[PATCH] page migration reorg

Centralize the page migration functions in anticipation of additional
tinkering.  Creates a new file mm/migrate.c

1. Extract buffer_migrate_page() from fs/buffer.c

2. Extract central migration code from vmscan.c

3. Extract some components from mempolicy.c

4. Export pageout() and remove_from_swap() from vmscan.c

5. Make it possible to configure NUMA systems without page migration
   and non-NUMA systems with page migration.

I had to so some #ifdeffing in mempolicy.c that may need a cleanup.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
diff --git a/mm/migrate.c b/mm/migrate.c
new file mode 100644
index 0000000..09f6e4a
--- /dev/null
+++ b/mm/migrate.c
@@ -0,0 +1,655 @@
+/*
+ * Memory Migration functionality - linux/mm/migration.c
+ *
+ * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
+ *
+ * Page migration was first developed in the context of the memory hotplug
+ * project. The main authors of the migration code are:
+ *
+ * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
+ * Hirokazu Takahashi <taka@valinux.co.jp>
+ * Dave Hansen <haveblue@us.ibm.com>
+ * Christoph Lameter <clameter@sgi.com>
+ */
+
+#include <linux/migrate.h>
+#include <linux/module.h>
+#include <linux/swap.h>
+#include <linux/pagemap.h>
+#include <linux/buffer_head.h>	/* for try_to_release_page(),
+					buffer_heads_over_limit */
+#include <linux/mm_inline.h>
+#include <linux/pagevec.h>
+#include <linux/rmap.h>
+#include <linux/topology.h>
+#include <linux/cpu.h>
+#include <linux/cpuset.h>
+#include <linux/swapops.h>
+
+#include "internal.h"
+
+#include "internal.h"
+
+/* The maximum number of pages to take off the LRU for migration */
+#define MIGRATE_CHUNK_SIZE 256
+
+#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
+
+/*
+ * Isolate one page from the LRU lists. If successful put it onto
+ * the indicated list with elevated page count.
+ *
+ * Result:
+ *  -EBUSY: page not on LRU list
+ *  0: page removed from LRU list and added to the specified list.
+ */
+int isolate_lru_page(struct page *page, struct list_head *pagelist)
+{
+	int ret = -EBUSY;
+
+	if (PageLRU(page)) {
+		struct zone *zone = page_zone(page);
+
+		spin_lock_irq(&zone->lru_lock);
+		if (PageLRU(page)) {
+			ret = 0;
+			get_page(page);
+			ClearPageLRU(page);
+			if (PageActive(page))
+				del_page_from_active_list(zone, page);
+			else
+				del_page_from_inactive_list(zone, page);
+			list_add_tail(&page->lru, pagelist);
+		}
+		spin_unlock_irq(&zone->lru_lock);
+	}
+	return ret;
+}
+
+/*
+ * migrate_prep() needs to be called after we have compiled the list of pages
+ * to be migrated using isolate_lru_page() but before we begin a series of calls
+ * to migrate_pages().
+ */
+int migrate_prep(void)
+{
+	/* Must have swap device for migration */
+	if (nr_swap_pages <= 0)
+		return -ENODEV;
+
+	/*
+	 * Clear the LRU lists so pages can be isolated.
+	 * Note that pages may be moved off the LRU after we have
+	 * drained them. Those pages will fail to migrate like other
+	 * pages that may be busy.
+	 */
+	lru_add_drain_all();
+
+	return 0;
+}
+
+static inline void move_to_lru(struct page *page)
+{
+	list_del(&page->lru);
+	if (PageActive(page)) {
+		/*
+		 * lru_cache_add_active checks that
+		 * the PG_active bit is off.
+		 */
+		ClearPageActive(page);
+		lru_cache_add_active(page);
+	} else {
+		lru_cache_add(page);
+	}
+	put_page(page);
+}
+
+/*
+ * Add isolated pages on the list back to the LRU.
