INVALID = -1,
PLUG_TYPE_NONE,
PLUG_TYPE_HEADSET,
PLUG_TYPE_HEADPHONE,
PLUG_TYPE_HIGH_HPH,
};
enum sitar_mbhc_state {
MBHC_STATE_NONE = -1,
MBHC_STATE_POTENTIAL,
MBHC_STATE_POTENTIAL_RECOVERY,
MBHC_STATE_RELEASE,
};
static const u32 vport_check_table[NUM_CODEC_DAIS] = {
0, /* AIF1_PB */
0, /* AIF1_CAP */
};
struct sitar_priv {
struct snd_soc_codec *codec;
u32 mclk_freq;
u32 adc_count;
u32 cfilt1_cnt;
u32 cfilt2_cnt;
u32 cfilt3_cnt;
u32 rx_bias_count;
enum sitar_bandgap_type bandgap_type;
bool mclk_enabled;
bool clock_active;
bool config_mode_active;
bool mbhc_polling_active;
unsigned long mbhc_fake_ins_start;
int buttons_pressed;
enum sitar_micbias_num micbias;
/* void* calibration contains:
* struct sitar_mbhc_general_cfg generic;
* struct sitar_mbhc_plug_detect_cfg plug_det;
* struct sitar_mbhc_plug_type_cfg plug_type;
* struct sitar_mbhc_btn_detect_cfg btn_det;
* struct sitar_mbhc_imped_detect_cfg imped_det;
* Note: various size depends on btn_det->num_btn
*/
void *calibration;
struct mbhc_internal_cal_data mbhc_data;
struct wcd9xxx_pdata *pdata;
u32 anc_slot;
bool no_mic_headset_override;
struct mbhc_micbias_regs mbhc_bias_regs;
u8 cfilt_k_value;
bool mbhc_micbias_switched;
/* track PA/DAC state */
unsigned long hph_pa_dac_state;
/*track sitar interface type*/
u8 intf_type;
u32 hph_status; /* track headhpone status */
/* define separate work for left and right headphone OCP to avoid
* additional checking on which OCP event to report so no locking
* to ensure synchronization is required
*/
struct work_struct hphlocp_work; /* reporting left hph ocp off */
struct work_struct hphrocp_work; /* reporting right hph ocp off */
u8 hphlocp_cnt; /* headphone left ocp retry */
u8 hphrocp_cnt; /* headphone right ocp retry */
/* Callback function to enable MCLK */
int (*mclk_cb) (struct snd_soc_codec*, int);
/* Work to perform MBHC Firmware Read */
struct delayed_work mbhc_firmware_dwork;
const struct firmware *mbhc_fw;
/* num of slim ports required */
struct wcd9xxx_codec_dai_data dai[NUM_CODEC_DAIS];
/* Currently, only used for mbhc purpose, to protect
* concurrent execution of mbhc threaded irq handlers and
* kill race between DAPM and MBHC.But can serve as a
* general lock to protect codec resource
*/
struct mutex codec_resource_lock;
struct sitar_mbhc_config mbhc_cfg;
bool in_gpio_handler;
u8 current_plug;
bool lpi_enabled;
enum sitar_mbhc_state mbhc_state;
struct work_struct hs_correct_plug_work;
bool hs_detect_work_stop;
struct delayed_work mbhc_btn_dwork;
unsigned long mbhc_last_resume; /* in jiffies */
};
#ifdef CONFIG_DEBUG_FS
struct sitar_priv *debug_sitar_priv;
#endif
static int sitar_get_anc_slot(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
ucontrol->value.integer.value[0] = sitar->anc_slot;
return 0;
}
static int sitar_put_anc_slot(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
sitar->anc_slot = ucontrol->value.integer.value[0];
return 0;
}
static int sitar_pa_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
ear_pa_gain = snd_soc_read(codec, SITAR_A_RX_EAR_GAIN);
ear_pa_gain &= 0xE0;
if (ear_pa_gain == 0x00) {
ucontrol->value.integer.value[0] = 0;
} else if (ear_pa_gain == 0x80) {
ucontrol->value.integer.value[0] = 1;
} else if (ear_pa_gain == 0xA0) {
ucontrol->value.integer.value[0] = 2;
} else if (ear_pa_gain == 0xE0) {
ucontrol->value.integer.value[0] = 3;
} else {
pr_err("%s: ERROR: Unsupported Ear Gain = 0x%x\n",
__func__, ear_pa_gain);
return -EINVAL;
}
pr_debug("%s: ear_pa_gain = 0x%x\n", __func__, ear_pa_gain);
return 0;
}
static int sitar_pa_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
pr_debug("%s: ucontrol->value.integer.value[0] = %ld\n", __func__,
ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
ear_pa_gain = 0x00;
break;
case 1:
ear_pa_gain = 0x80;
break;
case 2:
ear_pa_gain = 0xA0;
break;
case 3:
ear_pa_gain = 0xE0;
break;
default:
return -EINVAL;
}
snd_soc_update_bits(codec, SITAR_A_RX_EAR_GAIN, 0xE0, ear_pa_gain);
return 0;
}
static int sitar_get_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
snd_soc_read(codec, (SITAR_A_CDC_IIR1_CTL + 16 * iir_idx)) &
(1 << band_idx);
pr_debug("%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0]);
return 0;
}
static int sitar_put_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
/* Mask first 5 bits, 6-8 are reserved */
snd_soc_update_bits(codec, (SITAR_A_CDC_IIR1_CTL + 16 * iir_idx),
(1 << band_idx), (value << band_idx));
pr_debug("%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx, value);
return 0;
}
static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
int coeff_idx)
{
/* Address does not automatically update if reading */
snd_soc_write(codec,
(SITAR_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx),
(band_idx * BAND_MAX + coeff_idx) & 0x1F);
/* Mask bits top 2 bits since they are reserved */
return ((snd_soc_read(codec,
(SITAR_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx)) << 24) |
(snd_soc_read(codec,
(SITAR_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx)) << 16) |
(snd_soc_read(codec,
(SITAR_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx)) << 8) |
(snd_soc_read(codec,
(SITAR_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx)))) &
0x3FFFFFFF;
}
static int sitar_get_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
get_iir_band_coeff(codec, iir_idx, band_idx, 0);
ucontrol->value.integer.value[1] =
get_iir_band_coeff(codec, iir_idx, band_idx, 1);
ucontrol->value.integer.value[2] =
get_iir_band_coeff(codec, iir_idx, band_idx, 2);
ucontrol->value.integer.value[3] =
get_iir_band_coeff(codec, iir_idx, band_idx, 3);
ucontrol->value.integer.value[4] =
get_iir_band_coeff(codec, iir_idx, band_idx, 4);
pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[1],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[2],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[3],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[4]);
return 0;
}
static void set_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
int coeff_idx, uint32_t value)
{
/* Mask top 3 bits, 6-8 are reserved */
/* Update address manually each time */
snd_soc_write(codec,
(SITAR_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx),
(band_idx * BAND_MAX + coeff_idx) & 0x1F);
/* Mask top 2 bits, 7-8 are reserved */
snd_soc_write(codec,
(SITAR_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx),
(value >> 24) & 0x3F);
/* Isolate 8bits at a time */
snd_soc_write(codec,
(SITAR_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx),
(value >> 16) & 0xFF);
snd_soc_write(codec,
(SITAR_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx),
(value >> 8) & 0xFF);
snd_soc_write(codec,
(SITAR_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx),
value & 0xFF);
}
static int sitar_put_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
set_iir_band_coeff(codec, iir_idx, band_idx, 0,
ucontrol->value.integer.value[0]);
set_iir_band_coeff(codec, iir_idx, band_idx, 1,
ucontrol->value.integer.value[1]);
set_iir_band_coeff(codec, iir_idx, band_idx, 2,
ucontrol->value.integer.value[2]);
set_iir_band_coeff(codec, iir_idx, band_idx, 3,
ucontrol->value.integer.value[3]);
set_iir_band_coeff(codec, iir_idx, band_idx, 4,
ucontrol->value.integer.value[4]);
pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 0),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 1),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 2),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 3),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 4));
return 0;
}
static const char * const sitar_ear_pa_gain_text[] = {"POS_6_DB",
"POS_2_DB", "NEG_2P5_DB", "NEG_12_DB"};
static const struct soc_enum sitar_ear_pa_gain_enum[] = {
SOC_ENUM_SINGLE_EXT(4, sitar_ear_pa_gain_text),
};
/*cut of frequency for high pass filter*/
static const char *cf_text[] = {
"MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz"
};
static const struct soc_enum cf_dec1_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_TX1_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_rxmix1_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_RX1_B4_CTL, 1, 3, cf_text);
static const struct snd_kcontrol_new sitar_snd_controls[] = {
SOC_ENUM_EXT("EAR PA Gain", sitar_ear_pa_gain_enum[0],
sitar_pa_gain_get, sitar_pa_gain_put),
SOC_SINGLE_TLV("LINEOUT1 Volume", SITAR_A_RX_LINE_1_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("LINEOUT2 Volume", SITAR_A_RX_LINE_2_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("HPHL Volume", SITAR_A_RX_HPH_L_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_TLV("HPHR Volume", SITAR_A_RX_HPH_R_GAIN, 0, 12, 1,
line_gain),
SOC_SINGLE_S8_TLV("RX1 Digital Volume", SITAR_A_CDC_RX1_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX2 Digital Volume", SITAR_A_CDC_RX2_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX3 Digital Volume", SITAR_A_CDC_RX3_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("DEC1 Volume", SITAR_A_CDC_TX1_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC2 Volume", SITAR_A_CDC_TX2_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC3 Volume", SITAR_A_CDC_TX3_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("DEC4 Volume", SITAR_A_CDC_TX4_VOL_CTL_GAIN, -84, 40,
digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP1 Volume", SITAR_A_CDC_IIR1_GAIN_B1_CTL, -84,
40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP2 Volume", SITAR_A_CDC_IIR1_GAIN_B2_CTL, -84,
40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP3 Volume", SITAR_A_CDC_IIR1_GAIN_B3_CTL, -84,
40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP4 Volume", SITAR_A_CDC_IIR1_GAIN_B4_CTL, -84,
40, digital_gain),
SOC_SINGLE_TLV("ADC1 Volume", SITAR_A_TX_1_2_EN, 5, 3, 0, analog_gain),
SOC_SINGLE_TLV("ADC2 Volume", SITAR_A_TX_1_2_EN, 1, 3, 0, analog_gain),
SOC_SINGLE_TLV("ADC3 Volume", SITAR_A_TX_3_EN, 5, 3, 0, analog_gain),
SOC_SINGLE_EXT("ANC Slot", SND_SOC_NOPM, 0, 0, 100, sitar_get_anc_slot,
sitar_put_anc_slot),
SOC_ENUM("TX1 HPF cut off", cf_dec1_enum),
SOC_SINGLE("TX1 HPF Switch", SITAR_A_CDC_TX1_MUX_CTL, 3, 1, 0),
SOC_SINGLE("RX1 HPF Switch", SITAR_A_CDC_RX1_B5_CTL, 2, 1, 0),
SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum),
SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0,
sitar_get_iir_enable_audio_mixer, sitar_put_iir_enable_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5,
sitar_get_iir_band_audio_mixer, sitar_put_iir_band_audio_mixer),
};
static const char *rx_mix1_text[] = {
"ZERO", "SRC1", "SRC2", "IIR1", "IIR2", "RX1", "RX2", "RX3", "RX4",
"RX5"
};
static const char *rx_dac1_text[] = {
"ZERO", "RX1", "RX2"
};
static const char *rx_dac2_text[] = {
"ZERO", "RX1",
};
static const char *rx_dac3_text[] = {
"ZERO", "RX1", "INV_RX1", "RX2"
};
static const char *rx_dac4_text[] = {
"ZERO", "ON"
};
static const char *sb_tx1_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC1"
};
static const char *sb_tx2_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC2"
};
static const char *sb_tx3_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC3"
};
static const char *sb_tx4_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7",
"DEC4"
};
static const char *sb_tx5_mux_text[] = {
"ZERO", "RMIX1", "RMIX2", "RMIX3", "DEC1", "DEC2", "DEC3", "DEC4"
};
static const char *dec1_mux_text[] = {
"ZERO", "DMIC1", "ADC1", "ADC2", "ADC3", "MBADC", "DMIC4", "ANC1_FB",
};
static const char *dec2_mux_text[] = {
"ZERO", "DMIC2", "ADC1", "ADC2", "ADC3", "MBADC", "DMIC3", "ANC2_FB",
};
static const char *dec3_mux_text[] = {
"ZERO", "DMIC3", "ADC1", "ADC2", "ADC3", "MBADC", "DMIC2", "DMIC4"
};
static const char *dec4_mux_text[] = {
"ZERO", "DMIC4", "ADC1", "ADC2", "ADC3", "DMIC3", "DMIC2", "DMIC1"
};
static const char const *anc_mux_text[] = {
"ZERO", "ADC1", "ADC2", "ADC3", "RSVD1", "RSVD2", "RSVD3",
"MBADC", "RSVD4", "DMIC1", "DMIC2", "DMIC3", "DMIC4"
};
static const char const *anc1_fb_mux_text[] = {
"ZERO", "EAR_HPH_L", "EAR_LINE_1",
};
static const char const *iir_inp1_text[] = {
"ZERO", "DEC1", "DEC2", "DEC3", "DEC4", "ZERO", "ZERO", "ZERO",
"ZERO", "ZERO", "ZERO", "RX1", "RX2", "RX3", "RX4", "RX5",
};
static const struct soc_enum rx_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX1_B1_CTL, 0, 10, rx_mix1_text);
static const struct soc_enum rx_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX1_B1_CTL, 4, 10, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX2_B1_CTL, 0, 10, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX2_B1_CTL, 4, 10, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX3_B1_CTL, 0, 10, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_RX3_B1_CTL, 4, 10, rx_mix1_text);
static const struct soc_enum rx_dac1_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 6, 3, rx_dac1_text);
static const struct soc_enum rx_dac2_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 4, 2, rx_dac2_text);
static const struct soc_enum rx_dac3_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 2, 4, rx_dac3_text);
static const struct soc_enum rx_dac4_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_TOP_RDAC_DOUT_CTL, 0, 2, rx_dac4_text);
static const struct soc_enum sb_tx5_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B5_CTL, 0, 9, sb_tx5_mux_text);
static const struct soc_enum sb_tx4_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B4_CTL, 0, 9, sb_tx4_mux_text);
static const struct soc_enum sb_tx3_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B3_CTL, 0, 9, sb_tx3_mux_text);
static const struct soc_enum sb_tx2_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B2_CTL, 0, 9, sb_tx2_mux_text);
static const struct soc_enum sb_tx1_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_SB_B1_CTL, 0, 9, sb_tx1_mux_text);
static const struct soc_enum dec1_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B1_CTL, 0, 8, dec1_mux_text);
static const struct soc_enum dec2_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B1_CTL, 3, 8, dec2_mux_text);
static const struct soc_enum dec3_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B2_CTL, 0, 8, dec3_mux_text);
static const struct soc_enum dec4_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_TX_B2_CTL, 3, 8, dec4_mux_text);
static const struct soc_enum anc1_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_ANC_B1_CTL, 0, 13, anc_mux_text);
static const struct soc_enum anc2_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_ANC_B1_CTL, 4, 13, anc_mux_text);
static const struct soc_enum anc1_fb_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_ANC_B2_CTL, 0, 3, anc1_fb_mux_text);
static const struct soc_enum iir1_inp1_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_EQ1_B1_CTL, 0, 16, iir_inp1_text);
static const struct soc_enum iir2_inp1_mux_enum =
SOC_ENUM_SINGLE(SITAR_A_CDC_CONN_EQ2_B1_CTL, 0, 16, iir_inp1_text);
static const struct snd_kcontrol_new rx_mix1_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp2_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp2_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp1_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp2_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx_dac1_mux =
SOC_DAPM_ENUM("RX DAC1 Mux", rx_dac1_enum);
static const struct snd_kcontrol_new rx_dac2_mux =
SOC_DAPM_ENUM("RX DAC2 Mux", rx_dac2_enum);
static const struct snd_kcontrol_new rx_dac3_mux =
SOC_DAPM_ENUM("RX DAC3 Mux", rx_dac3_enum);
static const struct snd_kcontrol_new rx_dac4_mux =
SOC_DAPM_ENUM("RX DAC4 Mux", rx_dac4_enum);
static const struct snd_kcontrol_new sb_tx5_mux =
SOC_DAPM_ENUM("SLIM TX5 MUX Mux", sb_tx5_mux_enum);
static const struct snd_kcontrol_new sb_tx4_mux =
SOC_DAPM_ENUM("SLIM TX4 MUX Mux", sb_tx4_mux_enum);
static const struct snd_kcontrol_new sb_tx3_mux =
SOC_DAPM_ENUM("SLIM TX3 MUX Mux", sb_tx3_mux_enum);
static const struct snd_kcontrol_new sb_tx2_mux =
SOC_DAPM_ENUM("SLIM TX2 MUX Mux", sb_tx2_mux_enum);
static const struct snd_kcontrol_new sb_tx1_mux =
SOC_DAPM_ENUM("SLIM TX1 MUX Mux", sb_tx1_mux_enum);
static int wcd9304_put_dec_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *w = wlist->widgets[0];
struct snd_soc_codec *codec = w->codec;
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int dec_mux, decimator;
char *dec_name = NULL;
char *widget_name = NULL;
char *temp;
u16 tx_mux_ctl_reg;
u8 adc_dmic_sel = 0x0;
int ret = 0;
if (ucontrol->value.enumerated.item[0] > e->max - 1)
return -EINVAL;
dec_mux = ucontrol->value.enumerated.item[0];
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name)
return -ENOMEM;
temp = widget_name;
dec_name = strsep(&widget_name, " ");
widget_name = temp;
if (!dec_name) {
pr_err("%s: Invalid decimator = %s\n", __func__, w->name);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(strpbrk(dec_name, "1234"), 10, &decimator);
if (ret < 0) {
pr_err("%s: Invalid decimator = %s\n", __func__, dec_name);
ret = -EINVAL;
goto out;
}
dev_dbg(w->dapm->dev, "%s(): widget = %s dec_name = %s decimator = %u"\
"dec_mux = %u\n", __func__, w->name, dec_name, decimator,
dec_mux);
switch (decimator) {
case 1:
case 2:
if ((dec_mux == 1) || (dec_mux == 6))
adc_dmic_sel = ADC_DMIC_SEL_DMIC;
else
adc_dmic_sel = ADC_DMIC_SEL_ADC;
break;
case 3:
if ((dec_mux == 1) || (dec_mux == 6) || (dec_mux == 7))
adc_dmic_sel = ADC_DMIC_SEL_DMIC;
else
adc_dmic_sel = ADC_DMIC_SEL_ADC;
break;
case 4:
if ((dec_mux == 1) || (dec_mux == 5)
|| (dec_mux == 6) || (dec_mux == 7))
adc_dmic_sel = ADC_DMIC_SEL_DMIC;
else
adc_dmic_sel = ADC_DMIC_SEL_ADC;
break;
default:
pr_err("%s: Invalid Decimator = %u\n", __func__, decimator);
ret = -EINVAL;
goto out;
}
tx_mux_ctl_reg = SITAR_A_CDC_TX1_MUX_CTL + 8 * (decimator - 1);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, adc_dmic_sel);
ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
out:
kfree(widget_name);
return ret;
}
#define WCD9304_DEC_ENUM(xname, xenum) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_enum_double, \
.get = snd_soc_dapm_get_enum_double, \
.put = wcd9304_put_dec_enum, \
.private_value = (unsigned long)&xenum }
static const struct snd_kcontrol_new dec1_mux =
WCD9304_DEC_ENUM("DEC1 MUX Mux", dec1_mux_enum);
static const struct snd_kcontrol_new dec2_mux =
WCD9304_DEC_ENUM("DEC2 MUX Mux", dec2_mux_enum);
static const struct snd_kcontrol_new dec3_mux =
WCD9304_DEC_ENUM("DEC3 MUX Mux", dec3_mux_enum);
static const struct snd_kcontrol_new dec4_mux =
WCD9304_DEC_ENUM("DEC4 MUX Mux", dec4_mux_enum);
static const struct snd_kcontrol_new iir1_inp1_mux =
SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum);
static const struct snd_kcontrol_new iir2_inp1_mux =
SOC_DAPM_ENUM("IIR2 INP1 Mux", iir2_inp1_mux_enum);
static const struct snd_kcontrol_new anc1_mux =
SOC_DAPM_ENUM("ANC1 MUX Mux", anc1_mux_enum);
static const struct snd_kcontrol_new anc2_mux =
SOC_DAPM_ENUM("ANC2 MUX Mux", anc2_mux_enum);
static const struct snd_kcontrol_new anc1_fb_mux =
SOC_DAPM_ENUM("ANC1 FB MUX Mux", anc1_fb_mux_enum);
static const struct snd_kcontrol_new dac1_switch[] = {
SOC_DAPM_SINGLE("Switch", SITAR_A_RX_EAR_EN, 5, 1, 0),
};
static int slim_tx_mixer_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *widget = wlist->widgets[0];
ucontrol->value.integer.value[0] = widget->value;
return 0;
}
static int slim_tx_mixer_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *widget = wlist->widgets[0];
struct snd_soc_codec *codec = widget->codec;
struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec);
struct wcd9xxx *core = dev_get_drvdata(codec->dev->parent);
struct soc_multi_mixer_control *mixer =
((struct soc_multi_mixer_control *)kcontrol->private_value);
u32 dai_id = widget->shift;
u32 port_id = mixer->shift;
u32 enable = ucontrol->value.integer.value[0];
mutex_lock(&codec->mutex);
if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) {
if (dai_id != AIF1_CAP) {
dev_err(codec->dev, "%s: invalid AIF for I2C mode\n",
__func__);
mutex_unlock(&codec->mutex);
return -EINVAL;
}
}
switch (dai_id) {
case AIF1_CAP:
if (enable && !(widget->value & 1 << port_id)) {
if (wcd9xxx_tx_vport_validation(
vport_check_table[dai_id],
port_id,
sitar_p->dai)) {
pr_info("%s: TX%u is used by other virtual port\n",
__func__, port_id + 1);
mutex_unlock(&codec->mutex);
return -EINVAL;
}
widget->value |= 1 << port_id;
list_add_tail(&core->tx_chs[port_id].list,
&sitar_p->dai[dai_id].wcd9xxx_ch_list);
} else if (!enable && (widget->value & 1 << port_id)) {
widget->value &= ~(1<<port_id);
list_del_init(&core->tx_chs[port_id].list);
} else {
if (enable)
pr_info("%s: TX%u port is used by this virtual port\n",
__func__, port_id + 1);
else
pr_info("%s: TX%u port is not used by this virtual port\n",
__func__, port_id + 1);
/* avoid update power function */
mutex_unlock(&codec->mutex);
return 0;
}
break;
default:
pr_err("Unknown AIF %d\n", dai_id);
mutex_unlock(&codec->mutex);
return -EINVAL;
}
pr_debug("%s: name %s sname %s updated value %u shift %d\n", __func__,
widget->name, widget->sname, widget->value, widget->shift);
snd_soc_dapm_mixer_update_power(widget, kcontrol, enable);
mutex_unlock(&codec->mutex);
return 0;
}
static int slim_rx_mux_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *widget = wlist->widgets[0];
ucontrol->value.enumerated.item[0] = widget->value;
return 0;
}
static const char * const slim_rx_mux_text[] = {
"ZERO", "AIF1_PB"
};
static int slim_rx_mux_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *widget = wlist->widgets[0];
struct snd_soc_codec *codec = widget->codec;
struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec);
struct wcd9xxx *core = dev_get_drvdata(codec->dev->parent);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
u32 port_id = widget->shift;
widget->value = ucontrol->value.enumerated.item[0];
mutex_lock(&codec->mutex);
