| /* |
| * builtin-timechart.c - make an svg timechart of system activity |
| * |
| * (C) Copyright 2009 Intel Corporation |
| * |
| * Authors: |
| * Arjan van de Ven <arjan@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| #include "builtin.h" |
| |
| #include "util/util.h" |
| |
| #include "util/color.h" |
| #include <linux/list.h> |
| #include "util/cache.h" |
| #include <linux/rbtree.h> |
| #include "util/symbol.h" |
| #include "util/string.h" |
| #include "util/callchain.h" |
| #include "util/strlist.h" |
| |
| #include "perf.h" |
| #include "util/header.h" |
| #include "util/parse-options.h" |
| #include "util/parse-events.h" |
| #include "util/event.h" |
| #include "util/data_map.h" |
| #include "util/svghelper.h" |
| |
| static char const *input_name = "perf.data"; |
| static char const *output_name = "output.svg"; |
| |
| |
| static u64 sample_type; |
| |
| static unsigned int numcpus; |
| static u64 min_freq; /* Lowest CPU frequency seen */ |
| static u64 max_freq; /* Highest CPU frequency seen */ |
| static u64 turbo_frequency; |
| |
| static u64 first_time, last_time; |
| |
| static int power_only; |
| |
| |
| struct per_pid; |
| struct per_pidcomm; |
| |
| struct cpu_sample; |
| struct power_event; |
| struct wake_event; |
| |
| struct sample_wrapper; |
| |
| /* |
| * Datastructure layout: |
| * We keep an list of "pid"s, matching the kernels notion of a task struct. |
| * Each "pid" entry, has a list of "comm"s. |
| * this is because we want to track different programs different, while |
| * exec will reuse the original pid (by design). |
| * Each comm has a list of samples that will be used to draw |
| * final graph. |
| */ |
| |
| struct per_pid { |
| struct per_pid *next; |
| |
| int pid; |
| int ppid; |
| |
| u64 start_time; |
| u64 end_time; |
| u64 total_time; |
| int display; |
| |
| struct per_pidcomm *all; |
| struct per_pidcomm *current; |
| |
| int painted; |
| }; |
| |
| |
| struct per_pidcomm { |
| struct per_pidcomm *next; |
| |
| u64 start_time; |
| u64 end_time; |
| u64 total_time; |
| |
| int Y; |
| int display; |
| |
| long state; |
| u64 state_since; |
| |
| char *comm; |
| |
| struct cpu_sample *samples; |
| }; |
| |
| struct sample_wrapper { |
| struct sample_wrapper *next; |
| |
| u64 timestamp; |
| unsigned char data[0]; |
| }; |
| |
| #define TYPE_NONE 0 |
| #define TYPE_RUNNING 1 |
| #define TYPE_WAITING 2 |
| #define TYPE_BLOCKED 3 |
| |
| struct cpu_sample { |
| struct cpu_sample *next; |
| |
| u64 start_time; |
| u64 end_time; |
| int type; |
| int cpu; |
| }; |
| |
| static struct per_pid *all_data; |
| |
| #define CSTATE 1 |
| #define PSTATE 2 |
| |
| struct power_event { |
| struct power_event *next; |
| int type; |
| int state; |
| u64 start_time; |
| u64 end_time; |
| int cpu; |
| }; |
| |
| struct wake_event { |
| struct wake_event *next; |
| int waker; |
| int wakee; |
| u64 time; |
| }; |
| |
| static struct power_event *power_events; |
| static struct wake_event *wake_events; |
| |
| struct sample_wrapper *all_samples; |
| |
| |
| struct process_filter; |
| struct process_filter { |
| char *name; |
| int pid; |
| struct process_filter *next; |
| }; |
| |
| static struct process_filter *process_filter; |
| |
| |
| static struct per_pid *find_create_pid(int pid) |