+ *
+ * returns the number of pages put back.
+ */
+int putback_lru_pages(struct list_head *l)
+{
+	struct page *page;
+	struct page *page2;
+	int count = 0;
+
+	list_for_each_entry_safe(page, page2, l, lru) {
+		move_to_lru(page);
+		count++;
+	}
+	return count;
+}
+
+/*
+ * Non migratable page
+ */
+int fail_migrate_page(struct page *newpage, struct page *page)
+{
+	return -EIO;
+}
+EXPORT_SYMBOL(fail_migrate_page);
+
+/*
+ * swapout a single page
+ * page is locked upon entry, unlocked on exit
+ */
+static int swap_page(struct page *page)
+{
+	struct address_space *mapping = page_mapping(page);
+
+	if (page_mapped(page) && mapping)
+		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
+			goto unlock_retry;
+
+	if (PageDirty(page)) {
+		/* Page is dirty, try to write it out here */
+		switch(pageout(page, mapping)) {
+		case PAGE_KEEP:
+		case PAGE_ACTIVATE:
+			goto unlock_retry;
+
+		case PAGE_SUCCESS:
+			goto retry;
+
+		case PAGE_CLEAN:
+			; /* try to free the page below */
+		}
+	}
+
+	if (PagePrivate(page)) {
+		if (!try_to_release_page(page, GFP_KERNEL) ||
+		    (!mapping && page_count(page) == 1))
+			goto unlock_retry;
+	}
+
+	if (remove_mapping(mapping, page)) {
+		/* Success */
+		unlock_page(page);
+		return 0;
+	}
+
+unlock_retry:
+	unlock_page(page);
+
+retry:
+	return -EAGAIN;
+}
+EXPORT_SYMBOL(swap_page);
+
+/*
+ * Remove references for a page and establish the new page with the correct
+ * basic settings to be able to stop accesses to the page.
+ */
+int migrate_page_remove_references(struct page *newpage,
+				struct page *page, int nr_refs)
+{
+	struct address_space *mapping = page_mapping(page);
+	struct page **radix_pointer;
+
+	/*
+	 * Avoid doing any of the following work if the page count
+	 * indicates that the page is in use or truncate has removed
+	 * the page.
+	 */
+	if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
+		return -EAGAIN;
+
+	/*
+	 * Establish swap ptes for anonymous pages or destroy pte
+	 * maps for files.
+	 *
+	 * In order to reestablish file backed mappings the fault handlers
+	 * will take the radix tree_lock which may then be used to stop
+  	 * processses from accessing this page until the new page is ready.
+	 *
+	 * A process accessing via a swap pte (an anonymous page) will take a
+	 * page_lock on the old page which will block the process until the
+	 * migration attempt is complete. At that time the PageSwapCache bit
+	 * will be examined. If the page was migrated then the PageSwapCache
+	 * bit will be clear and the operation to retrieve the page will be
+	 * retried which will find the new page in the radix tree. Then a new
+	 * direct mapping may be generated based on the radix tree contents.
+	 *
+	 * If the page was not migrated then the PageSwapCache bit
+	 * is still set and the operation may continue.
+	 */
+	if (try_to_unmap(page, 1) == SWAP_FAIL)
+		/* A vma has VM_LOCKED set -> permanent failure */
+		return -EPERM;
+
+	/*
+	 * Give up if we were unable to remove all mappings.
+	 */
+	if (page_mapcount(page))
+		return -EAGAIN;
+
+	write_lock_irq(&mapping->tree_lock);
+
+	radix_pointer = (struct page **)radix_tree_lookup_slot(
+						&mapping->page_tree,
+						page_index(page));
+
+	if (!page_mapping(page) || page_count(page) != nr_refs ||
+			*radix_pointer != page) {
+		write_unlock_irq(&mapping->tree_lock);
+		return 1;
+	}
+
+	/*
+	 * Now we know that no one else is looking at the page.