if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) {
if (widget->value > 1) {
dev_err(codec->dev, "%s: invalid AIF for I2C mode\n",
__func__);
goto err;
}
}
switch (widget->value) {
case 0:
list_del_init(&core->rx_chs[port_id].list);
break;
case 1:
if (wcd9xxx_rx_vport_validation(port_id + core->num_tx_port,
&sitar_p->dai[AIF1_PB].wcd9xxx_ch_list))
goto pr_err;
list_add_tail(&core->rx_chs[port_id].list,
&sitar_p->dai[AIF1_PB].wcd9xxx_ch_list);
break;
break;
default:
pr_err("Unknown AIF %d\n", widget->value);
goto err;
}
snd_soc_dapm_mux_update_power(widget, kcontrol, 1, widget->value, e);
mutex_unlock(&codec->mutex);
return 0;
pr_err:
pr_err("%s: RX%u is used by current requesting AIF_PB itself\n",
__func__, port_id + 1);
err:
mutex_unlock(&codec->mutex);
return -EINVAL;
}
static const struct soc_enum slim_rx_mux_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(slim_rx_mux_text), slim_rx_mux_text);
static const struct snd_kcontrol_new sitar_aif_pb_mux[SITAR_RX_MAX] = {
SOC_DAPM_ENUM_EXT("SLIM RX1 MUX", slim_rx_mux_enum,
slim_rx_mux_get, slim_rx_mux_put),
SOC_DAPM_ENUM_EXT("SLIM RX2 MUX", slim_rx_mux_enum,
slim_rx_mux_get, slim_rx_mux_put),
SOC_DAPM_ENUM_EXT("SLIM RX3 MUX", slim_rx_mux_enum,
slim_rx_mux_get, slim_rx_mux_put),
SOC_DAPM_ENUM_EXT("SLIM RX4 MUX", slim_rx_mux_enum,
slim_rx_mux_get, slim_rx_mux_put),
SOC_DAPM_ENUM_EXT("SLIM RX5 MUX", slim_rx_mux_enum,
slim_rx_mux_get, slim_rx_mux_put)
};
static const struct snd_kcontrol_new sitar_aif_cap_mixer[SITAR_TX_MAX] = {
SOC_SINGLE_EXT("SLIM TX1", SND_SOC_NOPM, SITAR_TX1, 1, 0,
slim_tx_mixer_get, slim_tx_mixer_put),
SOC_SINGLE_EXT("SLIM TX2", SND_SOC_NOPM, SITAR_TX2, 1, 0,
slim_tx_mixer_get, slim_tx_mixer_put),
SOC_SINGLE_EXT("SLIM TX3", SND_SOC_NOPM, SITAR_TX3, 1, 0,
slim_tx_mixer_get, slim_tx_mixer_put),
SOC_SINGLE_EXT("SLIM TX4", SND_SOC_NOPM, SITAR_TX4, 1, 0,
slim_tx_mixer_get, slim_tx_mixer_put),
SOC_SINGLE_EXT("SLIM TX5", SND_SOC_NOPM, SITAR_TX5, 1, 0,
slim_tx_mixer_get, slim_tx_mixer_put),
};
static void sitar_codec_enable_adc_block(struct snd_soc_codec *codec,
int enable)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
pr_debug("%s %d\n", __func__, enable);
if (enable) {
sitar->adc_count++;
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_CTL,
0x02, 0x02);
} else {
sitar->adc_count--;
if (!sitar->adc_count) {
if (!sitar->mbhc_polling_active)
snd_soc_update_bits(codec,
SITAR_A_CDC_CLK_OTHR_CTL, 0xE0, 0x0);
}
}
}
static int sitar_codec_enable_adc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 adc_reg;
u8 init_bit_shift;
pr_debug("%s %d\n", __func__, event);
if (w->reg == SITAR_A_TX_1_2_EN)
adc_reg = SITAR_A_TX_1_2_TEST_CTL;
else if (w->reg == SITAR_A_TX_3_EN)
adc_reg = SITAR_A_TX_3_TEST_CTL;
else {
pr_err("%s: Error, invalid adc register\n", __func__);
return -EINVAL;
}
if (w->shift == 3)
init_bit_shift = 6;
else if (w->shift == 7)
init_bit_shift = 7;
else {
pr_err("%s: Error, invalid init bit postion adc register\n",
__func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
sitar_codec_enable_adc_block(codec, 1);
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift,
1 << init_bit_shift);
break;
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
sitar_codec_enable_adc_block(codec, 0);
break;
}
return 0;
}
static int sitar_lineout_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, w->reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, w->reg, 0x40, 0x00);
break;
}
return 0;
}
static void sitar_enable_classg(struct snd_soc_codec *codec,
bool enable)
{
if (enable) {
snd_soc_update_bits(codec,
SITAR_A_CDC_CLK_OTHR_RESET_CTL, 0x10, 0x00);
snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x07, 0x00);
snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x08, 0x00);
snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x10, 0x00);
} else {
snd_soc_update_bits(codec,
SITAR_A_CDC_CLK_OTHR_RESET_CTL, 0x10, 0x10);
snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x07, 0x03);
snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x08, 0x08);
snd_soc_update_bits(codec, SITAR_A_CP_STATIC, 0x10, 0x10);
}
}
static bool sitar_is_hph_pa_on(struct snd_soc_codec *codec)
{
u8 hph_reg_val = 0;
hph_reg_val = snd_soc_read(codec, SITAR_A_RX_HPH_CNP_EN);
return (hph_reg_val & 0x30) ? true : false;
}
static bool sitar_is_line_pa_on(struct snd_soc_codec *codec)
{
u8 line_reg_val = 0;
line_reg_val = snd_soc_read(codec, SITAR_A_RX_LINE_CNP_EN);
return (line_reg_val & 0x03) ? true : false;
}
static int sitar_codec_enable_lineout(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 lineout_gain_reg;
pr_debug("%s %d %s\n", __func__, event, w->name);
switch (w->shift) {
case 0:
lineout_gain_reg = SITAR_A_RX_LINE_1_GAIN;
break;
case 1:
lineout_gain_reg = SITAR_A_RX_LINE_2_GAIN;
break;
default:
pr_err("%s: Error, incorrect lineout register value\n",
__func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (sitar_is_hph_pa_on(codec)) {
snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL,
0x20, 0x00);
sitar_enable_classg(codec, false);
} else {
snd_soc_update_bits(codec, SITAR_A_CDC_RX1_B6_CTL,
0x20, 0x20);
sitar_enable_classg(codec, true);
}
snd_soc_update_bits(codec, lineout_gain_reg, 0x10, 0x10);
break;
case SND_SOC_DAPM_POST_PMU:
pr_debug("%s: sleeping 32 ms after %s PA turn on\n",
__func__, w->name);
usleep_range(32000, 32000);
break;
case SND_SOC_DAPM_POST_PMD:
if (sitar_is_hph_pa_on(codec))
sitar_enable_classg(codec, true);
else
sitar_enable_classg(codec, false);
snd_soc_update_bits(codec, lineout_gain_reg, 0x10, 0x00);
break;
}
return 0;
}
static int sitar_codec_enable_dmic(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 tx_dmic_ctl_reg;
u8 dmic_clk_sel, dmic_clk_en;
unsigned int dmic;
int ret;
ret = kstrtouint(strpbrk(w->name, "1234"), 10, &dmic);
if (ret < 0) {
pr_err("%s: Invalid DMIC line on the codec\n", __func__);
return -EINVAL;
}
switch (dmic) {
case 1:
case 2:
dmic_clk_sel = 0x02;
dmic_clk_en = 0x01;
break;
case 3:
case 4:
dmic_clk_sel = 0x08;
dmic_clk_en = 0x04;
break;
break;
default:
pr_err("%s: Invalid DMIC Selection\n", __func__);
return -EINVAL;
}
tx_dmic_ctl_reg = SITAR_A_CDC_TX1_DMIC_CTL + 8 * (dmic - 1);
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_DMIC_CTL,
dmic_clk_sel, dmic_clk_sel);
snd_soc_update_bits(codec, tx_dmic_ctl_reg, 0x1, 0x1);
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_DMIC_CTL,
dmic_clk_en, dmic_clk_en);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_DMIC_CTL,
dmic_clk_en, 0);
break;
}
return 0;
}
static int sitar_codec_enable_anc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
const char *filename;
const struct firmware *fw;
int i;
int ret;
int num_anc_slots;
struct anc_header *anc_head;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
u32 anc_writes_size = 0;
int anc_size_remaining;
u32 *anc_ptr;
u16 reg;
u8 mask, val, old_val;
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Use the same firmware file as that of WCD9310,
* since the register sequences are same for
* WCD9310 and WCD9304
*/
filename = "wcd9310/wcd9310_anc.bin";
ret = request_firmware(&fw, filename, codec->dev);
if (ret != 0) {
dev_err(codec->dev, "Failed to acquire ANC data: %d\n",
ret);
return -ENODEV;
}
if (fw->size < sizeof(struct anc_header)) {
dev_err(codec->dev, "Not enough data\n");
release_firmware(fw);
return -ENOMEM;
}
/* First number is the number of register writes */
anc_head = (struct anc_header *)(fw->data);
anc_ptr = (u32 *)((u32)fw->data + sizeof(struct anc_header));
anc_size_remaining = fw->size - sizeof(struct anc_header);
num_anc_slots = anc_head->num_anc_slots;
if (sitar->anc_slot >= num_anc_slots) {
dev_err(codec->dev, "Invalid ANC slot selected\n");
release_firmware(fw);
return -EINVAL;
}
for (i = 0; i < num_anc_slots; i++) {
if (anc_size_remaining < SITAR_PACKED_REG_SIZE) {
dev_err(codec->dev, "Invalid register format\n");
release_firmware(fw);
return -EINVAL;
}
anc_writes_size = (u32)(*anc_ptr);
anc_size_remaining -= sizeof(u32);
anc_ptr += 1;
if (anc_writes_size * SITAR_PACKED_REG_SIZE
> anc_size_remaining) {
dev_err(codec->dev, "Invalid register format\n");
release_firmware(fw);
return -ENOMEM;
}
if (sitar->anc_slot == i)
break;
anc_size_remaining -= (anc_writes_size *
SITAR_PACKED_REG_SIZE);
anc_ptr += anc_writes_size;
}
if (i == num_anc_slots) {
dev_err(codec->dev, "Selected ANC slot not present\n");
release_firmware(fw);
return -ENOMEM;
}
for (i = 0; i < anc_writes_size; i++) {
SITAR_CODEC_UNPACK_ENTRY(anc_ptr[i], reg,
mask, val);
old_val = snd_soc_read(codec, reg);
snd_soc_write(codec, reg, (old_val & ~mask) |
(val & mask));
}
release_firmware(fw);
/* For Sitar, it is required to enable both Feed-forward
* and Feed back clocks to enable ANC
*/
snd_soc_write(codec, SITAR_A_CDC_CLK_ANC_CLK_EN_CTL, 0x0F);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_write(codec, SITAR_A_CDC_CLK_ANC_RESET_CTL, 0xFF);
snd_soc_write(codec, SITAR_A_CDC_CLK_ANC_CLK_EN_CTL, 0x00);
break;
}
return 0;
}
static void sitar_codec_start_hs_polling(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
int mbhc_state = sitar->mbhc_state;
pr_debug("%s: enter\n", __func__);
if (!sitar->mbhc_polling_active) {
pr_debug("Polling is not active, do not start polling\n");
return;
}
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84);
if (!sitar->no_mic_headset_override) {
if (mbhc_state == MBHC_STATE_POTENTIAL) {
pr_debug("%s recovering MBHC state macine\n", __func__);
sitar->mbhc_state = MBHC_STATE_POTENTIAL_RECOVERY;
/* set to max button press threshold */
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B2_CTL,
0x7F);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B1_CTL,
0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B4_CTL,
0x7F);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B3_CTL,
0xFF);
/* set to max */
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B6_CTL,
0x7F);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B5_CTL,
0xFF);
}
}
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x1);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x0);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x1);
}
static void sitar_codec_pause_hs_polling(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: enter\n", __func__);
if (!sitar->mbhc_polling_active) {
pr_debug("polling not active, nothing to pause\n");
return;
}
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
pr_debug("%s: leave\n", __func__);
}
static void sitar_codec_switch_cfilt_mode(struct snd_soc_codec *codec,
int mode)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
u8 reg_mode_val, cur_mode_val;
bool mbhc_was_polling = false;
if (mode)
reg_mode_val = SITAR_CFILT_FAST_MODE;
else
reg_mode_val = SITAR_CFILT_SLOW_MODE;
cur_mode_val = snd_soc_read(codec,
sitar->mbhc_bias_regs.cfilt_ctl) & 0x40;
if (cur_mode_val != reg_mode_val) {
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
if (sitar->mbhc_polling_active) {
sitar_codec_pause_hs_polling(codec);
mbhc_was_polling = true;
}
snd_soc_update_bits(codec,
sitar->mbhc_bias_regs.cfilt_ctl, 0x40, reg_mode_val);
if (mbhc_was_polling)
sitar_codec_start_hs_polling(codec);
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
pr_debug("%s: CFILT mode change (%x to %x)\n", __func__,
cur_mode_val, reg_mode_val);
} else {
pr_err("%s: CFILT Value is already %x\n",
__func__, cur_mode_val);
}
}
static void sitar_codec_update_cfilt_usage(struct snd_soc_codec *codec,
u8 cfilt_sel, int inc)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
u32 *cfilt_cnt_ptr = NULL;
u16 micb_cfilt_reg;
switch (cfilt_sel) {
case SITAR_CFILT1_SEL:
cfilt_cnt_ptr = &sitar->cfilt1_cnt;
micb_cfilt_reg = SITAR_A_MICB_CFILT_1_CTL;
break;
case SITAR_CFILT2_SEL:
cfilt_cnt_ptr = &sitar->cfilt2_cnt;
micb_cfilt_reg = SITAR_A_MICB_CFILT_2_CTL;
break;
default:
return; /* should not happen */
}
if (inc) {
if (!(*cfilt_cnt_ptr)++) {
/* Switch CFILT to slow mode if MBHC CFILT being used */
if (cfilt_sel == sitar->mbhc_bias_regs.cfilt_sel)
sitar_codec_switch_cfilt_mode(codec, 0);
snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0x80);
}
} else {
/* check if count not zero, decrement
* then check if zero, go ahead disable cfilter
*/
if ((*cfilt_cnt_ptr) && !--(*cfilt_cnt_ptr)) {
snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0);
/* Switch CFILT to fast mode if MBHC CFILT being used */
if (cfilt_sel == sitar->mbhc_bias_regs.cfilt_sel)
sitar_codec_switch_cfilt_mode(codec, 1);
}
}
}
static int sitar_find_k_value(unsigned int ldoh_v, unsigned int cfilt_mv)
{
int rc = -EINVAL;
unsigned min_mv, max_mv;
switch (ldoh_v) {
case SITAR_LDOH_1P95_V:
min_mv = 160;
max_mv = 1800;
break;
case SITAR_LDOH_2P35_V:
min_mv = 200;
max_mv = 2200;
break;
case SITAR_LDOH_2P75_V:
min_mv = 240;
max_mv = 2600;
break;
case SITAR_LDOH_2P85_V:
min_mv = 250;
max_mv = 2700;
break;
default:
goto done;
}
if (cfilt_mv < min_mv || cfilt_mv > max_mv)
goto done;
for (rc = 4; rc <= 44; rc++) {
min_mv = max_mv * (rc) / 44;
if (min_mv >= cfilt_mv) {
rc -= 4;
break;
}
}
done:
return rc;
}
static bool sitar_is_hph_dac_on(struct snd_soc_codec *codec, int left)
{
u8 hph_reg_val = 0;
if (left)
hph_reg_val = snd_soc_read(codec,
SITAR_A_RX_HPH_L_DAC_CTL);
else
hph_reg_val = snd_soc_read(codec,
SITAR_A_RX_HPH_R_DAC_CTL);
return (hph_reg_val & 0xC0) ? true : false;
}
static void sitar_codec_switch_micbias(struct snd_soc_codec *codec,
int vddio_switch)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
int cfilt_k_val;
bool mbhc_was_polling = false;
switch (vddio_switch) {
case 1:
if (sitar->mbhc_micbias_switched == 0 &&
sitar->mbhc_polling_active) {
sitar_codec_pause_hs_polling(codec);
/* Enable Mic Bias switch to VDDIO */
sitar->cfilt_k_value = snd_soc_read(codec,
sitar->mbhc_bias_regs.cfilt_val);
cfilt_k_val = sitar_find_k_value(
sitar->pdata->micbias.ldoh_v, 1800);
snd_soc_update_bits(codec,
sitar->mbhc_bias_regs.cfilt_val,
0xFC, (cfilt_k_val << 2));
snd_soc_update_bits(codec,
sitar->mbhc_bias_regs.mbhc_reg, 0x80, 0x80);
snd_soc_update_bits(codec,
sitar->mbhc_bias_regs.mbhc_reg, 0x10, 0x00);
sitar_codec_start_hs_polling(codec);
sitar->mbhc_micbias_switched = true;
pr_debug("%s: Enabled MBHC Mic bias to VDDIO Switch\n",
__func__);
}
break;
case 0:
if (sitar->mbhc_micbias_switched) {
if (sitar->mbhc_polling_active) {
sitar_codec_pause_hs_polling(codec);
mbhc_was_polling = true;
}
/* Disable Mic Bias switch to VDDIO */
if (sitar->cfilt_k_value != 0)
snd_soc_update_bits(codec,
sitar->mbhc_bias_regs.cfilt_val, 0XFC,
sitar->cfilt_k_value);
snd_soc_update_bits(codec,
sitar->mbhc_bias_regs.mbhc_reg, 0x80, 0x00);
snd_soc_update_bits(codec,
sitar->mbhc_bias_regs.mbhc_reg, 0x10, 0x00);
if (mbhc_was_polling)
sitar_codec_start_hs_polling(codec);
sitar->mbhc_micbias_switched = false;
pr_debug("%s: Disabled MBHC Mic bias to VDDIO Switch\n",
__func__);
}
break;
}
}
static int sitar_codec_enable_micbias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
u16 micb_int_reg;
int micb_line;
u8 cfilt_sel_val = 0;
char *internal1_text = "Internal1";
char *internal2_text = "Internal2";
pr_debug("%s %d\n", __func__, event);
switch (w->reg) {
case SITAR_A_MICB_1_CTL:
micb_int_reg = SITAR_A_MICB_1_INT_RBIAS;
cfilt_sel_val = sitar->pdata->micbias.bias1_cfilt_sel;
micb_line = SITAR_MICBIAS1;
break;
case SITAR_A_MICB_2_CTL:
micb_int_reg = SITAR_A_MICB_2_INT_RBIAS;
cfilt_sel_val = sitar->pdata->micbias.bias2_cfilt_sel;
micb_line = SITAR_MICBIAS2;
break;
default:
pr_err("%s: Error, invalid micbias register\n", __func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Decide whether to switch the micbias for MBHC */
if (w->reg == sitar->mbhc_bias_regs.ctl_reg) {
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
sitar_codec_switch_micbias(codec, 0);
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
}
snd_soc_update_bits(codec, w->reg, 0x1E, 0x00);
sitar_codec_update_cfilt_usage(codec, cfilt_sel_val, 1);
if (strnstr(w->name, internal1_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0xFF, 0xA4);
else if (strnstr(w->name, internal2_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x1C, 0x1C);
break;
case SND_SOC_DAPM_POST_PMU:
if (sitar->mbhc_polling_active &&
sitar->mbhc_cfg.micbias == micb_line) {
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
sitar_codec_pause_hs_polling(codec);
sitar_codec_start_hs_polling(codec);
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
}
break;
case SND_SOC_DAPM_POST_PMD:
if ((w->reg == sitar->mbhc_bias_regs.ctl_reg)
&& sitar_is_hph_pa_on(codec))
sitar_codec_switch_micbias(codec, 1);
if (strnstr(w->name, internal1_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x00);
else if (strnstr(w->name, internal2_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x00);
sitar_codec_update_cfilt_usage(codec, cfilt_sel_val, 0);
break;
}
return 0;
}
static int sitar_codec_enable_dec(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 dec_reset_reg, gain_reg;
u8 current_gain;
pr_debug("%s %d\n", __func__, event);
if (w->reg == SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL)
dec_reset_reg = SITAR_A_CDC_CLK_TX_RESET_B1_CTL;
else {
pr_err("%s: Error, incorrect dec\n", __func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift,
1 << w->shift);
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0);
break;
case SND_SOC_DAPM_POST_PMU:
/* Reprogram the digital gain after power up of Decimator */
gain_reg = SITAR_A_CDC_TX1_VOL_CTL_GAIN + (8 * w->shift);
current_gain = snd_soc_read(codec, gain_reg);
snd_soc_write(codec, gain_reg, current_gain);
break;
}
return 0;
}
static int sitar_codec_reset_interpolator(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 gain_reg;
u8 current_gain;
pr_debug("%s %d %s\n", __func__, event, w->name);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 1 << w->shift);
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 0x0);
break;
case SND_SOC_DAPM_POST_PMU:
/* Reprogram gain after power up interpolator */
gain_reg = SITAR_A_CDC_RX1_VOL_CTL_B2_CTL + (8 * w->shift);
current_gain = snd_soc_read(codec, gain_reg);
snd_soc_write(codec, gain_reg, current_gain);
}
return 0;
}
static int sitar_codec_enable_ldo_h(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
switch (event) {
case SND_SOC_DAPM_POST_PMU:
case SND_SOC_DAPM_POST_PMD:
usleep_range(1000, 1000);
pr_debug("LDO_H\n");
break;
}
return 0;
}
static void sitar_enable_rx_bias(struct snd_soc_codec *codec, u32 enable)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
if (enable) {
sitar->rx_bias_count++;
if (sitar->rx_bias_count == 1)
snd_soc_update_bits(codec, SITAR_A_RX_COM_BIAS,
0x80, 0x80);
} else {
sitar->rx_bias_count--;
if (!sitar->rx_bias_count)
snd_soc_update_bits(codec, SITAR_A_RX_COM_BIAS,
0x80, 0x00);
}
}
static int sitar_codec_enable_rx_bias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
sitar_enable_rx_bias(codec, 1);
break;
case SND_SOC_DAPM_POST_PMD:
sitar_enable_rx_bias(codec, 0);
break;
}
return 0;
}
static int sitar_hph_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (w->reg == SITAR_A_RX_HPH_L_DAC_CTL) {
snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL,
0x30, 0x20);
snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL,
0x0C, 0x08);
}
snd_soc_update_bits(codec, w->reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, w->reg, 0x40, 0x00);
if (w->reg == SITAR_A_RX_HPH_L_DAC_CTL) {
snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL,
0x30, 0x10);
snd_soc_update_bits(codec, SITAR_A_CDC_CONN_CLSG_CTL,
0x0C, 0x04);
}
break;
}
return 0;
}
static void sitar_snd_soc_jack_report(struct sitar_priv *sitar,
struct snd_soc_jack *jack, int status,
int mask)
{
/* XXX: wake_lock_timeout()? */
snd_soc_jack_report_no_dapm(jack, status, mask);
}
static void hphocp_off_report(struct sitar_priv *sitar,
u32 jack_status, int irq)
{
struct snd_soc_codec *codec;
if (!sitar) {
pr_err("%s: Bad sitar private data\n", __func__);
return;
}
pr_info("%s: clear ocp status %x\n", __func__, jack_status);
codec = sitar->codec;
if (sitar->hph_status & jack_status) {
sitar->hph_status &= ~jack_status;
if (sitar->mbhc_cfg.headset_jack)
sitar_snd_soc_jack_report(sitar,
sitar->mbhc_cfg.headset_jack,
sitar->hph_status,
SITAR_JACK_MASK);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x00);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10, 0x10);
/* reset retry counter as PA is turned off signifying
* start of new OCP detection session
*/
if (WCD9XXX_IRQ_HPH_PA_OCPL_FAULT)
sitar->hphlocp_cnt = 0;
else
sitar->hphrocp_cnt = 0;
wcd9xxx_enable_irq(codec->control_data, irq);
}
}
static void hphlocp_off_report(struct work_struct *work)
{
struct sitar_priv *sitar = container_of(work, struct sitar_priv,
hphlocp_work);
hphocp_off_report(sitar, SND_JACK_OC_HPHL,
WCD9XXX_IRQ_HPH_PA_OCPL_FAULT);
}
static void hphrocp_off_report(struct work_struct *work)
{
struct sitar_priv *sitar = container_of(work, struct sitar_priv,
hphrocp_work);
hphocp_off_report(sitar, SND_JACK_OC_HPHR,
WCD9XXX_IRQ_HPH_PA_OCPR_FAULT);
}
static int sitar_hph_pa_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
u8 mbhc_micb_ctl_val;
pr_debug("%s: event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
mbhc_micb_ctl_val = snd_soc_read(codec,
sitar->mbhc_bias_regs.ctl_reg);
if (!(mbhc_micb_ctl_val & 0x80)) {
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
sitar_codec_switch_micbias(codec, 1);
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
}
if (sitar_is_line_pa_on(codec))
sitar_enable_classg(codec, false);
else
sitar_enable_classg(codec, true);
break;
case SND_SOC_DAPM_POST_PMD:
/* schedule work is required because at the time HPH PA DAPM
* event callback is called by DAPM framework, CODEC dapm mutex
* would have been locked while snd_soc_jack_report also
* attempts to acquire same lock.