| { |
| struct per_pid *cursor = all_data; |
| |
| while (cursor) { |
| if (cursor->pid == pid) |
| return cursor; |
| cursor = cursor->next; |
| } |
| cursor = malloc(sizeof(struct per_pid)); |
| assert(cursor != NULL); |
| memset(cursor, 0, sizeof(struct per_pid)); |
| cursor->pid = pid; |
| cursor->next = all_data; |
| all_data = cursor; |
| return cursor; |
| } |
| |
| static void pid_set_comm(int pid, char *comm) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| p = find_create_pid(pid); |
| c = p->all; |
| while (c) { |
| if (c->comm && strcmp(c->comm, comm) == 0) { |
| p->current = c; |
| return; |
| } |
| if (!c->comm) { |
| c->comm = strdup(comm); |
| p->current = c; |
| return; |
| } |
| c = c->next; |
| } |
| c = malloc(sizeof(struct per_pidcomm)); |
| assert(c != NULL); |
| memset(c, 0, sizeof(struct per_pidcomm)); |
| c->comm = strdup(comm); |
| p->current = c; |
| c->next = p->all; |
| p->all = c; |
| } |
| |
| static void pid_fork(int pid, int ppid, u64 timestamp) |
| { |
| struct per_pid *p, *pp; |
| p = find_create_pid(pid); |
| pp = find_create_pid(ppid); |
| p->ppid = ppid; |
| if (pp->current && pp->current->comm && !p->current) |
| pid_set_comm(pid, pp->current->comm); |
| |
| p->start_time = timestamp; |
| if (p->current) { |
| p->current->start_time = timestamp; |
| p->current->state_since = timestamp; |
| } |
| } |
| |
| static void pid_exit(int pid, u64 timestamp) |
| { |
| struct per_pid *p; |
| p = find_create_pid(pid); |
| p->end_time = timestamp; |
| if (p->current) |
| p->current->end_time = timestamp; |
| } |
| |
| static void |
| pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| struct cpu_sample *sample; |
| |
| p = find_create_pid(pid); |
| c = p->current; |
| if (!c) { |
| c = malloc(sizeof(struct per_pidcomm)); |
| assert(c != NULL); |
| memset(c, 0, sizeof(struct per_pidcomm)); |
| p->current = c; |
| c->next = p->all; |
| p->all = c; |
| } |
| |
| sample = malloc(sizeof(struct cpu_sample)); |
| assert(sample != NULL); |
| memset(sample, 0, sizeof(struct cpu_sample)); |
| sample->start_time = start; |
| sample->end_time = end; |
| sample->type = type; |
| sample->next = c->samples; |
| sample->cpu = cpu; |
| c->samples = sample; |
| |
| if (sample->type == TYPE_RUNNING && end > start && start > 0) { |
| c->total_time += (end-start); |
| p->total_time += (end-start); |
| } |
| |
| if (c->start_time == 0 || c->start_time > start) |
| c->start_time = start; |
| if (p->start_time == 0 || p->start_time > start) |
| p->start_time = start; |
| |
| if (cpu > numcpus) |
| numcpus = cpu; |
| } |
| |
| #define MAX_CPUS 4096 |
| |
| static u64 cpus_cstate_start_times[MAX_CPUS]; |
| static int cpus_cstate_state[MAX_CPUS]; |
| static u64 cpus_pstate_start_times[MAX_CPUS]; |
| static u64 cpus_pstate_state[MAX_CPUS]; |
| |
| static int |
| process_comm_event(event_t *event) |
| { |
| pid_set_comm(event->comm.pid, event->comm.comm); |
| return 0; |
| } |
| static int |
| process_fork_event(event_t *event) |
| { |
| pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); |
| return 0; |
| } |
| |
| static int |
| process_exit_event(event_t *event) |
| { |
| pid_exit(event->fork.pid, event->fork.time); |
| return 0; |
| } |
| |
| struct trace_entry { |