+	 *
+	 * Certain minimal information about a page must be available
+	 * in order for other subsystems to properly handle the page if they
+	 * find it through the radix tree update before we are finished
+	 * copying the page.
+	 */
+	get_page(newpage);
+	newpage->index = page->index;
+	newpage->mapping = page->mapping;
+	if (PageSwapCache(page)) {
+		SetPageSwapCache(newpage);
+		set_page_private(newpage, page_private(page));
+	}
+
+	*radix_pointer = newpage;
+	__put_page(page);
+	write_unlock_irq(&mapping->tree_lock);
+
+	return 0;
+}
+EXPORT_SYMBOL(migrate_page_remove_references);
+
+/*
+ * Copy the page to its new location
+ */
+void migrate_page_copy(struct page *newpage, struct page *page)
+{
+	copy_highpage(newpage, page);
+
+	if (PageError(page))
+		SetPageError(newpage);
+	if (PageReferenced(page))
+		SetPageReferenced(newpage);
+	if (PageUptodate(page))
+		SetPageUptodate(newpage);
+	if (PageActive(page))
+		SetPageActive(newpage);
+	if (PageChecked(page))
+		SetPageChecked(newpage);
+	if (PageMappedToDisk(page))
+		SetPageMappedToDisk(newpage);
+
+	if (PageDirty(page)) {
+		clear_page_dirty_for_io(page);
+		set_page_dirty(newpage);
+ 	}
+
+	ClearPageSwapCache(page);
+	ClearPageActive(page);
+	ClearPagePrivate(page);
+	set_page_private(page, 0);
+	page->mapping = NULL;
+
+	/*
+	 * If any waiters have accumulated on the new page then
+	 * wake them up.
+	 */
+	if (PageWriteback(newpage))
+		end_page_writeback(newpage);
+}
+EXPORT_SYMBOL(migrate_page_copy);
+
+/*
+ * Common logic to directly migrate a single page suitable for
+ * pages that do not use PagePrivate.
+ *
+ * Pages are locked upon entry and exit.
+ */
+int migrate_page(struct page *newpage, struct page *page)
+{
+	int rc;
+
+	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
+
+	rc = migrate_page_remove_references(newpage, page, 2);
+
+	if (rc)
+		return rc;
+
+	migrate_page_copy(newpage, page);
+
+	/*
+	 * Remove auxiliary swap entries and replace
+	 * them with real ptes.
+	 *
+	 * Note that a real pte entry will allow processes that are not
+	 * waiting on the page lock to use the new page via the page tables
+	 * before the new page is unlocked.
+	 */
+	remove_from_swap(newpage);
+	return 0;
+}
+EXPORT_SYMBOL(migrate_page);
+
+/*
+ * migrate_pages
+ *
+ * Two lists are passed to this function. The first list
+ * contains the pages isolated from the LRU to be migrated.
+ * The second list contains new pages that the pages isolated
+ * can be moved to. If the second list is NULL then all
+ * pages are swapped out.
+ *
+ * The function returns after 10 attempts or if no pages
+ * are movable anymore because to has become empty
+ * or no retryable pages exist anymore.
+ *
+ * Return: Number of pages not migrated when "to" ran empty.
+ */
+int migrate_pages(struct list_head *from, struct list_head *to,
+		  struct list_head *moved, struct list_head *failed)
+{
+	int retry;
+	int nr_failed = 0;
+	int pass = 0;
+	struct page *page;
+	struct page *page2;
+	int swapwrite = current->flags & PF_SWAPWRITE;
+	int rc;
+
+	if (!swapwrite)
+		current->flags |= PF_SWAPWRITE;
+
+redo:
+	retry = 0;
+
+	list_for_each_entry_safe(page, page2, from, lru) {
+		struct page *newpage = NULL;
+		struct address_space *mapping;
+
+		cond_resched();
+
+		rc = 0;
+		if (page_count(page) == 1)
+			/* page was freed from under us. So we are done. */
+			goto next;
+
+		if (to && list_empty(to))
+			break;
+
+		/*
+		 * Skip locked pages during the first two passes to give the
+		 * functions holding the lock time to release the page. Later we
+		 * use lock_page() to have a higher chance of acquiring the
+		 * lock.