*/
if (w->shift == 5) {
clear_bit(SITAR_HPHL_PA_OFF_ACK,
&sitar->hph_pa_dac_state);
clear_bit(SITAR_HPHL_DAC_OFF_ACK,
&sitar->hph_pa_dac_state);
if (sitar->hph_status & SND_JACK_OC_HPHL)
schedule_work(&sitar->hphlocp_work);
} else if (w->shift == 4) {
clear_bit(SITAR_HPHR_PA_OFF_ACK,
&sitar->hph_pa_dac_state);
clear_bit(SITAR_HPHR_DAC_OFF_ACK,
&sitar->hph_pa_dac_state);
if (sitar->hph_status & SND_JACK_OC_HPHR)
schedule_work(&sitar->hphrocp_work);
}
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
sitar_codec_switch_micbias(codec, 0);
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
pr_debug("%s: sleep 10 ms after %s PA disable.\n", __func__,
w->name);
usleep_range(10000, 10000);
if (sitar_is_line_pa_on(codec))
sitar_enable_classg(codec, true);
else
sitar_enable_classg(codec, false);
break;
}
return 0;
}
static void sitar_get_mbhc_micbias_regs(struct snd_soc_codec *codec,
struct mbhc_micbias_regs *micbias_regs)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
unsigned int cfilt;
switch (sitar->mbhc_cfg.micbias) {
case SITAR_MICBIAS1:
cfilt = sitar->pdata->micbias.bias1_cfilt_sel;
micbias_regs->mbhc_reg = SITAR_A_MICB_1_MBHC;
micbias_regs->int_rbias = SITAR_A_MICB_1_INT_RBIAS;
micbias_regs->ctl_reg = SITAR_A_MICB_1_CTL;
break;
case SITAR_MICBIAS2:
cfilt = sitar->pdata->micbias.bias2_cfilt_sel;
micbias_regs->mbhc_reg = SITAR_A_MICB_2_MBHC;
micbias_regs->int_rbias = SITAR_A_MICB_2_INT_RBIAS;
micbias_regs->ctl_reg = SITAR_A_MICB_2_CTL;
break;
default:
/* Should never reach here */
pr_err("%s: Invalid MIC BIAS for MBHC\n", __func__);
return;
}
micbias_regs->cfilt_sel = cfilt;
switch (cfilt) {
case SITAR_CFILT1_SEL:
micbias_regs->cfilt_val = SITAR_A_MICB_CFILT_1_VAL;
micbias_regs->cfilt_ctl = SITAR_A_MICB_CFILT_1_CTL;
sitar->mbhc_data.micb_mv = sitar->pdata->micbias.cfilt1_mv;
break;
case SITAR_CFILT2_SEL:
micbias_regs->cfilt_val = SITAR_A_MICB_CFILT_2_VAL;
micbias_regs->cfilt_ctl = SITAR_A_MICB_CFILT_2_CTL;
sitar->mbhc_data.micb_mv = sitar->pdata->micbias.cfilt2_mv;
break;
}
}
static int sitar_codec_enable_charge_pump(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
pr_debug("%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_CTL, 0x01,
0x01);
snd_soc_update_bits(codec, SITAR_A_CDC_CLSG_CTL, 0x08, 0x08);
usleep_range(200, 200);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec, SITAR_A_CDC_CLSG_CTL, 0x08, 0x00);
/*
* This delay is for the class G controller to settle down
* after turn OFF. The delay is as per the hardware spec for
* the codec
*/
usleep_range(20, 20);
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_OTHR_CTL, 0x01,
0x00);
break;
}
return 0;
}
static int sitar_ear_pa_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
switch (event) {
case SND_SOC_DAPM_POST_PMU:
pr_debug("%s: Sleeping 20ms after enabling EAR PA\n",
__func__);
msleep(20);
break;
case SND_SOC_DAPM_POST_PMD:
pr_debug("%s: Sleeping 20ms after disabling EAR PA\n",
__func__);
msleep(20);
break;
}
return 0;
}
static const struct snd_soc_dapm_widget sitar_dapm_i2s_widgets[] = {
SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", SITAR_A_CDC_CLK_RX_I2S_CTL,
4, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", SITAR_A_CDC_CLK_TX_I2S_CTL, 4,
0, NULL, 0),
};
static const struct snd_soc_dapm_widget sitar_dapm_widgets[] = {
/*RX stuff */
SND_SOC_DAPM_OUTPUT("EAR"),
SND_SOC_DAPM_PGA_E("EAR PA", SITAR_A_RX_EAR_EN, 4, 0, NULL, 0,
sitar_ear_pa_event, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("DAC1", SITAR_A_RX_EAR_EN, 6, 0, dac1_switch,
ARRAY_SIZE(dac1_switch)),
SND_SOC_DAPM_SUPPLY("EAR DRIVER", SITAR_A_RX_EAR_EN, 3, 0, NULL, 0),
SND_SOC_DAPM_AIF_IN_E("AIF1 PB", "AIF1 Playback", 0, SND_SOC_NOPM,
AIF1_PB, 0, sitar_codec_enable_slimrx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("SLIM RX1 MUX", SND_SOC_NOPM, SITAR_RX1, 0,
&sitar_aif_pb_mux[SITAR_RX1]),
SND_SOC_DAPM_MUX("SLIM RX2 MUX", SND_SOC_NOPM, SITAR_RX2, 0,
&sitar_aif_pb_mux[SITAR_RX2]),
SND_SOC_DAPM_MUX("SLIM RX3 MUX", SND_SOC_NOPM, SITAR_RX3, 0,
&sitar_aif_pb_mux[SITAR_RX3]),
SND_SOC_DAPM_MUX("SLIM RX4 MUX", SND_SOC_NOPM, SITAR_RX4, 0,
&sitar_aif_pb_mux[SITAR_RX4]),
SND_SOC_DAPM_MUX("SLIM RX5 MUX", SND_SOC_NOPM, SITAR_RX5, 0,
&sitar_aif_pb_mux[SITAR_RX5]),
SND_SOC_DAPM_MIXER("SLIM RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("SLIM RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("SLIM RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("SLIM RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("SLIM RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
/* Headphone */
SND_SOC_DAPM_OUTPUT("HEADPHONE"),
SND_SOC_DAPM_PGA_E("HPHL", SITAR_A_RX_HPH_CNP_EN, 5, 0, NULL, 0,
sitar_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("HPHR", SITAR_A_RX_HPH_CNP_EN, 4, 0, NULL, 0,
sitar_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("HPHL DAC", NULL, SITAR_A_RX_HPH_L_DAC_CTL, 7, 0,
sitar_hph_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("HPHR DAC", NULL, SITAR_A_RX_HPH_R_DAC_CTL, 7, 0,
sitar_hph_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
/* Speaker */
SND_SOC_DAPM_OUTPUT("LINEOUT1"),
SND_SOC_DAPM_OUTPUT("LINEOUT2"),
SND_SOC_DAPM_DAC_E("LINEOUT1 DAC", NULL, SITAR_A_RX_LINE_1_DAC_CTL, 7, 0
, sitar_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("LINEOUT2 DAC", NULL, SITAR_A_RX_LINE_2_DAC_CTL, 7, 0
, sitar_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("LINEOUT1 PA", SITAR_A_RX_LINE_CNP_EN, 0, 0, NULL,
0, sitar_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("LINEOUT2 PA", SITAR_A_RX_LINE_CNP_EN, 1, 0, NULL,
0, sitar_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX1 MIX1", SITAR_A_CDC_CLK_RX_B1_CTL, 0, 0, NULL,
0, sitar_codec_reset_interpolator,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MIXER_E("RX2 MIX1", SITAR_A_CDC_CLK_RX_B1_CTL, 1, 0, NULL,
0, sitar_codec_reset_interpolator,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MIXER_E("RX3 MIX1", SITAR_A_CDC_CLK_RX_B1_CTL, 2, 0, NULL,
0, sitar_codec_reset_interpolator,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX("DAC1 MUX", SND_SOC_NOPM, 0, 0,
&rx_dac1_mux),
SND_SOC_DAPM_MUX("DAC2 MUX", SND_SOC_NOPM, 0, 0,
&rx_dac2_mux),
SND_SOC_DAPM_MUX("DAC3 MUX", SND_SOC_NOPM, 0, 0,
&rx_dac3_mux),
SND_SOC_DAPM_MUX("DAC4 MUX", SND_SOC_NOPM, 0, 0,
&rx_dac4_mux),
SND_SOC_DAPM_MIXER("RX1 CHAIN", SITAR_A_CDC_RX1_B6_CTL, 5, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX2 CHAIN", SITAR_A_CDC_RX2_B6_CTL, 5, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX3 CHAIN", SITAR_A_CDC_RX3_B6_CTL, 5, 0, NULL, 0),
SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp2_mux),
SND_SOC_DAPM_SUPPLY("CP", SITAR_A_CP_EN, 0, 0,
sitar_codec_enable_charge_pump, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SUPPLY("RX_BIAS", SND_SOC_NOPM, 0, 0,
sitar_codec_enable_rx_bias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("LDO_H", SITAR_A_LDO_H_MODE_1, 7, 0,
sitar_codec_enable_ldo_h, SND_SOC_DAPM_POST_PMU),
/* TX */
SND_SOC_DAPM_SUPPLY("CDC_CONN", SITAR_A_CDC_CLK_OTHR_CTL, 2, 0, NULL,
0),
SND_SOC_DAPM_INPUT("AMIC1"),
SND_SOC_DAPM_INPUT("AMIC2"),
SND_SOC_DAPM_INPUT("AMIC3"),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 External", SITAR_A_MICB_1_CTL, 7, 0,
sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal1", SITAR_A_MICB_1_CTL, 7, 0,
sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 External", SITAR_A_MICB_2_CTL, 7, 0,
sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal1", SITAR_A_MICB_2_CTL, 7, 0,
sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal2", SITAR_A_MICB_2_CTL, 7, 0,
sitar_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC1", NULL, SITAR_A_TX_1_2_EN, 7, 0,
sitar_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC2", NULL, SITAR_A_TX_1_2_EN, 3, 0,
sitar_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC3", NULL, SITAR_A_TX_3_EN, 7, 0,
sitar_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC1 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0,
&dec1_mux, sitar_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX_E("DEC2 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0,
&dec2_mux, sitar_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX_E("DEC3 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 2, 0,
&dec3_mux, sitar_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX_E("DEC4 MUX", SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 3, 0,
&dec4_mux, sitar_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX("ANC1 MUX", SND_SOC_NOPM, 0, 0, &anc1_mux),
SND_SOC_DAPM_MUX("ANC2 MUX", SND_SOC_NOPM, 0, 0, &anc2_mux),
SND_SOC_DAPM_MIXER_E("ANC", SND_SOC_NOPM, 0, 0, NULL, 0,
sitar_codec_enable_anc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("ANC1 FB MUX", SND_SOC_NOPM, 0, 0, &anc1_fb_mux),
SND_SOC_DAPM_AIF_OUT_E("AIF1 CAP", "AIF1 Capture", 0, SND_SOC_NOPM,
AIF1_CAP, 0, sitar_codec_enable_slimtx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("AIF1_CAP Mixer", SND_SOC_NOPM, AIF1_CAP, 0,
sitar_aif_cap_mixer, ARRAY_SIZE(sitar_aif_cap_mixer)),
SND_SOC_DAPM_MUX("SLIM TX1 MUX", SND_SOC_NOPM, SITAR_TX1, 0,
&sb_tx1_mux),
SND_SOC_DAPM_MUX("SLIM TX2 MUX", SND_SOC_NOPM, SITAR_TX2, 0,
&sb_tx2_mux),
SND_SOC_DAPM_MUX("SLIM TX3 MUX", SND_SOC_NOPM, SITAR_TX3, 0,
&sb_tx3_mux),
SND_SOC_DAPM_MUX("SLIM TX4 MUX", SND_SOC_NOPM, SITAR_TX3, 0,
&sb_tx4_mux),
SND_SOC_DAPM_MUX("SLIM TX5 MUX", SND_SOC_NOPM, SITAR_TX3, 0,
&sb_tx5_mux),
SND_SOC_DAPM_AIF_OUT_E("SLIM TX5", "AIF1 Capture", 0, SND_SOC_NOPM, 0,
0, sitar_codec_enable_slimtx,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
/* Digital Mic Inputs */
SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0,
sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0,
sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC3", NULL, SND_SOC_NOPM, 0, 0,
sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC4", NULL, SND_SOC_NOPM, 0, 0,
sitar_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
/* Sidetone */
SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux),
SND_SOC_DAPM_PGA("IIR1", SITAR_A_CDC_CLK_SD_CTL, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX("IIR2 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir2_inp1_mux),
SND_SOC_DAPM_PGA("IIR2", SITAR_A_CDC_CLK_SD_CTL, 1, 0, NULL, 0),
};
static const struct snd_soc_dapm_route audio_i2s_map[] = {
{"RX_I2S_CLK", NULL, "CP"},
{"RX_I2S_CLK", NULL, "CDC_CONN"},
{"SLIM RX1", NULL, "RX_I2S_CLK"},
{"SLIM RX2", NULL, "RX_I2S_CLK"},
{"SLIM RX3", NULL, "RX_I2S_CLK"},
{"SLIM RX4", NULL, "RX_I2S_CLK"},
{"SLIM TX1", NULL, "TX_I2S_CLK"},
{"SLIM TX2", NULL, "TX_I2S_CLK"},
{"SLIM TX3", NULL, "TX_I2S_CLK"},
{"SLIM TX4", NULL, "TX_I2S_CLK"},
};
#define SLIM_MIXER(x) (\
{x, "SLIM TX1", "SLIM TX1 MUX"}, \
{x, "SLIM TX2", "SLIM TX2 MUX"}, \
{x, "SLIM TX3", "SLIM TX3 MUX"}, \
{x, "SLIM TX4", "SLIM TX4 MUX"})
#define SLIM_MUX(x, y) (\
{"SLIM RX1 MUX", x, y}, \
{"SLIM RX2 MUX", x, y}, \
{"SLIM RX3 MUX", x, y}, \
{"SLIM RX4 MUX", x, y})
static const struct snd_soc_dapm_route audio_map[] = {
/* Earpiece (RX MIX1) */
{"EAR", NULL, "EAR PA"},
{"EAR PA", "NULL", "DAC1"},
{"DAC1", "Switch", "DAC1 MUX"},
{"DAC1", NULL, "CP"},
{"DAC1", NULL, "EAR DRIVER"},
{"CP", NULL, "RX_BIAS"},
{"LINEOUT1 DAC", NULL, "RX_BIAS"},
{"LINEOUT2 DAC", NULL, "RX_BIAS"},
{"LINEOUT2", NULL, "LINEOUT2 PA"},
{"LINEOUT2 PA", NULL, "CP"},
{"LINEOUT2 PA", NULL, "LINEOUT2 DAC"},
{"LINEOUT2 DAC", NULL, "DAC3 MUX"},
{"LINEOUT1", NULL, "LINEOUT1 PA"},
{"LINEOUT2 PA", NULL, "CP"},
{"LINEOUT1 PA", NULL, "LINEOUT1 DAC"},
{"LINEOUT1 DAC", NULL, "DAC2 MUX"},
{"ANC1 FB MUX", "EAR_HPH_L", "RX2 MIX1"},
{"ANC1 FB MUX", "EAR_LINE_1", "RX3 MIX1"},
{"ANC", NULL, "ANC1 FB MUX"},
/* Headset (RX MIX1 and RX MIX2) */
{"HEADPHONE", NULL, "HPHL"},
{"HEADPHONE", NULL, "HPHR"},
{"HPHL DAC", NULL, "CP"},
{"HPHR DAC", NULL, "CP"},
{"HPHL", NULL, "HPHL DAC"},
{"HPHL DAC", "NULL", "RX2 CHAIN"},
{"RX2 CHAIN", NULL, "DAC4 MUX"},
{"HPHR", NULL, "HPHR DAC"},
{"HPHR DAC", NULL, "RX3 CHAIN"},
{"RX3 CHAIN", NULL, "RX3 MIX1"},
{"DAC1 MUX", "RX1", "RX1 CHAIN"},
{"DAC2 MUX", "RX1", "RX1 CHAIN"},
{"DAC3 MUX", "RX1", "RX1 CHAIN"},
{"DAC3 MUX", "INV_RX1", "RX1 CHAIN"},
{"DAC3 MUX", "RX2", "RX2 MIX1"},
{"DAC4 MUX", "ON", "RX2 MIX1"},
{"RX1 CHAIN", NULL, "RX1 MIX1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP2"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP1"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP2"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP1"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP2"},
/* ANC */
{"ANC", NULL, "ANC1 MUX"},
{"ANC", NULL, "ANC2 MUX"},
{"ANC1 MUX", "ADC1", "ADC1"},
{"ANC1 MUX", "ADC2", "ADC2"},
{"ANC1 MUX", "ADC3", "ADC3"},
{"ANC2 MUX", "ADC1", "ADC1"},
{"ANC2 MUX", "ADC2", "ADC2"},
{"ANC2 MUX", "ADC3", "ADC3"},
{"ANC", NULL, "CDC_CONN"},
{"RX2 MIX1", NULL, "ANC"},
{"RX3 MIX1", NULL, "ANC"},
/* SLIMBUS Connections */
{"AIF1 CAP", NULL, "AIF1_CAP Mixer"},
/* SLIM_MIXER("AIF1_CAP Mixer"),*/
{"AIF1_CAP Mixer", "SLIM TX1", "SLIM TX1 MUX"},
{"AIF1_CAP Mixer", "SLIM TX2", "SLIM TX2 MUX"},
{"AIF1_CAP Mixer", "SLIM TX3", "SLIM TX3 MUX"},
{"AIF1_CAP Mixer", "SLIM TX4", "SLIM TX4 MUX"},
/* SLIM_MUX("AIF1_PB", "AIF1 PB"), */
{"SLIM RX1 MUX", "AIF1_PB", "AIF1 PB"},
{"SLIM RX2 MUX", "AIF1_PB", "AIF1 PB"},
{"SLIM RX3 MUX", "AIF1_PB", "AIF1 PB"},
{"SLIM RX4 MUX", "AIF1_PB", "AIF1 PB"},
{"SLIM RX1", NULL, "SLIM RX1 MUX"},
{"SLIM RX2", NULL, "SLIM RX2 MUX"},
{"SLIM RX3", NULL, "SLIM RX3 MUX"},
{"SLIM RX4", NULL, "SLIM RX4 MUX"},
/* Slimbus port 5 is non functional in Sitar 1.0 */
{"RX1 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX1 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX1 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX1 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX1 MIX1 INP1", "IIR1", "IIR1"},
{"RX1 MIX1 INP1", "IIR2", "IIR2"},
{"RX1 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX1 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX1 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX1 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX1 MIX1 INP2", "IIR1", "IIR1"},
{"RX1 MIX1 INP2", "IIR2", "IIR2"},
{"RX2 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX2 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX2 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX2 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX2 MIX1 INP1", "IIR1", "IIR1"},
{"RX2 MIX1 INP1", "IIR2", "IIR2"},
{"RX2 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX2 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX2 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX2 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX2 MIX1 INP2", "IIR1", "IIR1"},
{"RX2 MIX1 INP2", "IIR2", "IIR2"},
{"RX3 MIX1 INP1", "RX1", "SLIM RX1"},
{"RX3 MIX1 INP1", "RX2", "SLIM RX2"},
{"RX3 MIX1 INP1", "RX3", "SLIM RX3"},
{"RX3 MIX1 INP1", "RX4", "SLIM RX4"},
{"RX3 MIX1 INP1", "IIR1", "IIR1"},
{"RX3 MIX1 INP1", "IIR2", "IIR2"},
{"RX3 MIX1 INP2", "RX1", "SLIM RX1"},
{"RX3 MIX1 INP2", "RX2", "SLIM RX2"},
{"RX3 MIX1 INP2", "RX3", "SLIM RX3"},
{"RX3 MIX1 INP2", "RX4", "SLIM RX4"},
{"RX3 MIX1 INP2", "IIR1", "IIR1"},
{"RX3 MIX1 INP2", "IIR2", "IIR2"},
/* TX */
{"SLIM TX1 MUX", "DEC1", "DEC1 MUX"},
{"SLIM TX2 MUX", "DEC2", "DEC2 MUX"},
{"SLIM TX3 MUX", "DEC3", "DEC3 MUX"},
{"SLIM TX4 MUX", "DEC4", "DEC4 MUX"},
{"SLIM TX5 MUX", "DEC1", "DEC1 MUX"},
{"SLIM TX5 MUX", "DEC2", "DEC2 MUX"},
{"SLIM TX5 MUX", "DEC3", "DEC3 MUX"},
{"SLIM TX5 MUX", "DEC4", "DEC4 MUX"},
/* Decimator Inputs */