| unsigned short type; |
| unsigned char flags; |
| unsigned char preempt_count; |
| int pid; |
| int lock_depth; |
| }; |
| |
| struct power_entry { |
| struct trace_entry te; |
| s64 type; |
| s64 value; |
| }; |
| |
| #define TASK_COMM_LEN 16 |
| struct wakeup_entry { |
| struct trace_entry te; |
| char comm[TASK_COMM_LEN]; |
| int pid; |
| int prio; |
| int success; |
| }; |
| |
| /* |
| * trace_flag_type is an enumeration that holds different |
| * states when a trace occurs. These are: |
| * IRQS_OFF - interrupts were disabled |
| * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags |
| * NEED_RESCED - reschedule is requested |
| * HARDIRQ - inside an interrupt handler |
| * SOFTIRQ - inside a softirq handler |
| */ |
| enum trace_flag_type { |
| TRACE_FLAG_IRQS_OFF = 0x01, |
| TRACE_FLAG_IRQS_NOSUPPORT = 0x02, |
| TRACE_FLAG_NEED_RESCHED = 0x04, |
| TRACE_FLAG_HARDIRQ = 0x08, |
| TRACE_FLAG_SOFTIRQ = 0x10, |
| }; |
| |
| |
| |
| struct sched_switch { |
| struct trace_entry te; |
| char prev_comm[TASK_COMM_LEN]; |
| int prev_pid; |
| int prev_prio; |
| long prev_state; /* Arjan weeps. */ |
| char next_comm[TASK_COMM_LEN]; |
| int next_pid; |
| int next_prio; |
| }; |
| |
| static void c_state_start(int cpu, u64 timestamp, int state) |
| { |
| cpus_cstate_start_times[cpu] = timestamp; |
| cpus_cstate_state[cpu] = state; |
| } |
| |
| static void c_state_end(int cpu, u64 timestamp) |
| { |
| struct power_event *pwr; |
| pwr = malloc(sizeof(struct power_event)); |
| if (!pwr) |
| return; |
| memset(pwr, 0, sizeof(struct power_event)); |
| |
| pwr->state = cpus_cstate_state[cpu]; |
| pwr->start_time = cpus_cstate_start_times[cpu]; |
| pwr->end_time = timestamp; |
| pwr->cpu = cpu; |
| pwr->type = CSTATE; |
| pwr->next = power_events; |
| |
| power_events = pwr; |
| } |
| |
| static void p_state_change(int cpu, u64 timestamp, u64 new_freq) |
| { |
| struct power_event *pwr; |
| pwr = malloc(sizeof(struct power_event)); |
| |
| if (new_freq > 8000000) /* detect invalid data */ |
| return; |
| |
| if (!pwr) |
| return; |
| memset(pwr, 0, sizeof(struct power_event)); |
| |
| pwr->state = cpus_pstate_state[cpu]; |
| pwr->start_time = cpus_pstate_start_times[cpu]; |
| pwr->end_time = timestamp; |
| pwr->cpu = cpu; |
| pwr->type = PSTATE; |
| pwr->next = power_events; |
| |
| if (!pwr->start_time) |
| pwr->start_time = first_time; |
| |
| power_events = pwr; |
| |
| cpus_pstate_state[cpu] = new_freq; |
| cpus_pstate_start_times[cpu] = timestamp; |
| |
| if ((u64)new_freq > max_freq) |
| max_freq = new_freq; |
| |
| if (new_freq < min_freq || min_freq == 0) |
| min_freq = new_freq; |
| |
| if (new_freq == max_freq - 1000) |
| turbo_frequency = max_freq; |
| } |
| |
| static void |
| sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) |
| { |
| struct wake_event *we; |
| struct per_pid *p; |
| struct wakeup_entry *wake = (void *)te; |
| |
| we = malloc(sizeof(struct wake_event)); |
| if (!we) |
| return; |
| |
| memset(we, 0, sizeof(struct wake_event)); |
| we->time = timestamp; |
| we->waker = pid; |
| |
| if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) |
| we->waker = -1; |
| |
| we->wakee = wake->pid; |
| we->next = wake_events; |
| wake_events = we; |
| p = find_create_pid(we->wakee); |