+		 */
+		rc = -EAGAIN;
+		if (pass > 2)
+			lock_page(page);
+		else
+			if (TestSetPageLocked(page))
+				goto next;
+
+		/*
+		 * Only wait on writeback if we have already done a pass where
+		 * we we may have triggered writeouts for lots of pages.
+		 */
+		if (pass > 0) {
+			wait_on_page_writeback(page);
+		} else {
+			if (PageWriteback(page))
+				goto unlock_page;
+		}
+
+		/*
+		 * Anonymous pages must have swap cache references otherwise
+		 * the information contained in the page maps cannot be
+		 * preserved.
+		 */
+		if (PageAnon(page) && !PageSwapCache(page)) {
+			if (!add_to_swap(page, GFP_KERNEL)) {
+				rc = -ENOMEM;
+				goto unlock_page;
+			}
+		}
+
+		if (!to) {
+			rc = swap_page(page);
+			goto next;
+		}
+
+		newpage = lru_to_page(to);
+		lock_page(newpage);
+
+		/*
+		 * Pages are properly locked and writeback is complete.
+		 * Try to migrate the page.
+		 */
+		mapping = page_mapping(page);
+		if (!mapping)
+			goto unlock_both;
+
+		if (mapping->a_ops->migratepage) {
+			/*
+			 * Most pages have a mapping and most filesystems
+			 * should provide a migration function. Anonymous
+			 * pages are part of swap space which also has its
+			 * own migration function. This is the most common
+			 * path for page migration.
+			 */
+			rc = mapping->a_ops->migratepage(newpage, page);
+			goto unlock_both;
+                }
+
+		/*
+		 * Default handling if a filesystem does not provide
+		 * a migration function. We can only migrate clean
+		 * pages so try to write out any dirty pages first.
+		 */
+		if (PageDirty(page)) {
+			switch (pageout(page, mapping)) {
+			case PAGE_KEEP:
+			case PAGE_ACTIVATE:
+				goto unlock_both;
+
+			case PAGE_SUCCESS:
+				unlock_page(newpage);
+				goto next;
+
+			case PAGE_CLEAN:
+				; /* try to migrate the page below */
+			}
+                }
+
+		/*
+		 * Buffers are managed in a filesystem specific way.
+		 * We must have no buffers or drop them.
+		 */
+		if (!page_has_buffers(page) ||
+		    try_to_release_page(page, GFP_KERNEL)) {
+			rc = migrate_page(newpage, page);
+			goto unlock_both;
+		}
+
+		/*
+		 * On early passes with mapped pages simply
+		 * retry. There may be a lock held for some
+		 * buffers that may go away. Later
+		 * swap them out.
+		 */
+		if (pass > 4) {
+			/*
+			 * Persistently unable to drop buffers..... As a
+			 * measure of last resort we fall back to
+			 * swap_page().
+			 */
+			unlock_page(newpage);
+			newpage = NULL;
+			rc = swap_page(page);
+			goto next;
+		}
+
+unlock_both:
+		unlock_page(newpage);
+
+unlock_page:
+		unlock_page(page);
+
+next:
+		if (rc == -EAGAIN) {
+			retry++;
+		} else if (rc) {
+			/* Permanent failure */
+			list_move(&page->lru, failed);
+			nr_failed++;
+		} else {
+			if (newpage) {
+				/* Successful migration. Return page to LRU */
+				move_to_lru(newpage);
+			}
+			list_move(&page->lru, moved);
+		}
+	}
+	if (retry && pass++ < 10)
+		goto redo;
+
+	if (!swapwrite)
+		current->flags &= ~PF_SWAPWRITE;
+
+	return nr_failed + retry;
+}
+
+/*
+ * Migration function for pages with buffers. This function can only be used
+ * if the underlying filesystem guarantees that no other references to "page"
+ * exist.