{"DEC1 MUX", "DMIC1", "DMIC1"},
{"DEC1 MUX", "DMIC4", "DMIC4"},
{"DEC1 MUX", "ADC1", "ADC1"},
{"DEC1 MUX", "ADC2", "ADC2"},
{"DEC1 MUX", "ADC3", "ADC3"},
{"DEC1 MUX", NULL, "CDC_CONN"},
{"DEC2 MUX", "DMIC2", "DMIC2"},
{"DEC2 MUX", "DMIC3", "DMIC3"},
{"DEC2 MUX", "ADC1", "ADC1"},
{"DEC2 MUX", "ADC2", "ADC2"},
{"DEC2 MUX", "ADC3", "ADC3"},
{"DEC2 MUX", NULL, "CDC_CONN"},
{"DEC3 MUX", "DMIC3", "DMIC3"},
{"DEC3 MUX", "ADC1", "ADC1"},
{"DEC3 MUX", "ADC2", "ADC2"},
{"DEC3 MUX", "ADC3", "ADC3"},
{"DEC3 MUX", "DMIC2", "DMIC2"},
{"DEC3 MUX", "DMIC4", "DMIC4"},
{"DEC3 MUX", NULL, "CDC_CONN"},
{"DEC4 MUX", "DMIC4", "DMIC4"},
{"DEC4 MUX", "ADC1", "ADC1"},
{"DEC4 MUX", "ADC2", "ADC2"},
{"DEC4 MUX", "ADC3", "ADC3"},
{"DEC4 MUX", "DMIC3", "DMIC3"},
{"DEC4 MUX", "DMIC2", "DMIC2"},
{"DEC4 MUX", "DMIC1", "DMIC1"},
{"DEC4 MUX", NULL, "CDC_CONN"},
/* ADC Connections */
{"ADC1", NULL, "AMIC1"},
{"ADC2", NULL, "AMIC2"},
{"ADC3", NULL, "AMIC3"},
/* IIR */
{"IIR1", NULL, "IIR1 INP1 MUX"},
{"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"},
{"IIR1 INP1 MUX", "DEC3", "DEC3 MUX"},
{"IIR1 INP1 MUX", "DEC4", "DEC4 MUX"},
{"IIR1 INP1 MUX", "RX1", "SLIM RX1"},
{"IIR1 INP1 MUX", "RX2", "SLIM RX2"},
{"IIR1 INP1 MUX", "RX3", "SLIM RX3"},
{"IIR1 INP1 MUX", "RX4", "SLIM RX4"},
{"IIR1 INP1 MUX", "RX5", "SLIM RX5"},
{"IIR2", NULL, "IIR2 INP1 MUX"},
{"IIR2 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR2 INP1 MUX", "DEC2", "DEC2 MUX"},
{"IIR2 INP1 MUX", "DEC3", "DEC3 MUX"},
{"IIR2 INP1 MUX", "DEC4", "DEC4 MUX"},
{"IIR2 INP1 MUX", "RX1", "SLIM RX1"},
{"IIR2 INP1 MUX", "RX2", "SLIM RX2"},
{"IIR2 INP1 MUX", "RX3", "SLIM RX3"},
{"IIR2 INP1 MUX", "RX4", "SLIM RX4"},
{"IIR2 INP1 MUX", "RX5", "SLIM RX5"},
{"MIC BIAS1 Internal1", NULL, "LDO_H"},
{"MIC BIAS1 External", NULL, "LDO_H"},
{"MIC BIAS2 Internal1", NULL, "LDO_H"},
{"MIC BIAS2 External", NULL, "LDO_H"},
};
static int sitar_readable(struct snd_soc_codec *ssc, unsigned int reg)
{
return sitar_reg_readable[reg];
}
static int sitar_volatile(struct snd_soc_codec *ssc, unsigned int reg)
{
int i;
/* Registers lower than 0x100 are top level registers which can be
* written by the Sitar core driver.
*/
if ((reg >= SITAR_A_CDC_MBHC_EN_CTL) || (reg < 0x100))
return 1;
/* IIR Coeff registers are not cacheable */
if ((reg >= SITAR_A_CDC_IIR1_COEF_B1_CTL) &&
(reg <= SITAR_A_CDC_IIR1_COEF_B5_CTL))
return 1;
for (i = 0; i < NUM_DECIMATORS; i++) {
if (reg == SITAR_A_CDC_TX1_VOL_CTL_GAIN + (8 * i))
return 1;
}
for (i = 0; i < NUM_INTERPOLATORS; i++) {
if (reg == SITAR_A_CDC_RX1_VOL_CTL_B2_CTL + (8 * i))
return 1;
}
return 0;
}
#define SITAR_FORMATS (SNDRV_PCM_FMTBIT_S16_LE)
static int sitar_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
int ret;
if (reg == SND_SOC_NOPM)
return 0;
BUG_ON(reg > SITAR_MAX_REGISTER);
if (!sitar_volatile(codec, reg)) {
ret = snd_soc_cache_write(codec, reg, value);
if (ret != 0)
dev_err(codec->dev, "Cache write to %x failed: %d\n",
reg, ret);
}
return wcd9xxx_reg_write(codec->control_data, reg, value);
}
static unsigned int sitar_read(struct snd_soc_codec *codec,
unsigned int reg)
{
unsigned int val;
int ret;
if (reg == SND_SOC_NOPM)
return 0;
BUG_ON(reg > SITAR_MAX_REGISTER);
if (!sitar_volatile(codec, reg) && sitar_readable(codec, reg) &&
reg < codec->driver->reg_cache_size) {
ret = snd_soc_cache_read(codec, reg, &val);
if (ret >= 0) {
return val;
} else
dev_err(codec->dev, "Cache read from %x failed: %d\n",
reg, ret);
}
val = wcd9xxx_reg_read(codec->control_data, reg);
return val;
}
static void sitar_codec_enable_audio_mode_bandgap(struct snd_soc_codec *codec)
{
struct wcd9xxx *sitar_core = dev_get_drvdata(codec->dev->parent);
if (SITAR_IS_1P0(sitar_core->version))
snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1, 0x80, 0x80);
snd_soc_update_bits(codec, SITAR_A_BIAS_CURR_CTL_2, 0x0C, 0x08);
usleep_range(1000, 1000);
snd_soc_write(codec, SITAR_A_BIAS_REF_CTL, 0x1C);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x80);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x04,
0x04);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x01,
0x01);
usleep_range(1000, 1000);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x00);
}
static void sitar_codec_enable_bandgap(struct snd_soc_codec *codec,
enum sitar_bandgap_type choice)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
struct wcd9xxx *sitar_core = dev_get_drvdata(codec->dev->parent);
/* TODO lock resources accessed by audio streams and threaded
* interrupt handlers
*/
pr_debug("%s, choice is %d, current is %d\n", __func__, choice,
sitar->bandgap_type);
if (sitar->bandgap_type == choice)
return;
if ((sitar->bandgap_type == SITAR_BANDGAP_OFF) &&
(choice == SITAR_BANDGAP_AUDIO_MODE)) {
sitar_codec_enable_audio_mode_bandgap(codec);
} else if (choice == SITAR_BANDGAP_MBHC_MODE) {
snd_soc_update_bits(codec, SITAR_A_BIAS_CURR_CTL_2, 0x0C, 0x08);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x2,
0x2);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x80);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x4,
0x4);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x01,
0x1);
usleep_range(1000, 1000);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x80,
0x00);
} else if ((sitar->bandgap_type == SITAR_BANDGAP_MBHC_MODE) &&
(choice == SITAR_BANDGAP_AUDIO_MODE)) {
snd_soc_write(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x50);
usleep_range(100, 100);
sitar_codec_enable_audio_mode_bandgap(codec);
} else if (choice == SITAR_BANDGAP_OFF) {
snd_soc_update_bits(codec, SITAR_A_BIAS_CURR_CTL_2, 0x0C, 0x00);
snd_soc_write(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x50);
if (SITAR_IS_1P0(sitar_core->version))
snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1,
0xF3, 0x61);
usleep_range(1000, 1000);
} else {
pr_err("%s: Error, Invalid bandgap settings\n", __func__);
}
sitar->bandgap_type = choice;
}
static int sitar_codec_enable_config_mode(struct snd_soc_codec *codec,
int enable)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
if (enable) {
snd_soc_update_bits(codec, SITAR_A_RC_OSC_FREQ, 0x10, 0);
snd_soc_write(codec, SITAR_A_BIAS_OSC_BG_CTL, 0x17);
usleep_range(5, 5);
snd_soc_update_bits(codec, SITAR_A_RC_OSC_FREQ, 0x80,
0x80);
snd_soc_update_bits(codec, SITAR_A_RC_OSC_TEST, 0x80,
0x80);
usleep_range(10, 10);
snd_soc_update_bits(codec, SITAR_A_RC_OSC_TEST, 0x80, 0);
usleep_range(20, 20);
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x08, 0x08);
} else {
snd_soc_update_bits(codec, SITAR_A_BIAS_OSC_BG_CTL, 0x1,
0);
snd_soc_update_bits(codec, SITAR_A_RC_OSC_FREQ, 0x80, 0);
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x08, 0x00);
}
sitar->config_mode_active = enable ? true : false;
return 0;
}
static int sitar_codec_enable_clock_block(struct snd_soc_codec *codec,
int config_mode)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
pr_debug("%s\n", __func__);
if (config_mode) {
sitar_codec_enable_config_mode(codec, 1);
snd_soc_write(codec, SITAR_A_CLK_BUFF_EN2, 0x00);
snd_soc_write(codec, SITAR_A_CLK_BUFF_EN2, 0x02);
snd_soc_write(codec, SITAR_A_CLK_BUFF_EN1, 0x0D);
usleep_range(1000, 1000);
} else
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x08, 0x00);
if (!config_mode && sitar->mbhc_polling_active) {
snd_soc_write(codec, SITAR_A_CLK_BUFF_EN2, 0x02);
sitar_codec_enable_config_mode(codec, 0);
}
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x05, 0x05);
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x02, 0x00);
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x04, 0x04);
usleep_range(50, 50);
sitar->clock_active = true;
return 0;
}
static void sitar_codec_disable_clock_block(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
pr_debug("%s\n", __func__);
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x04, 0x00);
ndelay(160);
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN2, 0x02, 0x02);
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x05, 0x00);
sitar->clock_active = false;
}
static int sitar_codec_mclk_index(const struct sitar_priv *sitar)
{
if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_12288KHZ)
return 0;
else if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_9600KHZ)
return 1;
else {
BUG_ON(1);
return -EINVAL;
}
}
static void sitar_codec_calibrate_hs_polling(struct snd_soc_codec *codec)
{
u8 *n_ready, *n_cic;
struct sitar_mbhc_btn_detect_cfg *btn_det;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(sitar->mbhc_cfg.calibration);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B1_CTL,
sitar->mbhc_data.v_ins_hu & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B2_CTL,
(sitar->mbhc_data.v_ins_hu >> 8) & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B3_CTL,
sitar->mbhc_data.v_b1_hu & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B4_CTL,
(sitar->mbhc_data.v_b1_hu >> 8) & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B5_CTL,
sitar->mbhc_data.v_b1_h & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B6_CTL,
(sitar->mbhc_data.v_b1_h >> 8) & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B9_CTL,
sitar->mbhc_data.v_brh & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B10_CTL,
(sitar->mbhc_data.v_brh >> 8) & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B11_CTL,
sitar->mbhc_data.v_brl & 0xFF);
snd_soc_write(codec, SITAR_A_CDC_MBHC_VOLT_B12_CTL,
(sitar->mbhc_data.v_brl >> 8) & 0xFF);
n_ready = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_READY);
snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B1_CTL,
n_ready[sitar_codec_mclk_index(sitar)]);
snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B2_CTL,
sitar->mbhc_data.npoll);
snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B3_CTL,
sitar->mbhc_data.nbounce_wait);
n_cic = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_CIC);
snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B6_CTL,
n_cic[sitar_codec_mclk_index(sitar)]);
}
static int sitar_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct wcd9xxx *wcd9xxx = dev_get_drvdata(dai->codec->dev->parent);
if ((wcd9xxx != NULL) && (wcd9xxx->dev != NULL) &&
(wcd9xxx->dev->parent != NULL))
pm_runtime_get_sync(wcd9xxx->dev->parent);
pr_debug("%s(): substream = %s stream = %d\n" , __func__,
substream->name, substream->stream);
return 0;
}
static void sitar_codec_pm_runtime_put(struct wcd9xxx *sitar)
{
if (sitar->dev != NULL &&
sitar->dev->parent != NULL) {
pm_runtime_mark_last_busy(sitar->dev->parent);
pm_runtime_put(sitar->dev->parent);
}
}
static void sitar_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct wcd9xxx *sitar_core = dev_get_drvdata(dai->codec->dev->parent);
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec);
u32 active = 0;
pr_debug("%s(): substream = %s stream = %d\n" , __func__,
substream->name, substream->stream);
if (sitar->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS)
return;
if (dai->id <= NUM_CODEC_DAIS) {
if (sitar->dai[dai->id].ch_mask) {
active = 1;
pr_debug("%s(): Codec DAI: chmask[%d] = 0x%lx\n",
__func__, dai->id,
sitar->dai[dai->id].ch_mask);
}
}
if (sitar_core != NULL && active == 0)
sitar_codec_pm_runtime_put(sitar_core);
}
int sitar_mclk_enable(struct snd_soc_codec *codec, int mclk_enable, bool dapm)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
pr_debug("%s() mclk_enable = %u\n", __func__, mclk_enable);
if (dapm)
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
if (mclk_enable) {
sitar->mclk_enabled = true;
if (sitar->mbhc_polling_active && (sitar->mclk_enabled)) {
sitar_codec_pause_hs_polling(codec);
sitar_codec_enable_bandgap(codec,
SITAR_BANDGAP_AUDIO_MODE);
sitar_codec_enable_clock_block(codec, 0);
sitar_codec_calibrate_hs_polling(codec);
sitar_codec_start_hs_polling(codec);
} else {
sitar_codec_enable_bandgap(codec,
SITAR_BANDGAP_AUDIO_MODE);
sitar_codec_enable_clock_block(codec, 0);
}
} else {
if (!sitar->mclk_enabled) {
if (dapm)
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
pr_err("Error, MCLK already diabled\n");
return -EINVAL;
}
sitar->mclk_enabled = false;
if (sitar->mbhc_polling_active) {
if (!sitar->mclk_enabled) {
sitar_codec_pause_hs_polling(codec);
sitar_codec_enable_bandgap(codec,
SITAR_BANDGAP_MBHC_MODE);
sitar_enable_rx_bias(codec, 1);
sitar_codec_enable_clock_block(codec, 1);
sitar_codec_calibrate_hs_polling(codec);
sitar_codec_start_hs_polling(codec);
}
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1,
0x05, 0x01);
} else {
sitar_codec_disable_clock_block(codec);
sitar_codec_enable_bandgap(codec,
SITAR_BANDGAP_OFF);
}
}
if (dapm)
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
return 0;
}
static int sitar_set_dai_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
pr_debug("%s\n", __func__);
return 0;
}
static int sitar_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
u8 val = 0;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec);
pr_debug("%s\n", __func__);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* CPU is master */
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
if (dai->id == AIF1_CAP)
snd_soc_update_bits(dai->codec,
SITAR_A_CDC_CLK_TX_I2S_CTL,
SITAR_I2S_MASTER_MODE_MASK, 0);
else if (dai->id == AIF1_PB)
snd_soc_update_bits(dai->codec,
SITAR_A_CDC_CLK_RX_I2S_CTL,
SITAR_I2S_MASTER_MODE_MASK, 0);
}
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* CPU is slave */
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
val = SITAR_I2S_MASTER_MODE_MASK;
if (dai->id == AIF1_CAP)
snd_soc_update_bits(dai->codec,
SITAR_A_CDC_CLK_TX_I2S_CTL, val, val);
else if (dai->id == AIF1_PB)
snd_soc_update_bits(dai->codec,
SITAR_A_CDC_CLK_RX_I2S_CTL, val, val);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int sitar_set_channel_map(struct snd_soc_dai *dai,
unsigned int tx_num, unsigned int *tx_slot,
unsigned int rx_num, unsigned int *rx_slot)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec);
struct wcd9xxx *core = dev_get_drvdata(dai->codec->dev->parent);
if (!tx_slot && !rx_slot) {
pr_err("%s: Invalid\n", __func__);
return -EINVAL;
}
pr_debug("%s: DAI-ID %x %d %d\n", __func__, dai->id, tx_num, rx_num);
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_SLIMBUS)
wcd9xxx_init_slimslave(core, core->slim->laddr,
tx_num, tx_slot, rx_num, rx_slot);
return 0;
}
static int sitar_get_channel_map(struct snd_soc_dai *dai,
unsigned int *tx_num, unsigned int *tx_slot,
unsigned int *rx_num, unsigned int *rx_slot)
{
struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(dai->codec);
u32 i = 0;
struct wcd9xxx_ch *ch;
switch (dai->id) {
case AIF1_PB:
if (!rx_slot || !rx_num) {
pr_err("%s: Invalid rx_slot 0x%x or rx_num 0x%x\n",
__func__, (u32) rx_slot, (u32) rx_num);
return -EINVAL;
}
list_for_each_entry(ch, &sitar_p->dai[dai->id].wcd9xxx_ch_list,
list) {
rx_slot[i++] = ch->ch_num;
}
*rx_num = i;
break;
case AIF1_CAP:
if (!tx_slot || !tx_num) {
pr_err("%s: Invalid tx_slot 0x%x or tx_num 0x%x\n",
__func__, (u32) tx_slot, (u32) tx_num);
return -EINVAL;
}
list_for_each_entry(ch, &sitar_p->dai[dai->id].wcd9xxx_ch_list,
list) {
tx_slot[i++] = ch->ch_num;
}
*tx_num = i;
break;
default:
pr_err("%s: Invalid dai %d", __func__, dai->id);
return -EINVAL;
}
return 0;
}
static int sitar_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(dai->codec);
u8 path, shift;
u16 tx_fs_reg, rx_fs_reg;
u8 tx_fs_rate, rx_fs_rate, rx_state, tx_state;
pr_debug("%s: DAI-ID %x\n", __func__, dai->id);
switch (params_rate(params)) {
case 8000:
tx_fs_rate = 0x00;
rx_fs_rate = 0x00;
break;
case 16000:
tx_fs_rate = 0x01;
rx_fs_rate = 0x20;