| |
| if (p && p->current && p->current->state == TYPE_NONE) { |
| p->current->state_since = timestamp; |
| p->current->state = TYPE_WAITING; |
| } |
| if (p && p->current && p->current->state == TYPE_BLOCKED) { |
| pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); |
| p->current->state_since = timestamp; |
| p->current->state = TYPE_WAITING; |
| } |
| } |
| |
| static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) |
| { |
| struct per_pid *p = NULL, *prev_p; |
| struct sched_switch *sw = (void *)te; |
| |
| |
| prev_p = find_create_pid(sw->prev_pid); |
| |
| p = find_create_pid(sw->next_pid); |
| |
| if (prev_p->current && prev_p->current->state != TYPE_NONE) |
| pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); |
| if (p && p->current) { |
| if (p->current->state != TYPE_NONE) |
| pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); |
| |
| p->current->state_since = timestamp; |
| p->current->state = TYPE_RUNNING; |
| } |
| |
| if (prev_p->current) { |
| prev_p->current->state = TYPE_NONE; |
| prev_p->current->state_since = timestamp; |
| if (sw->prev_state & 2) |
| prev_p->current->state = TYPE_BLOCKED; |
| if (sw->prev_state == 0) |
| prev_p->current->state = TYPE_WAITING; |
| } |
| } |
| |
| |
| static int |
| process_sample_event(event_t *event) |
| { |
| struct sample_data data; |
| struct trace_entry *te; |
| |
| memset(&data, 0, sizeof(data)); |
| |
| event__parse_sample(event, sample_type, &data); |
| |
| if (sample_type & PERF_SAMPLE_TIME) { |
| if (!first_time || first_time > data.time) |
| first_time = data.time; |
| if (last_time < data.time) |
| last_time = data.time; |
| } |
| |
| te = (void *)data.raw_data; |
| if (sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) { |
| char *event_str; |
| struct power_entry *pe; |
| |
| pe = (void *)te; |
| |
| event_str = perf_header__find_event(te->type); |
| |
| if (!event_str) |
| return 0; |
| |
| if (strcmp(event_str, "power:power_start") == 0) |
| c_state_start(data.cpu, data.time, pe->value); |
| |
| if (strcmp(event_str, "power:power_end") == 0) |
| c_state_end(data.cpu, data.time); |
| |
| if (strcmp(event_str, "power:power_frequency") == 0) |
| p_state_change(data.cpu, data.time, pe->value); |
| |
| if (strcmp(event_str, "sched:sched_wakeup") == 0) |
| sched_wakeup(data.cpu, data.time, data.pid, te); |
| |
| if (strcmp(event_str, "sched:sched_switch") == 0) |
| sched_switch(data.cpu, data.time, te); |
| } |
| return 0; |
| } |
| |
| /* |
| * After the last sample we need to wrap up the current C/P state |
| * and close out each CPU for these. |
| */ |
| static void end_sample_processing(void) |
| { |
| u64 cpu; |
| struct power_event *pwr; |
| |
| for (cpu = 0; cpu <= numcpus; cpu++) { |
| pwr = malloc(sizeof(struct power_event)); |
| if (!pwr) |
| return; |
| memset(pwr, 0, sizeof(struct power_event)); |
| |
| /* C state */ |
| #if 0 |
| pwr->state = cpus_cstate_state[cpu]; |
| pwr->start_time = cpus_cstate_start_times[cpu]; |
| pwr->end_time = last_time; |
| pwr->cpu = cpu; |
| pwr->type = CSTATE; |
| pwr->next = power_events; |
| |
| power_events = pwr; |
| #endif |
| /* P state */ |
| |
| pwr = malloc(sizeof(struct power_event)); |
| if (!pwr) |
| return; |