+ */
+int buffer_migrate_page(struct page *newpage, struct page *page)
+{
+	struct address_space *mapping = page->mapping;
+	struct buffer_head *bh, *head;
+	int rc;
+
+	if (!mapping)
+		return -EAGAIN;
+
+	if (!page_has_buffers(page))
+		return migrate_page(newpage, page);
+
+	head = page_buffers(page);
+
+	rc = migrate_page_remove_references(newpage, page, 3);
+
+	if (rc)
+		return rc;
+
+	bh = head;
+	do {
+		get_bh(bh);
+		lock_buffer(bh);
+		bh = bh->b_this_page;
+
+	} while (bh != head);
+
+	ClearPagePrivate(page);
+	set_page_private(newpage, page_private(page));
+	set_page_private(page, 0);
+	put_page(page);
+	get_page(newpage);
+
+	bh = head;
+	do {
+		set_bh_page(bh, newpage, bh_offset(bh));
+		bh = bh->b_this_page;
+
+	} while (bh != head);
+
+	SetPagePrivate(newpage);
+
+	migrate_page_copy(newpage, page);
+
+	bh = head;
+	do {
+		unlock_buffer(bh);
+ 		put_bh(bh);
+		bh = bh->b_this_page;
+
+	} while (bh != head);
+
+	return 0;
+}
+EXPORT_SYMBOL(buffer_migrate_page);
+
+/*
+ * Migrate the list 'pagelist' of pages to a certain destination.
+ *
+ * Specify destination with either non-NULL vma or dest_node >= 0
+ * Return the number of pages not migrated or error code
+ */
+int migrate_pages_to(struct list_head *pagelist,
+			struct vm_area_struct *vma, int dest)
+{
+	LIST_HEAD(newlist);
+	LIST_HEAD(moved);
+	LIST_HEAD(failed);
+	int err = 0;
+	unsigned long offset = 0;
+	int nr_pages;
+	struct page *page;
+	struct list_head *p;
+
+redo:
+	nr_pages = 0;
+	list_for_each(p, pagelist) {
+		if (vma) {
+			/*
+			 * The address passed to alloc_page_vma is used to
+			 * generate the proper interleave behavior. We fake
+			 * the address here by an increasing offset in order
+			 * to get the proper distribution of pages.
+			 *
+			 * No decision has been made as to which page
+			 * a certain old page is moved to so we cannot
+			 * specify the correct address.
+			 */
+			page = alloc_page_vma(GFP_HIGHUSER, vma,
+					offset + vma->vm_start);
+			offset += PAGE_SIZE;
+		}
+		else
+			page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
+
+		if (!page) {
+			err = -ENOMEM;
+			goto out;
+		}
+		list_add_tail(&page->lru, &newlist);
+		nr_pages++;
+		if (nr_pages > MIGRATE_CHUNK_SIZE)
+			break;
+	}
+	err = migrate_pages(pagelist, &newlist, &moved, &failed);
+
+	putback_lru_pages(&moved);	/* Call release pages instead ?? */
+
+	if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
+		goto redo;
+out:
+	/* Return leftover allocated pages */
+	while (!list_empty(&newlist)) {
+		page = list_entry(newlist.next, struct page, lru);
+		list_del(&page->lru);
+		__free_page(page);
+	}
+	list_splice(&failed, pagelist);
+	if (err < 0)
+		return err;
+
+	/* Calculate number of leftover pages */
+	nr_pages = 0;
+	list_for_each(p, pagelist)
+		nr_pages++;
+	return nr_pages;
+}