break;
case 32000:
tx_fs_rate = 0x02;
rx_fs_rate = 0x40;
break;
case 48000:
tx_fs_rate = 0x03;
rx_fs_rate = 0x60;
break;
default:
pr_err("%s: Invalid sampling rate %d\n", __func__,
params_rate(params));
return -EINVAL;
}
/**
* If current dai is a tx dai, set sample rate to
* all the txfe paths that are currently not active
*/
if (dai->id == AIF1_CAP) {
tx_state = snd_soc_read(codec,
SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL);
for (path = 1, shift = 0;
path <= NUM_DECIMATORS; path++, shift++) {
if (!(tx_state & (1 << shift))) {
tx_fs_reg = SITAR_A_CDC_TX1_CLK_FS_CTL
+ (BITS_PER_REG*(path-1));
snd_soc_update_bits(codec, tx_fs_reg,
0x03, tx_fs_rate);
}
}
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
snd_soc_update_bits(codec,
SITAR_A_CDC_CLK_TX_I2S_CTL,
0x20, 0x20);
break;
case SNDRV_PCM_FORMAT_S32_LE:
snd_soc_update_bits(codec,
SITAR_A_CDC_CLK_TX_I2S_CTL,
0x20, 0x00);
break;
default:
pr_err("%s: Unsupport format %d\n", __func__,
params_format(params));
return -EINVAL;
}
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_TX_I2S_CTL,
0x03, tx_fs_rate);
} else {
sitar->dai[dai->id].rate = params_rate(params);
}
}
/**
* TODO: Need to handle case where same RX chain takes 2 or more inputs
* with varying sample rates
*/
/**
* If current dai is a rx dai, set sample rate to
* all the rx paths that are currently not active
*/
if (dai->id == AIF1_PB) {
rx_state = snd_soc_read(codec,
SITAR_A_CDC_CLK_RX_B1_CTL);
for (path = 1, shift = 0;
path <= NUM_INTERPOLATORS; path++, shift++) {
if (!(rx_state & (1 << shift))) {
rx_fs_reg = SITAR_A_CDC_RX1_B5_CTL
+ (BITS_PER_REG*(path-1));
snd_soc_update_bits(codec, rx_fs_reg,
0xE0, rx_fs_rate);
}
}
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
snd_soc_update_bits(codec,
SITAR_A_CDC_CLK_RX_I2S_CTL,
0x20, 0x20);
break;
case SNDRV_PCM_FORMAT_S32_LE:
snd_soc_update_bits(codec,
SITAR_A_CDC_CLK_RX_I2S_CTL,
0x20, 0x00);
break;
default:
pr_err("%s: Unsupport format %d\n", __func__,
params_format(params));
break;
}
snd_soc_update_bits(codec, SITAR_A_CDC_CLK_RX_I2S_CTL,
0x03, (rx_fs_rate >> 0x05));
} else {
sitar->dai[dai->id].rate = params_rate(params);
}
}
return 0;
}
static struct snd_soc_dai_ops sitar_dai_ops = {
.startup = sitar_startup,
.shutdown = sitar_shutdown,
.hw_params = sitar_hw_params,
.set_sysclk = sitar_set_dai_sysclk,
.set_fmt = sitar_set_dai_fmt,
.set_channel_map = sitar_set_channel_map,
.get_channel_map = sitar_get_channel_map,
};
static struct snd_soc_dai_driver sitar_dai[] = {
{
.name = "sitar_rx1",
.id = AIF1_PB,
.playback = {
.stream_name = "AIF1 Playback",
.rates = WCD9304_RATES,
.formats = SITAR_FORMATS,
.rate_max = 48000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 2,
},
.ops = &sitar_dai_ops,
},
{
.name = "sitar_tx1",
.id = AIF1_CAP,
.capture = {
.stream_name = "AIF1 Capture",
.rates = WCD9304_RATES,
.formats = SITAR_FORMATS,
.rate_max = 48000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 2,
},
.ops = &sitar_dai_ops,
},
};
static struct snd_soc_dai_driver sitar_i2s_dai[] = {
{
.name = "sitar_i2s_rx1",
.id = AIF1_PB,
.playback = {
.stream_name = "AIF1 Playback",
.rates = WCD9304_RATES,
.formats = SITAR_FORMATS,
.rate_max = 192000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 4,
},
.ops = &sitar_dai_ops,
},
{
.name = "sitar_i2s_tx1",
.id = AIF1_CAP,
.capture = {
.stream_name = "AIF1 Capture",
.rates = WCD9304_RATES,
.formats = SITAR_FORMATS,
.rate_max = 192000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 4,
},
.ops = &sitar_dai_ops,
},
};
static int sitar_codec_enable_chmask(struct sitar_priv *sitar,
int event, int index)
{
int ret = 0;
struct wcd9xxx_ch *ch;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
list_for_each_entry(ch,
&sitar->dai[index].wcd9xxx_ch_list, list) {
ret = wcd9xxx_get_slave_port(ch->ch_num);
if (ret < 0) {
pr_err("%s: Invalid slave port ID: %d\n",
__func__, ret);
ret = -EINVAL;
break;
}
sitar->dai[index].ch_mask |= 1 << ret;
}
break;
case SND_SOC_DAPM_POST_PMD:
ret = wait_event_timeout(sitar->dai[index].dai_wait,
(sitar->dai[index].ch_mask == 0),
msecs_to_jiffies(SLIM_CLOSE_TIMEOUT));
if (!ret) {
pr_err("%s: Slim close tx/rx wait timeout\n",
__func__);
ret = -EINVAL;
} else {
ret = 0;
}
break;
}
return ret;
}
static int sitar_codec_enable_slimrx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct wcd9xxx *core;
struct snd_soc_codec *codec = w->codec;
struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec);
int ret = 0;
struct wcd9xxx_codec_dai_data *dai;
core = dev_get_drvdata(codec->dev->parent);
/* Execute the callback only if interface type is slimbus */
if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) {
if (event == SND_SOC_DAPM_POST_PMD && (core != NULL))
sitar_codec_pm_runtime_put(core);
return 0;
}
dai = &sitar_p->dai[w->shift];
switch (event) {
case SND_SOC_DAPM_POST_PMU:
ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMU,
w->shift);
ret = wcd9xxx_cfg_slim_sch_rx(core, &dai->wcd9xxx_ch_list,
dai->rate, dai->bit_width,
&dai->grph);
break;
case SND_SOC_DAPM_POST_PMD:
ret = wcd9xxx_close_slim_sch_rx(core, &dai->wcd9xxx_ch_list,
dai->grph);
ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMD,
w->shift);
if (ret < 0) {
ret = wcd9xxx_disconnect_port(core,
&dai->wcd9xxx_ch_list,
dai->grph);
pr_info("%s: Disconnect RX port ret = %d\n",
__func__, ret);
}
if (core != NULL)
sitar_codec_pm_runtime_put(core);
break;
}
return ret;
}
static int sitar_codec_enable_slimtx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct wcd9xxx *core;
struct snd_soc_codec *codec = w->codec;
struct sitar_priv *sitar_p = snd_soc_codec_get_drvdata(codec);
struct wcd9xxx_codec_dai_data *dai;
int ret = 0;
core = dev_get_drvdata(codec->dev->parent);
/* Execute the callback only if interface type is slimbus */
if (sitar_p->intf_type != WCD9XXX_INTERFACE_TYPE_SLIMBUS) {
if (event == SND_SOC_DAPM_POST_PMD && (core != NULL))
sitar_codec_pm_runtime_put(core);
return 0;
}
dai = &sitar_p->dai[w->shift];
switch (event) {
case SND_SOC_DAPM_POST_PMU:
ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMU,
w->shift);
ret = wcd9xxx_cfg_slim_sch_tx(core, &dai->wcd9xxx_ch_list,
dai->rate, dai->bit_width,
&dai->grph);
break;
case SND_SOC_DAPM_POST_PMD:
ret = wcd9xxx_close_slim_sch_tx(core, &dai->wcd9xxx_ch_list,
dai->grph);
ret = sitar_codec_enable_chmask(sitar_p, SND_SOC_DAPM_POST_PMD,
w->shift);
if (ret < 0) {
ret = wcd9xxx_disconnect_port(core,
&dai->wcd9xxx_ch_list,
dai->grph);
pr_info("%s: Disconnect RX port ret = %d\n",
__func__, ret);
}
if (core != NULL)
sitar_codec_pm_runtime_put(core);
break;
}
return ret;
}
static short sitar_codec_read_sta_result(struct snd_soc_codec *codec)
{
u8 bias_msb, bias_lsb;
short bias_value;
bias_msb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B3_STATUS);
bias_lsb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B2_STATUS);
bias_value = (bias_msb << 8) | bias_lsb;
return bias_value;
}
static short sitar_codec_read_dce_result(struct snd_soc_codec *codec)
{
u8 bias_msb, bias_lsb;
short bias_value;
bias_msb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B5_STATUS);
bias_lsb = snd_soc_read(codec, SITAR_A_CDC_MBHC_B4_STATUS);
bias_value = (bias_msb << 8) | bias_lsb;
return bias_value;
}
static void sitar_turn_onoff_rel_detection(struct snd_soc_codec *codec,
bool on)
{
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x02, on << 1);
}
static short __sitar_codec_sta_dce(struct snd_soc_codec *codec, int dce,
bool override_bypass, bool noreldetection)
{
short bias_value;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL);
if (noreldetection)
sitar_turn_onoff_rel_detection(codec, false);
/* Turn on the override */
if (!override_bypass)
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x4, 0x4);
if (dce) {
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x4);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x0);
usleep_range(sitar->mbhc_data.t_sta_dce,
sitar->mbhc_data.t_sta_dce);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x4);
usleep_range(sitar->mbhc_data.t_dce,
sitar->mbhc_data.t_dce);
bias_value = sitar_codec_read_dce_result(codec);
} else {
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x2);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x0);
usleep_range(sitar->mbhc_data.t_sta_dce,
sitar->mbhc_data.t_sta_dce);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x2);
usleep_range(sitar->mbhc_data.t_sta,
sitar->mbhc_data.t_sta);
bias_value = sitar_codec_read_sta_result(codec);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x0);
}
/* Turn off the override after measuring mic voltage */
if (!override_bypass)
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, 0x00);
if (noreldetection)
sitar_turn_onoff_rel_detection(codec, true);
wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL);
return bias_value;
}
static short sitar_codec_sta_dce(struct snd_soc_codec *codec, int dce,
bool norel)
{
return __sitar_codec_sta_dce(codec, dce, false, norel);
}
static void sitar_codec_shutdown_hs_removal_detect(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
const struct sitar_mbhc_general_cfg *generic =
SITAR_MBHC_CAL_GENERAL_PTR(sitar->mbhc_cfg.calibration);
if (!sitar->mclk_enabled && !sitar->mbhc_polling_active)
sitar_codec_enable_config_mode(codec, 1);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x2, 0x2);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x6, 0x0);
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.mbhc_reg, 0x80, 0x00);
usleep_range(generic->t_shutdown_plug_rem,
generic->t_shutdown_plug_rem);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0xA, 0x8);
if (!sitar->mclk_enabled && !sitar->mbhc_polling_active)
sitar_codec_enable_config_mode(codec, 0);
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x00);
}
static void sitar_codec_cleanup_hs_polling(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
sitar_codec_shutdown_hs_removal_detect(codec);
if (!sitar->mclk_enabled) {
sitar_codec_disable_clock_block(codec);
sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_OFF);
}
sitar->mbhc_polling_active = false;
sitar->mbhc_state = MBHC_STATE_NONE;
}
/* called only from interrupt which is under codec_resource_lock acquisition */
static short sitar_codec_setup_hs_polling(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
short bias_value;
u8 cfilt_mode;
if (!sitar->mbhc_cfg.calibration) {
pr_err("Error, no sitar calibration\n");
return -ENODEV;
}
if (!sitar->mclk_enabled) {
sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_MBHC_MODE);
sitar_enable_rx_bias(codec, 1);
sitar_codec_enable_clock_block(codec, 1);
}
snd_soc_update_bits(codec, SITAR_A_CLK_BUFF_EN1, 0x05, 0x01);
/* Make sure CFILT is in fast mode, save current mode */
cfilt_mode = snd_soc_read(codec, sitar->mbhc_bias_regs.cfilt_ctl);
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x70, 0x00);
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg, 0x1F, 0x16);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x2, 0x2);
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84);
snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN, 0x80, 0x80);
snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN, 0x1F, 0x1C);
snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_TEST_CTL, 0x40, 0x40);
snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN, 0x80, 0x00);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x00);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x2, 0x2);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x8, 0x8);
sitar_codec_calibrate_hs_polling(codec);
/* don't flip override */
bias_value = __sitar_codec_sta_dce(codec, 1, true, true);
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40,
cfilt_mode);
snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x13, 0x00);
return bias_value;
}
static int sitar_cancel_btn_work(struct sitar_priv *sitar)
{
int r = 0;
struct wcd9xxx *core = dev_get_drvdata(sitar->codec->dev->parent);
if (cancel_delayed_work_sync(&sitar->mbhc_btn_dwork)) {
/* if scheduled mbhc_btn_dwork is canceled from here,
* we have to unlock from here instead btn_work */
wcd9xxx_unlock_sleep(core);
r = 1;
}
return r;
}
static u16 sitar_codec_v_sta_dce(struct snd_soc_codec *codec, bool dce,
s16 vin_mv)
{
short diff, zero;
struct sitar_priv *sitar;
u32 mb_mv, in;
sitar = snd_soc_codec_get_drvdata(codec);
mb_mv = sitar->mbhc_data.micb_mv;
if (mb_mv == 0) {
pr_err("%s: Mic Bias voltage is set to zero\n", __func__);
return -EINVAL;
}
if (dce) {
diff = sitar->mbhc_data.dce_mb - sitar->mbhc_data.dce_z;
zero = sitar->mbhc_data.dce_z;
} else {
diff = sitar->mbhc_data.sta_mb - sitar->mbhc_data.sta_z;
zero = sitar->mbhc_data.sta_z;
}
in = (u32) diff * vin_mv;
return (u16) (in / mb_mv) + zero;
}
static s32 sitar_codec_sta_dce_v(struct snd_soc_codec *codec, s8 dce,
u16 bias_value)
{
struct sitar_priv *sitar;
s16 value, z, mb;
s32 mv;
sitar = snd_soc_codec_get_drvdata(codec);
value = bias_value;
if (dce) {
z = (sitar->mbhc_data.dce_z);
mb = (sitar->mbhc_data.dce_mb);
mv = (value - z) * (s32)sitar->mbhc_data.micb_mv / (mb - z);
} else {
z = (sitar->mbhc_data.sta_z);
mb = (sitar->mbhc_data.sta_mb);
mv = (value - z) * (s32)sitar->mbhc_data.micb_mv / (mb - z);
}
return mv;
}
static void btn_lpress_fn(struct work_struct *work)
{
struct delayed_work *delayed_work;
struct sitar_priv *sitar;
short bias_value;
int dce_mv, sta_mv;
struct wcd9xxx *core;
pr_debug("%s:\n", __func__);
delayed_work = to_delayed_work(work);
sitar = container_of(delayed_work, struct sitar_priv, mbhc_btn_dwork);
core = dev_get_drvdata(sitar->codec->dev->parent);
if (sitar) {
if (sitar->mbhc_cfg.button_jack) {
bias_value = sitar_codec_read_sta_result(sitar->codec);
sta_mv = sitar_codec_sta_dce_v(sitar->codec, 0,
bias_value);
bias_value = sitar_codec_read_dce_result(sitar->codec);
dce_mv = sitar_codec_sta_dce_v(sitar->codec, 1,
bias_value);
pr_debug("%s: Reporting long button press event"
" STA: %d, DCE: %d\n", __func__, sta_mv, dce_mv);
sitar_snd_soc_jack_report(sitar,
sitar->mbhc_cfg.button_jack,
sitar->buttons_pressed,
sitar->buttons_pressed);
}
} else {
pr_err("%s: Bad sitar private data\n", __func__);
}
pr_debug("%s: leave\n", __func__);
wcd9xxx_unlock_sleep(core);
}
void sitar_mbhc_cal(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar;
struct sitar_mbhc_btn_detect_cfg *btn_det;
u8 cfilt_mode, bg_mode;
u8 ncic, nmeas, navg;
u32 mclk_rate;
u32 dce_wait, sta_wait;
u8 *n_cic;
void *calibration;
sitar = snd_soc_codec_get_drvdata(codec);
calibration = sitar->mbhc_cfg.calibration;
wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL);
sitar_turn_onoff_rel_detection(codec, false);
/* First compute the DCE / STA wait times
* depending on tunable parameters.
* The value is computed in microseconds
*/
btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(calibration);
n_cic = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_CIC);
ncic = n_cic[sitar_codec_mclk_index(sitar)];
nmeas = SITAR_MBHC_CAL_BTN_DET_PTR(calibration)->n_meas;
navg = SITAR_MBHC_CAL_GENERAL_PTR(calibration)->mbhc_navg;
mclk_rate = sitar->mbhc_cfg.mclk_rate;
dce_wait = (1000 * 512 * 60 * (nmeas + 1)) / (mclk_rate / 1000);
sta_wait = (1000 * 128 * (navg + 1)) / (mclk_rate / 1000);
sitar->mbhc_data.t_dce = DEFAULT_DCE_WAIT;
sitar->mbhc_data.t_sta = DEFAULT_STA_WAIT;
/* LDOH and CFILT are already configured during pdata handling.
* Only need to make sure CFILT and bandgap are in Fast mode.
* Need to restore defaults once calculation is done.