| memset(pwr, 0, sizeof(struct power_event)); |
| |
| pwr->state = cpus_pstate_state[cpu]; |
| pwr->start_time = cpus_pstate_start_times[cpu]; |
| pwr->end_time = last_time; |
| pwr->cpu = cpu; |
| pwr->type = PSTATE; |
| pwr->next = power_events; |
| |
| if (!pwr->start_time) |
| pwr->start_time = first_time; |
| if (!pwr->state) |
| pwr->state = min_freq; |
| power_events = pwr; |
| } |
| } |
| |
| static u64 sample_time(event_t *event) |
| { |
| int cursor; |
| |
| cursor = 0; |
| if (sample_type & PERF_SAMPLE_IP) |
| cursor++; |
| if (sample_type & PERF_SAMPLE_TID) |
| cursor++; |
| if (sample_type & PERF_SAMPLE_TIME) |
| return event->sample.array[cursor]; |
| return 0; |
| } |
| |
| |
| /* |
| * We first queue all events, sorted backwards by insertion. |
| * The order will get flipped later. |
| */ |
| static int |
| queue_sample_event(event_t *event) |
| { |
| struct sample_wrapper *copy, *prev; |
| int size; |
| |
| size = event->sample.header.size + sizeof(struct sample_wrapper) + 8; |
| |
| copy = malloc(size); |
| if (!copy) |
| return 1; |
| |
| memset(copy, 0, size); |
| |
| copy->next = NULL; |
| copy->timestamp = sample_time(event); |
| |
| memcpy(©->data, event, event->sample.header.size); |
| |
| /* insert in the right place in the list */ |
| |
| if (!all_samples) { |
| /* first sample ever */ |
| all_samples = copy; |
| return 0; |
| } |
| |
| if (all_samples->timestamp < copy->timestamp) { |
| /* insert at the head of the list */ |
| copy->next = all_samples; |
| all_samples = copy; |
| return 0; |
| } |
| |
| prev = all_samples; |
| while (prev->next) { |
| if (prev->next->timestamp < copy->timestamp) { |
| copy->next = prev->next; |
| prev->next = copy; |
| return 0; |
| } |
| prev = prev->next; |
| } |
| /* insert at the end of the list */ |
| prev->next = copy; |
| |
| return 0; |
| } |
| |
| static void sort_queued_samples(void) |
| { |
| struct sample_wrapper *cursor, *next; |
| |
| cursor = all_samples; |
| all_samples = NULL; |
| |
| while (cursor) { |
| next = cursor->next; |
| cursor->next = all_samples; |
| all_samples = cursor; |
| cursor = next; |
| } |
| } |
| |
| /* |
| * Sort the pid datastructure |
| */ |
| static void sort_pids(void) |
| { |
| struct per_pid *new_list, *p, *cursor, *prev; |
| /* sort by ppid first, then by pid, lowest to highest */ |
| |
| new_list = NULL; |
| |
| while (all_data) { |
| p = all_data; |
| all_data = p->next; |
| p->next = NULL; |
| |
| if (new_list == NULL) { |
| new_list = p; |
| p->next = NULL; |
| continue; |
| } |
| prev = NULL; |
| cursor = new_list; |
| while (cursor) { |
| if (cursor->ppid > p->ppid || |
| (cursor->ppid == p->ppid && cursor->pid > p->pid)) { |
| /* must insert before */ |
| if (prev) { |
| p->next = prev->next; |
| prev->next = p; |
| cursor = NULL; |
| continue; |
| } else { |
| p->next = new_list; |
| new_list = p; |
| cursor = NULL; |
| continue; |
| } |
| } |
| |
| prev = cursor; |
| cursor = cursor->next; |
| if (!cursor) |
| prev->next = p; |
| } |
| } |
| all_data = new_list; |
| } |
| |
| |
| static void draw_c_p_states(void) |
| { |
| struct power_event *pwr; |
| pwr = power_events; |
| |
| /* |
| * two pass drawing so that the P state bars are on top of the C state blocks |
| */ |
| while (pwr) { |
| if (pwr->type == CSTATE) |
| svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
| pwr = pwr->next; |
| } |
| |
| pwr = power_events; |
| while (pwr) { |
| if (pwr->type == PSTATE) { |
| if (!pwr->state) |
| pwr->state = min_freq; |
| svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
| } |
| pwr = pwr->next; |
| } |
| } |
| |
| static void draw_wakeups(void) |
| { |
| struct wake_event *we; |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| |
| we = wake_events; |
| while (we) { |
| int from = 0, to = 0; |
| char *task_from = NULL, *task_to = NULL; |
| |
| /* locate the column of the waker and wakee */ |
| p = all_data; |
| while (p) { |
| if (p->pid == we->waker || p->pid == we->wakee) { |
| c = p->all; |
| while (c) { |
| if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { |
| if (p->pid == we->waker && !from) { |
| from = c->Y; |
| task_from = strdup(c->comm); |
| } |
| if (p->pid == we->wakee && !to) { |
| to = c->Y; |
| task_to = strdup(c->comm); |
| } |
| } |
| c = c->next; |
| } |
| c = p->all; |
| while (c) { |
| if (p->pid == we->waker && !from) { |
| from = c->Y; |
| task_from = strdup(c->comm); |
| } |
| if (p->pid == we->wakee && !to) { |
| to = c->Y; |
| task_to = strdup(c->comm); |
| } |
| c = c->next; |
| } |
| } |
| p = p->next; |
| } |
| |
| if (!task_from) { |
| task_from = malloc(40); |
| sprintf(task_from, "[%i]", we->waker); |
| } |
| if (!task_to) { |
| task_to = malloc(40); |
| sprintf(task_to, "[%i]", we->wakee); |
| } |
| |
| if (we->waker == -1) |
| svg_interrupt(we->time, to); |
| else if (from && to && abs(from - to) == 1) |
| svg_wakeline(we->time, from, to); |
| else |
| svg_partial_wakeline(we->time, from, task_from, to, task_to); |
| we = we->next; |
| |
| free(task_from); |
| free(task_to); |
| } |
| } |
| |
| static void draw_cpu_usage(void) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| struct cpu_sample *sample; |
| p = all_data; |
| while (p) { |
| c = p->all; |
| while (c) { |
| sample = c->samples; |
| while (sample) { |
| if (sample->type == TYPE_RUNNING) |
| svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); |
| |
| sample = sample->next; |
| } |
| c = c->next; |
| } |
| p = p->next; |
| } |
| } |
| |
| static void draw_process_bars(void) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| struct cpu_sample *sample; |
| int Y = 0; |
| |
| Y = 2 * numcpus + 2; |
| |
| p = all_data; |
| while (p) { |
| c = p->all; |
| while (c) { |
| if (!c->display) { |
| c->Y = 0; |
| c = c->next; |
| continue; |
| } |
| |
| svg_box(Y, c->start_time, c->end_time, "process"); |
| sample = c->samples; |
| while (sample) { |
| if (sample->type == TYPE_RUNNING) |
| svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); |
| if (sample->type == TYPE_BLOCKED) |
| svg_box(Y, sample->start_time, sample->end_time, "blocked"); |
| if (sample->type == TYPE_WAITING) |
| svg_waiting(Y, sample->start_time, sample->end_time); |
| sample = sample->next; |
| } |
| |
| if (c->comm) { |
| char comm[256]; |
| if (c->total_time > 5000000000) /* 5 seconds */ |
| sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); |
| else |
| sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); |
| |
| svg_text(Y, c->start_time, comm); |
| } |
| c->Y = Y; |
| Y++; |
| c = c->next; |