*/
cfilt_mode = snd_soc_read(codec, sitar->mbhc_bias_regs.cfilt_ctl);
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40, 0x00);
bg_mode = snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x02,
0x02);
/* Micbias, CFILT, LDOH, MBHC MUX mode settings
* to perform ADC calibration
*/
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg, 0x60,
sitar->mbhc_cfg.micbias << 5);
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg, 0x01, 0x00);
snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1, 0x60, 0x60);
snd_soc_write(codec, SITAR_A_TX_4_MBHC_TEST_CTL, 0x78);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, 0x04);
/* DCE measurement for 0 volts */
snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x0A);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x04);
snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x02);
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x81);
usleep_range(100, 100);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x04);
usleep_range(sitar->mbhc_data.t_dce, sitar->mbhc_data.t_dce);
sitar->mbhc_data.dce_z = sitar_codec_read_dce_result(codec);
/* DCE measurment for MB voltage */
snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x0A);
snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x02);
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x82);
usleep_range(100, 100);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x04);
usleep_range(sitar->mbhc_data.t_dce, sitar->mbhc_data.t_dce);
sitar->mbhc_data.dce_mb = sitar_codec_read_dce_result(codec);
/* Sta measuremnt for 0 volts */
snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x0A);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x02);
snd_soc_write(codec, SITAR_A_CDC_MBHC_CLK_CTL, 0x02);
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x81);
usleep_range(100, 100);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x02);
usleep_range(sitar->mbhc_data.t_sta, sitar->mbhc_data.t_sta);
sitar->mbhc_data.sta_z = sitar_codec_read_sta_result(codec);
/* STA Measurement for MB Voltage */
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x82);
usleep_range(100, 100);
snd_soc_write(codec, SITAR_A_CDC_MBHC_EN_CTL, 0x02);
usleep_range(sitar->mbhc_data.t_sta, sitar->mbhc_data.t_sta);
sitar->mbhc_data.sta_mb = sitar_codec_read_sta_result(codec);
/* Restore default settings. */
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, 0x00);
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl, 0x40,
cfilt_mode);
snd_soc_update_bits(codec, SITAR_A_BIAS_CENTRAL_BG_CTL, 0x02, bg_mode);
snd_soc_write(codec, SITAR_A_MBHC_SCALING_MUX_1, 0x84);
usleep_range(100, 100);
wcd9xxx_enable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL);
sitar_turn_onoff_rel_detection(codec, true);
}
void *sitar_mbhc_cal_btn_det_mp(const struct sitar_mbhc_btn_detect_cfg* btn_det,
const enum sitar_mbhc_btn_det_mem mem)
{
void *ret = &btn_det->_v_btn_low;
switch (mem) {
case SITAR_BTN_DET_GAIN:
ret += sizeof(btn_det->_n_cic);
case SITAR_BTN_DET_N_CIC:
ret += sizeof(btn_det->_n_ready);
case SITAR_BTN_DET_N_READY:
ret += sizeof(btn_det->_v_btn_high[0]) * btn_det->num_btn;
case SITAR_BTN_DET_V_BTN_HIGH:
ret += sizeof(btn_det->_v_btn_low[0]) * btn_det->num_btn;
case SITAR_BTN_DET_V_BTN_LOW:
/* do nothing */
break;
default:
ret = NULL;
}
return ret;
}
static void sitar_mbhc_calc_thres(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar;
s16 btn_mv = 0, btn_delta_mv;
struct sitar_mbhc_btn_detect_cfg *btn_det;
struct sitar_mbhc_plug_type_cfg *plug_type;
u16 *btn_high;
u8 *n_ready;
int i;
sitar = snd_soc_codec_get_drvdata(codec);
btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(sitar->mbhc_cfg.calibration);
plug_type = SITAR_MBHC_CAL_PLUG_TYPE_PTR(sitar->mbhc_cfg.calibration);
n_ready = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_READY);
if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_12288KHZ) {
sitar->mbhc_data.npoll = 9;
sitar->mbhc_data.nbounce_wait = 30;
} else if (sitar->mbhc_cfg.mclk_rate == SITAR_MCLK_RATE_9600KHZ) {
sitar->mbhc_data.npoll = 7;
sitar->mbhc_data.nbounce_wait = 23;
}
sitar->mbhc_data.t_sta_dce = ((1000 * 256) /
(sitar->mbhc_cfg.mclk_rate / 1000) *
n_ready[sitar_codec_mclk_index(sitar)]) +
10;
sitar->mbhc_data.v_ins_hu =
sitar_codec_v_sta_dce(codec, STA, plug_type->v_hs_max);
sitar->mbhc_data.v_ins_h =
sitar_codec_v_sta_dce(codec, DCE, plug_type->v_hs_max);
btn_high = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_V_BTN_HIGH);
for (i = 0; i < btn_det->num_btn; i++)
btn_mv = btn_high[i] > btn_mv ? btn_high[i] : btn_mv;
sitar->mbhc_data.v_b1_h = sitar_codec_v_sta_dce(codec, DCE, btn_mv);
btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_sta;
sitar->mbhc_data.v_b1_hu =
sitar_codec_v_sta_dce(codec, STA, btn_delta_mv);
btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_cic;
sitar->mbhc_data.v_b1_huc =
sitar_codec_v_sta_dce(codec, DCE, btn_delta_mv);
sitar->mbhc_data.v_brh = sitar->mbhc_data.v_b1_h;
sitar->mbhc_data.v_brl = SITAR_MBHC_BUTTON_MIN;
sitar->mbhc_data.v_no_mic =
sitar_codec_v_sta_dce(codec, STA, plug_type->v_no_mic);
}
void sitar_mbhc_init(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar;
struct sitar_mbhc_general_cfg *generic;
struct sitar_mbhc_btn_detect_cfg *btn_det;
int n;
u8 *n_cic, *gain;
pr_err("%s(): ENTER\n", __func__);
sitar = snd_soc_codec_get_drvdata(codec);
generic = SITAR_MBHC_CAL_GENERAL_PTR(sitar->mbhc_cfg.calibration);
btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(sitar->mbhc_cfg.calibration);
for (n = 0; n < 8; n++) {
if (n != 7) {
snd_soc_update_bits(codec,
SITAR_A_CDC_MBHC_FIR_B1_CFG,
0x07, n);
snd_soc_write(codec, SITAR_A_CDC_MBHC_FIR_B2_CFG,
btn_det->c[n]);
}
}
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B2_CTL, 0x07,
btn_det->nc);
n_cic = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_N_CIC);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_TIMER_B6_CTL, 0xFF,
n_cic[sitar_codec_mclk_index(sitar)]);
gain = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_GAIN);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B2_CTL, 0x78,
gain[sitar_codec_mclk_index(sitar)] << 3);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_TIMER_B4_CTL, 0x70,
generic->mbhc_nsa << 4);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_TIMER_B4_CTL, 0x0F,
btn_det->n_meas);
snd_soc_write(codec, SITAR_A_CDC_MBHC_TIMER_B5_CTL, generic->mbhc_navg);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x80, 0x80);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x78,
btn_det->mbhc_nsc << 3);
snd_soc_update_bits(codec, SITAR_A_MICB_1_MBHC, 0x03,
sitar->mbhc_cfg.micbias);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x02, 0x02);
snd_soc_update_bits(codec, SITAR_A_MBHC_SCALING_MUX_2, 0xF0, 0xF0);
}
static bool sitar_mbhc_fw_validate(const struct firmware *fw)
{
u32 cfg_offset;
struct sitar_mbhc_imped_detect_cfg *imped_cfg;
struct sitar_mbhc_btn_detect_cfg *btn_cfg;
if (fw->size < SITAR_MBHC_CAL_MIN_SIZE)
return false;
/* previous check guarantees that there is enough fw data up
* to num_btn
*/
btn_cfg = SITAR_MBHC_CAL_BTN_DET_PTR(fw->data);
cfg_offset = (u32) ((void *) btn_cfg - (void *) fw->data);
if (fw->size < (cfg_offset + SITAR_MBHC_CAL_BTN_SZ(btn_cfg)))
return false;
/* previous check guarantees that there is enough fw data up
* to start of impedance detection configuration
*/
imped_cfg = SITAR_MBHC_CAL_IMPED_DET_PTR(fw->data);
cfg_offset = (u32) ((void *) imped_cfg - (void *) fw->data);
if (fw->size < (cfg_offset + SITAR_MBHC_CAL_IMPED_MIN_SZ))
return false;
if (fw->size < (cfg_offset + SITAR_MBHC_CAL_IMPED_SZ(imped_cfg)))
return false;
return true;
}
static void sitar_turn_onoff_override(struct snd_soc_codec *codec, bool on)
{
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_B1_CTL, 0x04, on << 2);
}
/* called under codec_resource_lock acquisition */
void sitar_set_and_turnoff_hph_padac(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
u8 wg_time;
wg_time = snd_soc_read(codec, SITAR_A_RX_HPH_CNP_WG_TIME) ;
wg_time += 1;
/* If headphone PA is on, check if userspace receives
* removal event to sync-up PA's state */
if (sitar_is_hph_pa_on(codec)) {
pr_debug("%s PA is on, setting PA_OFF_ACK\n", __func__);
set_bit(SITAR_HPHL_PA_OFF_ACK, &sitar->hph_pa_dac_state);
set_bit(SITAR_HPHR_PA_OFF_ACK, &sitar->hph_pa_dac_state);
} else {
pr_debug("%s PA is off\n", __func__);
}
if (sitar_is_hph_dac_on(codec, 1))
set_bit(SITAR_HPHL_DAC_OFF_ACK, &sitar->hph_pa_dac_state);
if (sitar_is_hph_dac_on(codec, 0))
set_bit(SITAR_HPHR_DAC_OFF_ACK, &sitar->hph_pa_dac_state);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_CNP_EN, 0x30, 0x00);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_L_DAC_CTL,
0xC0, 0x00);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_R_DAC_CTL,
0xC0, 0x00);
usleep_range(wg_time * 1000, wg_time * 1000);
}
static void sitar_clr_and_turnon_hph_padac(struct sitar_priv *sitar)
{
bool pa_turned_on = false;
struct snd_soc_codec *codec = sitar->codec;
u8 wg_time;
wg_time = snd_soc_read(codec, SITAR_A_RX_HPH_CNP_WG_TIME) ;
wg_time += 1;
if (test_and_clear_bit(SITAR_HPHR_DAC_OFF_ACK,
&sitar->hph_pa_dac_state)) {
pr_debug("%s: HPHR clear flag and enable DAC\n", __func__);
snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_R_DAC_CTL,
0xC0, 0xC0);
}
if (test_and_clear_bit(SITAR_HPHL_DAC_OFF_ACK,
&sitar->hph_pa_dac_state)) {
pr_debug("%s: HPHL clear flag and enable DAC\n", __func__);
snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_L_DAC_CTL,
0xC0, 0xC0);
}
if (test_and_clear_bit(SITAR_HPHR_PA_OFF_ACK,
&sitar->hph_pa_dac_state)) {
pr_debug("%s: HPHR clear flag and enable PA\n", __func__);
snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_CNP_EN, 0x10,
1 << 4);
pa_turned_on = true;
}
if (test_and_clear_bit(SITAR_HPHL_PA_OFF_ACK,
&sitar->hph_pa_dac_state)) {
pr_debug("%s: HPHL clear flag and enable PA\n", __func__);
snd_soc_update_bits(sitar->codec, SITAR_A_RX_HPH_CNP_EN, 0x20,
1 << 5);
pa_turned_on = true;
}
if (pa_turned_on) {
pr_debug("%s: PA was turned off by MBHC and not by DAPM\n",
__func__);
usleep_range(wg_time * 1000, wg_time * 1000);
}
}
static void sitar_codec_report_plug(struct snd_soc_codec *codec, int insertion,
enum snd_jack_types jack_type)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
if (!insertion) {
/* Report removal */
sitar->hph_status &= ~jack_type;
if (sitar->mbhc_cfg.headset_jack) {
/* cancel possibly scheduled btn work and
* report release if we reported button press */
if (sitar_cancel_btn_work(sitar)) {
pr_debug("%s: button press is canceled\n",
__func__);
} else if (sitar->buttons_pressed) {
pr_debug("%s: Reporting release for reported "
"button press %d\n", __func__,
jack_type);
sitar_snd_soc_jack_report(sitar,
sitar->mbhc_cfg.button_jack, 0,
sitar->buttons_pressed);
sitar->buttons_pressed &=
~SITAR_JACK_BUTTON_MASK;
}
pr_debug("%s: Reporting removal %d\n", __func__,
jack_type);
sitar_snd_soc_jack_report(sitar,
sitar->mbhc_cfg.headset_jack,
sitar->hph_status,
SITAR_JACK_MASK);
}
sitar_set_and_turnoff_hph_padac(codec);
hphocp_off_report(sitar, SND_JACK_OC_HPHR,
WCD9XXX_IRQ_HPH_PA_OCPR_FAULT);
hphocp_off_report(sitar, SND_JACK_OC_HPHL,
WCD9XXX_IRQ_HPH_PA_OCPL_FAULT);
sitar->current_plug = PLUG_TYPE_NONE;
sitar->mbhc_polling_active = false;
} else {
/* Report insertion */
sitar->hph_status |= jack_type;
if (jack_type == SND_JACK_HEADPHONE)
sitar->current_plug = PLUG_TYPE_HEADPHONE;
else if (jack_type == SND_JACK_HEADSET) {
sitar->mbhc_polling_active = true;
sitar->current_plug = PLUG_TYPE_HEADSET;
}
if (sitar->mbhc_cfg.headset_jack) {
pr_debug("%s: Reporting insertion %d\n", __func__,
jack_type);
sitar_snd_soc_jack_report(sitar,
sitar->mbhc_cfg.headset_jack,
sitar->hph_status,
SITAR_JACK_MASK);
}
sitar_clr_and_turnon_hph_padac(sitar);
}
}
static bool sitar_hs_gpio_level_remove(struct sitar_priv *sitar)
{
return (gpio_get_value_cansleep(sitar->mbhc_cfg.gpio) !=
sitar->mbhc_cfg.gpio_level_insert);
}
static bool sitar_is_invalid_insert_delta(struct snd_soc_codec *codec,
int mic_volt, int mic_volt_prev)
{
int delta = abs(mic_volt - mic_volt_prev);
if (delta > SITAR_MBHC_FAKE_INSERT_VOLT_DELTA_MV) {
pr_debug("%s: volt delta %dmv\n", __func__, delta);
return true;
}
return false;
}
static bool sitar_is_invalid_insertion_range(struct snd_soc_codec *codec,
s32 mic_volt)
{
bool invalid = false;
if (mic_volt < SITAR_MBHC_FAKE_INSERT_HIGH
&& (mic_volt > SITAR_MBHC_FAKE_INSERT_LOW)) {
invalid = true;
}
return invalid;
}
static bool sitar_codec_is_invalid_plug(struct snd_soc_codec *codec,
s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT],
enum sitar_mbhc_plug_type plug_type[MBHC_NUM_DCE_PLUG_DETECT])
{
int i;
bool r = false;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
struct sitar_mbhc_plug_type_cfg *plug_type_ptr =
SITAR_MBHC_CAL_PLUG_TYPE_PTR(sitar->mbhc_cfg.calibration);
for (i = 0 ; i < MBHC_NUM_DCE_PLUG_DETECT && !r; i++) {
if (mic_mv[i] < plug_type_ptr->v_no_mic)
plug_type[i] = PLUG_TYPE_HEADPHONE;
else if (mic_mv[i] < plug_type_ptr->v_hs_max)
plug_type[i] = PLUG_TYPE_HEADSET;
else if (mic_mv[i] > plug_type_ptr->v_hs_max)
plug_type[i] = PLUG_TYPE_HIGH_HPH;
r = sitar_is_invalid_insertion_range(codec, mic_mv[i]);
if (!r && i > 0) {
if (plug_type[i-1] != plug_type[i])
r = true;
else
r = sitar_is_invalid_insert_delta(codec,
mic_mv[i],
mic_mv[i - 1]);
}
}
return r;
}
/* called under codec_resource_lock acquisition */
void sitar_find_plug_and_report(struct snd_soc_codec *codec,
enum sitar_mbhc_plug_type plug_type)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
if (plug_type == PLUG_TYPE_HEADPHONE
&& sitar->current_plug == PLUG_TYPE_NONE) {
/* Nothing was reported previously
* reporte a headphone
*/
sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE);
sitar_codec_cleanup_hs_polling(codec);
} else if (plug_type == PLUG_TYPE_HEADSET) {
/* If Headphone was reported previously, this will
* only report the mic line
*/
sitar_codec_report_plug(codec, 1, SND_JACK_HEADSET);
msleep(100);
sitar_codec_start_hs_polling(codec);
} else if (plug_type == PLUG_TYPE_HIGH_HPH) {
if (sitar->current_plug == PLUG_TYPE_NONE)
sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE);
sitar_codec_cleanup_hs_polling(codec);
pr_debug("setup mic trigger for further detection\n");
sitar->lpi_enabled = true;
/* TODO ::: sitar_codec_enable_hs_detect */
pr_err("%s(): High impedence hph not supported\n", __func__);
}
}
/* should be called under interrupt context that hold suspend */
static void sitar_schedule_hs_detect_plug(struct sitar_priv *sitar)
{
pr_debug("%s: scheduling sitar_hs_correct_gpio_plug\n", __func__);
sitar->hs_detect_work_stop = false;
wcd9xxx_lock_sleep(sitar->codec->control_data);
schedule_work(&sitar->hs_correct_plug_work);
}
/* called under codec_resource_lock acquisition */
static void sitar_cancel_hs_detect_plug(struct sitar_priv *sitar)
{
pr_debug("%s: canceling hs_correct_plug_work\n", __func__);
sitar->hs_detect_work_stop = true;
wmb();
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
if (cancel_work_sync(&sitar->hs_correct_plug_work)) {
pr_debug("%s: hs_correct_plug_work is canceled\n", __func__);
wcd9xxx_unlock_sleep(sitar->codec->control_data);
}
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
}
static void sitar_hs_correct_gpio_plug(struct work_struct *work)
{
struct sitar_priv *sitar;
struct snd_soc_codec *codec;
int retry = 0, i;
bool correction = false;
s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT];
short mb_v[MBHC_NUM_DCE_PLUG_DETECT];
enum sitar_mbhc_plug_type plug_type[MBHC_NUM_DCE_PLUG_DETECT];
unsigned long timeout;
sitar = container_of(work, struct sitar_priv, hs_correct_plug_work);
codec = sitar->codec;
pr_debug("%s: enter\n", __func__);
sitar->mbhc_cfg.mclk_cb_fn(codec, 1, false);
/* Keep override on during entire plug type correction work.
*
* This is okay under the assumption that any GPIO irqs which use
* MBHC block cancel and sync this work so override is off again
* prior to GPIO interrupt handler's MBHC block usage.
* Also while this correction work is running, we can guarantee
* DAPM doesn't use any MBHC block as this work only runs with
* headphone detection.
*/
sitar_turn_onoff_override(codec, true);
timeout = jiffies + msecs_to_jiffies(SITAR_HS_DETECT_PLUG_TIME_MS);
while (!time_after(jiffies, timeout)) {
++retry;
rmb();
if (sitar->hs_detect_work_stop) {
pr_debug("%s: stop requested\n", __func__);
break;
}
msleep(SITAR_HS_DETECT_PLUG_INERVAL_MS);
if (sitar_hs_gpio_level_remove(sitar)) {
pr_debug("%s: GPIO value is low\n", __func__);
break;
}
/* can race with removal interrupt */
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) {
mb_v[i] = __sitar_codec_sta_dce(codec, 1, true, true);
mic_mv[i] = sitar_codec_sta_dce_v(codec, 1 , mb_v[i]);
pr_debug("%s : DCE run %d, mic_mv = %d(%x)\n",
__func__, retry, mic_mv[i], mb_v[i]);
}
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
if (sitar_codec_is_invalid_plug(codec, mic_mv, plug_type)) {
pr_debug("Invalid plug in attempt # %d\n", retry);
if (retry == NUM_ATTEMPTS_TO_REPORT &&
sitar->current_plug == PLUG_TYPE_NONE) {
sitar_codec_report_plug(codec, 1,
SND_JACK_HEADPHONE);
}
} else if (!sitar_codec_is_invalid_plug(codec, mic_mv,
plug_type) &&
plug_type[0] == PLUG_TYPE_HEADPHONE) {
pr_debug("Good headphone detected, continue polling mic\n");
if (sitar->current_plug == PLUG_TYPE_NONE) {
sitar_codec_report_plug(codec, 1,
SND_JACK_HEADPHONE);
}
} else {
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
/* Turn off override */
sitar_turn_onoff_override(codec, false);
sitar_find_plug_and_report(codec, plug_type[0]);
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
pr_debug("Attempt %d found correct plug %d\n", retry,
plug_type[0]);
correction = true;
break;
}
}
/* Turn off override */
if (!correction)
sitar_turn_onoff_override(codec, false);
sitar->mbhc_cfg.mclk_cb_fn(codec, 0, false);
pr_debug("%s: leave\n", __func__);
/* unlock sleep */
wcd9xxx_unlock_sleep(sitar->codec->control_data);
}
/* called under codec_resource_lock acquisition */
static void sitar_codec_decide_gpio_plug(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