| } |
| p = p->next; |
| } |
| } |
| |
| static void add_process_filter(const char *string) |
| { |
| struct process_filter *filt; |
| int pid; |
| |
| pid = strtoull(string, NULL, 10); |
| filt = malloc(sizeof(struct process_filter)); |
| if (!filt) |
| return; |
| |
| filt->name = strdup(string); |
| filt->pid = pid; |
| filt->next = process_filter; |
| |
| process_filter = filt; |
| } |
| |
| static int passes_filter(struct per_pid *p, struct per_pidcomm *c) |
| { |
| struct process_filter *filt; |
| if (!process_filter) |
| return 1; |
| |
| filt = process_filter; |
| while (filt) { |
| if (filt->pid && p->pid == filt->pid) |
| return 1; |
| if (strcmp(filt->name, c->comm) == 0) |
| return 1; |
| filt = filt->next; |
| } |
| return 0; |
| } |
| |
| static int determine_display_tasks_filtered(void) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| int count = 0; |
| |
| p = all_data; |
| while (p) { |
| p->display = 0; |
| if (p->start_time == 1) |
| p->start_time = first_time; |
| |
| /* no exit marker, task kept running to the end */ |
| if (p->end_time == 0) |
| p->end_time = last_time; |
| |
| c = p->all; |
| |
| while (c) { |
| c->display = 0; |
| |
| if (c->start_time == 1) |
| c->start_time = first_time; |
| |
| if (passes_filter(p, c)) { |
| c->display = 1; |
| p->display = 1; |
| count++; |
| } |
| |
| if (c->end_time == 0) |
| c->end_time = last_time; |
| |
| c = c->next; |
| } |
| p = p->next; |
| } |
| return count; |
| } |
| |
| static int determine_display_tasks(u64 threshold) |
| { |
| struct per_pid *p; |
| struct per_pidcomm *c; |
| int count = 0; |
| |
| if (process_filter) |
| return determine_display_tasks_filtered(); |
| |
| p = all_data; |
| while (p) { |
| p->display = 0; |
| if (p->start_time == 1) |
| p->start_time = first_time; |
| |
| /* no exit marker, task kept running to the end */ |
| if (p->end_time == 0) |
| p->end_time = last_time; |
| if (p->total_time >= threshold && !power_only) |
| p->display = 1; |
| |
| c = p->all; |
| |
| while (c) { |
| c->display = 0; |
| |
| if (c->start_time == 1) |
| c->start_time = first_time; |
| |
| if (c->total_time >= threshold && !power_only) { |
| c->display = 1; |
| count++; |
| } |
| |
| if (c->end_time == 0) |
| c->end_time = last_time; |
| |
| c = c->next; |
| } |
| p = p->next; |
| } |
| return count; |
| } |
| |
| |
| |
| #define TIME_THRESH 10000000 |
| |
| static void write_svg_file(const char *filename) |
| { |
| u64 i; |
| int count; |
| |
| numcpus++; |
| |
| |
| count = determine_display_tasks(TIME_THRESH); |
| |
| /* We'd like to show at least 15 tasks; be less picky if we have fewer */ |
| if (count < 15) |
| count = determine_display_tasks(TIME_THRESH / 10); |
| |
| open_svg(filename, numcpus, count, first_time, last_time); |
| |
| svg_time_grid(); |
| svg_legenda(); |
| |
| for (i = 0; i < numcpus; i++) |
| svg_cpu_box(i, max_freq, turbo_frequency); |
| |
| draw_cpu_usage(); |
| draw_process_bars(); |
| draw_c_p_states(); |
| draw_wakeups(); |
| |
| svg_close(); |
| } |
| |
| static void process_samples(void) |
| { |
| struct sample_wrapper *cursor; |
| event_t *event; |
| |
| sort_queued_samples(); |
| |
| cursor = all_samples; |
| while (cursor) { |
| event = (void *)&cursor->data; |