short mb_v[MBHC_NUM_DCE_PLUG_DETECT];
s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT];
enum sitar_mbhc_plug_type plug_type[MBHC_NUM_DCE_PLUG_DETECT];
int i;
pr_debug("%s: enter\n", __func__);
sitar_turn_onoff_override(codec, true);
mb_v[0] = sitar_codec_setup_hs_polling(codec);
mic_mv[0] = sitar_codec_sta_dce_v(codec, 1, mb_v[0]);
pr_debug("%s: DCE run 1, mic_mv = %d\n", __func__, mic_mv[0]);
for (i = 1; i < MBHC_NUM_DCE_PLUG_DETECT; i++) {
mb_v[i] = __sitar_codec_sta_dce(codec, 1, true, true);
mic_mv[i] = sitar_codec_sta_dce_v(codec, 1 , mb_v[i]);
pr_debug("%s: DCE run %d, mic_mv = %d\n", __func__, i + 1,
mic_mv[i]);
}
sitar_turn_onoff_override(codec, false);
if (sitar_hs_gpio_level_remove(sitar)) {
pr_debug("%s: GPIO value is low when determining plug\n",
__func__);
return;
}
if (sitar_codec_is_invalid_plug(codec, mic_mv, plug_type)) {
sitar_schedule_hs_detect_plug(sitar);
} else if (plug_type[0] == PLUG_TYPE_HEADPHONE) {
sitar_codec_report_plug(codec, 1, SND_JACK_HEADPHONE);
sitar_schedule_hs_detect_plug(sitar);
} else if (plug_type[0] == PLUG_TYPE_HEADSET) {
pr_debug("%s: Valid plug found, determine plug type\n",
__func__);
sitar_find_plug_and_report(codec, plug_type[0]);
}
}
/* called under codec_resource_lock acquisition */
static void sitar_codec_detect_plug_type(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
const struct sitar_mbhc_plug_detect_cfg *plug_det =
SITAR_MBHC_CAL_PLUG_DET_PTR(sitar->mbhc_cfg.calibration);
if (plug_det->t_ins_complete > 20)
msleep(plug_det->t_ins_complete);
else
usleep_range(plug_det->t_ins_complete * 1000,
plug_det->t_ins_complete * 1000);
if (sitar_hs_gpio_level_remove(sitar))
pr_debug("%s: GPIO value is low when determining "
"plug\n", __func__);
else
sitar_codec_decide_gpio_plug(codec);
return;
}
static void sitar_hs_gpio_handler(struct snd_soc_codec *codec)
{
bool insert;
struct sitar_priv *priv = snd_soc_codec_get_drvdata(codec);
bool is_removed = false;
pr_debug("%s: enter\n", __func__);
priv->in_gpio_handler = true;
/* Wait here for debounce time */
usleep_range(SITAR_GPIO_IRQ_DEBOUNCE_TIME_US,
SITAR_GPIO_IRQ_DEBOUNCE_TIME_US);
SITAR_ACQUIRE_LOCK(priv->codec_resource_lock);
/* cancel pending button press */
if (sitar_cancel_btn_work(priv))
pr_debug("%s: button press is canceled\n", __func__);
insert = (gpio_get_value_cansleep(priv->mbhc_cfg.gpio) ==
priv->mbhc_cfg.gpio_level_insert);
if ((priv->current_plug == PLUG_TYPE_NONE) && insert) {
priv->lpi_enabled = false;
wmb();
/* cancel detect plug */
sitar_cancel_hs_detect_plug(priv);
/* Disable Mic Bias pull down and HPH Switch to GND */
snd_soc_update_bits(codec, priv->mbhc_bias_regs.ctl_reg, 0x01,
0x00);
snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x01, 0x00);
sitar_codec_detect_plug_type(codec);
} else if ((priv->current_plug != PLUG_TYPE_NONE) && !insert) {
priv->lpi_enabled = false;
wmb();
/* cancel detect plug */
sitar_cancel_hs_detect_plug(priv);
if (priv->current_plug == PLUG_TYPE_HEADPHONE) {
sitar_codec_report_plug(codec, 0, SND_JACK_HEADPHONE);
is_removed = true;
} else if (priv->current_plug == PLUG_TYPE_HEADSET) {
sitar_codec_pause_hs_polling(codec);
sitar_codec_cleanup_hs_polling(codec);
sitar_codec_report_plug(codec, 0, SND_JACK_HEADSET);
is_removed = true;
}
if (is_removed) {
/* Enable Mic Bias pull down and HPH Switch to GND */
snd_soc_update_bits(codec,
priv->mbhc_bias_regs.ctl_reg, 0x01,
0x01);
snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x01,
0x01);
/* Make sure mic trigger is turned off */
snd_soc_update_bits(codec,
priv->mbhc_bias_regs.ctl_reg,
0x01, 0x01);
snd_soc_update_bits(codec,
priv->mbhc_bias_regs.mbhc_reg,
0x90, 0x00);
/* Reset MBHC State Machine */
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL,
0x08, 0x08);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_CLK_CTL,
0x08, 0x00);
/* Turn off override */
sitar_turn_onoff_override(codec, false);
}
}
priv->in_gpio_handler = false;
SITAR_RELEASE_LOCK(priv->codec_resource_lock);
pr_debug("%s: leave\n", __func__);
}
static irqreturn_t sitar_mechanical_plug_detect_irq(int irq, void *data)
{
int r = IRQ_HANDLED;
struct snd_soc_codec *codec = data;
if (unlikely(wcd9xxx_lock_sleep(codec->control_data) == false)) {
pr_warn("%s(): Failed to hold suspend\n", __func__);
r = IRQ_NONE;
} else {
sitar_hs_gpio_handler(codec);
wcd9xxx_unlock_sleep(codec->control_data);
}
return r;
}
static int sitar_mbhc_init_and_calibrate(struct snd_soc_codec *codec)
{
int rc = 0;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
sitar->mbhc_cfg.mclk_cb_fn(codec, 1, false);
sitar_mbhc_init(codec);
sitar_mbhc_cal(codec);
sitar_mbhc_calc_thres(codec);
sitar->mbhc_cfg.mclk_cb_fn(codec, 0, false);
sitar_codec_calibrate_hs_polling(codec);
/* Enable Mic Bias pull down and HPH Switch to GND */
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.ctl_reg,
0x01, 0x01);
snd_soc_update_bits(codec, SITAR_A_MBHC_HPH,
0x01, 0x01);
rc = request_threaded_irq(sitar->mbhc_cfg.gpio_irq,
NULL,
sitar_mechanical_plug_detect_irq,
(IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING),
"sitar-hs-gpio", codec);
if (!IS_ERR_VALUE(rc)) {
rc = enable_irq_wake(sitar->mbhc_cfg.gpio_irq);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL,
0x10, 0x10);
wcd9xxx_enable_irq(codec->control_data,
WCD9XXX_IRQ_HPH_PA_OCPL_FAULT);
wcd9xxx_enable_irq(codec->control_data,
WCD9XXX_IRQ_HPH_PA_OCPR_FAULT);
/* Bootup time detection */
sitar_hs_gpio_handler(codec);
}
return rc;
}
static void mbhc_fw_read(struct work_struct *work)
{
struct delayed_work *dwork;
struct sitar_priv *sitar;
struct snd_soc_codec *codec;
const struct firmware *fw;
int ret = -1, retry = 0;
dwork = to_delayed_work(work);
sitar = container_of(dwork, struct sitar_priv,
mbhc_firmware_dwork);
codec = sitar->codec;
while (retry < MBHC_FW_READ_ATTEMPTS) {
retry++;
pr_info("%s:Attempt %d to request MBHC firmware\n",
__func__, retry);
ret = request_firmware(&fw, "wcd9310/wcd9310_mbhc.bin",
codec->dev);
if (ret != 0) {
usleep_range(MBHC_FW_READ_TIMEOUT,
MBHC_FW_READ_TIMEOUT);
} else {
pr_info("%s: MBHC Firmware read succesful\n", __func__);
break;
}
}
if (ret != 0) {
pr_err("%s: Cannot load MBHC firmware use default cal\n",
__func__);
} else if (sitar_mbhc_fw_validate(fw) == false) {
pr_err("%s: Invalid MBHC cal data size use default cal\n",
__func__);
release_firmware(fw);
} else {
sitar->calibration = (void *)fw->data;
sitar->mbhc_fw = fw;
}
sitar_mbhc_init_and_calibrate(codec);
}
int sitar_hs_detect(struct snd_soc_codec *codec,
const struct sitar_mbhc_config *cfg)
{
struct sitar_priv *sitar;
int rc = 0;
if (!codec || !cfg->calibration) {
pr_err("Error: no codec or calibration\n");
return -EINVAL;
}
if (cfg->mclk_rate != SITAR_MCLK_RATE_12288KHZ) {
if (cfg->mclk_rate == SITAR_MCLK_RATE_9600KHZ)
pr_err("Error: clock rate %dHz is not yet supported\n",
cfg->mclk_rate);
else
pr_err("Error: unsupported clock rate %d\n",
cfg->mclk_rate);
return -EINVAL;
}
sitar = snd_soc_codec_get_drvdata(codec);
sitar->mbhc_cfg = *cfg;
sitar->in_gpio_handler = false;
sitar->current_plug = PLUG_TYPE_NONE;
sitar->lpi_enabled = false;
sitar_get_mbhc_micbias_regs(codec, &sitar->mbhc_bias_regs);
/* Put CFILT in fast mode by default */
snd_soc_update_bits(codec, sitar->mbhc_bias_regs.cfilt_ctl,
0x40, SITAR_CFILT_FAST_MODE);
INIT_DELAYED_WORK(&sitar->mbhc_firmware_dwork, mbhc_fw_read);
INIT_DELAYED_WORK(&sitar->mbhc_btn_dwork, btn_lpress_fn);
INIT_WORK(&sitar->hphlocp_work, hphlocp_off_report);
INIT_WORK(&sitar->hphrocp_work, hphrocp_off_report);
INIT_WORK(&sitar->hs_correct_plug_work,
sitar_hs_correct_gpio_plug);
if (!sitar->mbhc_cfg.read_fw_bin) {
rc = sitar_mbhc_init_and_calibrate(codec);
} else {
schedule_delayed_work(&sitar->mbhc_firmware_dwork,
usecs_to_jiffies(MBHC_FW_READ_TIMEOUT));
}
return rc;
}
EXPORT_SYMBOL_GPL(sitar_hs_detect);
static int sitar_determine_button(const struct sitar_priv *priv,
const s32 bias_mv)
{
s16 *v_btn_low, *v_btn_high;
struct sitar_mbhc_btn_detect_cfg *btn_det;
int i, btn = -1;
btn_det = SITAR_MBHC_CAL_BTN_DET_PTR(priv->mbhc_cfg.calibration);
v_btn_low = sitar_mbhc_cal_btn_det_mp(btn_det, SITAR_BTN_DET_V_BTN_LOW);
v_btn_high = sitar_mbhc_cal_btn_det_mp(btn_det,
SITAR_BTN_DET_V_BTN_HIGH);
for (i = 0; i < btn_det->num_btn; i++) {
if ((v_btn_low[i] <= bias_mv) && (v_btn_high[i] >= bias_mv)) {
btn = i;
break;
}
}
if (btn == -1)
pr_debug("%s: couldn't find button number for mic mv %d\n",
__func__, bias_mv);
return btn;
}
static int sitar_get_button_mask(const int btn)
{
int mask = 0;
switch (btn) {
case 0:
mask = SND_JACK_BTN_0;
break;
case 1:
mask = SND_JACK_BTN_1;
break;
case 2:
mask = SND_JACK_BTN_2;
break;
case 3:
mask = SND_JACK_BTN_3;
break;
case 4:
mask = SND_JACK_BTN_4;
break;
case 5:
mask = SND_JACK_BTN_5;
break;
case 6:
mask = SND_JACK_BTN_6;
break;
case 7:
mask = SND_JACK_BTN_7;
break;
}
return mask;
}
static irqreturn_t sitar_dce_handler(int irq, void *data)
{
int i, mask;
short dce, sta, bias_value_dce;
s32 mv, stamv, bias_mv_dce;
int btn = -1, meas = 0;
struct sitar_priv *priv = data;
const struct sitar_mbhc_btn_detect_cfg *d =
SITAR_MBHC_CAL_BTN_DET_PTR(priv->mbhc_cfg.calibration);
short btnmeas[d->n_btn_meas + 1];
struct snd_soc_codec *codec = priv->codec;
struct wcd9xxx *core = dev_get_drvdata(priv->codec->dev->parent);
int n_btn_meas = d->n_btn_meas;
u8 mbhc_status = snd_soc_read(codec, SITAR_A_CDC_MBHC_B1_STATUS) & 0x3E;
pr_debug("%s: enter\n", __func__);
SITAR_ACQUIRE_LOCK(priv->codec_resource_lock);
if (priv->mbhc_state == MBHC_STATE_POTENTIAL_RECOVERY) {
pr_debug("%s: mbhc is being recovered, skip button press\n",
__func__);
goto done;
}
priv->mbhc_state = MBHC_STATE_POTENTIAL;
if (!priv->mbhc_polling_active) {
pr_warn("%s: mbhc polling is not active, skip button press\n",
__func__);
goto done;
}
dce = sitar_codec_read_dce_result(codec);
mv = sitar_codec_sta_dce_v(codec, 1, dce);
/* If GPIO interrupt already kicked in, ignore button press */
if (priv->in_gpio_handler) {
pr_debug("%s: GPIO State Changed, ignore button press\n",
__func__);
btn = -1;
goto done;
}
if (mbhc_status != SITAR_MBHC_STATUS_REL_DETECTION) {
if (priv->mbhc_last_resume &&
!time_after(jiffies, priv->mbhc_last_resume + HZ)) {
pr_debug("%s: Button is already released shortly after "
"resume\n", __func__);
n_btn_meas = 0;
} else {
pr_debug("%s: Button is already released without "
"resume", __func__);
sta = sitar_codec_read_sta_result(codec);
stamv = sitar_codec_sta_dce_v(codec, 0, sta);
btn = sitar_determine_button(priv, mv);
if (btn != sitar_determine_button(priv, stamv))
btn = -1;
goto done;
}
}
/* determine pressed button */
btnmeas[meas++] = sitar_determine_button(priv, mv);
pr_debug("%s: meas %d - DCE %d,%d, button %d\n", __func__,
meas - 1, dce, mv, btnmeas[meas - 1]);
if (n_btn_meas == 0)
btn = btnmeas[0];
for (; ((d->n_btn_meas) && (meas < (d->n_btn_meas + 1))); meas++) {
bias_value_dce = sitar_codec_sta_dce(codec, 1, false);
bias_mv_dce = sitar_codec_sta_dce_v(codec, 1, bias_value_dce);
btnmeas[meas] = sitar_determine_button(priv, bias_mv_dce);
pr_debug("%s: meas %d - DCE %d,%d, button %d\n",
__func__, meas, bias_value_dce, bias_mv_dce,
btnmeas[meas]);
/* if large enough measurements are collected,
* start to check if last all n_btn_con measurements were
* in same button low/high range */
if (meas + 1 >= d->n_btn_con) {
for (i = 0; i < d->n_btn_con; i++)
if ((btnmeas[meas] < 0) ||
(btnmeas[meas] != btnmeas[meas - i]))
break;
if (i == d->n_btn_con) {
/* button pressed */
btn = btnmeas[meas];
break;
} else if ((n_btn_meas - meas) < (d->n_btn_con - 1)) {
/* if left measurements are less than n_btn_con,
* it's impossible to find button number */
break;
}
}
}
if (btn >= 0) {
if (priv->in_gpio_handler) {
pr_debug("%s: GPIO already triggered, ignore button "
"press\n", __func__);
goto done;
}
mask = sitar_get_button_mask(btn);
priv->buttons_pressed |= mask;
wcd9xxx_lock_sleep(core);
if (schedule_delayed_work(&priv->mbhc_btn_dwork,
msecs_to_jiffies(400)) == 0) {
WARN(1, "Button pressed twice without release"
"event\n");
wcd9xxx_unlock_sleep(core);
}
} else {
pr_debug("%s: bogus button press, too short press?\n",
__func__);
}
done:
pr_debug("%s: leave\n", __func__);
SITAR_RELEASE_LOCK(priv->codec_resource_lock);
return IRQ_HANDLED;
}
static int sitar_is_fake_press(struct sitar_priv *priv)
{
int i;
int r = 0;
struct snd_soc_codec *codec = priv->codec;
const int dces = MBHC_NUM_DCE_PLUG_DETECT;
short mb_v;
for (i = 0; i < dces; i++) {
usleep_range(10000, 10000);
if (i == 0) {
mb_v = sitar_codec_sta_dce(codec, 0, true);
pr_debug("%s: STA[0]: %d,%d\n", __func__, mb_v,
sitar_codec_sta_dce_v(codec, 0, mb_v));
if (mb_v < (short)priv->mbhc_data.v_b1_hu ||
mb_v > (short)priv->mbhc_data.v_ins_hu) {
r = 1;
break;
}
} else {
mb_v = sitar_codec_sta_dce(codec, 1, true);
pr_debug("%s: DCE[%d]: %d,%d\n", __func__, i, mb_v,
sitar_codec_sta_dce_v(codec, 1, mb_v));
if (mb_v < (short)priv->mbhc_data.v_b1_h ||
mb_v > (short)priv->mbhc_data.v_ins_h) {
r = 1;
break;
}
}
}
return r;
}
static irqreturn_t sitar_release_handler(int irq, void *data)
{
int ret;
struct sitar_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
pr_debug("%s: enter\n", __func__);
SITAR_ACQUIRE_LOCK(priv->codec_resource_lock);
priv->mbhc_state = MBHC_STATE_RELEASE;
if (priv->buttons_pressed & SITAR_JACK_BUTTON_MASK) {
ret = sitar_cancel_btn_work(priv);
if (ret == 0) {
pr_debug("%s: Reporting long button release event\n",
__func__);
if (priv->mbhc_cfg.button_jack)
sitar_snd_soc_jack_report(priv,
priv->mbhc_cfg.button_jack, 0,
priv->buttons_pressed);
} else {
if (sitar_is_fake_press(priv)) {
pr_debug("%s: Fake button press interrupt\n",
__func__);
} else if (priv->mbhc_cfg.button_jack) {
if (priv->in_gpio_handler) {
pr_debug("%s: GPIO kicked in, ignore\n",
__func__);
} else {
pr_debug("%s: Reporting short button 0 "
"press and release\n",
__func__);
sitar_snd_soc_jack_report(priv,
priv->mbhc_cfg.button_jack,
priv->buttons_pressed,
priv->buttons_pressed);
sitar_snd_soc_jack_report(priv,
priv->mbhc_cfg.button_jack, 0,
priv->buttons_pressed);
}
}
}
priv->buttons_pressed &= ~SITAR_JACK_BUTTON_MASK;
}
sitar_codec_calibrate_hs_polling(codec);
if (priv->mbhc_cfg.gpio)
msleep(SITAR_MBHC_GPIO_REL_DEBOUNCE_TIME_MS);
sitar_codec_start_hs_polling(codec);
pr_debug("%s: leave\n", __func__);
SITAR_RELEASE_LOCK(priv->codec_resource_lock);
return IRQ_HANDLED;
}
static irqreturn_t sitar_hphl_ocp_irq(int irq, void *data)
{
struct sitar_priv *sitar = data;
struct snd_soc_codec *codec;
pr_info("%s: received HPHL OCP irq\n", __func__);
if (sitar) {
codec = sitar->codec;
if (sitar->hphlocp_cnt++ < SITAR_OCP_ATTEMPT) {
pr_info("%s: retry\n", __func__);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10,
0x00);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10,
0x10);
} else {
wcd9xxx_disable_irq(codec->control_data,
WCD9XXX_IRQ_HPH_PA_OCPL_FAULT);
sitar->hphlocp_cnt = 0;
sitar->hph_status |= SND_JACK_OC_HPHL;
if (sitar->mbhc_cfg.headset_jack)
sitar_snd_soc_jack_report(sitar,
sitar->mbhc_cfg.headset_jack,
sitar->hph_status,
SITAR_JACK_MASK);
}
} else {
pr_err("%s: Bad sitar private data\n", __func__);
}
return IRQ_HANDLED;
}
static irqreturn_t sitar_hphr_ocp_irq(int irq, void *data)
{
struct sitar_priv *sitar = data;
struct snd_soc_codec *codec;
pr_info("%s: received HPHR OCP irq\n", __func__);
if (sitar) {
codec = sitar->codec;
if (sitar->hphrocp_cnt++ < SITAR_OCP_ATTEMPT) {
pr_info("%s: retry\n", __func__);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10,
0x00);
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL, 0x10,
0x10);
} else {
wcd9xxx_disable_irq(codec->control_data,
WCD9XXX_IRQ_HPH_PA_OCPR_FAULT);
sitar->hphrocp_cnt = 0;
sitar->hph_status |= SND_JACK_OC_HPHR;
if (sitar->mbhc_cfg.headset_jack)
sitar_snd_soc_jack_report(sitar,
sitar->mbhc_cfg.headset_jack,
sitar->hph_status,
SITAR_JACK_MASK);
}
} else {
pr_err("%s: Bad sitar private data\n", __func__);
}
return IRQ_HANDLED;
}
static irqreturn_t sitar_hs_insert_irq(int irq, void *data)
{
struct sitar_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
pr_debug("%s: enter\n", __func__);
SITAR_ACQUIRE_LOCK(priv->codec_resource_lock);
wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION);
snd_soc_update_bits(codec, SITAR_A_CDC_MBHC_INT_CTL, 0x03, 0x00);
/* Turn off both HPH and MIC line schmitt triggers */
snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x90, 0x00);
snd_soc_update_bits(codec, SITAR_A_MBHC_HPH, 0x13, 0x00);
snd_soc_update_bits(codec, priv->mbhc_bias_regs.ctl_reg, 0x01, 0x00);
pr_debug("%s: MIC trigger insertion interrupt\n", __func__);
rmb();
if (priv->lpi_enabled)
msleep(100);
rmb();
if (!priv->lpi_enabled) {
pr_debug("%s: lpi is disabled\n", __func__);
} else if (gpio_get_value_cansleep(priv->mbhc_cfg.gpio) ==
priv->mbhc_cfg.gpio_level_insert) {
pr_debug("%s: Valid insertion, "
"detect plug type\n", __func__);
sitar_codec_decide_gpio_plug(codec);
} else {
pr_debug("%s: Invalid insertion, "
"stop plug detection\n", __func__);
}
SITAR_RELEASE_LOCK(priv->codec_resource_lock);
return IRQ_HANDLED;
}
static bool is_valid_mic_voltage(struct snd_soc_codec *codec, s32 mic_mv)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
struct sitar_mbhc_plug_type_cfg *plug_type =
SITAR_MBHC_CAL_PLUG_TYPE_PTR(sitar->mbhc_cfg.calibration);
return (!(mic_mv > SITAR_MBHC_FAKE_INSERT_LOW
&& mic_mv < SITAR_MBHC_FAKE_INSERT_HIGH)
&& (mic_mv > plug_type->v_no_mic)
&& (mic_mv < plug_type->v_hs_max)) ? true : false;
}
/* called under codec_resource_lock acquisition
* returns true if mic voltage range is back to normal insertion
* returns false either if timedout or removed */
static bool sitar_hs_remove_settle(struct snd_soc_codec *codec)
{
int i;
bool timedout, settled = false;
s32 mic_mv[MBHC_NUM_DCE_PLUG_DETECT];
short mb_v[MBHC_NUM_DCE_PLUG_DETECT];
unsigned long retry = 0, timeout;
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
timeout = jiffies + msecs_to_jiffies(SITAR_HS_DETECT_PLUG_TIME_MS);
while (!(timedout = time_after(jiffies, timeout))) {
retry++;
if (sitar_hs_gpio_level_remove(sitar)) {
pr_debug("%s: GPIO indicates removal\n", __func__);
break;
}
if (retry > 1)
msleep(250);
else
msleep(50);
if (sitar_hs_gpio_level_remove(sitar)) {
pr_debug("%s: GPIO indicates removal\n", __func__);
break;
}
sitar_turn_onoff_override(codec, true);
for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++) {
mb_v[i] = __sitar_codec_sta_dce(codec, 1, true, true);
mic_mv[i] = sitar_codec_sta_dce_v(codec, 1 , mb_v[i]);
pr_debug("%s : DCE run %lu, mic_mv = %d(%x)\n",
__func__, retry, mic_mv[i], mb_v[i]);
}
sitar_turn_onoff_override(codec, false);
if (sitar_hs_gpio_level_remove(sitar)) {
pr_debug("%s: GPIO indicates removal\n", __func__);
break;
}
for (i = 0; i < MBHC_NUM_DCE_PLUG_DETECT; i++)
if (!is_valid_mic_voltage(codec, mic_mv[i]))
break;
if (i == MBHC_NUM_DCE_PLUG_DETECT) {
pr_debug("%s: MIC voltage settled\n", __func__);
settled = true;
msleep(200);
break;
}
}
if (timedout)
pr_debug("%s: Microphone did not settle in %d seconds\n",
__func__, SITAR_HS_DETECT_PLUG_TIME_MS);
return settled;
}
static irqreturn_t sitar_hs_remove_irq(int irq, void *data)
{
struct sitar_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
pr_debug("%s: enter, removal interrupt\n", __func__);
SITAR_ACQUIRE_LOCK(priv->codec_resource_lock);
if (sitar_hs_remove_settle(codec))
sitar_codec_start_hs_polling(codec);
pr_debug("%s: remove settle done\n", __func__);
SITAR_RELEASE_LOCK(priv->codec_resource_lock);
return IRQ_HANDLED;
}
static irqreturn_t sitar_slimbus_irq(int irq, void *data)
{
struct sitar_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
unsigned long slimbus_value;
int i, j, k, port_id, ch_mask_temp;
u8 val;
for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++) {
slimbus_value = wcd9xxx_interface_reg_read(codec->control_data,
SITAR_SLIM_PGD_PORT_INT_STATUS0 + i);
for_each_set_bit(j, &slimbus_value, BITS_PER_BYTE) {
port_id = i*8 + j;
val = wcd9xxx_interface_reg_read(codec->control_data,
SITAR_SLIM_PGD_PORT_INT_SOURCE0 + port_id);
if (val & 0x1)
pr_err_ratelimited("overflow error on port %x, value %x\n",
port_id, val);
if (val & 0x2)
pr_err_ratelimited("underflow error on port %x,value %x\n",
port_id, val);
if (val & 0x4) {
pr_debug("%s: port %x disconnect value %x\n",
__func__, port_id, val);
for (k = 0; k < ARRAY_SIZE(sitar_dai); k++) {
ch_mask_temp = 1 << port_id;
if (ch_mask_temp &
priv->dai[k].ch_mask) {
priv->dai[k].ch_mask &=
~ch_mask_temp;
if (!priv->dai[k].ch_mask)
wake_up(
&priv->dai[k].dai_wait);
}
}
}
}
wcd9xxx_interface_reg_write(codec->control_data,
SITAR_SLIM_PGD_PORT_INT_CLR0 + i, slimbus_value);
val = 0x0;
}
return IRQ_HANDLED;
}
static int sitar_handle_pdata(struct sitar_priv *sitar)
{
struct snd_soc_codec *codec = sitar->codec;
struct wcd9xxx_pdata *pdata = sitar->pdata;
int k1, k2, rc = 0;
u8 leg_mode = pdata->amic_settings.legacy_mode;
u8 txfe_bypass = pdata->amic_settings.txfe_enable;
u8 txfe_buff = pdata->amic_settings.txfe_buff;
u8 flag = pdata->amic_settings.use_pdata;
u8 i = 0, j = 0;
u8 val_txfe = 0, value = 0;
int amic_reg_count = 0;
if (!pdata) {
rc = -ENODEV;
goto done;
}
/* Make sure settings are correct */
if ((pdata->micbias.ldoh_v > SITAR_LDOH_2P85_V) ||
(pdata->micbias.bias1_cfilt_sel > SITAR_CFILT2_SEL) ||
(pdata->micbias.bias2_cfilt_sel > SITAR_CFILT2_SEL)) {
rc = -EINVAL;
goto done;
}
/* figure out k value */
k1 = sitar_find_k_value(pdata->micbias.ldoh_v,
pdata->micbias.cfilt1_mv);
k2 = sitar_find_k_value(pdata->micbias.ldoh_v,
pdata->micbias.cfilt2_mv);
if (IS_ERR_VALUE(k1) || IS_ERR_VALUE(k2)) {
rc = -EINVAL;
goto done;
}
/* Set voltage level and always use LDO */
snd_soc_update_bits(codec, SITAR_A_LDO_H_MODE_1, 0x0C,
(pdata->micbias.ldoh_v << 2));
snd_soc_update_bits(codec, SITAR_A_MICB_CFILT_1_VAL, 0xFC,
(k1 << 2));
snd_soc_update_bits(codec, SITAR_A_MICB_CFILT_2_VAL, 0xFC,
(k2 << 2));
snd_soc_update_bits(codec, SITAR_A_MICB_1_CTL, 0x60,
(pdata->micbias.bias1_cfilt_sel << 5));
snd_soc_update_bits(codec, SITAR_A_MICB_2_CTL, 0x60,
(pdata->micbias.bias2_cfilt_sel << 5));
/* Set micbias capless mode */
snd_soc_update_bits(codec, SITAR_A_MICB_1_CTL, 0x10,
(pdata->micbias.bias1_cap_mode << 4));
snd_soc_update_bits(codec, SITAR_A_MICB_2_CTL, 0x10,
(pdata->micbias.bias2_cap_mode << 4));
amic_reg_count = (NUM_AMIC % 2) ? NUM_AMIC + 1 : NUM_AMIC;
for (i = 0; i < amic_reg_count; j++, i += 2) {
if (flag & (0x01 << i)) {
value = (leg_mode & (0x01 << i)) ? 0x10 : 0x00;
val_txfe = (txfe_bypass & (0x01 << i)) ? 0x20 : 0x00;
val_txfe = val_txfe |
((txfe_buff & (0x01 << i)) ? 0x10 : 0x00);
snd_soc_update_bits(codec, SITAR_A_TX_1_2_EN + j * 10,
0x10, value);
snd_soc_update_bits(codec,
SITAR_A_TX_1_2_TEST_EN + j * 10,
0x30, val_txfe);
}
if (flag & (0x01 << (i + 1))) {
value = (leg_mode & (0x01 << (i + 1))) ? 0x01 : 0x00;
val_txfe = (txfe_bypass &
(0x01 << (i + 1))) ? 0x02 : 0x00;
val_txfe |= (txfe_buff &
(0x01 << (i + 1))) ? 0x01 : 0x00;
snd_soc_update_bits(codec, SITAR_A_TX_1_2_EN + j * 10,
0x01, value);
snd_soc_update_bits(codec,
SITAR_A_TX_1_2_TEST_EN + j * 10,
0x03, val_txfe);
}
}
if (flag & 0x40) {
value = (leg_mode & 0x40) ? 0x10 : 0x00;
value = value | ((txfe_bypass & 0x40) ? 0x02 : 0x00);
value = value | ((txfe_buff & 0x40) ? 0x01 : 0x00);
snd_soc_update_bits(codec, SITAR_A_TX_4_MBHC_EN,
0x13, value);
}
if (pdata->ocp.use_pdata) {
/* not defined in CODEC specification */
if (pdata->ocp.hph_ocp_limit == 1 ||
pdata->ocp.hph_ocp_limit == 5) {
rc = -EINVAL;
goto done;
}
snd_soc_update_bits(codec, SITAR_A_RX_COM_OCP_CTL,
0x0F, pdata->ocp.num_attempts);
snd_soc_write(codec, SITAR_A_RX_COM_OCP_COUNT,
((pdata->ocp.run_time << 4) | pdata->ocp.wait_time));
snd_soc_update_bits(codec, SITAR_A_RX_HPH_OCP_CTL,
0xE0, (pdata->ocp.hph_ocp_limit << 5));
}
done:
return rc;
}
static const struct sitar_reg_mask_val sitar_1_1_reg_defaults[] = {
SITAR_REG_VAL(SITAR_A_MICB_1_INT_RBIAS, 0x24),
SITAR_REG_VAL(SITAR_A_MICB_2_INT_RBIAS, 0x24),
SITAR_REG_VAL(SITAR_A_RX_HPH_BIAS_PA, 0x57),
SITAR_REG_VAL(SITAR_A_RX_HPH_BIAS_LDO, 0x56),
SITAR_REG_VAL(SITAR_A_RX_EAR_BIAS_PA, 0xA6),
SITAR_REG_VAL(SITAR_A_RX_EAR_GAIN, 0x02),
SITAR_REG_VAL(SITAR_A_RX_EAR_VCM, 0x03),
SITAR_REG_VAL(SITAR_A_RX_LINE_BIAS_PA, 0xA7),
SITAR_REG_VAL(SITAR_A_CDC_RX1_B5_CTL, 0x78),
SITAR_REG_VAL(SITAR_A_CDC_RX2_B5_CTL, 0x78),
SITAR_REG_VAL(SITAR_A_CDC_RX3_B5_CTL, 0x78),
SITAR_REG_VAL(SITAR_A_CDC_RX1_B6_CTL, 0x80),
SITAR_REG_VAL(SITAR_A_CDC_CLSG_FREQ_THRESH_B3_CTL, 0x1B),
SITAR_REG_VAL(SITAR_A_CDC_CLSG_FREQ_THRESH_B4_CTL, 0x5B),
};
static void sitar_update_reg_defaults(struct snd_soc_codec *codec)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(sitar_1_1_reg_defaults); i++)
snd_soc_write(codec, sitar_1_1_reg_defaults[i].reg,
sitar_1_1_reg_defaults[i].val);
}
static const struct sitar_reg_mask_val sitar_i2c_codec_reg_init_val[] = {
{WCD9XXX_A_CHIP_CTL, 0x1, 0x1},
};
static const struct sitar_reg_mask_val sitar_codec_reg_init_val[] = {
/* Initialize current threshold to 350MA
* number of wait and run cycles to 4096
*/
{SITAR_A_RX_HPH_OCP_CTL, 0xE0, 0x60},
{SITAR_A_RX_COM_OCP_COUNT, 0xFF, 0xFF},
{SITAR_A_QFUSE_CTL, 0xFF, 0x03},
/* Initialize gain registers to use register gain */
{SITAR_A_RX_HPH_L_GAIN, 0x10, 0x10},
{SITAR_A_RX_HPH_R_GAIN, 0x10, 0x10},
{SITAR_A_RX_LINE_1_GAIN, 0x10, 0x10},
{SITAR_A_RX_LINE_2_GAIN, 0x10, 0x10},
/* Set the MICBIAS default output as pull down*/
{SITAR_A_MICB_1_CTL, 0x01, 0x01},
{SITAR_A_MICB_2_CTL, 0x01, 0x01},
/* Initialize mic biases to differential mode */
{SITAR_A_MICB_1_INT_RBIAS, 0x24, 0x24},
{SITAR_A_MICB_2_INT_RBIAS, 0x24, 0x24},
{SITAR_A_CDC_CONN_CLSG_CTL, 0x3C, 0x14},
/* Use 16 bit sample size for TX1 to TX6 */
{SITAR_A_CDC_CONN_TX_SB_B1_CTL, 0x30, 0x20},
{SITAR_A_CDC_CONN_TX_SB_B2_CTL, 0x30, 0x20},
{SITAR_A_CDC_CONN_TX_SB_B3_CTL, 0x30, 0x20},
{SITAR_A_CDC_CONN_TX_SB_B4_CTL, 0x30, 0x20},
{SITAR_A_CDC_CONN_TX_SB_B5_CTL, 0x30, 0x20},
{SITAR_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0x1, 0x1},
/* Use 16 bit sample size for RX */
{SITAR_A_CDC_CONN_RX_SB_B1_CTL, 0xFF, 0xAA},
{SITAR_A_CDC_CONN_RX_SB_B2_CTL, 0x02, 0x02},
/*enable HPF filter for TX paths */
{SITAR_A_CDC_TX1_MUX_CTL, 0x8, 0x0},
{SITAR_A_CDC_TX2_MUX_CTL, 0x8, 0x0},
/*enable External clock select*/
{SITAR_A_CDC_CLK_MCLK_CTL, 0x01, 0x01},
};
static void sitar_i2c_codec_init_reg(struct snd_soc_codec *codec)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(sitar_i2c_codec_reg_init_val); i++)
snd_soc_update_bits(codec, sitar_i2c_codec_reg_init_val[i].reg,
sitar_i2c_codec_reg_init_val[i].mask,
sitar_i2c_codec_reg_init_val[i].val);
}
static void sitar_codec_init_reg(struct snd_soc_codec *codec)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(sitar_codec_reg_init_val); i++)
snd_soc_update_bits(codec, sitar_codec_reg_init_val[i].reg,
sitar_codec_reg_init_val[i].mask,
sitar_codec_reg_init_val[i].val);
}
static int sitar_codec_probe(struct snd_soc_codec *codec)
{
struct wcd9xxx *core;
struct sitar_priv *sitar;
struct snd_soc_dapm_context *dapm = &codec->dapm;
int ret = 0;
int i;
u8 sitar_version;
void *ptr = NULL;
codec->control_data = dev_get_drvdata(codec->dev->parent);
core = codec->control_data;
sitar = kzalloc(sizeof(struct sitar_priv), GFP_KERNEL);
if (!sitar) {
dev_err(codec->dev, "Failed to allocate private data\n");
return -ENOMEM;
}
/* Make sure mbhc micbias register addresses are zeroed out */
memset(&sitar->mbhc_bias_regs, 0,
sizeof(struct mbhc_micbias_regs));
sitar->cfilt_k_value = 0;
sitar->mbhc_micbias_switched = false;
/* Make sure mbhc intenal calibration data is zeroed out */
memset(&sitar->mbhc_data, 0,
sizeof(struct mbhc_internal_cal_data));
sitar->mbhc_data.t_sta_dce = DEFAULT_DCE_STA_WAIT;
sitar->mbhc_data.t_dce = DEFAULT_DCE_WAIT;
sitar->mbhc_data.t_sta = DEFAULT_STA_WAIT;
snd_soc_codec_set_drvdata(codec, sitar);
sitar->mclk_enabled = false;
sitar->bandgap_type = SITAR_BANDGAP_OFF;
sitar->clock_active = false;
sitar->config_mode_active = false;
sitar->mbhc_polling_active = false;
sitar->no_mic_headset_override = false;
mutex_init(&sitar->codec_resource_lock);
sitar->codec = codec;
sitar->mbhc_state = MBHC_STATE_NONE;
sitar->mbhc_last_resume = 0;
sitar->pdata = dev_get_platdata(codec->dev->parent);
sitar_update_reg_defaults(codec);
sitar_codec_init_reg(codec);
sitar->intf_type = wcd9xxx_get_intf_type();
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C)
sitar_i2c_codec_init_reg(codec);
ret = sitar_handle_pdata(sitar);
if (IS_ERR_VALUE(ret)) {
pr_err("%s: bad pdata\n", __func__);
goto err_pdata;
}
snd_soc_add_codec_controls(codec, sitar_snd_controls,
ARRAY_SIZE(sitar_snd_controls));
snd_soc_dapm_new_controls(dapm, sitar_dapm_widgets,
ARRAY_SIZE(sitar_dapm_widgets));
ptr = kmalloc((sizeof(sitar_rx_chs) +
sizeof(sitar_tx_chs)), GFP_KERNEL);
if (!ptr) {
pr_err("%s: no mem for slim chan ctl data\n", __func__);
ret = -ENOMEM;
goto err_nomem_slimch;
}
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_I2C) {
snd_soc_dapm_new_controls(dapm, sitar_dapm_i2s_widgets,
ARRAY_SIZE(sitar_dapm_i2s_widgets));
snd_soc_dapm_add_routes(dapm, audio_i2s_map,
ARRAY_SIZE(audio_i2s_map));
for (i = 0; i < ARRAY_SIZE(sitar_i2s_dai); i++)
INIT_LIST_HEAD(&sitar->dai[i].wcd9xxx_ch_list);
}
if (sitar->intf_type == WCD9XXX_INTERFACE_TYPE_SLIMBUS) {
for (i = 0; i < NUM_CODEC_DAIS; i++) {
INIT_LIST_HEAD(&sitar->dai[i].wcd9xxx_ch_list);
init_waitqueue_head(&sitar->dai[i].dai_wait);
}
}
core->num_rx_port = SITAR_RX_MAX;
core->rx_chs = ptr;
memcpy(core->rx_chs, sitar_rx_chs, sizeof(sitar_rx_chs));
core->num_tx_port = SITAR_TX_MAX;
core->tx_chs = ptr + sizeof(sitar_rx_chs);
memcpy(core->tx_chs, sitar_tx_chs, sizeof(sitar_tx_chs));
snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map));
sitar_version = snd_soc_read(codec, WCD9XXX_A_CHIP_VERSION);
pr_info("%s : Sitar version reg 0x%2x\n", __func__, (u32)sitar_version);
sitar_version &= 0x1F;
pr_info("%s : Sitar version %u\n", __func__, (u32)sitar_version);
snd_soc_dapm_sync(dapm);
ret = wcd9xxx_request_irq(codec->control_data,
WCD9XXX_IRQ_MBHC_INSERTION,
sitar_hs_insert_irq, "Headset insert detect", sitar);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
WCD9XXX_IRQ_MBHC_INSERTION);
goto err_insert_irq;
}
wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION);
ret = wcd9xxx_request_irq(codec->control_data,
WCD9XXX_IRQ_MBHC_REMOVAL,
sitar_hs_remove_irq, "Headset remove detect", sitar);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
WCD9XXX_IRQ_MBHC_REMOVAL);
goto err_remove_irq;
}
ret = wcd9xxx_request_irq(codec->control_data,
WCD9XXX_IRQ_MBHC_POTENTIAL,
sitar_dce_handler, "DC Estimation detect", sitar);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
WCD9XXX_IRQ_MBHC_POTENTIAL);
goto err_potential_irq;
}
ret = wcd9xxx_request_irq(codec->control_data,
WCD9XXX_IRQ_MBHC_RELEASE,
sitar_release_handler,
"Button Release detect", sitar);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
WCD9XXX_IRQ_MBHC_RELEASE);
goto err_release_irq;
}
ret = wcd9xxx_request_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS,
sitar_slimbus_irq, "SLIMBUS Slave", sitar);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
WCD9XXX_IRQ_SLIMBUS);
goto err_slimbus_irq;
}
for (i = 0; i < WCD9XXX_SLIM_NUM_PORT_REG; i++)
wcd9xxx_interface_reg_write(codec->control_data,
SITAR_SLIM_PGD_PORT_INT_EN0 + i, 0xFF);
ret = wcd9xxx_request_irq(codec->control_data,
WCD9XXX_IRQ_HPH_PA_OCPL_FAULT,
sitar_hphl_ocp_irq,
"HPH_L OCP detect", sitar);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
WCD9XXX_IRQ_HPH_PA_OCPL_FAULT);
goto err_hphl_ocp_irq;
}
wcd9xxx_disable_irq(codec->control_data,
WCD9XXX_IRQ_HPH_PA_OCPL_FAULT);
ret = wcd9xxx_request_irq(codec->control_data,
WCD9XXX_IRQ_HPH_PA_OCPR_FAULT,
sitar_hphr_ocp_irq, "HPH_R OCP detect",
sitar);
if (ret) {
pr_err("%s: Failed to request irq %d\n", __func__,
WCD9XXX_IRQ_HPH_PA_OCPR_FAULT);
goto err_hphr_ocp_irq;
}
wcd9xxx_disable_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPR_FAULT);
codec->ignore_pmdown_time = 1;
#ifdef CONFIG_DEBUG_FS
debug_sitar_priv = sitar;
#endif
return ret;
err_hphr_ocp_irq:
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_HPH_PA_OCPL_FAULT,
sitar);
err_hphl_ocp_irq:
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, sitar);
err_slimbus_irq:
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, sitar);
err_release_irq:
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL,
sitar);
err_potential_irq:
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, sitar);
err_remove_irq:
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION,
sitar);
err_insert_irq:
kfree(ptr);
err_nomem_slimch:
err_pdata:
mutex_destroy(&sitar->codec_resource_lock);
kfree(sitar);
return ret;
}
static int sitar_codec_remove(struct snd_soc_codec *codec)
{
struct sitar_priv *sitar = snd_soc_codec_get_drvdata(codec);
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_SLIMBUS, sitar);
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_RELEASE, sitar);
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_POTENTIAL,
sitar);
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_REMOVAL, sitar);
wcd9xxx_free_irq(codec->control_data, WCD9XXX_IRQ_MBHC_INSERTION,
sitar);
SITAR_ACQUIRE_LOCK(sitar->codec_resource_lock);
sitar_codec_disable_clock_block(codec);
SITAR_RELEASE_LOCK(sitar->codec_resource_lock);
sitar_codec_enable_bandgap(codec, SITAR_BANDGAP_OFF);
if (sitar->mbhc_fw)
release_firmware(sitar->mbhc_fw);
mutex_destroy(&sitar->codec_resource_lock);
kfree(sitar);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_sitar = {
.probe = sitar_codec_probe,
.remove = sitar_codec_remove,
.read = sitar_read,
.write = sitar_write,
.readable_register = sitar_readable,
.volatile_register = sitar_volatile,
.reg_cache_size = SITAR_CACHE_SIZE,
.reg_cache_default = sitar_reg_defaults,
.reg_word_size = 1,
};
#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_poke;
static int codec_debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t codec_debug_write(struct file *filp,
const char __user *ubuf, size_t cnt, loff_t *ppos)
{
char lbuf[32];
char *buf;
int rc;
if (cnt > sizeof(lbuf) - 1)
return -EINVAL;
rc = copy_from_user(lbuf, ubuf, cnt);
if (rc)
return -EFAULT;
lbuf[cnt] = '\0';
buf = (char *)lbuf;
debug_sitar_priv->no_mic_headset_override = (*strsep(&buf, " ") == '0')
? false : true;
return rc;
}
static const struct file_operations codec_debug_ops = {
.open = codec_debug_open,
.write = codec_debug_write,
};
#endif
#ifdef CONFIG_PM
static int sitar_suspend(struct device *dev)
{
dev_dbg(dev, "%s: system suspend\n", __func__);
return 0;
}
static int sitar_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sitar_priv *sitar = platform_get_drvdata(pdev);
dev_dbg(dev, "%s: system resume\n", __func__);
sitar->mbhc_last_resume = jiffies;
return 0;
}
static const struct dev_pm_ops sitar_pm_ops = {
.suspend = sitar_suspend,
.resume = sitar_resume,
};
#endif
static int __devinit sitar_probe(struct platform_device *pdev)
{
int ret = 0;
pr_err("%s\n", __func__);
#ifdef CONFIG_DEBUG_FS
debugfs_poke = debugfs_create_file("TRRS",
S_IFREG | S_IRUGO, NULL, (void *) "TRRS", &codec_debug_ops);
#endif
if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_SLIMBUS)
ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_sitar,
sitar_dai, ARRAY_SIZE(sitar_dai));
else if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_I2C)
ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_sitar,
sitar_i2s_dai, ARRAY_SIZE(sitar_i2s_dai));
return ret;
}
static int __devexit sitar_remove(struct platform_device *pdev)
{
snd_soc_unregister_codec(&pdev->dev);
#ifdef CONFIG_DEBUG_FS
debugfs_remove(debugfs_poke);
#endif
return 0;
}
static struct platform_driver sitar_codec_driver = {
.probe = sitar_probe,
.remove = sitar_remove,
.driver = {
.name = "sitar_codec",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &sitar_pm_ops,
#endif
},
};
static int __init sitar_codec_init(void)
{
return platform_driver_register(&sitar_codec_driver);
}
static void __exit sitar_codec_exit(void)
{
platform_driver_unregister(&sitar_codec_driver);
}
module_init(sitar_codec_init);
module_exit(sitar_codec_exit);
MODULE_DESCRIPTION("Sitar codec driver");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL v2");