| cursor = cursor->next; |
| process_sample_event(event); |
| } |
| } |
| |
| static int sample_type_check(u64 type) |
| { |
| sample_type = type; |
| |
| if (!(sample_type & PERF_SAMPLE_RAW)) { |
| fprintf(stderr, "No trace samples found in the file.\n" |
| "Have you used 'perf timechart record' to record it?\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static struct perf_file_handler file_handler = { |
| .process_comm_event = process_comm_event, |
| .process_fork_event = process_fork_event, |
| .process_exit_event = process_exit_event, |
| .process_sample_event = queue_sample_event, |
| .sample_type_check = sample_type_check, |
| }; |
| |
| static int __cmd_timechart(void) |
| { |
| struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0); |
| int ret; |
| |
| if (session == NULL) |
| return -ENOMEM; |
| |
| register_perf_file_handler(&file_handler); |
| |
| ret = perf_session__process_events(session, 0, &event__cwdlen, &event__cwd); |
| if (ret) |
| goto out_delete; |
| |
| process_samples(); |
| |
| end_sample_processing(); |
| |
| sort_pids(); |
| |
| write_svg_file(output_name); |
| |
| pr_info("Written %2.1f seconds of trace to %s.\n", |
| (last_time - first_time) / 1000000000.0, output_name); |
| out_delete: |
| perf_session__delete(session); |
| return ret; |
| } |
| |
| static const char * const timechart_usage[] = { |
| "perf timechart [<options>] {record}", |
| NULL |
| }; |
| |
| static const char *record_args[] = { |
| "record", |
| "-a", |
| "-R", |
| "-M", |
| "-f", |
| "-c", "1", |
| "-e", "power:power_start", |
| "-e", "power:power_end", |
| "-e", "power:power_frequency", |
| "-e", "sched:sched_wakeup", |
| "-e", "sched:sched_switch", |
| }; |
| |
| static int __cmd_record(int argc, const char **argv) |
| { |
| unsigned int rec_argc, i, j; |
| const char **rec_argv; |
| |
| rec_argc = ARRAY_SIZE(record_args) + argc - 1; |
| rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
| |
| for (i = 0; i < ARRAY_SIZE(record_args); i++) |
| rec_argv[i] = strdup(record_args[i]); |
| |
| for (j = 1; j < (unsigned int)argc; j++, i++) |
| rec_argv[i] = argv[j]; |
| |
| return cmd_record(i, rec_argv, NULL); |
| } |
| |
| static int |
| parse_process(const struct option *opt __used, const char *arg, int __used unset) |
| { |
| if (arg) |
| add_process_filter(arg); |
| return 0; |
| } |
| |
| static const struct option options[] = { |
| OPT_STRING('i', "input", &input_name, "file", |
| "input file name"), |
| OPT_STRING('o', "output", &output_name, "file", |
| "output file name"), |
| OPT_INTEGER('w', "width", &svg_page_width, |
| "page width"), |
| OPT_BOOLEAN('P', "power-only", &power_only, |
| "output power data only"), |
| OPT_CALLBACK('p', "process", NULL, "process", |
| "process selector. Pass a pid or process name.", |
| parse_process), |
| OPT_END() |
| }; |
| |
| |
| int cmd_timechart(int argc, const char **argv, const char *prefix __used) |
| { |
| symbol__init(0); |
| |
| argc = parse_options(argc, argv, options, timechart_usage, |
| PARSE_OPT_STOP_AT_NON_OPTION); |
| |
| if (argc && !strncmp(argv[0], "rec", 3)) |
| return __cmd_record(argc, argv); |
| else if (argc) |
| usage_with_options(timechart_usage, options); |
| |
| setup_pager(); |
| |
| return __cmd_timechart(); |
| } |